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Introduction

The study of equilibrium electrolytes in a porous and electrically charged medium is
of interest in the design of semiconductor devices or the study of clay rocks at the
nanometre scale. The bulk free-energy f of these systems, which is a function of the ionic
concentrations, contains a non-convex contribution due to the electrostatic interactions
between the ions; it has been shown that for small ion diameters this contribution is
strong enough to make the function f non-convex. In such cases the region T of the
state space where f di�ers from its convex hull is thermodynamically unstable and T
divides the state space in di�erent phases. For a one-dimensional state space (only one
ionic species), the convex hull of the bulk free-energy f can be determined using Maxwell
equal area rule. For more than one ionic species, we need to determine the convex hull
of a multidimensional function f . In the thesis we study the Legendre-Fenchel transform
and we propose an algorithm to approximate the convex hull, which is based on its
discrete version. This approach is known in the literature, but here we develop and
test an improved version of it. We apply this algorithm to the bulk free energy in the
symmetric and asymmetric case, �nding the shape of the region T . Finally we solve the
model equations by a �nite elements discretization, obtaining solutions in which phase
separation clearly arises.
The thesis is organized as follows.
In Chapter 1 we study a non-con�ned electrolyte. We describe its free-energy, called

bulk free-energy ; in the non-ideal case, i.e. when interactions between ions are not neg-
ligible, such free-energy contains terms due to coulombian interaction and steric e�ects.
Finally, we observe that if the free-energy is not convex, phase separation may occur.
In Chapter 2 we introduce and prove some basic results on the Legendre-Fenchel trans-

form and its discrete counterpart with particular attention to the construction of the
convex hull; more details can be found in Appendices A and B. Convergence properties
are assessed and an exact formula is given for the one-dimensional case.
In Chapter 3 we study the properties of a double application of the discrete Legendre-

Fenchel transform, which furnishes an approximation of the convex hull. Attention is
payed to the choice of the discretization for the second transform, as it has great impor-
tance in the convergence results.
In Chapter 4 we present an algorithm for the computation of the convex hull based on

the dimensional factorization of the Legendre-Fenchel transform. Some improvements to
the standard approach studied in the literature are proposed and the numerical results
of the algorithms are analyzed on some test problems.
In Chapter 5 we unveil the shape of the non-convexity region T of the bulk free-energy

density for electrolytes of varying ion diameter; both symmetric and asymmetric mixtures
of ions are considered.
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In Chapter 6 the full model for a con�ned electrolyte is introduced; the total free-energy
now includes a contribution of the electrostatic potential. A numerical method for the
solution of the model equations is brie�y presented and actual solutions computed for
some test cases, showing that phase separation indeed arises in the presence of charged
walls.
To conclude, the proposed algorithm allows to study any con�ned electrolyte, no matter

what the valences and the ionic diameter are. However further improvements are needed
to approximate the convex-full of the energy in case of asymmetric mixture with small
ion diameters, because the iterative method used thus not converge.
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1. The bulk free-energy of electrolytes

The phenomenon we are going to study is the behaviour of electrolytes in a porous and
electrically charged medium; an electrolyte is a solvent, usually water, in which one or
more ionic species are dissolved. This behaviour is of interest in many �elds of application,
such as the design of semiconductor devices or the study of clay rocks at the nanometre
scale. The model used in this work is the one considered by Ern, Joubaud and Lelièvre
[Ern et al.(2012)Ern, Joubaud, and Lelièvre].

1.1. Bulk electrolytes

Consider an electrolyte composed by a cation and an anion contained in a region Ω ⊆ Rn,
where n = 2, 3, whose boundary ∂Ω is electrically charged; we will denote respectively
by Z+ and Z− their valences, i.e. the number of extra/missing electrons, and with c =
(c+, c−) their concentrations. We will initially suppose that Ω is su�ciently large to
make the in�uence on the electrolyte of the boundary ∂Ω negligible; this is equivalent
to consider the limit case Ω = Rn and an electrolyte in this condition is called a bulk
electrolyte. At equilibrium, we have by symmetry that the concentration c : Ω → R2

≥0

and the electrostatic potential ψ : Ω→ R are constant; for simplicity we can take ψ = 0,
being the potential determined up to an additive constant.
At the equilibrium ψ and c must be such that µ+(ψ, c) and µ−(ψ, c) are both constant

on Ω, where µ±(ψ, c) are the electrochemical potentials of the two ions; these potentials
are given by

µi(ψ, c) = kBT log(σ3ci) + kBT log(γi(c)) + Zieψ, i = ±,

where kB is the Boltzmann constant, e is the elementary charge, T is the temperature, σ
is the mean ion diameter, which we suppose the same for both species, and γi(c) is the
activity coe�cient of species i which is used to account for non-ideal behaviour (in the
ideal case we have γ±(c) ≡ 1). In the case Ω = Rn we have seen that ψ = 0 and c is
constant and thus the condition on the electrochemical potentials is satis�ed for every c
constant.

1.2. Non-dimensional formulation

It is convenient to have a non-dimensional formulation, for example in order to normalize
numerical values and simplify the equations through the omission of physical constants.
This means substituting each quantity with the dimensionless ratio between it and a
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reference value and then �nding the equations that this ratios satisfy; these reference
values are

length L∗
concentration c c∗ := L−3

∗
electrostatic potential ψ ψ∗ := kBT

e

electrochemical potential µ µ∗ := kBT

where the reference length L∗ can be chosen arbitrarily. We will also de�ne the so called
Bjerrum length

LB :=
e2

4πεkBT
,

where ε = ε0εr is the solvent permittivity (ε0 is the vacuum permittivity and εr the
solvent relative permittivity), and the dimensionless ratio

λ :=
L∗

4πLB
.

Denoting for simplicity the new dimensionless quantities with the same symbols used
before, the expression for the electrochemical potentials becomes

µi(ψ, c) = log(σ3ci) + log(γi(c)) + Ziψ, i = ±.

1.3. Non-ideality

In this section we specify the activity coe�cients γ±(c). Each of them can be split into
two parts as

log(γi(c)) = log(γCoul
i (c)) + log(γSteric(c+ + c−)), i = ±;

the �rst contribution is due to Coloumb interactions, while the second accounts for steric
e�ects, i.e. e�ects which appear when the ions are very close to each another. The
Coulomb term is given by

log(γCoul
i (c)) = Z2

i log(γ0(I(c))), i = ±,

where I(c) is the ionic strength de�ned as

ηi :=
1

2
Z2
i ,

I(c) :=
∑
i=±

ηici,

while the function γ0 : R≥0 → R≥0 is de�ned as

ΥMSA(θ) :=
1

2σ

√2σ

√
2θ

λ
+ 1− 1

 ,

log(γ0(θ)) := − 1

4πλ

ΥMSA(θ)

1 + σΥMSA(θ)
,

7



where ΥMSA is called the screening parameter and the acronym MSA stands for �mean
spherical approximation�. We present two version of the steric term. The �rst is called
hard-sphere approximation and is given by

log(γHS(u)) :=
4πσ3

3
u.

We thus have that log(γHS(u)) is proportional to the fraction of the volume occupied by
the ions, but it is �nite for every concentration u = c+ + c−, no matter how high; this
is not what we expect because it should not be possible to �t any number of ions in the
same space and thus there should be a limit concentration. This problem is resolved by
using the Carnahan-Starling approximation, de�ned as

r(u) :=
πσ3

6
u

log(γCS(u)) :=

{
3r(u)3−9r(u)2+8r(u)

(1−r(u))3 if 0 ≤ r(u) < 1

+∞ if r(u) ≥ 1
,

where r is the so called packing fraction. With this approximation we have that log(γCS(u))
is +∞ when beyond a certain total concentration, while for small concentrations, i.e. for
r(u) near 0, we have that log(γCS(u)) ≈ 8r(u) = log(γHS(u)).

1.4. Bulk free-energy density

We indicate with f(c) the bulk free-energy density; f is a function R2
≥0 → R such that

∂f

∂ci
(c) = µi(0, c) on R2

>0, i = ±. (1.1)

Note the f is thus de�ned up to an additive constant. We can decompose f as

f(c) = fid(c+) + fid(c−) + fex(c),

where fid : R≥0 → R is the contribution due to the ideal term in µ± and fex : R2
≥0 → R

(ex stands for �excess�) the one resulting from non-ideality; in particular we ask that

∂fid

∂u
(u) = log(σ3u)

and
∂fex

∂ci
(c) = log(γi(c)), i = ±.

Then we have that also fid and fex are de�ned up to an additive constant.
We can take fid as

fid(u) =

{
u(log(σ3u)− 1) if u > 0

0 if u = 0
,
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while we further decompose fex as

fex(c) = 2ΓCoul(I(c)) + ΓSteric(c+ + c−),

where we require that
∂ΓCoul

∂θ
(θ) = log(γ0(θ))

and
∂ΓSteric

∂u
(u) = log(γSteric(u)).

We then have

∂fex

∂ci
(c) = 2

∂ΓCoul

∂θ
(I(c))

∂I

∂ci
(c) +

∂ΓSteric

∂u
(c+ + c−)

= Z2
i log(γ0(I(c))) + log(γSteric(c+ + c−))

= log(γi(c)),

for i = ±, as wanted. We can then take

Γ0(θ) = − 1

4πσλ

(
θ − 8λσ

3
(ΥMSA(θ))3 − 2λ(ΥMSA(θ))2

)
,

ΓHS(u) =
2πσ3

3
u2,

ΓCS(u) =

{
−6r(u)2

πσ3
3r(u)−4

(1−r(u))2 if 0 ≤ r(u) < 1

+∞ if r(u) ≥ 1
,

and the requested relations hold; in the following we will always use the more accurate
Carnahan-Starling approximation. Observe �nally that the ideal free-energy density is
continuous in R≥0 and continuously di�erentiable in R>0, while the excess free-energy
is continuously di�erentiable in R2

≥0; the bulk free-energy density is thus continuous in
R≥0 and continuously di�erentiable in R>0 and

∂f

∂ci
(c)→ −∞ when ci → 0, i = ±.

1.5. Convexity of f

If f is convex, then in [Ern et al.(2012)Ern, Joubaud, and Lelièvre] it is proved that there
exists one and only one equilibrium solution when the e�ect of the charged walls is no
more negligible; moreover they showed that f is convex for values of σ which are above
a threshold σ0 depending on the valences Z±, on the temperature T and on the relative
permittivity εr (the values for σ0 for certain values of the parameters are reported in
Table 1.1).
When f is not convex, the region T of the state space c = (c+, c−) where f di�ers from

its convex hull is thermodynamically instable; we then have that T divides the state space
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Z+ : Z− T = 300 K and εr = 78.3 T = 350 K and εr = 62.0

+1 : −1 0.0560 nm 0.0606 nm

+2 : −1 0.2329 nm 0.2521 nm

+2 : −2 0.2239 nm 0.2424 nm

+3 : −3 0.5039 nm 0.5454 nm

+3 : −1 0.7352 nm 0.7958 nm

Table 1.1.: Minimum values of σ for which f is convex.

in di�erent phases, which can instead coexist inside T . When one species of ion is present,
this construction is equivalent to applying Maxwell equal area rule to the derivative
of f , i.e. the electrochemical potential µ, in order to make the function µ monotone;
since µ and c are conjugate variables, as well as P and V in gas thermodynamics, this
situation is identical to the Maxwell's original construction, which has been applied to
the isotherm P = P (V ) of the van der Waals equation (for Maxwell's original article
see [Maxwell(1875)]). In order to study the behaviour of the electrolyte when f is not
convex, it is then essential to �nd the region T . Since f is di�cult to treat analytically,
we proceed numerically and derive an algorithm to compute the convex hull of f .
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2. The Discrete Legendre-Fenchel

Transform

As highlighted in Section 1.5, in order to study the behaviour of electrolytes with an
arbitrary ionic diameter σ, it is necessary to devise an algorithm to calculate the convex
hull of the bulk free-energy density. Our approach to build such algorithm is based on
the properties of the Legendre-Fenchel transformation (LFT), an important concept in
convex analysis, and of its discrete counterpart, the Discrete Legendre-Fenchel Transform
(DLFT). In the �rst part of this chapter we present the main results concerning the LFT
and DLFT, the second part deals with the exact form of the DLFT in one-dimension,
while the last part is devoted to the study of the convergence of the DLFT to the LFT.

2.1. Legendre-Fenchel transformation: basics

We present a brief introduction on convex functions and on Legendre-Fenchel transfor-
mation; for more details see respectively Appendices A and B, or any introductory book
on convex analysis, such as [Rockafellar(1970), Bauschke and Combettes(2011)].

De�nition 2.1. Let f : Rn → R := R ∪ {−∞,+∞}. The set

epi f := {(x, y) ∈ Rn × R | y ≥ f(x)}

is called epigraph of f .

De�nition 2.2. A function f : Rn → R is said to be convex if epi f is convex as a subset
of Rn+1.

De�nition 2.3. Let f : Rn → R be a convex function. The set

dom f = {x ∈ Rn | f(x) < +∞}

is called the e�ective domain of f .

De�nition 2.4. A convex function f is said to be proper if

• f(x) < +∞ for at least one x ∈ Rn

• f(x) > −∞ for all x ∈ Rn

De�nition 2.5. The convex hull of a function f , denoted by conv f , is the greatest
convex function majorized by f .
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De�nition 2.6. The lower semicontinuous hull of a function f , denoted by f , is the
greatest lower semicontinuous function majorized by f .

De�nition 2.7. The closure of a convex function f , denoted by cl f , is

• the lower semicontinuous hull of f if f(x) > −∞ for all x ∈ Rn

• the constant function −∞ otherwise

De�nition 2.8. Given f : Rn → R convex and x ∈ Rn, a vector ξ ∈ Rn is called a
subgradient of f at x if the a�ne function z 7→ f(x) + 〈ξ, z − x〉 is majorized by f .

De�nition 2.9. The collection of all subgradients of f at x is called the subdi�erential
of f at x and is denoted by ∂f(x).

De�nition 2.10. Let f : Rn → R. The function

f∗ : Rn → R
ξ 7→ sup

x∈Rn
[〈x, ξ〉 − f(x)] = − inf

x∈Rn
[f(x)− 〈x, ξ〉] ,

where 〈·, ·〉 is the scalar product of Rn, is called the Legendre-Fenchel Transform (LFT),
or conjugate, of f .

Proposition 2.11. Let f : Rn → R. The function f∗ is then a closed convex function.

The two main results involving the LFT are the following, respectively linking the dou-
ble transformation with the convex hull operation and showing how the transformation
can be factorized along each dimension.

Theorem 2.12. Let f : Rn → R. We then have that f∗∗ = cl (conv f).

Theorem 2.13. Given f : Rn → R and an index i = 1, . . . n, let f∗i be the LFT along

the ith-dimension, i.e.

f∗i : Rn → R
(x1, . . . , xi−1, ξi, xi+1, . . . , xn) 7→ sup

xi∈R
[xiξi − f(x1, . . . , xi, . . . xn)]

= [f(x1, . . . , xi−1, ·, xi, . . . xn)]∗ (ξi).

We then have that

f∗ =

(
−
(
· · ·
(
−
(
−f∗1

)∗2)∗3 · · ·)∗(n−1)
)∗n

.
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2.2. Discrete Legendre-Fenchel Transform

To compute the convex hull of a given function f , the number of evaluation points must
be �nite. Therefore, it is useful to introduce the discrete version of the LFT.

De�nition 2.14. Given a function f : Rn → R and Ω ⊆ Rn we de�ne the function
fΩ : Rn → R as

fΩ(x) =

{
f(x) if x ∈ Ω

+∞ elsewhere
.

Proposition 2.15. Given a function f : Rn → R and Ω ⊆ Rn we have that

f∗Ω(ξ) = sup
x∈Ω

[〈x, ξ〉 − f(x)] .

Proof. Fix ξ ∈ Rn; by De�nition B.1 we have that

f∗Ω(ξ) = sup
x∈Rn

[〈x, ξ〉 − fΩ(x)] .

If Ω = ∅, then fΩ ≡ +∞ and the thesis follows trivially from the fact that the supremum
of an empty set is −∞. If there is x0 ∈ Ω, we then have for every x ∈ Rn \ Ω that
fΩ(x) = +∞ and thus

〈x, ξ〉 − fΩ(x) ≤ 〈x0, ξ〉 − f(x0);

this implies that the two suprema have the same value.

Proposition 2.16. Let f : Rn → R and Ω ⊆ Ω′ ⊆ Rn. Then

f∗Ω′ ≥ f∗Ω.

Proof. We have that fΩ′ ≤ fΩ by construction; we can then apply Proposition B.5 and
obtain the thesis.

Proposition 2.17. Let f : Rn → R and let Ω,Ω′ ⊆ Rn. Then

f∗Ω∪Ω′ = max {f∗Ω, f∗Ω′} .

Proof. By Proposition 2.15 we have that

f∗Ω∪Ω′(ξ) = sup
x∈Ω∪Ω′

[〈x, ξ〉 − f(x)]

= max

{
sup
x∈Ω

[〈x, ξ〉 − f(x)] , sup
x∈Ω′

[〈x, ξ〉 − f(x)]

}
= max {f∗Ω(ξ), f∗Ω′(ξ)} .
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De�nition 2.18. Let f : Rn → R and let ΩN ⊂ Rn be �nite; the subscript N is used
to highlight the �niteness of ΩN and in general does not mean that |ΩN | = N . The
function f∗ΩN

is then called the Discrete Legendre-Fenchel Transform (DLFT) of f with
respect to the set ΩN ; in particular we have

f∗ΩN
: Rn → R

ξ 7→ max
x∈ΩN

[〈x, ξ〉 − f(x)] .

Remark 2.19. We could in principle have that f(x) = +∞ for some x ∈ ΩN , but in this
case we would have f∗ΩN

= f∗ΩN\{x}; we could also have f(x) = −∞ for some x ∈ ΩN , but
then we would have f∗ΩN

= +∞. For simplicity we will omit in all results involving the
DLFT the assumption �f(x) is �nite for all x ∈ ΩN � which excludes these trivial cases.

2.3. Conjugation of piecewise linear functions

In the one-dimensional case the DLFT is equivalent to a LFT of a piecewise linear
function; in order to highlight the fact that we are considering functions de�ned on R,
we will denote �nite sets in R by the symbol XN .

De�nition 2.20. Given f : R→ R and XN = {x1, . . . , xN} ⊂ R with x1 < · · · < xN , we
denote by IXN

(f) the function which coincides on the interval [x1, xN ] with the piecewise
linear interpolant of f on the nodes XN and is +∞ elsewhere.

Proposition 2.21. Let f : R → R and let XN ⊂ R be �nite. Then conv fXN
=

conv IXN
(f).

Proof. Because IXN
(f) ≤ fXN

, we have by de�nition of convex hull that also conv IXN
(f) ≤

conv fXN
. It can be easily seen that epi IXN

(f) ⊆ conv epi fXN
; thus conv fXN

≤ IXN
(f)

and, by applying the convex hull operator, we obtain conv fXN
≤ conv IXN

(f).

Corollary 2.22. Let f : R→ R and let XN ⊂ R be �nite. Then we have [conv IXN
(f)]∗ =

[IXN
(f)]∗ = f∗XN

.

Proof. The thesis follows from Proposition 2.21 and Lemma B.15.

This characterization is very important because the LFT of a convex piecewise linear
function can be easily computed; the following theorem is the basis for an e�cient one-
dimensional algorithm for the DLFT ([Lucet(1997)]).

Theorem 2.23. Given a �nite collection of points Pi = (xi, yi) ∈ R2, i = 1, . . . , N ,
such that x1 < · · · < xN and given c0, cN ∈ R, let g be the piecewise linear continuous

function which interpolates the points Pi and is extended to the left and the right with

slopes respectively c0 and cN (possibly in�nite), i.e.

g(x) =


y1 + c0(x− x1) if x < x1

yi + ci(x− xi) if xi ≤ x ≤ xi+1, i = 1, . . . , N − 1

yN + cN (x− xN ) if x > xN

, (2.1)
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where the values ci, the slopes of the linear segments of g, are given by

ci =
yi+1 − yi
xi+1 − xi

, i = 1, . . . , N − 1.

Suppose that g is convex, i.e. c0 ≤ · · · ≤ cN ; then

g∗(ξ) =

{
+∞ if ξ < c0 or ξ > cN

xiξ − yi if ci−1 ≤ ξ ≤ ci, i = 1, . . . , N
. (2.2)

Proof. By Proposition A.35 we have that

∂g(xi) = [ci−1, ci], i = 1, . . . , N ;

then the thesis follows for each c0 ≤ ξ ≤ cN by applying Theorem B.26.
If there exists ξ < c0, by (2.1) we obtain that

g∗(ξ) = sup
x∈R

[xξ − g(x)]

≥ sup
x<x1

[xξ − y1 − c0(x− x1)]

= sup
x<x1

[(ξ − c0)x− y1 + c0x1] ,

which is +∞ because ξ − c0 < 0. The case ξ > cN is similar.

By Theorem 2.23 the conjugate of a piecewise-linear convex function g with nodes {xi}
and slopes {ci} is a piecewise-linear convex function with nodes {ci} and slopes {xi}.
The conjugate is just a di�erent �coding� of the some information: the values de�ning
the function, i.e. its slopes and its nodes, do not vary after the conjugation, but just swap
roles. In Figure 2.1 we plot g and g∗ de�ned as in Theorem 2.23 where xi = −3 + i for
i = 1, . . . 5, y1 = 1.75, y2 = 0.6, y3 = 0.1, y4 = 0, y5 = 0.33, c0 = −∞, c5 = 1; observe in
particular that on the side on which g is +∞ its LFT is extended linearly, and conversely
on the side on which g is extended linearly its FLT is +∞.

2.4. Convergence to the Legendre-Fenchel transform

The convergence properties of the DLFT, including its more complex versions consid-
ered in the next chapter, are based on Theorem (2.27). This result is due to Corrias
[Corrias(1996)]; our proof has been adapted to our notation and extended explicitly to
the case Ω is not closed.

Lemma 2.24. Let f : Rn → R be such that f(x0) < +∞ for at least one point x0 ∈ Rn.
Then f∗ > −∞.

Proof. Let ξ ∈ Rn; by de�nition of conjugation we then have

f∗(ξ) = sup
x∈Rn

[〈x, ξ〉 − f(x)]

≥ 〈x0, ξ〉 − f(x0) > −∞.
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c1=−1.15

c2=−0.5

c3=−0.1
c4=0.33

c5=1

xx1=−2 x2=−1 x3=0 x4=1 x5=2

x1

x2

x3

x4

x5

ξc1 c2 c3 c4 c5

Figure 2.1.: The plots of the piecewise linear convex function g (top) and its LFT g∗ (bottom);
the correspondence between nodes and slopes is highlighted.

Lemma 2.25. Let f : Rn → R and let Ω ⊆ Rn. Then we have(
fΩ

)∗
(ξ) = sup

x∈Ω

[
〈x, ξ〉 − fΩ(x)

]
.

Proof. Since the right hand side is equal to
(
fΩ

)∗
Ω
, it su�ces to prove that fΩ =

(
fΩ

)
Ω
.

Since fΩ ≥ fΩ, we have that fΩ(x) = +∞ for every x /∈ Ω; being fΩ =
(
fΩ

)
Ω
on Ω, the

thesis follows.

De�nition 2.26. Let (ΩN )N be an increasing sequence of �nite subsets of Ω ⊆ Rn. We
say that the sequence converges to Ω if minx′∈ΩN

‖x′ − x‖ → 0 as N →∞ for all x ∈ Ω;
we denote this fact by the notation ΩN → Ω. If we also have that supx∈Ω minx′∈XN

‖x′ − x‖ →
0 as N →∞, we say that the convergence is uniform.

Theorem 2.27. Let ∅ 6= Ω ⊆ Rn and let f : Rn → R be such that
(
fΩ

)
= fΩ. Let (ΩN )N

a sequence of �nite subsets of Rn such that ΩN → Ω. Then, f∗ΩN
converges pointwise

to f∗Ω. Moreover, if we also have that f |Ω is uniformly continuous and that ΩN → Ω
uniformly, then the convergence is uniform on every bounded subset S of dom f∗Ω.

Proof. If f = +∞ on Ω we have that both fΩ and fΩN
are +∞ on Rn; thus f∗ΩN

=
f∗Ω = −∞ on Rn and the thesis follows. Assume then that there exists xf ∈ Ω such that
f(xf) < +∞.
Fix ξ ∈ Rn. Firstly we prove that f∗ΩN

(ξ) has a limit. Since ΩN ⊂ ΩN+1 ⊂ Ω for every
N , we have by Proposition 2.16 that

f∗Ω(ξ) ≥ f∗ΩN+1
(ξ) ≥ f∗ΩN

(ξ).
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The sequence f∗ΩN
(ξ) is increasing and the limit of f∗ΩN

(ξ) as N →∞ exists.
Now we prove that this limit is f∗Ω(ξ). By Lemma B.9 we have f∗Ω = (fΩ)∗ and(
fΩ

)∗
=
[(
fΩ

)]∗
. By the hypothesis we get f∗Ω =

(
fΩ

)∗
and applying Lemma 2.25 we

obtain that
f∗Ω(ξ) = sup

x∈Ω

[
〈x, ξ〉 − fΩ(x)

]
∀ξ ∈ Rn. (2.3)

Fix ε > 0. By Lemma (2.24) we have that f∗Ω(ξ) > −∞; we then have to consider
only two cases: f∗Ω(ξ) = +∞ and f∗Ω(ξ) �nite. First suppose that f∗Ω(ξ) is �nite; by the
properties of the supremum in (2.3), we can �nd z ∈ Ω such that

f∗Ω(ξ) ≤ 〈z, ξ〉 − fΩ(z) +
ε

3
≤ f∗Ω(ξ) +

ε

3
,

which implies that fΩ(z) is �nite. Then, by the upper semicontinuity of fΩ, there exists
r > 0 such that

fΩ(x)− fΩ(z) ≤ ε

3
∀x ∈ B(z, r),

where B(z, r) is the open ball with center z and radius r.
Let ε̃ ≤ min{ ε

3‖ξ‖ , r}. We denote by ẑN the point of ΩN nearest to z, i.e. ẑN :=

arg minx∈ΩN
‖x− z‖. By hypothesis we have that ‖z − ẑN‖ ≤ ε̃ for su�ciently large

values of N and thus ẑN ∈ B(z, r) and ‖ẑN − z‖ ≤ ε
3‖ξ‖ . Since fΩ ≤ fΩ and f = fΩ on

ΩN ⊂ Ω, we have that

0 ≤ f∗Ω(ξ)− f∗ΩN
(ξ)

= sup
x∈Ω

[
〈x, ξ〉 − fΩ(x)

]
− max
x∈ΩN

[〈x, ξ〉 − fΩ(x)]

≤ 〈z, ξ〉 − fΩ(z) +
ε

3
− 〈ẑN , ξ〉+ fΩ(ẑN )

≤ 〈z − ẑN , ξ〉+ fΩ(ẑN )− fΩ(z) +
ε

3

≤ ‖z − ẑN‖ ‖ξ‖+
2

3
ε ≤ ε, (2.4)

and thus f∗ΩN
(ξ) converges to f∗Ω(ξ).

Now consider f∗Ω(ξ) = +∞ and �x γ ∈ R. By the properties of the supremum in (2.3),
we can �nd z ∈ Ω such that 〈z, ξ〉 − fΩ(z) > γ. Being 〈·, ξ〉 − fΩ lower semicontinuous,
we can �nd, for N su�ciently large, ẑN ∈ ΩN su�ciently close to z to make 〈ẑN , ξ〉 −
fΩ(ẑN ) > γ. We have

f∗ΩN
(ξ) = max

x∈ΩN

[〈x, ξ〉 − f(x)]

≥ 〈ẑN , ξ〉 − fΩ(ẑN ) ≥
= 〈ẑN , ξ〉 − fΩ(ẑN ) > γ,

and thus f∗ΩN
(ξ) converges to +∞.

Assume that f |Ω is uniformly continuous and consider a bounded subset S of dom f∗Ω.
By uniform continuity we can �nd δ > 0 such that for any x, z ∈ Ω with ‖x− z‖ < δ we
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have that |f(x)− f(z)| ≤ ε/3. For any z ∈ Ω we have that ‖ẑN − z‖ < min{δ, ε
3K } for

su�ciently large N , where K = supξ∈S ‖ξ‖ < +∞. The inequality (2.4) holds for any
ξ ∈ S, thus proving uniform convergence on S.

2.5. Su�cient conditions for convergence

It is interesting to note we cannot substitute the hypothesis
(
fΩ

)
= fΩ of Theorem (2.27)

with the mere lower semicontinuity of f or fΩ, as is shown in the following example from
[Corrias(1996)].

Example 2.28 (Corrias, 1996). Consider f(x) = |x− k| with k ∈]0, 1[; it is continuous,
thus also upper semicontinuous and moreover satis�es the hypothesis

(
fΩ

)
= fΩ. By

Theorem 2.23 we have

f∗(ξ) =

{
kξ if ξ ∈ [−1, 1]

+∞ elsewhere
,

f∗[0,1](ξ) =


kξ if ξ ∈ [−1, 1]

−k if ξ ≤ −1

ξ + k − 1 if ξ ≥ 1

.

Let (XN )N be a sequence of �nite grids such that XN → [0, 1]. We can choose k ∈]0, 1[
such that k /∈ XN for every N and consider the lower semicontinuous function

g(x) =

{
|x− k| if x 6= k

−1 if x = k
;

observe that (gΩ) 6= gΩ. By geometric construction, we can easily �nd

g∗(ξ) =

{
kξ + 1 if ξ ∈ [−1, 1]

+∞ elsewhere
,

g∗[0,1](ξ) =


kξ + 1 if ξ ∈ [−k+1

k , 2−k
1−k ]

−k if ξ < −k+1
k

ξ + k − 1 if ξ > 2−k
1−k

.

By Theorem 2.27 we have f∗XN
→ f∗[0,1] pointwise as N → ∞. Being k /∈ XN for every

N , we have fXN
= gXN

for every N and thus also f∗XN
= g∗XN

for every N ; this means
that g∗XN

→ f∗[0,1] 6= g∗[0,1] and thus Theorem 2.27 cannot be applied to functions which
are just lower semicontinuous.

Now we brie�y investigate some su�cient conditions for the equality
(
fΩ

)
= fΩ.

Proposition 2.29. Let f : Rn → R and let Ω ⊆ Rn be an open set. Suppose that f |Ω is

upper semicontinuous; then fΩ is upper semicontinuous.
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Proof. Since Ω is open, any point x ∈ Ω is an internal point of Ω and thus there is a
neighbourhood U of x such that U ⊂ Ω and fΩ = f on U ; being semicontinuity a local
property, we then have that fΩ is lower semicontinuous at x. If instead x ∈ Rn \ Ω, we
have fΩ(x) = +∞, which gives us that fΩ is lower semicontinuous at x.

Corollary 2.30. Let f : Rn → R and let Ω ⊆ Rn be an open set. Suppose that f |Ω is

upper semicontinuous; then
(
fΩ

)
= fΩ.

Proof. From Proposition (2.29) we have that fΩ is upper semicontinuous as a function
de�ned on Rn, i.e. fΩ = fΩ ; the thesis immediately follows.

Lemma 2.31. Let f : Rn → R and let Ω ⊆ Rn. Suppose that f |int Ω is upper semicon-

tinuous; then fΩ = fint Ω.

Proof. By Proposition (2.29) we have that fint Ω is upper semicontinuous. Then we have
fint Ω ≥ fΩ ≥ fΩ; since fΩ = fint Ω on Rn \ ∂Ω, we also have fint Ω = fΩ on Rn \ ∂Ω.
We have to prove that equality holds also on ∂Ω. Suppose that this were not the case
and let x0 ∈ ∂Ω be such that fΩ(x0) < fint Ω(x0) = +∞. Then there is c ∈ R such that
fΩ(x0) < c < +∞; by upper semicontinuity of fΩ then there exists a neighbourhood U
of x0 such that fΩ(x) < c for every x ∈ U . Since x0 is a boundary point of Ω, there
exists a point x ∈ U \ Ω; for such a point we have fΩ(x) ≥ fΩ(x) = +∞ > c, and thus
we have reached a contradiction.

Lemma 2.32. Let f : Rn → R and let Ω ⊆ Rn be such that Ω ⊆ cl int Ω. Suppose that

f |Ω is continuous; then fΩ = fint Ω. Moreover, we have fΩ = f on Ω.

Proof. We have that fint Ω ≥ fΩ and the equality holds on int Ω. In particular for every
x ∈ int Ω we have that fΩ(x) = f(x) = f(x) by continuity of f on Ω.
Now consider x0 ∈ Ω \ int Ω and make the false assertion f(x0) = fΩ(x0) > fΩ(x0).

Let c ∈ R such that f(x0) > c > fΩ(x0); since f is continuous in x0, there exists a
neighbourhood U of x0 such that f(x) > c for every x ∈ U ∩ Ω. Since fΩ is equal to f
on Ω and is +∞ elsewhere, we have that fΩ > c on U ; by Lemma A.10 this implies that
fΩ(x0) ≥ c. Since this is a contradiction, we conclude that f(x0) = fΩ(x0).
Now assume that thesis is false for x0 ∈ Ω \ int Ω, i.e. −∞ ≤ fΩ(x0) < fint Ω(x0) and

let fΩ(x0) < c < fint Ω(x0). Since f is continuous in x0 and being fΩ(x0) = f(x0), there
exists a neighbourhood U of x0 such that f(x) < c for every x ∈ U ∩ Ω. Being fint Ω

lower semicontinuous, we can also �nd a neighbourhood V of x0 such that fint Ω(x) > c
for every x ∈ V . Since Ω ⊆ cl int Ω, there exists x ∈ U ∩ V ∩ int Ω; for such point we
have that

c < fint Ω(x) = f(x) < c,

which is a contradiction; this means that fΩ(x0) = fint Ω(x0).
We then have that f = fΩ = fint Ω on Ω; being fΩ = +∞ outside of Ω, we have

fΩ ≤ fint Ω ≤ fΩ

and thus fΩ = fint Ω on Rn by de�nition of lower semicontinuous hull.
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Proposition 2.33. Let f : Rn → R and let Ω ⊆ Rn be such that Ω ⊆ cl int Ω. Suppose

that f |Ω is continuous; then
(
fΩ

)
= fΩ. Moreover, we have fΩ = f on Ω.

Proof. It follows by Lemmas 2.31 and 2.32.
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3. The double Discrete

Legendre-Fenchel Transform

According to the results in the previous chapter, the application of two successive LFT
to a function gives its convex hull. Similarly the algorithm to approximate the convex
hull can be constructed by applying two successive DLFT; we call it double DLFT. In the
literature the most of the papers focuses on the computation of the conjugate, which has
many pratical applications in physics; on the contrary there are few theoretical results
on the double DLFT, mainly dealing with convex functions. For the same reasons, one of
the main problems regarding a correct discretization of the double LFT, i.e. the choice of
the grid on which the second DLFT is computed, called the dual grid, is rarely treated.
In this chapter we present an attempt to generalize the results of the previous chapter
to the double DLFT, with particular attention payed to the choice of the dual grid.

3.1. Properties of the double DLFT

Lemma 3.1. Let Ω ⊂ Rn be bounded and let f : Rn → R. Suppose that there exists

L ∈ R such that f(x) > L for every x ∈ Ω. Then dom f∗Ω = Rn.

Proof. Fix ξ ∈ Rn. We have that

ξ ∈ dom f∗Ω ⇐⇒ f∗Ω(ξ) < +∞
⇐⇒ sup

x∈Ω
[〈ξ, x〉 − f(x)] < +∞.

Being Ω bounded, there is a constant K > 0 such that for every x ∈ Ω we have ‖x‖ ≤ K;
we then have that for any x ∈ Ω

〈ξ, x〉 − f(x) < |〈ξ, x〉| − L ≤ ‖ξ‖ ‖x‖ − L ≤ K ‖ξ‖ − L,

and thus supx∈Ω [〈ξ, x〉 − f(x)] ≤ K ‖ξ‖ − L < +∞.

Corollary 3.2. Let f : Rn → R be such that f > −∞. Then dom f∗ΩN
= Rn for any

ΩN ⊂ Rn �nite.

Corollary 3.3. Let ΩN ⊂ Rn be �nite and let f : Rn → R be such that f(x0) < +∞ for

at least one point x0 ∈ ΩN . Then dom
(
f∗ΩN

)∗
SN

= Rn for any SN ⊆ Rn �nite.

Proof. Follows from Lemma 2.24 and Corollary 3.2.
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Lemma 3.4. Let f : Rn → R and let Ω, S, S′ ⊆ Rn be such that S ⊆ S′. Then

(f∗Ω)∗S ≤ (f∗Ω)∗S′ ≤ cl conv fΩ on Rn.

Proof. By observing that cl conv fΩ = (f∗Ω)∗ = (f∗Ω)∗Rn , the thesis follows immediately
from Proposition 2.16.

Corollary 3.5. Let f : Rn → R and let ΩN , S, S
′ ⊆ Rn be such that ΩN is �nite and

S ⊆ S′. Then
(
f∗ΩN

)∗
S
≤
(
f∗ΩN

)∗
S′
≤ conv fΩN

on Rn.

Proof. By Theorem A.56 conv fΩN
is closed; the thesis follows from Lemma 3.4.

Remark 3.6. The last two corollaries show that if we enlarge the dual grid then the
resulting double DLFT/LFT always improves as an approximation of the convex hull.

Corollary 3.7. Let f : Rn → R and let Ω, S ⊆ Rn. Then (f∗Ω)∗S ≤ f on Ω.

Proof. We have that cl conv fΩ ≤ fΩ and by Lemma 3.4 that (f∗Ω)∗S ≤ cl conv fΩ; since
fΩ = f on Ω, we get the thesis.

In general, the inequality of Corollary 3.7 does not hold everywhere; this is reasonable,
because by restricting f to the set Ω every information on the behaviour of f outside Ω
is discarded.

Example 3.8. Let f : R→ R be the piecewise linear function with nodes {−1,−1/2, 0, 1/2, 1}
and values {2, 0, 1, 0, 2}. By choosing XN = {−1, 0, 1} and CN = {−1, 1}, we have that(
f∗XN

)∗
CN

is the piecewise linear function with nodes {−1, 0, 1} and values {2, 1, 2}, which
is strictly greater than f outside of XN .

If we try to compare (f∗Ω)∗S with the exact convex hull cl conv f = f∗∗, no inequality
can be established, not even by considering only the points of Ω.

Example 3.9. Let f andXN be de�ned as in previous example, whereas let CN = {0, 1};
then we have that (

f∗XN

)∗
CN

(x) =

{
1 if x ≤ 1

2

1 + 2(x− 1
2) if x ≥ 1

2

,

which is somewhere greater than f∗∗ and somewhere smaller.

3.2. Optimal dual grids

In the applications we usually need to compute the convex hull of functions of the type
g : Ω→ R \ {−∞}, where Ω ⊂ Rn is bounded. We can easily translate this problem on
Ω into a problem on the whole Rn by taking

f(x) :=

{
g(x) if x ∈ Ω

+∞ elsewhere
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and observing that conv f = conv g on Ω; then we discretize this problem by considering
a �nite set ΩN ⊂ Ω and supposing that the values of f are known only on the points of

ΩN , i.e. by taking the function fΩN
. Finally we take the double DLFT

(
f∗ΩN

)∗
SN

as an

approximation for conv f , where SN ⊂ Rn is a �nite set.
A correct choice of the grid SN is essential to obtain a good approximation. We begin

by observing that, being the behaviour of f unknown outside ΩN , the function we are
actually trying to compute is conv fΩN

, which we then take as an approximation of conv f .
Since by Corollary 3.2 the domain dom f∗ΩN

is the whole Rn, the functions f∗ΩN
and

cl conv
(
f∗ΩN

)
SN

are necessarily di�erent by �niteness of SN ; by applying Corollary B.16

and Corollary B.13 we obtain
(
f∗ΩN

)∗
SN

6=
(
f∗ΩN

)∗
= conv fΩN

as functions de�ned

on Rn. Nonetheless in this section we will show that there exists a set SN such that(
f∗ΩN

)∗
SN

(x) = conv fΩN
(x) for every x ∈ ΩN .

Lemma 3.10. Let f : Rn → R be a convex function, let ΩN ⊂ Rn be a �nite set and let

ξ0 ∈ Rn such that f∗ΩN
(ξ0) = f∗(ξ0). Then ∂f∗(ξ0) ∩ ΩN 6= ∅.

Proof. By hypothesis we have

max
x∈ΩN

[〈x, ξ0〉 − f(x)] = sup
x∈Rn

[〈x, ξ0〉 − f(x)] .

Let x0 := arg maxx∈ΩN
[〈x, ξ0〉 − f(x)]; then for every x ∈ Rn we have that

〈x, ξ0〉 − f(x) ≤ 〈x0, ξ0〉 − f(x0)

f(x0) + 〈x− x0, ξ0〉 ≤ f(x),

i.e. ξ0 ∈ ∂f(x0). From Corollary B.20 we get x0 ∈ ∂f∗(ξ0) and thus ∂f∗(ξ0)∩ΩN 6= ∅.

In Lemma 3.10 the converse implication does not hold in general, as shown in the next
example.

Example 3.11. Let ΩN = {0, 1} and let f : R→ R be such that

f(x) =


1 if x = 0

0 if 0 < x ≤ 1

+∞ elsewhere

;

observe that f is convex, but not closed. By Corollary B.10 we have that f∗ = (cl f)∗

and by applying Theorem 2.23 we obtain that

f∗(ξ) =

{
0 if ξ ≤ 0

ξ if ξ > 0
,

23



whereas, again by Theorem 2.23, we have that

f∗ΩN
(ξ) =

{
−1 if ξ ≤ −1

ξ if ξ > −1
.

If we take ξ = −1 we have that 0 ∈ ∂f∗(−1) ∩ ΩN but f∗ΩN
(−1) 6= f∗(−1).

Theorem 3.12. Let f : Rn → R be a closed convex function, let ΩN ⊂ Rn be a �nite

set, and let ξ0 ∈ Rn. Then, ∂f∗(ξ0) ∩ ΩN 6= ∅ if and only if f∗ΩN
(ξ0) = f∗(ξ0).

Proof. Necessity follows from Lemma 3.10. In order to prove su�ciency suppose ∂f∗(ξ0)∩
ΩN 6= ∅ and let x0 ∈ ∂f∗(ξ0) ∩ ΩN . By Corollary B.23 we have ξ0 ∈ ∂f(x0), i.e.
h ≤ f , where h is the a�ne function whose gradient is ξ0 and whose value at x0 is
f(x0). Since h ≤ f ≤ fΩN

and f(x0) = fΩN
(x0), by Proposition A.20 we obtain that

ξ0 ∈ ∂ conv fΩN
(x0). Applying Lemma B.15 and Corollary B.27 we get

f∗ΩN
(ξ0) = (conv fΩN

)∗ (ξ0) = f∗(ξ0).

Remark 3.13. Theorem 3.12 is inspired by Proposition 2.3 of [Hiriart-Urruty(1980)].

Corollary 3.14. Let f : Rn → R, let ΩN , SN ⊂ Rn be �nite sets, and let x0 ∈ ΩN .

Then ∂ conv fΩN
(x0) ∩ SN 6= ∅ if and only if

(
f∗ΩN

)∗
SN

(x0) = conv fΩN
(x0).

Proof. We have that f∗ΩN
is a closed convex function and that

(
f∗ΩN

)∗
= cl conv fΩN

=

conv fΩN
by applications of Theorem B.17 and Theorem A.56. By Theorem 3.12 we get

the thesis.

De�nition 3.15. Given f : Rn → R and ΩN ⊂ Rn �nite, we call an optimal dual grid

any set SN such that ∂ conv fΩN
(x) ∩ SN 6= ∅ for every x ∈ ΩN

By Corollary 3.14 requiring that SN is optimal is equivalent to asking that
(
f∗ΩN

)∗
SN

(x) =

conv fΩN
(x) for every x ∈ ΩN . It can be shown that such an optimal set always exists.

Corollary 3.16. Let f : Rn → R and let ΩN ⊂ Rn be �nite. Then, there exists a dual

grid SN ⊂ Rn �nite and optimal.

Proof. Fix x ∈ ΩN . By Theorem A.56 we have that ∂ conv fΩN
(x) 6= ∅; then we can �nd

ξx ∈ ∂ conv fΩN
(x). Thus we can take SN = {ξx | x ∈ ΩN}, which is �nite by �niteness

of ΩN .

Corollary 3.17. Given f : R → R not necessarily convex and XN ⊂ R �nite, we have

that C := {c1, . . . , cn−1} is an optimal dual grid, where {ci} are the slopes of conv IXN
(f)

as de�ned in Theorem 2.23.

Proof. By Proposition 2.21 we have conv fXN
= conv IXN

(f) and thus for every x ∈ XN

we have that ∂ conv fXN
(x) ∩ C 6= ∅.
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3.3. Optimal dual grids in the non-�nite case

Now we extend Theorem 3.12 to the case in which Ω and S are not necessarily �nite.

Theorem 3.18. Let f : Rn → R be a closed convex function, let Ω ⊆ Rn, and let ξ0 ∈ Rn
be such that ∂f∗(ξ0) ∩ Ω 6= ∅. Then, f∗Ω(ξ0) = f∗(ξ0).

Proof. Let x0 ∈ ∂f∗(ξ0)∩Ω and consider the �nite set ΩN = {x0}. Being ΩN ⊆ Ω ⊆ Rn,
by applying Proposition 2.16 we obtain

f∗ΩN
(ξ0) ≤ f∗Ω(ξ0) ≤ f∗(ξ0);

since by Theorem 3.12 we have f∗ΩN
(ξ0) = f∗(ξ0), we get the thesis.

Example 3.19. In Theorem 3.12 we had a necessary and su�cient condition, whereas
for Theorem 3.18 only one direction is true. Consider for example

f(x) =

{
0 if x ∈ [−1, 1]

+∞ elsewhere
;

by Theorem 2.23 we have that
f∗(ξ) = |ξ| .

Fix ξ0 > 0; we have ∂f∗(ξ0) = {1}. Take Ω = R \ {1} open; we have f = cl fΩ and thus
by Corollary B.10 we obtain that f∗Ω = f∗. Consequently we have f∗Ω(ξ0) = f∗(ξ0), but
∂f∗(ξ0) ∩ Ω = ∅ .

Corollary 3.20. Let f : Rn → R and let Ω, S ⊆ Rn. Let x0 ∈ Ω such that ∂ cl conv fΩ(x0)∩
S 6= ∅; then (f∗Ω)∗S (x0) = cl conv fΩ(x0).

Proof. Being a LFT, the function f∗Ω is a closed convex function. By Theorem B.17 we
have that (f∗Ω)∗ = cl conv fΩ. Then, by applying Theorem 3.18 to the function f∗Ω and
to the set S, we get the thesis.

Corollary 3.21. Let f : Rn → R, let ΩN ⊂ Rn be �nite and let S ⊆ Rn. Let x0 ∈ ΩN

such that ∂ conv fΩN
(x0) ∩ S 6= ∅; then

(
f∗ΩN

)∗
S

(x0) = conv fΩN
(x0).

Proof. It follows from Corollary 3.20 after observing that cl conv fΩN
= conv fΩN

by
Theorem A.56.

3.4. Convergence to the discretized convex hull

There are two main di�culties in the use of optimal dual grids as de�ned in the previous
section. The �rst and more obvious one is that we need to know something about
conv fΩN

before being able to �nd an optimal grid. The second is that for e�ciency
reasons the algorithm for the DLFT in two dimensions works on grids of the form ΩN =
XN × YN and SN = CN ×DN ⊂ R2, whereas the optimal grid is not necessarily of this
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form; we could build opportune CN and DN such that SN contains the optimal grid,
but in the worst case we would have |SN | = |ΩN |2. In the general case when SN is not

optimal,
(
f∗ΩN

)∗
SN

(x) is only an approximation of conv fΩN
(x), but by re�ning SN this

approximation becomes better, as we will show in Theorem 3.22.

Theorem 3.22. Let f : Rn → R, let ΩM be a �nite subset of Rn and let S ⊆ Rn be such

that S ⊆ cl intS and ∂ conv fΩM
(x)∩ S 6= ∅ for every x ∈ ΩM . Let (SN )N be a sequence

of �nite subsets of Rn such that SN → S. Then
(
f∗ΩM

)∗
SN

(x) → conv fΩM
(x) for every

x ∈ ΩM .

Proof. By Lemma 3.1 dom f∗ΩM
= Rn; then, by Theorem A.25, f∗ΩM

is continuous on all

Rn. By applying Proposition 2.33 we obtain that

((
f∗ΩM

)
S

)
=
(
f∗ΩM

)
S
. By apply-

ing Theorem 2.27 to the function f∗ΩM
and the set S, we obtain that

(
f∗ΩM

)∗
SN

(x) →(
f∗ΩM

)∗
S

(x) for every x ∈ ΩM . Finally, from Corollary 3.21 we get that
(
f∗ΩM

)∗
S

(x) =

conv fΩM
(x) for every x ∈ ΩM .

By Corollary 3.16 a set S with the required properties always exists. Since the points
which are required to be in S are �nite, S can be chosen bounded; for instance we could
choose S as a union of neighbourhoods of these points or, should we be interested in the
value of conv fΩM

in only one x0 ∈ ΩM , as a neighbourhood of a point of ∂ conv fΩM
(x0).

All these points are unknown, but if we are able to choose S su�ciently large to include
them all, we can achieve convergence by simply re�ning the grid on which the second
DLFT is computed.

Corollary 3.23. In the hypothesis of Theorem 3.22, let x0, ξ0 ∈ Rn be such that ξ0 ∈
∂ conv fΩM

(x0) ∩ S. We then have∣∣∣conv fΩM
(x0)−

(
f∗ΩM

)∗
SN

(x0)
∣∣∣ ≤ ∥∥∥ξ0 − ξ̂N

∥∥∥ ‖x0‖+∣∣∣f∗ΩM
(ξ̂N )− f∗ΩM

(ξ0)
∣∣∣ ,

where ξ̂N = arg minξ∈SN
‖ξ0 − ξ‖.

Proof. Since ξ0 ∈ ∂ conv fΩM
(x0) = ∂

(
f∗ΩM

)∗
(x0), we have by Corollary B.23 that

x0 ∈ ∂f∗ΩM
(ξ0); thus by Lemma B.26 follows that

(
f∗ΩM

)∗
(x0) = 〈x0, ξ0〉− f∗ΩM

(ξ0) and,

being ξ0 ∈ S, by Theorem 3.12 we have
(
f∗ΩM

)∗
S

(x0) =
(
f∗ΩM

)∗
(x0). Following the
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proof of Theorem 2.27, we can then write

0 ≤
(
f∗ΩM

)∗
S

(x0)−
(
f∗ΩM

)∗
SN

(x0)

= 〈x0, ξ0〉 − f∗ΩM
(ξ0)− max

ξ∈SN

[
〈x0, ξ〉 − f∗ΩM

(ξ)
]

≤ 〈x0, ξ0〉 − f∗ΩM
(ξ0)−

〈
x0, ξ̂N

〉
+ f∗ΩM

(ξ̂N )

≤
〈
ξ0 − ξ̂N , x0

〉
+ f∗ΩM

(ξ̂N )− f∗ΩM
(ξ0)

≤
∥∥∥ξ0 − ξ̂N

∥∥∥ ‖x0‖+
∣∣∣f∗ΩM

(ξ̂N )− f∗ΩM
(ξ0)

∣∣∣ ,
and the thesis is proved.

Corollary 3.23 shows that the error in the approximation of conv fΩM
at the point

x0 is determined only by the properties of the grid SN in its vicinities: a �ner grid
around ξ0 gives us a point ξ̂N nearer to ξ0 and by continuity of f∗ΩM

we can also expect∣∣∣f∗ΩM
(ξ̂N )− f∗ΩM

(ξ0)
∣∣∣ to be smaller; the points of SN far away from ξ0 do not modify our

estimate. Therefore, we can use this result in the case we are interested in the value of
conv fΩM

on all points of ΩM but want a better approximation for a particular point:
this objective can be achieved by using a �ne dual grid around a subgradient of such
point and a coarse grid elsewhere.
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4. An algorithm for the convex hull of

two-dimensional functions

The multi-dimensional DLFT can be reduced by factorization to several one-dimensional
DLFTs; since we are interested in the convex hull of the bulk free-energy density (see
Section 1.5), which is a two-dimensional function, we study this case in detail. Then we
consider a factorized double DLFT and we show that a better approximation of the con-
vex hull can be obtained by swapping dimensions in the second transform; the symmetry
properties of this modi�ed transformation are also studied. The factorization is used as
a basis of an algorithm for computing the two-dimensional convex hull, using as the fun-
damental building block the fast, i.e. O(n), DLFT algorithm by Lucet ([Lucet(1997)]);
the algorithms based respectively on the standard and modi�ed factorization are then
compared. Finally, we propose an adaptive dual grid construction and explain how dual
grids of arbitrary length can be used without incurring in an increased memory usage.

4.1. Factorization of the DLFT

The DLFT, being a special case of LFT, can be factorized in a similar way. For simplicity,
we will restrict to the case n = 2, which is the case of interest in the physical model
presented in Chapter 1. Let f : R2 → R and Ω ⊂ R2, not necessarily �nite; again for the
sake of simplicity, we will suppose that Ω = X × Y . By Theorem B.18 we have

f∗Ω =
[
− (fΩ)∗1

]∗2
.

Since for every y ∈ R we can have fΩ(x, y) < +∞ only if x ∈ X, we obtain

g(ξ, y) := (fΩ)∗1(ξ, y) = [fΩ(·, y)]∗ (ξ)

= [f(·, y)]∗X (ξ);

in particular, when y /∈ Y , we have that fΩ(·, y) ≡ +∞ and thus g(·, y) ≡ −∞. Finally
we obtain that

f∗Ω(ξ, η) = (−g)∗2 (ξ, η)

= [−g(ξ, ·)]∗ (η)

= [−g(ξ, ·)]∗Y (η),

where the last equality follows from the fact that, �xed ξ, the function −g(ξ, ·) is +∞
outside of Y .
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In the case of the DLFT, i.e. when Ω = ΩN = XN × YN , where XN = {x1, . . . , xn}
and YN = {y1, . . . , ym}, we then have

f∗ΩN
(ξ, η) = [−g(ξ, ·)]∗YN (η),

where
g(ξ, y) = [f(·, y)]∗XN

(ξ). (4.1)

For any y ∈ YN the function g(·, y) is a closed convex piecewise linear function whose
domain is the entire real line and whose nodes are the slopes of conv fΩN

(·, y); for every
ξ ∈ R the function f∗ΩN

(ξ, ·) is a piecewise linear function whose domain is the whole real
line and whose slopes are a subset of YN , in particular they are the nodes of conv [−g(ξ, ·)].
Moreover, we could swap the ordering of the directions in the factorization and obtain the
same resulting f∗ΩN

; this means that for every η ∈ R the function f∗ΩN
(·, η) is a piecewise

linear function whose domain is the whole real line and whose slopes are a subset of XN .
Now we have a factorization of the two-dimensional DLFT in one-dimensional DLFTs.

In particular, in order to compute f∗ΩN
(ξ, η) for a given (ξ, η) ∈ R2 we need to compute

g(ξ, yj) for every j = 1, . . . ,m using m one-dimensional DLFTs along the x-direction
(each on data whose length is n) and then applying one one-dimensional DLFT along
the y-direction (on data long m); if we want to compute the transform on a grid of size
n ×m, we then have in total m DLFTs on data of size n and n DLFTs on data of size
m. Having the one-dimensional DLFT algorithm linear complexity, the complexity of a
two-dimensional algorithm based on this factorization is O(nm), again linear in time.

4.2. Factorization of the double DLFT with alternating

dimensions

Let f : R2 → R and let ΩN = XN × YN ⊂ R2 and SN = CN ×DN ⊂ R2 both �nite; by

proceeding as in the previous section, we can compute
(
f∗ΩN

)∗
SN

(x, y) . However, now

we decompose the second DLFT as(
f∗ΩN

)∗
SN

=
[
−
(
f∗ΩN

)∗2]∗1
,

obtaining that (
f∗ΩN

)∗
SN

(x, y) = [−h(·, y)]∗CN
(x), (4.2)

where

h(ξ, y) =
[
f∗ΩN

(ξ, ·)
]∗
DN

(y) (4.3)

=
[
(−g(ξ, ·))∗YN

]∗
DN

(y).

This means that h(ξ, ·) is an approximation of the convex hull of (−g(ξ, ·))YN ; we want
to know if substituting h with the true convex hull (which is easily calculable in one-
dimension) gives us a better �nal result. Since by Theorem B.17 and Theorem A.56

conv
[
(−g(ξ, ·))YN

]
=
[
(−g(ξ, ·))∗YN

]∗
,
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we have that this new approximation for conv fΩN
is the function

(
f∗ΩN

)∗
CN×R

; we now

show that it is a better approximation than
(
f∗ΩN

)∗
SN

.

Proposition 4.1. Let f : R2 → R and let ΩN = XN×YN ⊂ R2 and SN = CN×DN ⊂ R2

be both �nite. Then (
f∗ΩN

)∗
SN
≤
(
f∗ΩN

)∗
CN×R

≤ conv fΩN
.

Proof. It is a straightforward consequence of Corollary 3.5.

One possible drawback of
(
f∗ΩN

)∗
CN×R

is that the transformation no longer preserves

symmetry, due to the fact that the computation of
(
f∗ΩN

)∗
CN×R

is not invariant under

swap of dimensions. Let gT (x, y) := g(y, x) for every x, y ∈ R2 and any function g : R→
R. Being the order in which the dimensions are processed irrelevant to the �nal result,
we have that (

f∗XN×YN
)∗
CN×DN

=

(((
fT
)∗
YN×XN

)∗
DN×CN

)T
;

in particular, when f = fT (i.e. the graph of f is symmetric with respect to the plane
x = y), XN = YN and CN = DN we also have that(

f∗X2
N

)∗
C2

N

=

((
f∗X2

N

)∗
C2

N

)T
,

which is a desiderable property since the exact convex hull itself satis�es it (as we will
prove in Corollary 4.6). In the general case, i.e. when the subsets of R2 on which the
transform is computed are not factorizable, the same results hold.

De�nition 4.2. Let A ⊆ R2. We will denote by AT the set {(x, y) ∈ R2 | (y, x) ∈ A}.

Proposition 4.3. Let f : R2 → R and let Ω ⊆ R2. Then we have

f∗Ω =
((
fT
)∗

ΩT

)T
.

Proof. We have that(
fT
)∗

ΩT (ξ, η) = sup
(x,y)∈ΩT

[
xξ + yη − fT (x, y)

]
= sup

(y,x)∈Ω
[yη + xξ − f(y, x)]

= f∗Ω(η, ξ).

Corollary 4.4. Let f : R2 → R and let Ω, S ⊆ R2. Then we have that

(f∗Ω)∗S =
(((

fT
)∗

ΩT

)∗
ST

)T
.
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Proof. It follows from applying Proposition 4.3 twice.

Corollary 4.5. Let f : R2 → R such that fT = f and let Ω, S ⊆ R2 such that ΩT = Ω
and ST = S. Then we have that

(f∗Ω)∗S = ((f∗Ω)∗S)
T
.

Corollary 4.6. Let f : R2 → R such that fT = f . Then

cl conv f = (cl conv f)T .

In the case D = R 6= CN , this reasoning is no longer applicable and
(
f∗
X2

N

)∗
CN×R

is

not symmetric, even when f is such; nonetheless it can be applied to the transformation(
f∗
X2

N

)∗
(CN×R)∪(R×CN )

. This last transformation is easily obtained from transformations

of the type
(
f∗ΩN

)∗
CN×R

thanks to the Proposition 2.17, which gives

(
f∗ΩN

)∗
(CN×R)∪(R×DN )

= max
{(
f∗ΩN

)∗
CN×R

,
(
f∗ΩN

)∗
R×DN

}
;

in addition the result is more accurate than the previous versions of the transformation,
again by Proposition 2.16.

4.3. Estimation of the dual set S

In this section we provide an estimate for a set S = C × D containing an optimal
dual grid for the two-dimensional problem. We begin with some results linking the
subdi�erentiability properties of one-dimensional convex functions (see Section A.5) with
the general case.

De�nition 4.7. Let f : Rn → R, let x0 ∈ Rn and let u ∈ Rn such that ‖u‖ = 1. Then

f ′u(x0) := lim
λ→0+

f(x0 + λu)− f(x0)

λ

is called the one-sided directional derivative of f at x0 with respect to u.

Proposition 4.8. If f : Rn → R is convex and x0 ∈ dom f then f ′u(x0) exists for every

u ∈ Rn such that ‖u‖ = 1. Moreover, if we also have that x0 ∈ int dom f , then f ′u(x0) is

�nite.

Proof. The restriction of f to the direction of u, i.e. the one-dimensional function g(λ) :=
f(x0 + λu), is a convex function by convexity of f ; in particular we have that g′+(0) =
f ′u(x0). Then the thesis follows from the di�erentiability properties of one-dimensional
convex functions (see Theorem A.30).

Theorem 4.9. Let f : Rn → R a convex function, let x0 ∈ dom f and let ξ ∈ Rn. Then
we have f ′u(x0) ≥ 〈ξ, u〉 for all u ∈ Rn such that ‖u‖ = 1 if and only if ξ ∈ ∂f(x0).
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Proof. Suppose ξ ∈ ∂f(x0). This is equivalent to requiring that for all λ > 0 and u ∈ Rn
such that ‖u‖ = 1 the following inequality holds

f(x0) + 〈ξ, x0 + λu− x0〉 ≤ f(x0 + λu)

〈ξ, u〉 ≤ f(x0 + λu)− f(x0)

λ
; (4.4)

by taking the limit for λ→ 0+ we obtain that f ′u(x0) ≥ 〈ξ, u〉 for every u ∈ Rn such that
‖u‖ = 1.
Now suppose that f ′u(x0) ≥ 〈ξ, u〉 for every u ∈ Rn such that ‖u‖ = 1. Consider

the function λ 7→ f(x0 + λu), which is convex by convexity of f ; then the function

λ 7→ f(x0+λu)−f(x0)
λ is increasing (see Theorem A.27). This implies that f ′u(x0) ≤

f(x0+λu)−f(x0)
λ for every λ > 0 and every u ∈ Rn such that ‖u‖ = 1; thus we have

obtained inequality (4.4) which is equivalent to ξ ∈ ∂f(x).

Corollary 4.10. Let f : Rn → R be a convex function, let x0 ∈ dom f and let u ∈ Rn
be such that ‖u‖ = 1. Let α, β > 0 be such that xα := x0 − αu, xβ := x0 + βu ∈ dom f .
Then for every ξ0 ∈ ∂f(x0), ξα ∈ ∂f(xα) and ξβ ∈ ∂f(xβ) we have that

〈ξα, u〉 ≤ 〈ξ0, u〉 ≤ 〈ξβ, u〉 .

Proof. Consider again the convex function g(λ) := f(x0 + λu); the following equalities
hold: g′+(0) = f ′u(x0), g′−(0) = −f ′−u(x0), g′+(α) = f ′u(xα) and g′−(β) = −f ′−u(xβ). Since
for a one-dimensional convex function the derivative is increasing (see Corollary A.34),
we have that

g′+(α) ≤ g′−(0) ≤ g′+(0) ≤ g′−(β).

From Theorem 4.9 we obtain that g′+(α) ≥ 〈ξα, u〉, g′−(0) ≤ 〈ξ0, u〉, g′+(0) ≥ 〈ξ0, u〉 and
g′−(β) ≤ 〈ξβ, u〉. By combining all the inequalities the thesis follows.

The following propositions give a method for the estimation of the subgradient inside
the domain based on the subdi�erential on the border of the domain.

Proposition 4.11. Let f : Rn → R be a convex function, let u ∈ Rn be such that ‖u‖ = 1
and let x0 ∈ dom f . Suppose for simplicity that dom f is closed and bounded. We then

have that for every ξ ∈ ∂f(x0)

inf
x∈∂ dom f

sup
ξ′∈∂f(x)

〈
ξ′, u

〉
≤ 〈ξ, u〉 ≤ sup

x∈∂ dom f
inf

ξ′∈∂f(x)

〈
ξ′, u

〉
.

Proof. It is a straightforward application of Corollary 4.10, where we take α and β such
that xα and xβ belong to the border of dom f .

Proposition 4.12. Let f : R2 → R and let ΩN = XN × YN be a �nite subset of R2. We

will suppose for simplicity that f is �nite on ΩN . Then for every (x, y) ∈ ΩN and every
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(ξ, η) ∈ ∂ conv fΩN
(x, y) we have that

inf
y′∈YN

sup
(ξ′,η′)
∈

∂ conv fΩN
(minXN ,y

′)

ξ′ ≤ ξ ≤ sup
y′∈YN

inf
(ξ′′,η′′)
∈

∂ conv fΩN
(maxXN ,y

′)

ξ′′,

inf
x′∈XN

sup
(ξ′,η′)
∈

∂ conv fΩN
(x′,minYN )

η′ ≤ η ≤ sup
x′∈XN

inf
(ξ′′,η′′)
∈

∂ conv fΩN
(x′,maxYN )

η′′.

Proof. Let (x, y) ∈ ΩN and let (ξ, η) ∈ ∂ conv fΩN
(x, y). By applying Corollary 4.10,

where we take u = (1, 0), we obtain that

ξ′ ≤ ξ ≤ ξ′′

holds for every (ξ′, η′) ∈ ∂ conv fΩN
(minXN , y) and every (ξ′′, η′′) ∈ ∂ conv fΩN

(maxXN , y).
Then we have that

sup
(ξ′,η′)∈∂ conv fΩN

(minXN ,y)
ξ′ ≤ ξ ≤ inf

(ξ′′,η′′)∈∂ conv fΩN
(maxXN ,y)

ξ′′

and by taking on each side respectively the in�mum and the supremum over y ∈ YN we
obtain the �rst part of the thesis; the second part can be proved similarly.

Now we can apply Proposition 4.11 to the problem of �nding a set S which contains
at least one optimal grid in the case of the factorized two-dimensional transformations;
it is �rstly necessary to provide estimates of ∂ conv f on ΩN ∩ ∂ conv ΩN .

Lemma 4.13. Let f : R2 → R and let ΩN = XN × YN be a �nite subset of R2.

We suppose for simplicity that f is �nite on ΩN . Given y ∈ R, let gy := fΩN
(·, y),

ξ−y := max ∂ conv gy(minXN ) and ξ+
y := min ∂ conv gy(maxXN ). Then we have that for

every y ∈ YN there exist η−y , η
+
y ∈ R such that

(ξ−, η−y ) ∈ ∂ conv fΩN
(minXN , y),

(ξ+, η+
y ) ∈ ∂ conv fΩN

(maxXN , y),

where ξ− = miny∈YN ξ
−
y and ξ+ = maxy∈YN ξ

+
y .

Proof. We consider only the boundary minXN × YN ; the proof for the other boundary
is the same. Firstly we prove that ξ−y is well de�ned for every y ∈ YN . Since f is �nite
on ΩN , for each y ∈ YN the function gy is �nite on XN and is +∞ elsewhere; its convex
hull is then a piecewise linear function �nite on the interval [minXN ,maxXN ] and thus
ξ−y exists and is equal to the right slope in minXN (see Proposition A.35). We observe
that being ξ−y ∈ ∂ conv gy(minXN ) we have that for every x ∈ R

conv gy(minX) + ξ−y (x−minXN ) ≤ conv gy(x). (4.5)
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By convexity of conv fΩN
we have that conv fΩN

(x, y) ≤ conv gy(x) for every (x, y) ∈
R2 and thus conv fΩN

= conv g, where g(x, y) := conv gy(x) (observe that g(x, y) = +∞
if y /∈ YN ); then inequality (4.5) becomes

g(minX, y) + ξ−y (x−minX) ≤ g(x, y) ∀(x, y) ∈ R× YN . (4.6)

Moreover, by convexity of conv g we have that conv g(minXN , ·) ≤ conv h−, where h− =
g(minXN , ·); observe that, being h− < +∞ only on YN , we have that conv h− = IY ′N (h−)
for a certain Y ′N ⊆ YN . We have that conv g = conv g̃, where

g̃(x, y) :=

{
conv h−(y) if x = minXN

g(x, y) elsewhere
.

Since g = g̃ on (R \ {minXN})×R and g̃ ≤ g on {minXN}×R, inequality (4.6) implies
that

g̃(minXN , y) + ξ−y (x−minX) ≤ g̃(x, y) ∀(x, y) ∈ R× YN . (4.7)

Now �x y0 ∈ YN . Since g̃(minXN , ·) = conv h− is convex and piecewise linear, there
exists ηy0 ∈ ∂ conv h−(y0); for such ηy0 we have that

g̃(minXN , y0) + ηy0(y − y0) ≤ g̃(minXN , y) ∀y ∈ R. (4.8)

By combining inequalities (4.7) and (4.8) we obtain that for every (x, y) ∈ XN × YN

g̃(minXN , y0) + ξ−y (x−minXN ) + ηy0(y − y0) ≤ g̃(x, y);

being ξ− ≤ ξ−y for every y ∈ YN and x−minX ≥ 0 for every x ∈ XN , we have that

g̃(minXN , y0) + ξ−(x−minXN ) + ηy0(y − y0) ≤ g̃(x, y).

By Proposition A.20 we conclude that (ξ−, ηy0) ∈ ∂ conv g̃(minXN , y0) and thus (ξ−, ηy0) ∈
∂ conv fΩN

(minXN , y0) by equality of the two hulls.

Lemma 4.14. Let f : R2 → R and let ΩN = XN × YN be a �nite subset of R2.

We suppose for simplicity that f is �nite on ΩN . Given x ∈ R, let hx := fΩN
(x, ·),

η−x := max ∂ conv hx(minYN ) and η+
x := min ∂ conv hx(maxYN ). Then we have that for

every x ∈ XN there exist ξ−x , ξ
+
x ∈ R such that

(ξ−x , η
−) ∈ ∂ conv fΩN

(x,minYN ),

(ξ+
x , η

+) ∈ ∂ conv fΩN
(x,maxYN ),

where η− = minx∈XN
η−x and η+ = maxx∈XN

η+
x .

By combining Lemmas 4.13 and 4.14 with Proposition 4.12 we have an estimate for
the set S.
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Theorem 4.15. With the hypothesis and notation of Lemmas 4.13 and 4.14, we have

that the set S = C × D := [ξ−, ξ+] × [η−, η+] contains an optimal dual grid relative to

the primal grid ΩN . In particular this means that for all (x, y) ∈ ΩN

conv fΩN
(x, y) =

(
f∗ΩN

)∗
S

(x, y).

Proof. Fix (x, y) ∈ ΩN ; by Lemma A.56 there exists a subgradient (ξ, η) ∈ ∂ conv fΩN
(x, y).

By Lemmas 4.13 and 4.14, we have that for all x′ ∈ XN and all y′ ∈ YN

sup
(ξ′,η′)∈∂ conv fΩN

(minXN ,y′)
≥ ξ−,

inf
(ξ′′,η′′)∈∂ conv fΩN

(maxXN ,y′)
≤ ξ+,

sup
(ξ′,η′)∈∂ conv fΩN

(x′,minYN )
≥ η−,

inf
(ξ′′,η′′)∈∂ conv fΩN

(x′,maxYN )
≤ η+.

We can then apply Proposition 4.12 and obtain our thesis.

4.4. Implementation details

As we have seen in Section 4.1, the basic building block for the multidimensional DLFT
is the one-dimensional DLFT. We will use the fast algorithm for the one-dimensional
DLFT developed by Lucet in [Lucet(1997)], which has complexity O(n); older algorithms
inspired by the FFT have complexity O(n log n) ([Lucet(1996)]). In [Lucet(1997)] the
extension to the multidimensional DLFT is also treated. An explicit convex hull algo-
rithm based on Lucet's multidimensional DLFT is found in [Helluy and Mathis(2011)];
in the following, we will call it the standard algorithm for the convex hull. We restrict to
the two-dimensional case, mainly because the function we consider in the physical prob-
lem is two-dimensional (see Section 1.4) and because generalization to any number of
dimensions is straightforward. Moreover, we present a modi�ed version of the standard
algorithm which takes into account the results of Section 4.2.
Firstly we describe the fast one-dimensional DLFT algorithm by Lucet ([Lucet(1997)]).

Let us consider a function f : R → R, a grid XN = {x1, . . . , xN} and the set of values
{f(x1), . . . , f(xN )}. By Corollary 2.22 we have that f∗XN

= [conv IXN
(f)]∗. We assume

that the points of XN are already ordered. Thus conv IXN
(f) is easily calculable in linear

time through a Graham's scan ([Graham(1972), Andrew(1979)]) or a divide et impera
approach ([Preparata and Hong(1977)]); moreover, conv IXN

(f) is still a piecewise linear
function. Then, by Theorem 2.23, where we take c0 = −∞ and cN = +∞, the DLFT
f∗XN

is a piecewise linear function and its nodes, values and external slopes can be easily
computed by (2.2). A pseudocode description of this algorithm follows (fast_dlft).
We denote by convexhull_1d(grid, values) the subroutine which computes the con-
vex hull of the piecewise linear interpolant on the nodes grid and the values values.
Moreover, we denote by pcw_dlft(grid, values) the subroutine which computes the
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DLFT of a convex interpolant. Both subroutines return a piecewise linear function,
which is represented by an object pcw whose components are pcw.grid, pcw.values,
pcw.left_slope and pcw.right_slope. The last two values, which represents the ex-
ternal slopes, are in�nite in the convex hull case and �nite in the DLFT case.

function fast_dlft(grid , values)

pcw = convexhull_1d(grid , values)

pcw = pcw_dlft(pcw.grid , pcw.values)

return pcw

end function

In what follows we denote by pcw(grid) the evaluation of the piecewise linear function
on the points of pcw(grid).
By the factorization of the DLFT presented in Section 4.1, the fast one-dimensional

DLFT algorithm can be used as the basis for the computation of the multidimensional
DLFT ([Lucet(1997)]). Then we can apply the resulting algorithm twice, obtaining
the convex hull algorithm presented in [Helluy and Mathis(2011)], which we describe
in the two-dimensional case. Let us consider a function f : R2 → R, a primal grid
ΩN = XN ×YN , a dual grid SN = CN ×DN and suppose that the values of f on the grid
ΩN are given. By factorizing the DLFT and applying the fast one-dimensional algorithm,
we can evaluate f∗ΩN

on the grid SN and then evaluate (f∗ΩN
)∗SN

on the grid ΩN . If the
grids ΩN and SN have the same size, the matrix which initially contains the values of f
on the grid ΩN can be used for all the successive computations: we substitute each row
with its DLFT and then do the same for the columns of the matrix so obtained. If the
sizes of the grids di�er, it is still possible to use one matrix by choosing it su�ciently
large to accomodate both grids.
The grid SN can be chosen as a uniform discretization of the grid S = C × D given

in Theorem 4.15. We notice that C and D can be easily found easily by computing the
interval containing all the natural grids of the one-dimensional DLFTs respectively along
the rows and along the columns, since in one dimension those grids correspond to the
slopes of the convex hull. We observe that, since we are computing the double DLFT
(f∗ΩN

)∗SN
exactly (except for numerical errors), the output data of the algorithm, i.e. the

approximation of conv fΩ, is always convex (being a Legendre-Fenchel transform) and
less than or equal to the input data (by Corollary 3.7); the same is true also for the
modi�ed transforms.
Now we present the pseudocode for the standard two-dimensional convex hull algorithm

(convexhull_std). We use an array notation where indexes start from 1 and where the
index −1 is a shortcut for the last index; the function size(array) gives the size of an
array. Moreover, we denote by linspace(start,stop,N) the grid which discretizes the
interval [start, end] with N points evenly spaced. Finally, we denote by the keyword
parallel the loops whose iterations are independent and which we compute in parallel.

function convexhull_std(xgrid , ygrid , values)

! compute the DLFT along each column

lwb = +Inf

upb = -Inf
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parallel do j = 1,size(ygrid)

pcws(j) = fast_dlft(xgrid , values(:,j))

lwb = min(lwb , pcws(j).grid (1))

upb = max(upb , pcws(j).grid (-1))

end do

! build the dual grid C_N

! and evaluate each of the DLFTs on it

cgrid = linspace(lwb , upb , size(xgrid))

pallel do j = 1,size(ygrid)

values(:,j) = -pcws(j)(cgrid)

end do

! now compute the DLFT

! along each row of the updated matrix

lwb = +Inf

upb = -Inf

parallel do i = 1,size(cgrid)

pcws(i) = fast_dlft(ygrid , values(i,:))

lwb = min(lwb , pcws(i).grid (1))

upb = max(upb , pcws(i).grid (-1))

end do

! build the dual grid D_N

! and evaluate each of the DLFTs on it

dgrid = linspace(lwb , upb , size(ygrid))

parallel do i = 1,size(cgrid)

values(i,:) = pcws(i)(dgrid)

end do

! we have thus built the two -dimensional DLFT

! now compute the second 2d DLFT on Omega_N

parallel do j = 1,size(dgrid)

pcw = fast_dlft(cgrid , values(:,j))

values(:,j) = -pcw(xgrid)

end do

parallel do i = 1,size(xgrid)

pcw = fast_dlft(dgrid , values(i,:))

values(i,:) = pcw(ygrid)

end do

return values

end function

In order to build an algorithm which computes the modi�ed double DLFT
(
f∗ΩN

)∗
CN×R

,

it is su�cient to adapt the standard algorithm by condensing two one-dimensional DLFTs

in a single application of the convex hull operation; thus the computation of
(
f∗ΩN

)∗
CN×R

is not only slightly better (by Theorem 4.1), but also slightly faster (see, for instance,
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the results in Table 4.3).
The same idea can be applied even if the number of dimensions is higher than two,

but the improvements in speed and precision could be the less relevant the higher the
number of dimensions, since the number of loops is always reduced by one independently
from the number of dimensions.
As we have seen

(
f∗ΩN

)∗
(CN×R)∪(R×DN )

can be computed from
(
f∗ΩN

)∗
CN×R

and
(
f∗ΩN

)∗
R×DN

;

in order to compute
(
f∗ΩN

)∗
R×DN

it is not necessary to implement a new function, because

by Corollary 4.4 we can change the order of the dimension (i.e. transpose the data matri-

ces) and compute it as

(((
fT
)∗
YN×XN

)∗
DN×R

)T
. Finally we present the pseudocodes of

the two variants of the algorithm (respectively convexhull_mod and convexhull_sym).

function convexhull_mod(xgrid , ygrid , values)

! compute the DLFT along each column

lwb = +Inf

upb = -Inf

parallel do j = 1,size(ygrid)

pcws(j) = fast_dlft(xgrid , values(:,j))

lwb = min(lwb , pcws(j).grid (1))

upb = max(upb , pcws(j).grid (-1))

end do

! build the dual grid C_N

! and evaluate each of the DLFTs on it

cgrid = linspace(lwb , upb , size(xgrid))

pallel do j = 1,size(ygrid)

values(:,j) = -pcws(j)(cgrid)

end do

! up to now it is identical to

! the standard algorithm;

! now we compute the 2nd and 3rd steps

! of the std algorithm in only one loop

parallel do i = 1,size(cgrid)

pcw = convexhull_1d(ygrid , values(i,:))

values(i,:) = -pcw(ygrid)

end do

! and finally the last pass of DLFTs

parallel do j = 1,size(ygrid)

pcw = fast_dlft(cgrid , values(:,j))

values(:,j) = pcw(xgrid)

end do

return values

end function

function convexhull_sym(xgrid , ygrid , values)
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newValues = convexhull_mod(xgrid , ygrid , values)

! now we swap dimensions

values = transpose(values)

symValues = convexhull_mod(ygrid , xygrid , values)

symValues = transpose(symValues)

! finally we merge the results with a maximum

return max(newValues , symValues)

end function

4.5. Numerical comparisons

In this section we present some numerical tests to compare the three variants of the algo-
rithm presented in the previous section, which we denote by dDLFT (�double DLFT�),
mdDLFT (�modi�ed� dDLFT) and smdDLFT (�symmetric� mdDLFT) respectively. For
simplicity we test the algorithms on functions of the form f(x, y) = f(r), where r is the
distance from the origin of the point (x, y), i.e. r =

√
x2 + y2. The �rst test function

(see Figure 4.1) we use is
f1

test(x, y) = (r2 − 1)2,

whose convex hull is

conv f1
test(x, y) =

{
(r2 − 1)2 if r > 1

0 if 0 ≤ r ≤ 1
;

the grid on which the function is evaluated has 1000× 1000 points uniformly distributed
on the square [−1.5, 1.5]2. A simple way to assess the quality of the obtained results is by
comparing the regions the di�erent algorithms have classi�ed as non-convex, i.e. where
the computed convex hull di�ers from the value of the function; in the case of the exact
hull this region is the unit circle. The regions detected by the dDLFT, mdDLFT and
smdDLFT are shown in white in Figure 4.2; the loss of symmetry due to the mdDLFT
is visible in the di�erent shape of the region around the two axes. In Figure 4.3 the error
between the computed hull and the exact hull is shown (here the asymmetric behaviour
of mdDLFT is even more evident), whereas in Table 4.1 some quantitative information
about the same error is reported. Finally we analyze the restriction of the transforms
to the axes (see Figure 4.4). As an experimental proof for Corollary 3.14, we have also
studied the case in which the value 0 is inserted in the dual grid manually; being 0 the
value of the gradient in the non-convex region, we obtain an almost exact result inside
the region of non-convexity as predicted by Corollary 3.14.
The second test function (see Figure 4.5) is

f2
test(x, y) = exp r + 25 · sin (2.5− r) · exp

[
− (2.5− r)2

]
,

and, by observing that
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Figure 4.1.: The graph of the test function f1test(x, y) = (r2 − 1)2.

on [−1.5, 1.5]2 dDLFT mdDLFT smdDLFT

Maximum value 0.0297 0.021 0.021

Medium value 0.0041 0.0031 0.0026

Standard deviation 0.0068 0.0054 0.0046

on the unit circle dDLFT mdDLFT smdDLFT

Maximum value 0.0297 0.021 0.021

Medium value 0.0117 0.009 0.0074

Standard deviation 0.0068 0.0055 0.0051

outside the unit circle dDLFT mdDLFT smdDLFT

Maximum value 0.0026 0.0025 4.834 · 10−5

Medium value 2.883 · 10−5 1.035 · 10−5 8.763 · 10−7

Standard deviation 8.565 · 10−5 5.311 · 10−5 3.535 · 10−6

Table 4.1.: Distribution of the error between the exact convex hull of f1test and its computed
value.
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Figure 4.2.: Non-convexity region of the function f1test on the domain [−1.5, 1.5]2, computed
respectively through the dDLFT, mdDLFT and smdDLFT; the points where the computed
convex hull di�ers from the function f1test are shown in white.
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Figure 4.3.: Error between the exact convex hull of f1test and its value computed respectively from
left to right and from top to bottom by the dDLFT, mdDLFT, smdDLFT and smdDLFT using
a dual grid containing 0.
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Figure 4.4.: Restriction to the axes of the convex hull of f1test computed respectively by dDLFT
(blue line), mdDLFT (the solid red line is the restriction to the y-axis, while the dashed red
line is the restriction to the x-axis), smdDLFT (green line) and smdDLFT using a dual grid
containing 0 (black line); the true value of the convex hull in the interval [−1, 1] is 0.
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Figure 4.5.: The graph of the test function f2test (blue line) and of its convex hull (green line).

conv f2
test(x, y) = conv f2

test(r),

we can build a reasonable approximation of the convex hull by a computation in only one
dimension (we denote by s the value of the one-dimensional derivative inside the non-
convex region); we treat this hull as the �exact� one in order to test the two-dimensional
codes. The domain is the square [−3.75, 3.75]2 and is discretized by a 1000×1000 uniform
grid. The exact non-convex region is an annulus with radii 0.47 and 2.87, whereas the
regions computed numerically are presented in Figure 4.6. We take the opportunity
to stress that the convex hull, and thus the shape of the non-convex region, depends
heavily on the domain considered; this phenomenon is evident in Figure 4.7 where a
di�erent domain is used for computing the convex hull of f2

test. Finally we present the
same comparisons we did for f1

test(x, y). Since in this case the gradient in the non-convex
region is not constant (only its norm is constantly s), we have chosen the s (positive) as
the value to insert in the grid manually; thus the gain in accuracy is limited to the points
of the non-convex region where one of the components of the gradient is s, as seen both
in Figure 4.8 and Figure 4.9.
As a last comparison between the algorithms, in Table 4.3 the computation times in

seconds for the two test functions are presented; they are averaged on several runs of
the algorithms with the test functions f1

test and f2
test on the same domains considered

above, but discretized with a 104 × 104 uniform grid. The convex hull algorithm has
been implemented in Fortran and OpenMP has been used to provide easy parallelization.
Because this compiled code is invoked from Python, there may be present some additional
overhead; anyway, this overhead should be small and identical for all three versions of
the algorithm. Then the code was run under Mac OS X 10.6 on a 2.93 GHz Intel Core
i7 (4 cores, HT).
In order to properly compare the algorithms, we have to account not only for the

computational time, but also for the quality of the results. A rough way to do so is
the following. We �x the grid size at 10002 for the smdDLFT; the computation time
(excluding grid generation and function evaluation) is 0.785 s for f1

test and 0.788 s for
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Figure 4.6.: Non-convexity region of the function f2test on the domain [−3.75, 3.75]2, computed
respectively through the dDLFT, mdDLFT and smdDLFT; the points where the computed
convex hull di�ers from the function f2test are shown in white.
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Figure 4.7.: Non-convexity region of the function f2test on the domain [−1, 3.75]2 computed
through the smdDLFT; the points where the computed convex hull di�ers from the function
f2test are shown in white.
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Figure 4.8.: Error between the exact convex hull of f2test and its value computed respectively from
left to right and from top to bottom by the dDLFT, mdDLFT, smdDLFT and smdDLFT using
a dual grid containing s.
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on [−3.75, 3.75]2 dDLFT mdDLFT smdDLFT

Maximum value 0.0855 0.0827 0.0134

Medium value 0.0125 0.0043 9.542 · 10−4

Standard deviation 0.0182 0.0111 0.0019

on the annulus dDLFT mdDLFT smdDLFT

Maximum value 0.0855 0.0827 0.0134

Medium value 0.0276 0.0096 0.0021

Standard deviation 0.0181 0.015 0.0023

outside the annulus dDLFT mdDLFT smdDLFT

Maximum value 0.0081 0.0081 0.0015

Medium value 2.219 · 10−4 8.747 · 10−5 1.009 · 10−5

Standard deviation 3.725 · 10−4 2.466 · 10−4 5.898 · 10−5

Table 4.2.: Distribution of the error between the exact convex hull of f2test and its computed
value.
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Figure 4.9.: Restriction to the axes of the error between the exact convex hull of f2test and the
one computed respectively by dDLFT (blue line), mdDLFT (the solid red line is the restriction
to the y-axis, while the dashed red line is the restriction to the x-axis), smdDLFT (green line)
and smdDLFT using a dual grid containing s (black dashed line); observe that the black line is
near 0 only on the right part of the plot, due to the positivity of s.
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f1
test f2

test

dDLFT 73 s 73.4 s

mdDLFT 49.6 s 50.4 s
−32% of dDLFT −31% of dDLFT

smdDLFT 108.6 s 109.2 s
+119% of mdDLFT +117% of mdDLFT

+49% of dDLFT +49% of dDLFT

Table 4.3.: Computational times in seconds of the three di�erent versions of the convex hull
algorithm.

f2
test. Then gradually we increase the size of the grid used for the mdDLFT until a result
of quality comparable to the smdDLFT is found. For the test function f1

test this happens
for a grid of 12122 points, when the mean error and the standard deviation become both
better than their counterparts for the smdDLFT; the time expended is 0.575 s, better
than the smdDLFT. In the case of f2

test the mean value becomes better for the �rst time
at 24982 points, but the maximum error at this stage is still about two times the one
for the smdDLT; the time in this case is 2.628 s, much larger than for the smdDLFT,
and again does not include grid generation and function evaluation. Thus we conclude
tentatively that using the smdDLFT in the general case is worth the extra computational
time; more rigorous and extensive tests should be done to con�rm this assessment.

4.6. The choice of the dual grid

In the following we always use the more accurate smdDLFT transform, but similar prob-
lems and solutions arise also in the other two cases. The main problem in the computation
of the convex hull is the choice of the dual grids CN and DN ; as seen in Theorem 3.22
it is su�cient to cover a certain bounded set S, which can be estimated thanks to The-
orem 4.15. Until now we have used a uniform discretization of this set; this can be a
poor choice when the derivatives of the function grow rapidly, causing S to be large and
the points of CN and DN to be too sparse. This is the case for both the test functions
f1

test and f
2
test (de�ned in Section 4.5) if we enlarge the domain on which the convex hull

is computed (see respectively Figures 4.11 and 4.10); note that even increasing the size
of the grid, while certainly improving the result, is not a de�nitive answer (see the right
plot in Figure 4.11).
It is interesting to observe that the plots are composed of black lines whose spacing is

greater the nearer they are to the origin: each of these lines corresponds to a point in
the dual grid. Consider for example ξ ∈ CN ; being CN × R the actual set on which the
second transform is computed, by Corollary 3.21 for every point (x, y) ∈ ΩN , such that

(ξ, η) ∈ ∂ conv fΩN
(x, y) for a certain η ∈ R, we have that conv fΩN

(x, y) =
(
f∗ΩN

)∗
CN×R

. Since in our case the test functions and their hulls are di�erentiable, the locus of the
points where the �rst component of the gradient is ξ is one of the black lines, i.e. is
composed of points where the algorithm gives the exact result. By observing that for our
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Figure 4.10.: Non-convexity region of the function f2test respectively from left to right and from
top to bottom on the domains [−5, 5]2, [−6, 6]2, [−7, 7]2 and [−8, 8]2; the points where the
computed convex hull di�ers from the function f2test are shown in white, while the boundary of
the exact non-convexity region is shown in red.

test functions the gradient is always directed radially and has module dependent only on
the distance from the origin and increasing with it, the shape and origin of the black lines
which are asymptotically tangent to the y-axis is explained easily; a similar reasoning
can be done for the lines asymptotically tangent to the x-axis, which are related to the
points η ∈ DN . Since for our test functions the second derivative increases with the
distance from the origin, our interpretation of the black lines explains also why they are
more spaced close to the origin: the distance between successive points of the dual grids
is always the same, but the distance in primal space needed for the same increase in the
gradient is smaller as we move away from the origin. This explains why the lines are
denser, and the result of the algorithm better, far away from the origin.
Since we are more interested in detecting the shape of the region of non-convexity and

in computing the values of the convex hull inside it, we would like our dual grid to be
denser around the slopes of the convex hull in that region. The problem is, as usual, that
we cannot know the values of these slopes without knowing the convex hull. A possible
solution to this problem consists in using a less precise approximation to the convex hull
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Figure 4.11.: Non-convexity region of the function f1test on the domain [−10, 10]2 discretized with
a uniform grid of size respectively 1000 × 1000 (left) and 5000 × 5000 (right); the points where
the computed convex hull di�ers from the function f1test are shown in white, while the boundary
of the exact non-convexity region is shown in red.

f y = 1 y = 2 y = 3

x = 1 0 0 0

x = 2 3 1 0

x = 3 6 3 0

Table 4.4.: A function f and a grid {1, 2, 3}2 for which the heuristic method does not give the
exact result; f is convex along all the rows and all the columns, but not along the main diagonal.

in order to detect the region of non-convexity and computing its slopes. A very simple
approximation for the convex hull can be obtained by computing one-dimensional convex
hulls on all the rows of the data matrix and then on all its columns. Since the convex
hull, di�erently from the DLFT, is not factorizable, this method is purely heuristic: the
result can be greater than the exact convex hull (see Table 4.4), which implies that the
detected region of non-convexity is smaller than the true one. The reason for the failure
of this simple algorithm is that it makes the function convex along all the rows and all
the columns, but not along all the other directions; for a di�erentiable funtion, this is
equivalent to forgetting the role of mixed derivatives in determining convexity at a given
point.
The heuristic detection can be implemented inside the convex hull step of the �rst pass

of DLFTs, by saving for each row which slopes are inserted in order to make it convex.
These values are transformed in intervals by enlarging each of them by a �xed window
size; then the resulting intervals are joined when they are close, for example nearer
than a certain multiple of the windows size. In this way we have partitioned the set C
de�ned in Theorem 4.15 in intervals relative to the region of non-convexity and intervals
relative to the region where the function is already convex. Then we �x a fraction of the
available points to be assigned to intervals of the �rst type: these points are distributed
evenly among all such intervals independently from their length (we assign at least three
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Figure 4.12.: Plots of the non-convex regions of the test function f1test on the domain [−10, 10]2

covered by a uniform 1000×1000 grid. An adaptive dual grid is used; the fraction of points inside
the intervals �agged as non-convex is respectively from left to right and from top to bottom 0.2,
0.6, 0.9 and 1.

points to each interval). Finally, the remaining points are distributed evenly among the
intervals of the second type, again independently of their length. The results obtained
using dual grids of this kind are shown in Figures 4.12 and 4.13 (observe that the shape
of the adapted region is in accordance with the interpretation of the black lines as loci
of points corresponding to each dual grid point); the same method works well also for
larger domains than those considered so far, as shown in Figure 4.14.
We will now consider a more complex function f3

test de�ned as

f3
test(x, y) :=

{
Hi if (x, y) ∈ B(10i, 10i, 1), i ∈ N \ {0}
f1

test(x, y) elsewhere
,

where B(x, y, r) is the open ball with radius r centered in (x, y) and Hi ∈ R is such
that Hi ≥ max(x,y)∈B(10i,10i,1) f

1
test(x, y); the region of non-convexity of f3

test on R2 is⋃
i∈NB(10i, 10i, 1) and thus is not connected. As expected, a uniform discretization of

the domain does not allow to clearly detect all the connected components of the region
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Figure 4.13.: Plots of the non-convex regions of the test function f2test on the domain [−8, 8]2

covered by a uniform 1000×1000 grid. An adaptive dual grid is used; the fraction of points inside
the intervals �agged as non-convex is respectively from left to right and from top to bottom 0.1,
0.2, 0.8 and 1.
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Figure 4.14.: Plots of the non-convex regions of the test function f2test on the domain [−20, 20]2

covered by a uniform 1000 × 1000 grid. In the right �gure an adaptive dual grid is used; the
fraction of points inside the intervals �agged as non-convex is 0.2.
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of non-convexity (see the �rst plot in Figure 4.15). Now consider an adaptive grid built
with a window size of 10 and by reserving just the 10% of points for the intervals �agged
as non convex; the corresponding result is shown in the second plot of Figure 4.15. Even
though only a small fraction of the points is assigned to the non-convex region, the
density of the black points away from that region is very low, against our expectations.
This is due to the fact the window size is very low compared to the distance between the
�agged slopes, distance that increases rapidly away from the origin, and thus there is no
merging of intervals; then we have a large number of intervals �agged as non-convex and,
since we assign to each of them at least 3 points, there are few points left for the other
intervals, explaining the poor result away from the non-convexity region. The situation
is particularly bad in the upper left quadrant, which does not contain any part of the
non-convexity region and thus corresponds to a single interval in dual space; being the
number of points assigned to each interval the same independently of its length, the
resulting density of black points in this quadrant is less than elsewhere. Moreover, by
examining the region of non-convexity detected by the algorithm, we observe that their
borders are not entirely captured; in order to better capture them we should increase the
number of points outside the �agged regions, by increasing the window size. Doing so
by modifying the adaptation parameters (see the third and fourth plot of Figure 4.15)
improves the result, but is against the two main objectives of our adaptive method: being
automatic, i.e. being independent of the function given, and using only a subset of the
entire estimated dual set S for the computation.
It is interesting to understand why our method fails to wholly capture the border of

the non-convexity region; in order to visualize better this situation, consider the upper
left region of non-convexity in Figure 4.16, which is obtained by modifying f1

test in a
way similar to the one used for f3

test. The red circle is the exact boundary of the region
of non-convexity, while the colored area is the region detected as non-convex by the
heuristic method; in this case the two coincide. Observe that the boundary lines of the
black stripes, on which the convex hull is computed exactly, touch the non-convexity
region respectively on its topmost, bottom, leftmost and rightmost point; this is due to
the fact that they correspond to the values of the components of the gradient in those
points. Since the change we made to f1

test is discontinuous, the derivatives of the convex
hull are discontinuos too; this means that the black stripes cannot cover the zone of
non-convexity wholly, as was the case for f1

test. A possible modi�cation to the method
in order to account for non-continuous derivatives of the hull could be implemented by
�agging as non-convex also the slopes immediately preceding and following an actual one-
dimensional non-convex region. Nonetheless, this modi�cation is not resolutive, because
the same problem can arise even if the change to the function is done preserving continuity
and di�erentiability; consider for example the lower right region of non-convexity in
Figure 4.16, which is obtained by modifying f1

test by adding a gaussian function centered
in (20, 20). The problem in this case is due to the fact that the region detected by the
heuristic is di�erent from the exact region of non-convexity; as an e�ect of the adaptive
construction of the dual grid, the black stripes would cover completely the colored region,
but they are hidden by the larger true non-convexity region, which they are not able to
cover. For certain functions, as we will see in Section 5.2, the di�erence between the two
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Figure 4.15.: Non-convexity region of the function f3test on the domain [−65, 65]2 covered by a
uniform 1000 × 1000 grid; the points where the computed convex hull di�ers from the function
f3test are shown in white. In the �rst (from left to right and top to bottom) plot a uniform dual
grid is used, whereas in the others an adaptive dual grid is used; the fraction of points inside the
interval �agged as non-convex is respectively 0.1, 0.1 and 0.5 and the window size is respectively
10, 250 and 1000.

53



40 30 20 10 0 10 20 30 40

y

40
30
20
10
0

10
20
30
40

x

Figure 4.16.: A more visible example of the same behaviour exhibited in the right plot of Fig-
ure 4.15; the upper left region of non-convexity is due to a discontinuous change to the function
f1test (as is the case in f

3
test), while the lower right one is caused by a continuous change. The red

circle indicates the exact boundary of the �rst region, while the colored areas are the one �agged
as non-convex by the heuristic method based on factorization of the convex hull.

regions is even greater.
Until now we have searched a method to e�ciently use a �xed number of points avail-

able for the dual grid. Another approach to deal with large dual sets S, which at �rst
sight may appear naïve, is using a dual grid with a higher number of points; in this
case, a potential problem could be memory usage since a larger matrix has to be stored
in memory. This problem can be easily resolved thanks to Proposition 2.17: the dual
grid is partitioned in smaller grids, each of these grids is used for a computation of the
convex hull and �nally the partial results are merged by a maximum operation; it is even
possible to perform the �rst pass of DLFTs only once and sample them each time on a
di�erent grid. The problem is how to partition the large grid; since equal intervals in
dual space can correspond to varying intervals in primal space, this is again a problem
which cannot easily resolved independently of the given function. A possible heuristic
solution is using as the dual grid all the slopes of the functions obtained in the �rst
pass of one-dimensional convex hulls; this time we take every slope, instead of only the
non-convex ones. This large grid in dual space, which has about the same size as the
whole primal grid, can be partitioned naturally in correspondence to each line on which
the one-dimensional hull has been computed; not all the lines have to be taken and re-
sults are usually good even when only a few of them are taken (see Figure 4.17). It is
worthwhile observing in Figure 4.17 that, when the number of steps is small, the quality
of the results is better for odd numbers; in this case in fact the central line is also taken
and thus we obtain a better result in the central region.
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Figure 4.17.: Plots of the non-convex regions of the test function f3test on the domain [−65, 65]2

covered by a uniform 1000× 1000 grid. A progressive construction of the result is made, respec-
tively from left to right and from top to bottom in 2, 3, 4, 5, 10, 11, 75 and 150 steps.
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5. Non-convex free-energies

In this chapter we apply the convex hull algorithm to the bulk free-energy density f
de�ned in Section 1.4. Our aim is �nding the region of the state space c = (c+, c−)
where f di�ers from its convex hull, i.e. the region thermodynamically unstable, which
we denote by T .

5.1. Symmetric case

First we study the case |Z+| = |Z−|, which ensures that f is invariant with respect to
the exchange of c− and c+, i.e. its graph (and also its convex hull) is symmetric with
respect to the plane of equation c+ = c−. Consider for example the case Z± = ±2: the
qualitative behaviour of f on a large scale is the same whatever the value of the ion
diameter σ is (see Figure 5.1). The main di�erence is the domain of f , which is the
larger the smaller is σ; this is due to the fact that the smaller the ions, the higher the
concentrations at which steric e�ects become relevant (smaller atoms can be more tightly
�packed� together). All the three functions in Figure 5.1 seem to be convex, but this is
actually true only in the case σ = 0.3 nm; we may see this by computing the di�erence
between f and its convex hull.
Now we examine the case σ = 0.2 nm in detail. The region of non-convexity for

such a diameter is shown in white in the left plot of Figure5.2: observe that the shape
of T is symmetric as expected. What is not evident is whether the region T extends
all the way to the origin. By observing the enlargement presented in the right plot of
Figure 5.2, it appears that the region around the origin is indeed convex; the boundary
of T closest to the origin appears to be contained in [0, 0.25]2 and to have the same
shape of the other boundary; in spite of that, by computing the convex hull of f on the
domain [0, 0.25]2, it seems that the function is convex there (see the top left image in
Figure 5.3). If we gradually enlarge the domain (see the rest of Figure 5.3), a region
of non-convexity appears and progressively increases, while its boundary tends to the
line we observed in the right plot of Figure 5.2. This behaviour is not surprising: the
convex hull of a function depends on the set on which that function is considered; if
we enlarge this set, there is the possibility that the region of non-convexity increases
(obviously it cannot become smaller). We are interested in the convex hull of f on its
whole domain, which is �nite because for large concentration f becomes +∞; fortunately
we can restrict the computation to a smaller set because the non-convex terms of f are
negligible at high concentration and thus the growth of the region of non-convexity ceases
for c su�ciently large (this enable us to use this method even if we had used the hard-
sphere approximation which gives a free-energy de�ned on the whole R2).
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Figure 5.1.: The behavior of f at large scale when Z± = ±2 and the ion diameter σ is equal
respectively to 0.1 nm (left), 0.2 nm (right) and 0.3 nm (bottom); be aware that f is convex only
in the last case.
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Figure 5.2.: The region of non convexity in the case Z± = ±2 and σ = 0.2 nm; the black points
are where f = conv f . The convex hull is computed on a uniform 5000 × 5000 grid on [0, 17]2;
the right plot is just an enlargement of the left one.
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Figure 5.3.: These plots evidence the dependence of the region T on the set on which the convex
hull is computed; model parameters are Z± = ±2 and σ = 0.2 nm. Each �gure (from left to
right and from top to bottom) is computed on a increasingly larger set (always discretized by a
5000× 5000 uniform grid); the �rst 5 plots are computed on the displayed region, while the last
three �gures are actually computed on a domain larger than the one shown, respectively [0, 1]2,
[0, 2.5]2 and [0, 5]2. The red square is the starting region [0, 0.25]2.
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Figure 5.4.: The boundary of T close to the origin for Z± = ±2 and σ = 0.2 nm. The grid used
is a non-uniform grid composed of 3000 points between 0 and 0.4, 2000 points between 0.4 and
18 and 500 points between 18 and 50.

As we have observed, the correct shape of T is captured only when the set on which
the convex hull is computed is su�ciently large. If the grid used is uniform, the larger
the computational domain the fewer the points of the grid on which the boundary of T
close to the origin lies. It is then useful to adopt a non-uniform grid in order to achieve
higher resolution in the area near the origin, without reducing the computational domain
and thus changing the shape of T (see Figure 5.4). We observe that if we restrict f to
one of the axes, we obtain the free-energy density arising in the case only one ion species
is present. Moreover, if we �x Z+ and restrict f to the c+ axis, we obtain the same
function for every value of Z−; its non-convexity region as a one-dimensional function
coincides with the intersection of T with the axis considered (see Theorem A.57).
We may be interested in obtaining a characteristic function for the set T , i.e. a function

1T such that 1T (x) = 1 when x ∈ T and is equal to 0 elsewhere. This is useful for a
memory-e�cient representation of the convex hull of f , because we need to save only
the values inside the region T , whereas the values outside of T can be computed from
the analytical expression of f . A simple approach to the computation of 1T is the
application of a threshold to the di�erence f − conv f , i.e. taking c ∈ T if and only if
f(c)− conv f(c) > TOL, where TOL is a given tolerance. In general, the value of TOL
should be chosen on a case by case basis, because if it is too large the shape of T could be
enlarged too much (see Figure 5.5). If the region T can be already recognized well from
the plot of the binary matrix f 6= conv f (as it has been the case up to now), a better
solution is using the closing operation from mathematical morphology ([Serra(1983)]),
which eliminates the problem of the spurious enlargement of T typical of the threshold
operation (see Figure 5.6).
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Figure 5.5.: These are the same computations as the third plot of Figure 5.3 and as Figure 5.4,
where TOL is 10−3 times the maximum di�erence between f and conv f (computed separatedly
for each �gure).
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Figure 5.6.: The top plot is the closing of the binary image of Figure 5.4; the bottom plots
are enlargement of the top one, where the closing is represented in grey and the original image
superimposed in black.

61



c
+ (mol/l)

0
20

40
60

80
100

c −
(m

ol
/l
)

0

20

40

60

80

100

500

400

300

200

100

0

100

Z+ = +2, Z− =−1, σ=0.2, T=300, εr =78.3

c
+ (mol/l)

0
5

10
15

20
25

30
c −

(m
ol/

l)

0

5

10

15

20
25

30

80

60

40

20

0

20

40

60

Z+ = +2, Z− =−1, σ=0.3, T=300, εr =78.3

Figure 5.7.: The behavior of f at large scale for Z+ = +2, Z− = −1 and σ equal respectively to
0.2 nm (left) and 0.3 nm (right); be aware that f is convex only in the second case.

5.2. Non-symmetric case

Now we consider the case where |Z+| 6= |Z−|, which implies that f is no more symmetric;
in particular, as an example we take Z+ = +2 and Z− = −1. In Figure 5.7 we present the
plots of f for respectively σ = 0.2 nm (left) and σ = 0.3 nm (right): on a large scale the
qualitative behavior of the convex (σ = 0.3 nm) and non-convex cases is still very similar.
In Figure 5.8 is plotted the non-convexity region in the non-convex case: as expected,
the region T becomes asymmetric. Observe that, di�erently from the symmetric case,
the region T does not divide the plane (c+, c−) into two parts; the reason for this is
easily understood by considering the restriction of f on the axes. The restriction of f
on the c+ axis is the free-energy density when we have only one ion species with |Z| = 2
and σ = 0.2 nm. Thus, by Theorem A.57, the restriction of conv f on the c+ axis is the
convex hull of such one-dimensional density; thus, if we �x Z+, the intersection of T with
the c+ axis is the same for any value of Z− (observe for example Figures 5.8 and 5.2).
On the other hand, the restriction of conv f on the c− axis is the convex hull of the free-
energy density for |Z| = 1 and σ = 0.2 nm; as seen in Table 1.1, for such a combination
the one-dimensional density is already convex and thus there is no intersection between
T and the c− axis. If σ decreases below the value of σ0 corresponding to |Z| = 1 , then
the intersection between T and the c− axis becomes non empty and T divides the state
space into two parts. In this case σ0 = 0.0560 nm is very small for an ion diameter
and thus is not physically acceptable; however, if we consider the case Z+ = +3 and
Z− = −2, the threshold is σ0 = 0.2239 nm, which is acceptable (see Figure 5.9 for an
evolution of the non-convexity region as σ varies).
Now consider the case Z+ = +3, Z− = −1 and σ = 0.17 nm. For these values of the

parameters, the region of non-convexity covers an area so large that it is close to the
boundary of the domain of the free energy density, where its values and derivatives go
rapidly to in�nite. Moreover, the area detected as non-convex by a heuristic factorization
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Figure 5.8.: The non-convexity region for model parameters Z+ = +2, Z− = −1 and σ = 0.2 nm.

of the convex hull is extremely di�erent from the real one. For these reasons approaches
based on uniform dual grids or adapted dual grids fail (see Figure 5.10) and approaches
based on larger dual grids built progressively are the only way to capture the geometry
of the region of non-convexity (see Figure 5.11).
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Figure 5.9.: The non-convexity region for model parameters Z+ = +3 and Z− = −2; from top
to bottom and from left to right, the value of σ is respectively 0.5 nm, 0.48 nm, 0.3 nm, 0.3 nm
(enlargement of the region close to the origin), 0.225 nm, 0.224 nm, 0.2235 nm, 0.221 nm, 0.2 nm
and 0.2 nm (enlargement of the region close to the origin).
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dual grid is used; in color the region detected by the euristic �agging.
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Figure 5.11.: The non-convexity convexity region for model parameters Z+ = +3, Z− = −1 and
σ = 0.17. A progressive construction of the result is made, respectively in 5 (left) and 500 steps
(right).
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6. Phase separation in electrolytes

In this chapter the model presented in Chapter 1 is extended to a two-species electrolyte
con�ned in a negatively charged medium ([Ern et al.(2012)Ern, Joubaud, and Lelièvre]);
the equations for such a model involve the convex hull of the bulk free-energy density,
which we have computed in Chapter 5. The equations are then solved with a numerical
procedure based on a �nite elements discretization and on the Newton-Raphson method
([Joubaud(2012)]).

6.1. The general model

We consider a two-species electrolyte for which the interaction with the charged walls
is no more neglegible. For simplicity we assume a periodic setting consisting in the
repetition of an elementary cell [0, L∗]

n, with n = 2, 3. Inside the elementary cell there
are inclusions ΩS whose boundary ∂ΩS is negatively charged with surface density ΣS ;
the electrolyte is contained in the remaining region Ω := [0, L∗]

n \ ΩS . The resulting
di�erential equations are

−4ψ =
e

ε

∑
i=±

Zici in Ω, (6.1)

µ+(ψ, c) and µ−(ψ, c) are constant in Ω.

With respect to the bulk electrolyte case studied in Chapter 1, we have that ψ is not
constant and thus the Poisson equation (6.1) is no longer satis�ed trivially.
We have the following boundary conditions

ψ is periodic on ∂Ω \ ∂ΩS ,

∇ψ · n = −1

ε
ΣS on ∂ΩS , (6.2)

where n is the outward-pointing normal versor to ∂ΩS ; we also �x the mean ionic con-
centration, i.e. require that

〈ci〉Ω = c0
i , i = ±,

where c0
+ and c0

− are given positive real numbers and where 〈f〉Ω := 1
|Ω|
´

Ω f for every

f ∈ L1(Ω). We must take c0
± such that they satisfy the global electro-neutrality condition∑

i=±
Zic

0
i =

1

|Ω|

ˆ
∂ΩS

1

e
ΣS ; (6.3)
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this is a necessary and su�cient condition for the solvability of the Poisson equation (6.1)
together with the boundary conditions. Finally we require that

〈ψ〉Ω = 0,

which is always possible because ψ is determined up to an addictive constant.
In the non-dimensional formulation we take the quantity ΣS∗ := kBTε

eL∗
as the reference

value for the surface charge density; we then have that equations (6.1), (6.2) and (6.3)
become

−λ4ψ =
∑
i=±

Zici in Ω,

∇ψ · n = −ΣS on ∂ΩS ,∑
i=±

Zic
0
i =

λ

|Ω|

ˆ
∂ΩS

ΣS .

6.2. The free-energy functional

We de�ne the free-energy functional F as

F(ψ, c) := S(c) + B(c, ψ)− U(ψ), (6.4)

where

S(c) :=

ˆ
Ω
f(c)

B(ψ, c) :=
∑
i=±

ˆ
Ω
Ziciψ

U(ψ) :=
λ

2

ˆ
Ω
|∇ψ|2 + λ

ˆ
∂ΩS

ΣSψ.

We also de�ne the correct functional spaces to which the electrostatic potential ψ and
the concentration c must belong. We de�ne

H := {ψ ∈ H1
per(Ω) | 〈ψ〉Ω = 0}

K := {c ∈
[
L2

per(Ω)
]2 | c ≥ 0 a.e. in Ω and 〈c〉Ω = c0},

where H1
per(Ω) and L2

per(Ω) are, respectively, the closure of C∞per(Ω), the space of periodic

and in�nitely di�erentiable functions in Ω, for the norms ‖·‖H1(Ω) and ‖·‖L2(Ω). In
[Ern et al.(2012)Ern, Joubaud, and Lelièvre] it is shown that if F admits a minimum
point on the set H × K, then that point is a solution of the model equations; it is also
proved that, under some hypotheses which assure the convexity of f , there is one and only
one minimum point of F . As we mentioned in Section 1.5, these su�cient conditions for
the convexity of f consist in a lower limit on the ion diameter σ; this limit value depends
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on the valences Z±, on the temperature T and on the relative permittivity εr (the values
for some of this lower limits were given in Table 1.1).
When f is no longer convex, phase separation appears in the electrolyte. In order to

solve the problem numerically, since we do not know where the sharp interface between
the phases lies, we add the following regularization term to the free energy

εreg

2

ˆ
Ω

(
|∇c+|2 + |∇c−|2

)
;

this term penalizes high values of the gradient of c, making thus the phase transition the
smoother the greater the parameter εreg is. Thanks to the regularization, we can solve
numerically our problem for each εreg > 0 without knowing a priori where the sharp
interface lies and then consider the limit behaviour for εreg → 0 as the correct solution
for the phase separation problem; this procedure is common in phase-�eld theory and is
known as the sharp interface limit.

6.3. Finite elements discretization

In order to resolve the minimization problem we follow the same approach of [Joubaud(2012)],
which is based on a �nite elements discretization and on a Newton-Raphson method. We
will brie�y highlight the main points of the procedure; for a more exhaustive presentation
we refer to [Joubaud(2012)].
In order to account for the constraints contained in the de�nitions of H and K, we will

employ Lagrange multipliers; the actual minimization will involve the functional

F̃(ψ, c, λ, λ+, λ−) : = F(ψ) + εreg

ˆ
Ω

(
|∇c+|2 + |∇c−|2

)
+

λ 〈ψ〉Ω + λ+

(
〈c+〉Ω − c

0
+

)
+ λ−

(
〈c−〉Ω − c

0
−
)

on the setH1
per(Ω)×{c ∈

[
L2

per(Ω)
]2 | c ≥ 0 a.e. in Ω}×R3. Now we write the derivatives

of F̃ with respect to each variable

∂F̃
∂ψ

: φ 7→
∑
i=±

ˆ
Ω
Ziciφ− λ

ˆ
Ω
∇ψ · ∇φ− λ

ˆ
∂ΩS

ΣSψ + λ 〈φ〉Ω ,

∂F̃
∂c+

: φ+ 7→
ˆ

Ω

∂f

∂c+
(c)φ+ +

ˆ
Ω
Z+ψφ+ + εreg

ˆ
Ω
∇c+ · ∇φ+ + λ+ 〈φ+〉Ω ,

∂F̃
∂c−

: φ− 7→
ˆ

Ω

∂f

∂c−
(c)φ− +

ˆ
Ω
Z−ψφ− + εreg

ˆ
Ω
∇c− · ∇φ− + λ− 〈φ−〉Ω ,

∂F̃
∂λ

= 〈ψ〉Ω ,
∂F̃
∂λ+

= 〈c+〉Ω − c
0
+,

∂F̃
∂λ−

= 〈c−〉Ω − c
0
−.
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We must require that all the derivatives are zero, obtaining

∑
i=±
´

Ω Ziciφ− λ
´

Ω∇ψ · ∇φ− λ
´
∂ΩS

ΣSψ + λ 〈φ〉Ω = 0´
Ω

∂f
∂c+

(c)φ+ +
´

Ω Z+ψφ+ + εreg

´
Ω∇c+ · ∇φ+ + λ+ 〈φ+〉Ω = 0´

Ω
∂f
∂c−

(c)φ− +
´

Ω Z−ψφ− + εreg

´
Ω∇c− · ∇φ− + λ− 〈φ−〉Ω = 0

〈ψ〉Ω = 0
〈c+〉Ω = c0

+

〈c−〉Ω = c0
−

for all φ ∈ H1
per and all φ+, φ− ∈ L2

per. In order to discretize these equations, we restrict
them to a periodic �nite elements space Vh of dimension N , for example the space of
periodic conforming piecewise P1 functions; we can thus reduce the number of equations
to 3N + 3, by taking φ only among the basis vectors of Vh, and change the domain of the
problem from a functional one to R3N+3, by decomposing ψ, c+ and c− with respect to
the basis of Vh. Unfortunately, the derivatives of f are not linear and thus the resulting
system of equations is not linear; we have to use an iterative method for its solution, such
as the Newton-Raphson method. Since the second derivatives of f are discontinuous, it
may happen that after an iteration the values of the concentrations become negative or
large enough to make f(c) = +∞; in order to avoid this problem, we clip the function
c at each step, forcing its values to lie in the correct domain of f . The sharp interface
limit process is implemented by gradually decreasing the value of εreg, each time starting
the iterative method from the last computed solution; moreover, the grid is re�ned in
the area where the last solution for c had values inside the region of non-convexity of f ,
in order to be able to capture the phase transition, which is steeper for small values of
εreg. When the regularization parameter is su�ciently small and the interface su�ciently
sharp, it is also possible to set εreg = 0 and solve the problem without regularization.

6.4. Test cases

As a test case we will consider an electrolyte in a �at nanochannel, i.e. an electrolyte
con�ned between two planes negatively charged whose distance is L∗ = 1 nm; we will
suppose that the solvent is water at a temperature of T = 300 K (at this temperature we
have εr = 78.3). Because of the symmetry of model, ψ and c depend only on the distance
from the nearest wall; thus we can consider the one-dimensional case in which Ω is a
segment whose length is half the distance between the planes and only one extreme of Ω
is charged. In [Joubaud(2012)] solutions are computed for the one-species and symmetric
two-species cases: in the former the exact one-dimensional hull for f is used, while in
the latter an approximation for the two-dimensional hull of f is obtained by reducing
the problem to a one-dimensional one by making use of the symmetry of f . First we will
check our code in the one-species case, then we will try to validate the approximate result
in the symmetric two-species case and �nally we will study an asymmetric two-species
case not considered in [Joubaud(2012)].
We begin with the case in which only one ionic species is present; let Z+ = +3,

σ = 0.45 nm and ΣS = 0.1 C/m2. The results for decreasing values of εreg down to 0
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Figure 6.1.: Values of the concentration c+ for a trivalent counterion of diameter 0.45 nm; the
right plot is an enlargement of the interface between the two phases. The values of εreg used are
10−i with i = −5, . . . ,−10 and 0 (blue line).

are shown in Figure 6.1 (x = 0.5 nm corresponds to the center of the nanochannel, while
x = 1 nm corresponds to any one of the walls); as expected, they agree with the results
found in [Joubaud(2012)].
Unlike the one-species case, where the mean concentration c0 is completely determined

by the electro-neutrality condition, in the two-species case we have to specify in what
proportion the two ions are present; we will codify this information in a parameter
csalt ≥ 0, which represents the concentration of added salt with respect to the situation
in which there is only one ion species. Since there were no negatively charged ions before
the addition of salt and the salt itself is electrically neutral, we must have that

Z+csalt + Z−c
0
− = 0,

and thus

c0
− = −Z+

Z−
csalt;

by substituting in the electro-neutrality relation, we obtain the other mean concentration
as

c0
+ = csalt +

λ

Z+ |Ω|

ˆ
∂ΩS

ΣS .

Now we consider a symmetric mixture with |Z+| = |Z−| = 2, σ = 0.22 nm, ΣS =
0.2 C/m2 and csalt = 0.1 mol/l. The results for εreg = 10−17 are shown in Figure 6.2; they
are in excellent accordance with the approximate solution obtained in [Joubaud(2012)].
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Figure 6.2.: Values of the concentrations c+ and c− for a symmetric mixture with Z± = ±2 and
an ion diameter of 0.22 nm; the regularization parameter has value εreg = 10−17.
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Figure 6.3.: Values of the concentrations c+ and c− for an asymmetric mixture with Z+ = +3,
Z− = −1 and an ion diameter of 0.45 nm; the regularization parameter has value εreg = 0.

As a �nal example, we take an asymmetric electrolyte; this case was not considered
in [Joubaud(2012)], because it requires the computation of the two-dimensional convex
hull. The situation considered is described by Z+ = +3, Z− = −1, σ = 0.45 nm,
ΣS = 0.1 C/m2 and csalt = 0.1 mol/l; the solution, shown in Figure 6.3, is obtained for
εreg = 0. The asymmetric case is increasingly challenging from the numerical point of
view as we decrease the value of σ and the height of the phase transition grows; obtaining
a solution for σ ≤ 0.4 nm could be the focus of further studies.

Conclusions

In the thesis we have studied an algorithm for the approximation of convex hull of a
multi-dimensional function which is based on the discrete Legendre-Fenchel transform.
Our interest was motivated by the applications to the model of a two-species electrolyte
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in a porous and electrically charged medium. After recalling the basic results for the
Legendre-Fenchel transform and its discrete version, we have analyzed the properties of
two successive applications of such transforms. We have also treated some problems,
which are often neglected in the literature, such as the relevance of the dual grid, and
proved some results. After the description of the standard algorithm for the convex hull
approximation found in the literature, we have introduced some improvements and we
have tested the new versions against the standard one. By applying it to the electrolyte
bulk free-energy density in two dimensions, we have obtained the shape of the region
of non-convexity; this region is thermodynamically unstable and divides the state space
in di�erent phases. Finally, by these results we have approximated the solution of the
equations for two-species electrolytes, showing clearly that phase separation arises when
the free-energy is not convex. However, we were not able to obtain the solution when
the mixture is asymmetric and the ion diameter is small. Further improvements to the
numerical solver are needed in order to treat successfully any kind of electrolyte.
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A. Convex Functions

The brief theoretical introduction about convex functions and their conjugates is adapted
from [Rockafellar(1970)]; another introductory book on convex analysis is [Bauschke and Combettes(2011)].

A.1. De�nition

De�nition A.1. Let f : Rn → R := R ∪ {−∞,+∞}. The set

epi f := {(x, y) ∈ Rn × R | y ≥ f(x)}

is called epigraph of f .

De�nition A.2. A function f : Rn → R is said to be convex if epi f is convex as a
subset of Rn+1.

It is possible to de�ne convexity for a �nite function de�ned on a subset S of Rn, but
with the de�nition given above it is no longer necessary to keep track of the function
domains. Moreover, a function g : S → R can be extended to Rn by taking

g̃(x) =

{
g(x) if x ∈ S
+∞ if x /∈ S

;

then epi g = epi g̃ as subsets of Rn+1 and g is convex as a function on S if and only if g̃
is convex according to De�nition A.2.

Remark A.3. In general conv epi f 6= epi conv f ; consider for example a gaussian function.

De�nition A.4. Let f be a convex function. The projection of epi f on Rn is called the
e�ective domain of f and is denoted by dom f .

It is immediately observed that

dom f = {x ∈ Rn | f(x) < +∞}

and that dom f is a convex subset of Rn, since it is the image of epi f under a linear
transformation, i.e. the projection on Rn.

De�nition A.5. A convex function f is said to be proper if f(x) < +∞ for at least one
x ∈ Rn and f(x) > −∞ for all x ∈ Rn, otherwise it is called improper.

Thus a proper function is �nite and convex on the not-empty convex set dom f , whereas
it is +∞ elsewhere.
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De�nition A.6. The convex hull of a function f : Rn → R, indicated by conv f , is the
greatest convex function majorized by f or, equivalently, the function whose epigraph is
the convex hull of epi f .

Proposition A.7. Let f : Rn → R convex such that f(x0) = −∞ for a certain x0 ∈ Rn.
Then f = −∞ on int dom f .

Proof. Let x1 ∈ int dom f . Because x1 is an internal point of dom f , the point x1+ε(x1−
x0) lies in dom f for ε > 0 small enough; we will denote such a point by the symbol x2.
Let xλ := (1− λ)x0 + λx2; for a certain λ1 ∈]0, 1[ we have that xλ1 = x1. Because epi f
is convex, we must have that f(x1) = f(xλ1) ≤ (1− λ1)f(x0) + λ1f(x2) = −∞ and thus
f(x1) = −∞.

A.2. Semicontinuous hulls

De�nition A.8. Given f : Rn → R, we indicate with the symbol f the lower semi-

continuous hull of f , i.e. the greatest lower semicontinuous function majorized by f ;
similarly, we denote by f the upper semicontinuous hull of f , i.e. the smallest upper
semicontinuous function minorized by f .

The semicontinuous hulls have an important characterization, presented in the follow-
ing Theorem.

Theorem A.9. Let f : Rn → R and let x0 ∈ Rn. We then have

f(x0) = sup
V ∈U(x0)

inf
x∈V

f(x),

where U(x0) is the collection of all neighbourhoods of x0. Moreover, �xed U ∈ U(x0), we
have that

f(x0) = sup
V ∈U(x0)|V⊆U

inf
x∈V

f(x).

The same characterization holds for the upper semicontinuous hull.

Thanks to the characterization presented, it is easy to highlight the local nature of the
semicontinuous hull operation.

Lemma A.10. Let f, g : Rn → R be such that f ≥ g on a neighbourhood U of x0. Then

f(x0) ≥ g(x0), f(x0) ≥ g(x0) and
(
f
)
(x0) ≥ (g)(x0).

Proof. By Theorem A.9 we have that

f(x0) = sup
V ∈U(x0)|V⊆U

inf
x∈V

f(x)

≥ sup
V ∈U(x0)|V⊆U

inf
x∈V

g(x)

= g(x0);
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the same proof can be used for the inequality involving the upper semicontinuous hull.
In order to prove the third inequality, observe that by de�nition of neighbourhood we
can �nd an open set V such that x0 ∈ V ⊂ U ; we obviously have that f ≥ g on V . The
open set V is a neighbourhood of any point x ∈ V and thus by the second part of the
lemma we have f ≥ g on V ; by the �rst part we then have

(
f
)
(x0) ≥ (g)(x0).

Corollary A.11. Let f, g : Rn → R be such that f = g on a neighbourhood U of x0.

Then f(x0) = g(x0), f(x0) = g(x0) and
(
f
)
(x0) = (g)(x0).

A.3. Closure

The notion of lower semicontinuity in the case of a convex function is often called closed-
ness; this is due to the following result.

Proposition A.12. Let f : Rn → R, not necessarily convex. Then the following condi-

tions are equivalent:

(i) epi f is closed as a subset of Rn+1;

(ii) f is lower semicontinuous in Rn.

Proof. Suppose (i) true. Consider two sequences xn ∈ Rn e yn ∈ R such that limxn = x,
lim yn = y and yn ≥ f(xn) for all n; this means (xn, yn) is a sequence of points of
epi f tending in Rn+1 to (x, y). Because f is lower semicontinuous f(x) ≤ lim f(xn) ≤
lim yn = y and thus (x, y) ∈ epi f .
Suppose (ii) true. In order to demonstrate (i) is su�cient to show that the set Lα :=
{x ∈ Rn | f(x) ≤ α} is closed for all α ∈ R. Let xn ∈ Lα a sequence tending to x ∈ Rn
and consider the sequence (xn, α). This sequence is in epi f , its limit is still in epi f for
closedness and thus x ∈ Lα.

Fact A.13. Let f : Rn → R. Then epi f = cl epi f .

We can now de�ne the notion of closedness of convex functions.

De�nition A.14. Let f be a convex function. If f(x) > −∞ for all x ∈ Rn, the
closure of f is de�ned to be the lower semicontinuous hull of f and is indicated by cl f .
Otherwise, cl f is de�ned as the constant function −∞.

De�nition A.15. A convex function f is said to be closed if cl f = f .

For proper functions (and the constant +∞), closedness is equivalent to lower semi-
continuity (or closedness of the epigraph); moreover, it can be proved that if f is proper
then it can di�er from cl f only on the boundary of dom f (on open subsets of dom f the
convex function f is even continuous). The exception made in the de�nition for functions
assuming the value −∞ is needed to make Theorem B.12 valid even when the function is
improper and limits the possibile improper closed functions to the constants +∞ e −∞.
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Example A.16. The following function is convex and proper, but not closed.

f(x) =


+∞ if x < 0

1 if x = 0

0 if x > 0

Remark A.17. If f is a closed convex function, we do not necessarily have that dom f is
a closed set. Consider for example

f(x) =

{
1

1−|x| if x ∈]− 1, 1[

+∞ elsewhere
;

we have that f is a closed convex function, but that dom f =]− 1, 1[.

A.4. Subdi�erentiability

De�nition A.18. Given f : Rn → R convex and x ∈ Rn, a vector ξ ∈ Rn is called
a subgradient of f at x if the a�ne function z 7→ f(x) + 〈ξ, z − x〉 is majorized by f .
The collection of all subgradients of f at x is called the subdi�erential of f at x and is
denoted by ∂f(x).

The subdi�erential is a local notion, as shown in the next result.

Lemma A.19. Let f, g : Rn → R be convex functions such that f = g on a neighbourhood

U of x0 ∈ Rn. Then ∂f(x0) = ∂g(x0).

Proof. By symmetry of the enunciate, it su�ces to prove that if ξ ∈ ∂f(x0) then ξ ∈
∂g(x0). We will suppose ξ /∈ ∂g(x0) and show that this takes us to a contradiction. If
ξ /∈ ∂g(x0) then there exists x̃ ∈ Rn such that

g(x0) + 〈ξ, x̃− x0〉 > g(x̃). (A.1)

By convexity of g the segment with extremes (x0, g(x0)) and (x̃, g(x̃)) lies in epi g, i.e.
for all x ∈ Rn on the segment with extremes x̃ and x0 we have by (A.1) that

g(x) ≤ g(x0) +
g(x̃)− g(x0)

‖x̃− x0‖
‖x− x0‖

< f(x0) +
〈ξ, x̃− x0〉
‖x̃− x0‖

‖x− x0‖

= f(x0) + 〈ξ, x− x0〉 ,

where ‖x‖ = 〈x, x〉 and the last equality holds because x−x0 and x̃−x0 lies on the same
line through the origin. Because U is a neighbourhood of x0, we can �nd x ∈ U which
lies on the segment with extremes x̃ and x0 ; for such a point we have

f(x) = g(x) < f(x0) + 〈ξ, x− x0〉 ,

in contradiction with the hypothesis ξ ∈ ∂f(x0).

76



Proposition A.20. Let f : Rn → R not necessarily convex and let x, ξ ∈ Rn be such

that f(x) + 〈ξ, z − x〉 ≤ f(z) for every z ∈ Rn. Then ξ ∈ ∂ conv f(x).

Proof. The function z 7→ f(x) + 〈ξ, z − x〉 is a�ne and thus convex; by de�nition of
convex hull we then have that f(x) + 〈ξ, z − x〉 ≤ conv f(z) for every z ∈ Rn. Because
conv f(x) ≤ f(x), we conclude that conv f(x) + 〈ξ, z − x〉 ≤ conv f(z) for every z ∈ Rn,
i.e. ξ ∈ ∂ conv f(x).

Proposition A.21. Let f : Rn → R a proper convex function and let x ∈ Rn. We have

that

(i) ∂f(x) is a closed convex set;

(ii) if x /∈ dom f then ∂f(x) = ∅;

(iii) if x ∈ int dom f then ∂f(x) 6= ∅.

Proof. Let ξ1, ξ2 ∈ ∂f(x) and 0 ≤ λ ≤ 1; we will show that λξ1 + (1− λ)ξ2 ∈ ∂f(x). We
have indeed for any z ∈ Rn that

f(x) + 〈λξ1 + (1− λ)ξ2, z − x〉 = λ [f(x) + 〈ξ1, z − x〉] +

(1− λ) [f(x) + 〈ξ2, z − x〉]
≤ λf(z) + (1− λ)f(z) = f(z).

Let now ξn a sequence in ∂f(x) such that ξn → ξ̄; we will show that ξ̄ ∈ ∂f(x). For any
z ∈ Rn and for every n it holds f(x) + 〈ξn, z − x〉 ≤ f(z); by limiting, we immediately
obtain that f(x) +

〈
ξ̄, z − x

〉
≤ f(z) for every z.

Suppose x /∈ dom f and let x0 ∈ dom f , which exists because f is proper. By hypothesis
there exists ξ ∈ Rn such that ξ ∈ ∂f(x); we then have

+∞ = f(x) + 〈ξ, x0 − x〉 ≤ f(x0) < +∞,

which is contradictory.
Suppose x ∈ int dom f . We have that epi f is a convex set and (x, f(x)) ∈ ∂ epi f ; by

the known properties of convex sets, there is an hyperplane through (x, f(x)) such that
epi f lies entirely in one of the semispaces in which Rn+1 results divided. This hyperplane
cannot be of the form {(z, y) ∈ Rn+1 | 〈ξ, z − x〉 = 0} because x is an internal point of
dom f ; then it has to be the graph of an a�ne function through (x, f(x)) majorized by
f , and thus ∂f(x) 6= ∅.

Remark A.22. In the case x ∈ ∂ dom f it may be possible that ∂f(x) = ∅. Consider for
example f(x) = −

√
x for x ≥ 0 and +∞ elsewhere; we have ∂f(0) = ∅.

Theorem A.23. Let f : Rn → R a proper convex function and let x0 ∈ Rn such that

∂f(x0) 6= ∅. Then cl f(x0) = f(x0).
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Proof. Because ∂f(x0) 6= ∅, there is an a�ne function h such that h(x0) = f(x0) and
h ≤ f . Because f is proper, we have cl f = f and thus, being h a lower semicontinuous
function, we have h ≤ cl f ≤ f ; the thesis follows from evaluating the last inequality in
x0.

Corollary A.24. Let f : Rn → R a proper convex function. Then cl f = f on int dom f .

Proof. By joint application of Proposition A.21 and Theorem A.23.

Theorem A.25. Let f : Rn → R a proper convex function. Then f is continuous on

any open convex set contained in dom f .

A.5. Subdi�erentiability: the one-dimensional case

Now we study in detail and give the proofs for the one dimensional case.

De�nition A.26. Let f : R→ R. For every x1, x2 ∈ R we de�ne

Rf (x1, x2) :=
f(x2)− f(x1)

x2 − x1
.

Theorem A.27. Let f : R→ R convex and x1, x2, x3 ∈ dom f such that x1 < x2 < x3.

Then

Rf (x1, x2) ≤ Rf (x1, x3) ≤ Rf (x2, x3).

Proof. Because f is convex, the points of the segment joining (x1, f(x1)) and (x3, f(x3))
are in epi f ; the slope of the line containing this segment is Rf (x1, x3). Thus, for all
x1 ≤ x ≤ x3, we have

f(x1) +Rf (x1, x3)(x− x1) = f(x3) +Rf (x1, x3)(x− x3) ≥ f(x);

in particular

f(x1) +Rf (x1, x3)(x2 − x1) = f(x3) +Rf (x1, x3)(x2 − x3) ≥ f(x2),

from which the thesis immediately follows.

Corollary A.28. Let f : R→ R convex. Let x1, x2, x3, x4 ∈ dom f such that x1 < x2 <
x3 < x4. Then Rf (x1, x2) ≤ Rf (x3, x4).

Corollary A.29. Let f : R→ R convex. Fix x1 ∈ dom f ; then Rf (x1, x2) is a increasing
function in x2 on R.

Proof. When x2 ∈ dom f it is su�cient to apply Theorem A.27 by observing that
Rf (x, x′) = Rf (x′, x) for all x, x′ ∈ dom f ; otherwise, R(x1x2) is +∞ when x2 > x1

and −∞ when x2 < x1, and thus globally increasing.
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Theorem A.30. Let f : R → R convex and let x0 ∈ int dom f , where int dom f is the

interior of dom f ; then the left and right derivatives of f in x0, denoted by f ′−(x0) and

f ′+(x0), exist, are �nite and satisfy f ′−(x0) ≤ f ′+(x0).

Proof. By de�nition

f ′+(x0) = lim
x→x+

0

f(x)− f(x0)

x− x0
= lim

x→x+
0

Rf (x0, x).

This limits exists because the Rf (x0, ·) is monotone by Corollary A.29; it is �nite because
for all x > x0 we have Rf (x0, x) ≤ Rf (x0, x0 − ε) < +∞ where ε > 0 is such that
x0 − ε ∈ dom f (such a ε exists because x0 is an internal point of dom f). The same
reasoning can be applied to f ′−(x0), while the inequality f ′−(x0) ≤ f ′+(x0) follows by
limiting the inequality Rf (x0, x0 − h) ≤ Rf (x0, x0 + h) for h→ 0+.

Remark A.31. Because dom f is a convex set of R, it is an interval or a half-line; for
x0 ∈ ∂ dom f only one of f ′−(x0) and f ′+(x0) exists, by the same reasoning of Theorem
A.30, but it can be also +∞ or −∞.

Corollary A.32. Let f : R→ R convex. Then f is continuous on int dom f .

Remark A.33. The �niteness of f ′−(x0) and f ′+(x0) is necessary; for x0 ∈ ∂ dom f , if
f ′−(x0) (f ′+(x0) ) is +∞ (−∞), then f is not necessarily left (right) continuous.

Corollary A.34. Let f : R → R convex and let x1, x2 ∈ int dom f such that x1 < x2.

Then

f ′−(x1) ≤ f ′+(x1) ≤ f ′−(x2) ≤ f ′+(x2).

Proof. By Theorem A.30, it su�ces to prove f ′+(x1) ≤ f ′−(x2), i.e.

f ′+(x1) = lim
h→0+

Rf (x1, x1 + h) ≤ lim
h→0+

Rf (x2, x2 − h) = f ′−(x2);

this is true by limiting the inequality obtained by Corollary A.28 (which is applicable
because for h su�ciently small we have x1 + h < x2 − h).

Proposition A.35. Let f : R→ R convex and x0 ∈ dom f . Then

(i) if f ′−(x0) is �nite, then f ′−(x0) = min ∂f(x0);

(ii) if f ′+(x0) is �nite, then f ′+(x0) = max ∂f(x0);

(iii) if x0 ∈ int dom f , then ∂f(x0) = [f ′−(x0), f ′+(x0)];

(iv) if x0 is the left extreme of dom f , then ∂f(x0) =] −∞, f ′+(x0)] if f ′+(x0) is �nite

and it is ∅ otherwise;

(v) if x0 is the right extreme of dom f , then ∂f(x0) = [f ′−(x0),+∞[ if f ′−(x0) is �nite

and it is ∅ otherwise.
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Proof. We �rst prove that f ′−(x0) ∈ ∂f(x0), i.e.

f(x0) + f ′−(x0)(x− x0) ≤ f(x) ∀x ∈ R; (A.2)

this means proving (the case x = x0 is trivial){
f ′−(x0) ≤ R(x0, x) ∀x > x0

f ′−(x0) ≥ R(x, x0) ∀x < x0

,

which follows immediately from Corollary A.29. If x0 ∈ ∂ dom f , equation (A.2) is trivial
on one of the half-lines originating from x0, while on the other Corollary A.29 is again
applicable.
We now prove that for every ξ < f ′−(x0) we have ξ /∈ ∂f(x0). As seen before, we have

that R(x0, x)↗ f ′−(x0) for x→ x−0 ; by de�nition of limit we can �nd x̃ < x0 such that
ξ < R(x0, x̃) ≤ f ′−(x0). Thus

f(x̃) = f(x0) +R(x0, x̃)(x̃− x0) < f(x0) + ξ(x̃− x0),

which means ξ /∈ ∂f(x0).
The same reasoning can also be applied to (ii).
In order to demonstrate (iii), observe that if x0 ∈ int dom f then, thanks to Theorem

A.30, we can conclude by (i) and (ii) that f ′−(x0) = min ∂f(x0) and f ′+(x0) = max ∂f(x0).
We can now conclude thanks to Proposition (A.21).
In order to prove (iv), suppose initially that if f ′+(x0) exists �nite. Then (ii) is applica-

ble and all that is left to prove is that for all ξ ≤ f ′+(x0) we have f(x0)+ξ(x−x0) ≤ f(x).
This is true because for x > x0 we have ξ(x − x0) ≤ f ′+(x0)(x − x0), while for x < x0

we have f(x) = +∞. If f ′+(x0) is not �nite, it is −∞ and by a reasoning similar to the
one used in the proof of (i) we can show that ξ /∈ ∂f(x0) ∀ξ ∈ R. The proof of (v) is
similar.

A.6. A characterization of the convex hull

Lemma A.36. Let f : Rn → R. Then

conv f(x) = inf
{(αi,xi)}i∈C(x)

∑
i∈I

αif(xi),

where C(x) is the collection of the �nite sets {(αi, xi)}i∈I such that x is convex combi-

nation of the points xi weighted by coe�cients αi ∈ [0, 1]. In the sum
∑

i∈I αif(xi) the

conventions +∞−∞ = +∞ and 0×±∞ = 0 are used.

Proof. Fixed x ∈ Rn, for every set I with the required properties we must have conv f(x) ≤∑
i∈I αif(xi) by convexity of the epigraph and thanks to the the special conventions used

in the sum; thus we have conv f(x) ≤ inf
∑

i∈I αif(xi) for every x. In order to prove the
other inequality, it su�ces to show that the right side, which we will denote by g(x), is
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convex and that g ≤ f , because by de�nition conv f is the largest of the convex functions
majorized by f . The fact that g ≤ f is trivial because among the sets on which the in�mus
is taken there is {(1, x)}; in order to prove convexity, let then (x1, y1), (x2, y2) ∈ epi g.
Being y1 ≥ g(x1), for any ε > 0 by the properties of the in�mum we can �nd I1 such that∑

i∈I1 αif(xi) < y1 + ε; similarly we can �nd I2 such that
∑

i∈I2 αif(xi) < y2 + ε. By
weighting the (xi)i∈I1 with weights (λαi)i∈I1 and the (xi)i∈I2 with weights ((1−λ)αi)i∈I2
we obtain a convex combination of λx1 + (1− λ)x2; we then have

g(λx1 + (1− λ)x2) ≤ λ
∑
i∈I1

αif(xi) + (1− λ)
∑
i∈I2

αif(xi)

< λy1 + (1− λ)y2 + ε.

Because ε > 0 is arbitrary, we then have λ(x1, y1) + (1 − λ)(x2, y2) ∈ epi g, i.e. g is
convex.

Corollary A.37. Let f : Rn → R. Then dom conv f = conv{x ∈ Rn | f(x) < +∞}.

Corollary A.38. Let f : Rn → R. Then f is convex if and only if for any x1, x2 ∈ Rn
and α ∈ [0, 1] we have that

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),

where the conventions established in Lemma A.36 are again used.

Proof. Necessity follows immediately from Lemma A.36. We will now prove su�ciency.
Fix x ∈ Rn and {(αi, xi)}i=1,...,N such that x is convex combination of the points xi
weighted by coe�cients αi ∈ [0, 1]. We will now prove that f(x) ≤

∑N
i=1 αif(xi); by

Lemma A.36 we can then conclude that f(x) ≤ conv f(x) and thus f(x) = conv f(x).
We will proceed by induction on N . The case N = 1 is trivial; suppose then that the
property holds for a certain N and consider the case N + 1. We can decompose x as
the convex combination with coe�cient α1 of x1 and x̃2 := 1

1−α1

∑N
i=2 αixi; we can

then apply to x̃2 the induction hypothesis, obtaining that f(x̃2) ≤ 1
1−α1

∑N
i=2 αif(xi).

Applying the hypothesis we can then conclude by observing that

f(x) = f(α1x1 + (1− α1)x̃2)

≤ α1f(x1) + (1− α1)f(x̃2)

≤
N∑
i=1

αif(xi).

Corollary A.39. Let f, g : Rn → R convex. Then f + g is convex.

Proof. Fix x1, x2 ∈ Rn , α ∈ [0, 1] and denote by the symbol x the convex combination
αx1 + (1−α)x2. By applying Corollary A.38 to the convex functions f and g we obtain

81



that

(f + g)(x) = f(x) + g(x)

≤ αf(x1) + (1− α)f(x2) + αg(x1) + (1− α)g(x2)

≤ α(f + g)(x1) + (1− α)(f + g)(x2);

we can then conclude by applying again Corollary A.38.

Corollary A.40. Let f, g : Rn → R. Then conv f + conv g ≤ conv(f + g).

Proof. Because conv f + conv g ≤ f + g, after observing that by Corollary A.39 conv f +
conv g is convex, we can immediately conclude by de�nition of convex hull.

Remark A.41. Equality does not hold in general. Consider for example the functions

f(x) =

{
0 if x ∈ [0, 1]

1 elsewhere

and

g(x) =

{
1 if x ∈ [0, 1]

0 elsewhere
.

We have that conv f = conv g ≡ 0, while conv(f + g) = f + g ≡ 1.

Theorem A.42 (Carathéodory). Let Ω ⊆ Rn and x ∈ conv Ω. Then there is m ≤ n+ 1
such that x can be expressed as a convex combination of m elements of Ω.

Proof. Because x ∈ conv Ω there are x1, . . . , xm ∈ Ω and α1, . . . , αm ∈ [0, 1] such that∑m
i=1 αixi = x. We can suppose that m is the minimal number of points for which such

a representation is possible; we thus also have that αi > 0 for all i. We will now prove
that m ≤ n + 1. If it were m > n + 1, the vectors {xi − x1}i=2,...,m would be linearly
dependent, i.e. there would be some scalars {λi}i=2,...,m such that

∑m
i=2 λi(xi − x1) = 0

and λi > 0 for at least one i (at least one coe�cient is not zero by linear dependence;
if it is negative, we can change the sign of all λi obtaing a strictly positive coe�cient).
De�ning λ1 = −

∑m
i=2 λi, we then have

m∑
i=1

λixi = 0 and
m∑
i=1

λi = 0.

Then for every β ∈ R we have

x =
m∑
i=1

αixi + β
m∑
i=1

λixi

=

m∑
i=1

(αi + βλi)xi;
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observe that we have
∑m

i=1(αi + βλi) = 1. We now want to choose a β ∈ R such that
αi + βλi ≥ 0 for every i; by taking β ≤ 0 the required property is true for every i such
that λi ≤ 0. In order to make it hold also for all i such that λi > 0 (as we have seen there
is at least one such i), we need also to satisfy β ≥ −αi

λi
for all such i; being αi

λi
≥ 0 this is

possible. We can in particular take β = −maxi:λi>0
αi
λi
; with this choice at least one of

the m coe�cients αi + βλi is zero. We have thus expressed x a convex combination of
less than m elements of Ω, in contradiction with the minimality of m.

Corollary A.43. Let f : Rn → R. Then

conv f(x) = inf
{(αi,xi)}i∈Cn+2(x)

n+2∑
i=1

αif(xi),

where Cn+2(x) is the collection of the sets {(αi, xi)}i∈{1,...,n+2} such that x is the convex

combination of the points xi weighted by coe�cients αi ∈ [0, 1]. In the sum
∑n+2

i=1 αif(xi)
the conventions +∞−∞ = +∞ and 0×±∞ = 0 are used.

Proof. By Lemma A.36, we have to prove that

inf
{(αi,xi)}i∈C(x)

∑
i∈I

αif(xi) = inf
{(αi,xi)}i∈Cn+2(x)

n+2∑
i=1

αif(xi).

The inequality≤ is easily proved because Cn+2(x) ⊂ C(x); to prove the other direction we
will show that for every element of C(x) there is an element of Cn+2(x) for which the value
of the sum is lower equal. Let {(αi, xi)}i∈I ∈ C(x). Consider the point (x, y) ∈ Rn+1,
where y =

∑
i∈I αif(xi); we have that (x, y) =

∑
i∈I αi(xi, f(xi)). By Theorem A.42

we can then �nd J ⊆ I such that |J | = n + 2 and (x, y) =
∑

i∈J αi(xi, f(xi)); then
{(αi, xi)}i∈J ∈ Cn+2(x) and the values of the two sums are equal.

A.7. Convex hulls of compact sets

Lemma A.44. Let Ω ⊂ Rn a bounded set. Then conv Ω is a bounded set.

Proof. Let x ∈ conv Ω; we can then write it as

x =
N∑
i=1

αixi,

where xi ∈ Ω and αi ∈ [0, 1] for every i ∈ {1, . . . N} and
∑N

i=1 αi = 1. Because Ω is
bounded, there exists R ∈ R such that ‖y‖ ≤ R for every y ∈ Ω; we thus have

‖x‖ ≤
N∑
i=1

αi ‖xi‖ ≤
N∑
i=1

αiR = R,

which, by generality of x, means that conv Ω is bounded.
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Example A.45. If Ω is closed, conv Ω is not in general closed. Take for example Ω ⊂ R2

as the epigraph of a gaussian function; we have that conv Ω is the open set {(x, y) ∈ R2 |
y > 0}.

Corollary A.46. If f : Rn → R is �nite on a bounded set Ω ⊆ Rn and +∞ elsewhere,

then dom conv f = conv Ω is a bounded set.

Proof. By Corollary A.37 we have that dom conv f = conv Ω; it is then su�cient to apply
Lemma A.44.

Lemma A.47. Let Ω ⊂ Rn a compact set. Then conv Ω is a compact set.

Proof. Consider a sequence of points x(N) ∈ conv Ω; by Theorem A.42 we can write them
as

x(N) =
n+1∑
i=1

α
(N)
i x

(N)
i ,

where α
(N)
i ∈ [0, 1] and x

(N)
i ∈ Ω for every N and every i = 1, . . . , n+ 1. We then have

that (α
(N)
1 , . . . , α

(N)
n+1, x

(N)
1 , . . . , x

(N)
n+1) ∈ [0, 1]n+1 × Ωn+1, which is a compact subset of

R2(n+1); there is thus a subsequence (α
(kN )
1 , . . . , α

(kN )
n+1 , x

(kN )
1 , . . . , x

(kN )
n+1 ) converging to a

certain (ᾱ1, . . . , ᾱn+1, x̄1, . . . , x̄n+1) ∈ [0, 1]n+1 × Ωn+1. By the properties of limits, we

have that
∑n+1

i=1 α
(kN )
i = 1 tends to

∑n+1
i=1 ᾱi; we thus have that the point x̄ :=

∑n+1
i=1 ᾱix̄i

is a convex combination of points of Ω. Again by the properties of limits, x(kN ) converges
then to x̄ ∈ conv Ω; thus every sequence in conv Ω admits a subsequence converging to
an element of Ω, i.e. conv Ω is compact.

Corollary A.48. If f : Rn → R is �nite on a compact set Ω ⊂ Rn and +∞ elsewhere,

then dom conv f = conv Ω is a compact set.

Proof. By Corollary A.37 we have that dom conv f = conv Ω; it is then su�cient to apply
Lemma A.47.

A.8. Closedness of convex hulls

Theorem A.49. Let f : Rn → R lower semicontinuous. Suppose that Ω := {x ∈ Rn |
f(x) < +∞} is compact and that there exists L ∈ R such that f ≥ L; then conv f is

closed.

Proof. Because f ≥ L, being the constant L a convex function we have that conv f ≥ L;
then proving that conv f is closed is equivalent to prove that conv f is lower semicon-
tinuous, i.e. to prove that the set Sγ := {x ∈ Rn | conv f(x) ≤ γ} is closed for every
γ ∈ R. Consider a sequence of points x(N) ∈ Sγ converging to x̄ ∈ Rn; we need to prove
that x̄ ∈ Sγ . Being L ≤ conv f(x(N)) ≤ γ and thus �nite, by the characterization of

Corollary A.43 and the properties of the in�mum, for every N we can �nd α
(N)
i ∈ [0, 1]
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and x
(N)
i ∈ Rn with i ∈ {1, . . . , n+ 2} such that

∑n+2
i=1 α

(N)
i = 1,

∑n+2
i=1 α

(N)
i x

(N)
i = x(N)

and

conv f(x(N)) + ε >
n+2∑
i=1

α
(N)
i f(x

(N)
i ) > conv f(x(N)). (A.3)

By compactness of [0, 1]n+2×Ωn+2 we can extract a subsequence (which again for simplic-

ity will be denoted by the same symbol) such that α
(N)
i → ᾱi ∈ [0, 1] and x

(N)
i → x̄i ∈ Ω;

moreover, by the properties of limits, we have that
∑n+2

i=1 ᾱi = 1 and x̄ =
∑n+2

i=1 ᾱixi. If
the function

[0, 1]n+2 × Ωn+2 → R

(αi, xi) 7→
n+2∑
i=1

αif(xi) (A.4)

is lower semicontiuous, we could apply Corollary A.43 and inequality (A.49) to obtain

conv f(x̄) ≤
n+2∑
i=1

ᾱif(x̄i) ≤ lim inf
N→∞

n+2∑
i=1

α
(N)
i f(x

(N)
i ) ≤ γ + ε;

by generality of ε we could then obtain conv f(x̄) ≤ ε as needed.
We will now prove the lower semicontinuity of (A.4); because the sum of lower semi-

continuous functions is lower semicontinuous, it is su�cient to prove that the function
(α, x) 7→ αf(x) is lower semicontinuous. Let (xN , αN )→ (x̄, ᾱ) such that αNf(xN ) ≤ γ
for every N . We have αN , ᾱ ∈ [0, 1]; suppose ᾱ 6= 0. By convergence, for N su�ciently
large and ε < ᾱ we have that αN > ᾱ − ε > 0; then have f(xN ) ≤ γ

αN
< γ

ᾱ−ε ; by lower

semicontinuity of f we then have f(x̄) ≤ γ
ᾱ−ε and thus ᾱf(x̄) ≤ ᾱ

ᾱ−εγ for every ε < ᾱ,
which means ᾱf(x̄) ≤ γ. If instead ᾱ = 0, we have to prove that γ ≥ 0; if there is an N
such that αN = 0 or αN 6= 0 and f(xN ) ≥ 0 we have �nished. Otherwise, by convergence
for everyM > 0 we can �nd N such that 0 < αN < 1

L+M ; we then have −L ≤ f(xN ) < 0

and thus γ ≥ αNf(xN ) ≥ − L
L+M , which by generality of M implies γ ≥ 0.

Now we present several situation which can occur when the hypothesis of Theorem A.49
do not hold.

Example A.50. A convex function which is not lower semicontinuous even if it is uni-
formly continuous when restricted to its domain (because dom f is open, f cannot be
closed).

f(x) =

{
0 if x ∈]0, 1[

+∞ elsewhere

Example A.51. A function which is uniformly continuous on R, but whose convex hull
is nowhere �nite.

f(x) = − |x|
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Example A.52. A lower semicontinuous function whose convex hull is not lower semi-
continuous.

f(x) =


tanx if − π

2 < x < π
2

−∞ if x < −π
2

+∞ if x > π
2

The function f is lower semicontinuous, but its convex hull conv f is −∞ on the open

set ]−∞, π/2[ and +∞ elsewhere, and thus not lower semicontinuous.

Example A.53. A convex, proper and closed function which is not continuous.

f(x, y) =


y2

2x if x > 0

0 if x = 0 ∧ y = 0

+∞ elsewhere

The function f is convex, proper and closed, but it is not continuous in (0, 0), point on
the boundary of dom f . This can be seen, for example, approaching the origin along the

curve x = y2

2α with α 6= 0: on this curve f is α constantly.

Example A.54. A function �nite on a bounded set and continuous on it whose convex
hull is not continuous on its domain and not even lower semicontinuous.

f(x, y) =

{
exp

(
− 1

1−|y|x
)

if (x, y) ∈ [0, 1]×]− 1, 1[

+∞ elsewhere

conv f(x, y) =


1 if x = 0 and y ∈]− 1, 1[

0 if (x, y) ∈]0, 1]×]− 1, 1[

+∞ elsewhere

Example A.55. A function �nite on a close unbounded set and continuous on it (and
thus lower semicontinuous on Rn) whose convex hull is again not even lower semicontin-
uous on its domain.

f(x, y) =

{
exp (−(1 + |y|)x) if x ∈ [0, 1]

+∞ elsewhere

conv f(x, y) =


1 if x = 0

0 if x ∈]0, 1]

+∞ elsewhere

A.9. Two more results on convex hulls

Theorem A.56. Let ΩN = {x1, . . . , xN} ⊂ Rn �nite and let f : Rn → R �nite on ΩN .

Then

(i) conv fΩN
is closed;
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(ii) ∂ conv fΩN
(x) 6= ∅ for every x ∈ ΩN .

Proof. By the characterization of Theorem A.36 we have that

conv fΩN
(x) = inf

α

N∑
i=1

αif(xi),

where the in�mum is taken on the set{
α ∈ [0, 1]N |

N∑
i=1

αixi = x ∧
N∑
i=1

αi = 1

}
.

Then by Corollary 19.1.2 of [Rockafellar(1970)] (pag. 173) the function conv fΩN
is

polyhedral, i.e. epi conv fΩN
is polyhedral. Since conv fΩN

(x) is �nite when x ∈ ΩN ,
from Corollary 19.1.2 we get the �rst part of the thesis and from Theorem 23.10 of
[Rockafellar(1970)] (pag. 226) we get its second part.

Theorem A.57. Let f : Rn → R be �nite on a closed convex set Ω and +∞ elsewhere.

Let x0 ∈ ∂Ω and let h an hyperplane such that x0 ∈ h and that Ω lies entirely on one

side of h. Then (conv f) |h = conv (f |h).

Proof. Because x0 ∈ Ω, by Theorem A.42 we can write it as

x0 =
m∑
i=1

αixi,

where m ≤ n+ 1, αi ∈]0, 1[, xi ∈ Ω and
∑m

i=1 αi = 1. Suppose that xk /∈ h for a certain
index k; without loss of generality we can suppose k = m. If m = 1 this is obviously
contradictory because x0 = xm. If m ≥ 2, we then have

x0 = αmxm + (1− αm)x̃,

where

x̃ =

m−1∑
i=1

αi
1− αm

xi;

because Ω is convex, we must have that x̃ ∈ Ω. However, because αm > 0, the point x̃
must lie on the opposite side of h with respect to xm: by hypothesis x̃ and xm cannot
be both in Ω and thus we have a contradiction.
Then x0 can only be expressed as a convex combination of points of Ω if those points

all lie on h; by the characterization of Corollary A.43 we then have the thesis.
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B. The Legendre-Fenchel transformation

B.1. De�nition and basic properties

De�nition B.1. Let f : Rn → R. The function

f∗ : Rn → R
ξ 7→ sup

x∈Rn
[〈x, ξ〉 − f(x)] = − inf

x∈Rn
[f(x)− 〈x, ξ〉] ,

where 〈·, ·〉 is the scalar product of Rn, is called the Legendre-Fenchel transform, or
conjugate, of f .

Remark B.2. We have f∗(0) = − infx∈Rn f(x).

Proposition B.3. Let {fi}i∈I an arbitrary collection of closed convex functions. The

function f(x) := supi∈I [fi(x)] is then a closed convex function.

Proof. If the collection is empty, then we have that f(x) = −∞, which is a closed convex
function; if fi(x) = −∞ for a certain i ∈ I, then it is possible to remove fi from the
collection without a�ecting f . It is easily veri�able, even for generic functions fi, that
epi f =

⋂
i∈I epi fi; for the ipothesis epi fi are convex and closed and thus their (arbitrary)

intersection is also convex and closed.

Corollary B.4. Let f : Rn → R, not necessarily convex. Then f∗ is a closed convex

function.

Proof. By de�nition f∗ is the pointwise supremum of a collection of a�ne functions
(which may include the constants +∞ e −∞); because these are closed convex functions,
f∗ is also convex and closed by the previous de�nition.

Proposition B.5. Let f, g : Rn → R such that f ≤ g. Then f∗ ≥ g∗.

Proof. It follows trivially from the De�nition B.1.

Remark B.6 (Geometric construction). Let f : Rn → R, let ξ ∈ Rn and let h be the
hyperplane through the origin having equation y = 〈ξ, x〉. Then, by De�nition B.1,
f∗(ξ) is the supremum value of the signed distance along the y-axis between the graph
of f and h; for an example in R see Figure B.1.
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Figure B.1.: Geometric construction of the Legendre-Fenchel conjugate in R. The function f and
its slopes are drawn in black, the lines through the origin and their slopes are drawn in grey,
while the distances representing the values of f∗ are drawn in red; f∗(3) is +∞ because the
distance between the line with slope 3 and f grows inde�netely for x→ +∞.

B.2. Conjugation of convex functions

Lemma B.7. Let f : Rn → R, non necessarily convex. Then an a�ne function

hξ,µ(x) := 〈ξ, x〉 − µ, where ξ ∈ Rn and µ ∈ R, is majorized by f if and only if

(ξ, µ) ∈ epi f∗.

Proof. Suppose that hξ,µ is majorized by f . Then for all x ∈ Rn we have that f(x) ≥
hξ,µ(x) and thus µ ≥ 〈ξ, x〉 − f(x); by de�nition of f∗, we conclude that µ ≥ f∗(ξ),
i.e.(ξ, µ) ∈ epi f∗. The other direction is similar.

In the conjugate of f is thus coded the information necessary to determine the collection
of a�ne functions which are majorized by f . It is possible to demonstrate that if f is
convex then it coincides with the pointwise supremum of that collection; f∗ is thus
another rappresentation of the function f and it should be possible to �nd an inverse
transform capable to reconstruct f starting from f∗: it will be shown that this inverse
transform is the conjugate itself.

Lemma B.8. Let f : Rn → R be a closed convex function. Then f is the pointwise

supremum of the collection of all a�ne functions majorized by f .

Proof. If f is improper, then the thesis is trivially true. If f is proper, then epi f is a
non-empty closed convex subset of Rn+1. By the known properties of convex sets, epi f
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is then the intersection of all closed half-spaces of Rn+1 containing it. The closed half-
spaces of Rn+1 can be of one of three forms: y ≥ h(x), y ≤ h(x) or h(x) ≤ 0, where h
and h are a�ne functions Rn → R and h is not constantly 0; we note that the half-spaces
of the �rst form can also be indicated by epih. The collection whose intersection is epi f
cannot contain half-spaces of the second form and must contain at least one half-space
of the �rst form because f is proper; the half-spaces of the �rst form containing epi f are
the ones characterized by an a�ne function majorized by f . Thus if we prove that by
not including the half-spaces of the third form in the intersection we still obtain epi f ,
we can conclude that epi f =

⋂
h a�ne, h≤f epih and thus f is the pointwise supremum of

all h.
Let V = {(x, y) ∈ Rn × R | h(x) ≤ 0} where h is a non-null a�ne function. If

V is to be not in�uent on the intersection, we have to �nd for each (x0, y0) /∈ V an
a�ne function h ≤ f such that (x0, y0) /∈ epih. As we have highlighted before, if f is
proper there is at least one a�ne function h̃ ≤ f . Fixed λ > 0, we de�ne the function
hλ(x) := λh(x) + h̃(x), which, as a sum of two a�ne function, is itself a�ne. For every
x ∈ dom f we have that h(x) ≤ 0 and h̃(x) ≤ f(x) and thus hλ ≤ f on dom f ; the same
is trivially true also outside dom f , where f(x) = +∞. Because h(x0) > 0, we can take
λ̄ su�ciently large to ensure that hλ̄(x0) > y0 and thus (x0, y0) /∈ epihλ̄; hλ̄ is then the
a�ne function needed.

Lemma B.9. Let f : Rn → R, not necessarily convex. Then f∗ =
(
f
)∗
.

Proof. For Lemma B.7 it su�ces to show that the collections of a�ne functions which
are majorized respectively by f and by f are the same. Let g be an a�ne function. If
g ≤ f then g ≤ f , because by de�nition of f we have f ≤ f . If g ≤ f , we have g ≤ f
because an a�ne function is lower semicontinuous and f is the greatest among all the
lower semicontinuous functions majorized by f .

Corollary B.10. Let f be a convex function. Then f∗ = (cl f)∗.

De�nition B.11. If f(x) > −∞ for all x ∈ Rn, by de�nition we have cl f = f and thus
Lemma B.9 applies; otherwise, we have that cl f is the constant function −∞. If there
is a point x0 such that f(x0) = −∞, then no a�ne function can be majorized by f and
thus by Lemma B.7 we have epi f∗ = ∅; this means f∗ is the constant function +∞,
which is the conjugate of the constant function −∞.

Theorem B.12. Let f : Rn → R be a convex function. Then cl f = f∗∗.

Proof. In Corollary B.10, it will be proved that f∗ = (cl f)∗; we can then assume without
loss of generality that f is closed. Because trivially (+∞)∗ = −∞ and (−∞)∗ = +∞,
the result is immediate if f is improper. If f is proper and closed, Lemma B.8 says that

f(x) = sup
h a�ne, h ≤ f

h(x),

which, by Lemma B.7, becomes

f(x) = sup
(ξ,µ)∈epi f∗

(〈ξ, x〉 − µ) .
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Because hξ,µ1 ≥ hξ,µ2 when µ1 ≤ µ2 and because, �xed ξ, the minimum value of µ such
that (ξ, µ) ∈ epi f∗ is f∗(ξ), the supremum simpli�es to

f(x) = sup
ξ∈Rn

[〈ξ, x〉 − f∗(ξ)] ,

which is equal by de�nition to f∗∗(x).

Corollary B.13. Let f, g : Rn → R be closed convex functions. Then f = g if and only

if f∗ = g∗.

We can now immediately prove a converse to Lemma B.7.

Lemma B.14. Let f : Rn → R be a convex function. Then an a�ne function hx,y(ξ) :=
〈x, ξ〉 − y, where x ∈ Rn and y ∈ R, is majorized by f∗ if and only if (x, y) ∈ epi cl f .

B.3. Conjugation of general functions

Lemma B.15. Let f : Rn → R. Then f∗ = (conv f)∗.

Proof. We again apply Lemma B.7 and show that, given g an a�ne function, we have
g ≤ f if and only if g ≤ conv f .If g ≤ conv f then g ≤ f , because by de�nition of convex
hull conv f ≤ f . If g ≤ f , we have g ≤ conv f because a�ne functions are convex.

Corollary B.16. Let f : Rn → R. Then f∗ = [cl (conv f)]∗.

Proof. It follows from Lemma B.15 and Corollary B.10.

Theorem B.17. Let f : Rn → R, not necessarily convex. Then f∗∗ = cl (conv f).

Proof. It follows directly by Lemma B.16 and Theorem B.12.

B.4. Multi-dimensional conjugation

An important property of the Legendre-Fenchel conjugation is that the general transfor-
mation in dimension n can be reduced to a sequence of one-dimensional transformations;
this property sets it apart from the convex hull operation and makes a double conjuga-
tion a more practical option for computing convex hulls in more than one dimension. To
simplify notation, given f : Rn → R and an index i ∈ {1, . . . n}, we use the symbol f∗i

for the transformation along the ith-dimension, i.e.

f∗i : Rn → R
(x1, . . . , xi−1, ξi, xi+1, . . . , xn) 7→ sup

xi∈R
[xiξi − f(x1, . . . , xi, . . . xn)]

= [f(x1, . . . , xi−1, ·, xi, . . . xn)]∗ (ξi).

We then have the following theorem.
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Theorem B.18. Let f : Rn → R. Then

f∗ =

(
−
(
· · ·
(
−
(
−f∗1

)∗2)∗3 · · ·)∗(n−1)
)∗n

.

Proof. It can be shown easily through factorization of the supremum operator:

f∗(ξ) = sup
x∈Rn

[〈x, ξ〉 − f(x)]

= sup
xn∈R

[
xnξn + sup

xn−1∈R

[
xn−1ξn−1 + · · ·

· · · sup
x3∈R

[
x3ξ3 + sup

x2∈R

[
x2ξ2 + sup

x1∈R
[x1ξ1 − f(x)]

]]]]
.

B.5. Subdi�erentials

Lemma B.19. Let f : Rn → R be a convex function. Then for all x0, ξ0 ∈ Rn the

following propositions are true:

(i) if ξ0 ∈ ∂f(x0) then ξ0 ∈ ∂ (cl f) (x0);

(ii) if ξ0 ∈ ∂ (cl f) (x0) and cl f(x0) = f(x0) then ξ0 ∈ ∂f(x0);

(iii) ξ0 ∈ ∂ (cl f) (x0) if and only if x0 ∈ ∂f∗(ξ0);

Proof. Suppose ξ0 ∈ ∂f(x0); we then know that h1(x) = f(x0)+〈ξ0, x− x0〉 is majorized
by f and we have to prove that h2(x) = cl f(x0) + 〈ξ0, x− x0〉 is majorized by cl f .
Because cl f ≤ f , we have that h2 ≤ h1; then, because we have supposed that h1 ≤ f ,
we also have h2 ≤ f . Because h2 is a lower semicontinuous, we then have h2 ≤ cl f by
de�nition of closure. Suppose now that ξ0 ∈ ∂ (cl f) (x0) and cl f(x0) = f(x0); we then
know that h1 = h2 ≤ cl f and we have to prove that h1 ≤ f , which is true because
cl f ≤ f .
By application of Lemma B.7 and Lemma B.10we have

ξ0 ∈ ∂ (cl f) (x0) ⇐⇒ cl f(x0) + 〈ξ0, · − x0〉 ≤ cl f

⇐⇒ (ξ0, 〈ξ0, x0〉 − cl f(x0)) ∈ epi (cl f)∗

⇐⇒ 〈ξ0, x0〉 − cl f(x0) ≥ (cl f)∗ (ξ0) = f∗(ξ0),

while by application of Lemma B.14 we have

x0 ∈ ∂f∗(ξ0) ⇐⇒ f∗(ξ0) + 〈x0, · − ξ0〉 ≤ f∗

⇐⇒ (x0, 〈x0, ξ0〉 − f∗(ξ0)) ∈ epi cl f

⇐⇒ 〈x0, ξ0〉 − f∗(ξ0) ≥ cl f(x0).
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Corollary B.20. Let f : Rn → R be a convex function and let x0, ξ0 ∈ Rn such that

ξ0 ∈ ∂f(x0). Then x0 ∈ ∂f∗(ξ0).

Remark B.21. The converse is not true. Consider for example

f(x) =


1 if x = 0

0 if x > 0

+∞ if x < 0

.

f is convex, but not closed; Moreover, we have that ∂f(0) = ∅. The conjugate of f is

f∗(ξ) =

{
0 if ξ ≤ 0

+∞ if ξ > 0
.

Then, for any ξ ≤ 0, we have 0 ∈ ∂f∗(ξ), but not ξ ∈ ∂f(0). Nonetheless, we can prove
that this problem can only arise on ∂ dom f , as shown in the next proposition.

Corollary B.22. Let f : Rn → R be a proper convex function. Then for all x0 ∈
int dom f and for all ξ0 ∈ Rn we have ξ0 ∈ ∂f(x0) if and only if x0 ∈ ∂f∗(ξ0).

Proof. By joint application of Lemma B.19 and Corollary A.24.

Corollary B.23. Let f : Rn → R be a closed convex function. Then for all x0, ξ0 ∈ Rn
we have ξ0 ∈ ∂f(x0) if and only if x0 ∈ ∂f∗(ξ0).

Corollary B.24. Let f : Rn → R be a proper convex function. Then for all x0, ξ0 ∈ Rn
the following propositions are true:

(i) if ξ0 ∈ ∂f(x0) then ξ0 ∈ dom f∗;

(ii) if x0 ∈ ∂f∗(ξ0) and cl f(x0) = f(x0) then x0 ∈ dom f ;

Proof. It follows directly from the joint application of Lemma B.19 and Proposition
A.21.

Remark B.25. Converse propositions such as �if ξ0 ∈ dom f∗ then there exists x̃ ∈ Rn
such that ξ0 ∈ ∂f(x̃)� are not true in general; if the one presented were for example true,
we would then have by Corollary B.20 that x̃ ∈ ∂f∗(ξ0), i.e. ∂f∗(ξ0) 6= ∅ which is not
necessarily true, as seen in Remark A.22.

Theorem B.26. Let f : Rn → R be a convex function and let x0 ∈ dom f and ξ0 ∈ Rn.
Then

f∗(ξ0) = 〈x0, ξ0〉 − f(x0)

if and only if

ξ0 ∈ ∂f(x0).
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Proof. Suppose ξ0 ∈ ∂f(x0); then

f(x0) + 〈ξ0, x− x0〉 ≤ f(x) ∀x ∈ Rn.

This means
〈ξ0, x〉 − f(x) ≤ 〈ξ0, x0〉 − f(x0) ∀x ∈ Rn,

from which follows that

f∗(ξ0) = sup
x∈Rn

[〈x, ξ0〉 − f(x)] = 〈ξ0, x0〉 − f(x0).

Suppose that f∗(ξ0) = 〈x0, ξ0〉 − f(x0); by de�nition of conjugation we then have

〈x, ξ0〉 − f(x) ≤ 〈x0, ξ0〉 − f(x0)

for all x ∈ Rn. By rearranging we obtain that

〈x− x0, ξ0〉+ f(x0) ≤ f(x)

for all x ∈ Rn, i.e. ξ0 ∈ ∂f(x0).

Corollary B.27. Let f, g : Rn → R be convex functions such that f(x0) = g(x0) for a

certain x0 ∈ Rn. Then for all ξ ∈ ∂f(x0) ∩ ∂g(x0) we have that f∗(ξ) = g∗(ξ).

Corollary B.28. Let f, g : Rn → R be convex functions such that f = g on a neighbour-

hood U of a point x0 ∈ Rn. Then f∗ = g∗ on ∂f(x0).

Proof. It follows directly from Theorem B.26 and Lemma A.19.

Corollary B.29. Let f, g : Rn → R be convex functions such that f = g on an open set

Ω ⊆ Rn. Then f∗ = g∗ on
⋃
x∈Ω ∂f(x).
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