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A Continuous Approach to Legged Locomotion Planning

Nicolas Perrin∗, Christian Ott†, Johannes Englsberger†,

Olivier Stasse‡, Florent Lamiraux‡, Darwin G. Caldwell∗

Abstract

Legged locomotion planning can often be reduced to the search of finite sequences of contacts between the

robot and the ground. We address this problem, using an original, continuous approach. We first demon-

strate how this intrinsically discrete problem can be made continuous, and then present two applications:

an experiment of vision-based reactive footstep planning with the DLR-Biped robot, and a simulation of

non-gaited locomotion planning with a hexapod robot.

1 Introduction

The general problem of locomotion planning for
legged robots takes place in a stratified configuration
space. When a contact with the ground is made or
released, the system moves from a submanifold of the
configuration space to another one, and the equations
of motion change in a discrete manner. As pointed
out in [Goodwine, 1997], this discontinuous nature is
one of the most important characteristic of legged
robots (and other “stratified systems”).

In an attempt to solve the locomotion planning
problem in a computationally efficient way, simpli-
fied models are often used, and they should also
have a discontinuous nature, at least to some ex-
tent. Completely continuous models have been
used in previous work (see [Yoshida et al., 2008],
[Kanoun et al., 2011], [Dalibard et al., 2011]), but
they always fail to capture some important features
of the legged robots, such as for example their ability
to step over obstacles.

In [Goodwine, 1997], small-time local control-
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lability is obtained for some stratified systems
thanks to an extension of the Chow-Rashevskii
theorem ([Bullo and Lewis, 2004], [Sastry, 1999]).
As a result, some classic algorithms such as
[Lafferriere and Sussmann, 1991] can be applied to
locomotion planning for legged robots (see also
[Harmati and Kiss, 2001]), but it essentially consists
of converting initial sliding motions into feasible
walking motions. Again, this means that the step-
ping over abilities of the robot are not well captured.

Continuous models are however interesting
because they make possible the use of con-
ventional and efficient motion planning al-
gorithms that suppose smooth configuration
spaces (e.g. PRM [Kavraki et al., 1996], RRT
[LaValle and Kuffner, 2000]). Up to now, the
state-of-the-art solution to obtain fast algorithms
that take into account the discontinuous nature of
the problem is to choose footsteps before computing
motions. Depending on the context and on the
robot, a heuristic is defined and used to search for
finite sequences of footsteps. Once a sequence of
footsteps has been constructed, the next phase is
to find a feasible continuous motion of the robot
that follows this sequence. This kind of approach
amounts to dealing with the discrete and continuous
natures of the problem separately. It has been used
extensively for humanoid robot navigation plan-
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ning ([Kuffner et al., 2001], [Bourgeot et al., 2002],
[Chestnutt et al., 2003], [Chestnutt et al., 2005],
[Gutmann et al., 2005]), for locomotion plan-
ning for a hexapod [Hauser et al., 2006], or for
more general multi-contact planning problems
[Bouyarmane and Kheddar, 2011] (in that case, in-
stead of footsteps, sequences of stances are searched
for). To search for finite sequences of footsteps, as
conventional motion planning algorithms cannot be
applied, graph search algorithms such as A* are used
instead.
In this paper, we present an original approach that

enables us to take into account the discrete aspects
of the problem while doing the motion planning in a
smooth configuration space. Our work shares simi-
larities with [Boissonnat et al., 2000] where a connec-
tion is established between the free space of a spider
robot and the free space of a half-disk robot moving
by translation and rotation amidst obstacles. In this
latter work however, the goal was to solve exactly the
motion planning problem for the spider. Our goal is
different since we aim at efficiently using sampling-
based motion planning algorithms through the def-
inition of weak collision-freeness. Our work is also
more general than [Boissonnat et al., 2000].
In Section 2, we define the problem of “flea mo-

tion planning” and show an efficient algorithm which
serves as an example to illustrate our approach. In
Section 3, we demonstrate a general theorem that
can be used to transform discrete motion planning
problems into continuous ones. In Section 4 and
Section 5, we apply this theorem to perform vision-
based reactive footstep planning with the DLR-Biped
robot, and give also a thorough description of our
software architecture. The planning is done on a
discretized heightmap of the environment. This im-
plementation gives strong connections between our
work and [Eldershaw and Yim, 2001] where the com-
plexity of the task of planning steps for a legged
robot is also reduced by using first a continuous high-
level planner. The main advantage of our work over
[Eldershaw and Yim, 2001] is the theoretical sound-
ness of our equivalence between the existence of high-
level and “foot-level” paths. In Section 6, we show
that the same approach can be easily adapted to lo-
comotion planning for a hexapod robot. Finally, in

obstacle

"shortcut jump"

Figure 1: The “flea motion planning problem”. On
the left: from a collision-free sequence of flea jumps
to a continuous “weakly collision-free” path for the
disk. On the right: converting a continuous weakly
collision-free path of the disk into a sequence of flea
jumps, using a greedy algorithm.

Section 7, we conclude and discuss about future work.

2 An efficient algorithm for flea

motion planning

In this section we consider the simple example of
flea motion planning, which has been introduced in
[Perrin et al., 2012] to illustrate the method used in
[Perrin et al., 2011] and [Perrin et al., 2012] to con-
vert footstep planning into classical continuous mo-
tion planning.

The flea is represented by a point in a 2D environ-
ment; C = R2 is the configuration space. There are
obstacles in this 2D environment such that the free
space F is an open set. The Boolean-valued function
κ : C → {true, false} of collision-freeness in C is
defined for any s ∈ C by κ(s) ⇔ s ∈ F . The flea
can make jumps in any direction and of any length
strictly less than lmax > 0. The goal is to find a se-
quence of jumps from a location (xA, yA) ∈ F to a
location (xB , yB) ∈ F such that every intermediate
configuration of the flea is in F . The discontinuous
nature of this flea motion planning problem is similar
to the discontinuous nature of the problem of finding
sequences of footsteps for legged robots.

To solve this problem efficiently, we first prove an
equivalence between the discontinuous motion of the
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flea, and the continuous motion of an open disk, but
with a new notion of collision-freeness. So, let us
assume that a sequence of jumps has been found,
and that it corresponds to the sequence of configu-
rations p1 = (x1, y1), p2, p3, . . . , pn = (xn, yn), with
(x1, y1) = (xA, yA) and (xn, yn) = (xB , yB). We
consider the continuous motion s : [0, 1] 7→ R2 of
an open disk of diameter lmax defined by linear in-
terpolation between each (xi, yi) and (xi+1, yi+1) for
i = 1, 2, . . . , n − 1, as depicted in Figure 1 (on the
left). An interesting property of this continuous disk
motion is the following (it is a direct consequence of
the upper bound lmax on the length of jumps):

Property 2.1. For all t ∈ [0, 1], the configuration
s(t) of the disk contains at least one of the flea con-
figurations p1, p2, . . . , pn.

This property suggests the definition of a new no-
tion of collision-freeness:

Definition 2.1. We say that a disk configuration
(x, y) is collision-free if there exists at least one flea
configuration (i.e. point) inside the disk which is
collision-free. We call this new notion of collision-
freeness the “weak collision-freeness”, and say that
the disk configuration is “weakly collision-free”. Con-
versely, if all the flea configurations inside the disk
are in collision (i.e. the disk does not intersect the
free space), we say that the disk is in “strong colli-
sion”. We say that a continuous path of disks configu-
rations is weakly collision-free if all the configurations
along that path are weakly collision-free.

Figure 2 illustrates this definition.
We can reformulate Property 2.1:

Theorem 2.1. If there exists a finite sequence of
collision-free jumps from (xA, yA) to (xB , yB), then
there also exists a weakly collision-free continuous
path of the open disk of diameter lmax from (xA, yA)
to (xB , yB).

We prove that the converse is true:

Theorem 2.2. If there exists a weakly collision-free
continuous path of the open disk of diameter lmax

from (xA, yA) to (xB , yB), then there exists a fi-
nite sequence of collision-free jumps from (xA, yA) to
(xB , yB).

Figure 2: Weak collision-freeness.

Proof. Intuitively, the reason for this theorem to hold
is that since the path is weakly collision-free, the free
space intersects every configuration of the disk along
that path. And because the disk is of diameter lmax,
it follows that in order to progress along the inter-
section between the free space and the area swept by
the disk, the flea never has to make jumps larger than
lmax, and therefore it can go from one end of the path
to the other.

Let us denote by d2 the Euclidean distance in R2,
and by D(x,y) the open disk of center (x, y) and
diameter lmax. For a point s ∈ C we denote by
dobs(s) = inf{d2(s, o)|o ∈ C \ F} its distance to the
obstacles. For a configuration (x, y) of the disk we de-
fine: δobs(D(x,y)) = sup{dobs(s)|s ∈ D(x,y)}. A con-
figuration (x, y) is weakly collision-free if and only if
δobs(D(x,y)) > 0. Let us consider a weakly collision-
free continuous path s : [0, 1] 7→ R2 from (xA, yA) to
(xB , yB). We pose dinf =

1
2 inf{δobs(Ds(t))|t ∈ [0, 1]}.

By continuity of t 7→ δobs(Ds(t)), we have dinf > 0. By
uniform continuity of s, there exists 0 < ǫ < 1 such
that ∀t ∈ [0, 1−ǫ], d2(s(t), s(t+ǫ)) < min(dinf , lmax).

Let us now consider t ∈ [0, 1−ǫ] and a collision-free
configuration s of the flea in Ds(t). First, we know
that there exists s′ ∈ Ds(t) such that dobs(s

′) > dinf .
Besides, since Ds(t) is of diameter lmax, we have
d2(s, s

′) < lmax, and thus the flea can jump from
s to s′. Then, since we have d2(s(t), s(t + ǫ)) <
min(dinf , lmax), there exists s′′ ∈ Ds(t+ǫ) such that
d2(s

′, s′′) < min(dinf , lmax). It follows that s′′ is
collision-free, and the flea can jump from s′ to s′′.
So we have proved that if s is a collision-free config-
uration of the flea in Ds(t) with t ∈ [0, 1 − ǫ], it is
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Figure 3: An efficient algorithm for flea motion plan-
ning.

always possible to reach a collision-free configuration
in Ds(t+ǫ) with at most 2 jumps. By iteration, we de-
duce that a collision-free configuration sα ∈ Ds(1) can
be reached after a finite number of jumps. We have
d2(sα, (xB , yB)) < lmax, and therefore the flea can
jump directly from sα to (xB , yB). This concludes
the proof, and an example of sequence of jumps ob-
tained from a weakly collision-free continuous path of
the disk can be seen on the right side of Figure 1.

Together, Theorem 2.1 and Theorem 2.2 form an
equivalence between the weakly collision-free paths
of the disk and the collision-free sequences of jumps
of the flea. It turns out that this equivalence gives
an efficient algorithm to solve the flea motion plan-
ning problem. Indeed, instead of looking for a dis-

continuous sequence of jumps, we can first look for a
continuous path of the disk, and that can be done
with any conventional motion planning algorithm,
provided that we implement new collision checks us-
ing Definition 2.1. Besides, in the case of flea mo-
tion planning these “weak collision” checks are very
easy to implement with a morphological operation of
erosion of the obstacles by an open sphere of radius
lmax

2 (see [Serra, 1983]): the disk D(x,y) is in strong
collision with the obstacles if and only if its center
(x, y) is inside the eroded obstacles. So, once the
eroded obstacles are obtained, we can use any classi-
cal motion planning algorithm to find a short weakly
collision-free path for the disk. To actually convert
this continuous path into a finite sequence of jumps,
we can apply the greedy approach already used in
[Perrin et al., 2012] which consists in repeatedly try-
ing to jump from the current disk Ds(t) to a disk
Ds(t′) with t′ as large as possible and obtained by
dichotomy. This can result in “shortcut jumps”, as
shown in Figure 1 (on the right). Figure 3 illustrates
the whole method with a simple example where the
obstacles are polygonal (in that case we can actually
find the shortest path for the disk in polynomial time:
see [de Berg et al., 2000], ch. 15).
Using such a transfer towards continuous motion

planning has several benefits.
For the flea motion planning problems, other

more direct approaches are also very efficient, and
for example it would be easy to naively adapt the
RRT algorithm to grow trees of discrete sequences
of jumps. But for more complicated problems such
as footstep planning, adapting RRT is not an easy
task because it is not always clear how to extend
a node towards a sample configuration. For this
reason the current state-of-the-art method is to
choose in advance a finite set of possible steps and
then use A*-like algorithms to search for sequences
of steps towards a goal ([Kuffner et al., 2001],
[Bourgeot et al., 2002], [Chestnutt et al., 2003],
[Chestnutt et al., 2005]). Although adjustments
have been considered (see [Chestnutt et al., 2007]),
starting by manually selecting a finite number of
possible steps is not very satisfying and leads to
several problems such as limited stepping capabilites.
The approach we present in sections 4 and 5 is based
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on a similar equivalence as the one formed by
theorems 2.1 and 2.2, and it enables to deal with
fully continuous stepping capabilities in an efficient
and theoretically sound way.
For a hexapod, a large set of possible steps would

be required in order to obtain decent stepping capa-
bilities, and therefore methods based on A*-like al-
gorithms are difficult to apply. This problem can be
circumvented by using fixed gaits, but they are less
efficient in complex environments. The method we
propose in Section 6 is again based on an equivalence
that transforms the problem into a fully continuous
one, and it enables to very quickly find sequences of
steps even in quite complex environments.
We have also implemented our continuous ap-

proach (with RRT used to plan continuous paths)
for some random instances of 2D flea motion plan-
ning, and after comparison the results obtained indi-
cate that a proper implementation of our approach
has the potential to outperform a naive adaptation
of RRT, especially in simple environments. What’s
more, since in our approach each edge of the tree
grown by the RRT algorithm represents not one, but
a whole set of potential sequences of jumps, the trees
obtained are significantly smaller than trees of similar
covering obtained with a naive adaptation of RRT,
and this can be very useful for operations such as
nearest neighbor search or tree transformations.

3 An equivalence between

some discrete and continuous

motion planning problems

In this section we demonstrate a general result that
can be applied in particular to flea motion planning
to obtain the equivalence between the discrete se-
quences of jumps and the continuous weakly collision-
free paths of the disk. First, let us introduce some
notation and definitions.
We will only consider metric configuration spaces,

and denote by dist() their distance functions. Let
C be a metric configuration space. For s ∈ C and
r > 0, we denote by S̊(s, r) the open sphere of cen-
ter s and radius r. F , the free space, is always as-

sumed to be an open subset of C. We denote by
κ the Boolean-valued function of collision-freeness:
F = {s ∈ C|κ(s)}. We denote by dobs the function
from C to R+ defined by dobs(s) = inf{dist(s, o)|o ∈
C \ F}, and for any non-empty bounded set E ⊂ C,
we define δobs(E) = sup{dobs(s)|s ∈ E}.
We now give a definition of discrete and continu-

ous motion planning problems. It is by no means a
general definition, but we will only consider this type
of problems.

Definition 3.1 (continuous motion planning prob-
lems).
INPUT: C, κ: mapping from C to {true, false},
si ∈ F and sf ∈ F .
OBJECTIVE: find a continuous path (s(t))t∈[0,1]

such that ∀t ∈ [0, 1], κ(s(t)) (we call “valid” such
a continuous path), and such that s(0) = si and
s(1) = sf .

We will also consider slight variants of these prob-
lems where the initial and final configurations are not
fixed but must simply belong to some sets.

For discrete motion planning, there is an additional
relation R that defines a relationship between consec-
utive configurations.

Definition 3.2 (discrete motion planning problems).
INPUT: C, κ: mapping from C to {true, false}, R:
mapping from C × C to {true, false}, si ∈ F and
sf ∈ F .
OBJECTIVE: find a finite sequence of configurations
(s1, s2, . . . , sn) such that ∀k ∈ {1, . . . , n − 1}, κ(sk),
κ(sk+1), and R(Sk, Sk+1) (we call “valid” such a fi-
nite sequence), and such that s0 = si and sn = sf .

Remark: in the rest of the paper, without ambigu-
ity we will use the adjective “valid” to denote vari-
ous types of “acceptable” configurations, paths or se-
quences. It will sometimes just mean “collision-free”
or “weakly collision-free”, and sometimes a variant of
one of these notions, plus possibly additional restric-
tions.

The objective of the equivalence we are about to
prove is to convert discrete motion planning problems
into equivalent continuous motion planning prob-
lems, but not on the same configuration space, and
with a different notion of collision-freeness.
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The equivalence is stated below with Theo-
rem 3.1, which has been introduced and proven
in [Perrin, 2012] with slightly different hypothe-
ses. Another more general equivalence is stud-
ied in [Perrin, 2012], but it has less direct appli-
cations. Similar equivalence theorems between dis-
crete and continuous motion planning problems are
not common in the literature, but we can mention
[Alami et al., 1994] where a reduction property shows
that for some class of manipulation problems, the ex-
istence of a solution path with discrete “grasp” and
“release” events is equivalent to the existence of a
path where the grasp is continuously modified.
So, let us consider a discrete motion planning

problem, entirely defined by the metric configuration
space C, its free space F , the relation R and si and
sf .
We denote by P(C) the set of subsets of C. We

assume that there exists another metric configuration
space Ω and a function f : Ω → P(C) such that the
five following properties are verified:

1. The function δobs ◦ f is continuous.

2. For all ǫ > 0 there exists η > 0 such that
∀ϕ,ϕ′ ∈ Ω verifying dist(ϕ,ϕ′) < η, the set
f(ϕ) ∩ f(ϕ′) is non-empty and it intersects all
the spheres S̊(s, ǫ) such that s ∈ f(ϕ).

3. ∀ϕ ∈ Ω, f(ϕ) is such that ∀(s, s′) ∈ f(ϕ)2,
R(s, s′).

4. For any (s, s′) ∈ C2 such that R(s, s′), there ex-
ists ϕ ∈ Ω such that s ∈ f(ϕ) and s′ ∈ f(ϕ).

5. ∀(s, s′, s′′) ∈ C3 such that R(s, s′) and R(s′, s′′),
and ∀ϕ0 ∈ Ω such that s ∈ f(ϕ0) and s′ ∈ f(ϕ0),
there exists a continuous path from ϕ0 to a con-
figuration ϕ1 verifying s′′ ∈ f(ϕ1), such that for
any configuration ϕ along this path, we have
s′ ∈ f(ϕ). This property is illustrated in Fig-
ure 4.

Example 3.1. In the case of the flea motion plan-
ning problem of Section 2, Ω = C = R2, f : s 7→ Ds

satisfy the above properties.

Intuitively, f is the crucial function that transfers
the viewpoint from states that move discretely in a

Figure 4: A continuous path from ϕ0 to ϕ1.

continuous space C to sets of potential states whose
“continuous” motions in P(C) are governed by states
moving continuously in Ω. Depending on the discrete
problem, finding such a function f and a proper space
Ω can be more or less difficult, and although some in-
sight is given in [Perrin, 2012], it is beyond the scope
of the present paper.
The aim of the five properties of f is to obtain

the same kind of equivalence as the one formed by
theorems 2.1 and 2.2 of Section 2. They are needed
in the proofs of Theorem 3.2 and Theorem 3.3.

On Ω, we define a new notion of collision-freeness
κΩ:

Definition 3.3 (κΩ). ϕ ∈ Ω verifies κΩ(ϕ) if and
only if the intersection between f(ϕ) and the free
space is non-empty, i.e. ∃s ∈ f(ϕ) such that κ(s).

Under the above assumptions, the following theo-
rem holds:

Theorem 3.1. There exists a valid finite sequence
from si to sf in C if and only if there exists a contin-
uous path (χ(t))t∈[0,1] ∈ Ω[0,1] such that si ∈ f(χ(0)),
sf ∈ f(χ(1)), and ∀t ∈ [0, 1], κΩ(χ(t)).

This theorem is an equivalence that generalizes the
one formed by theorems 2.1 and 2.2. We prove the
two implications of this equivalence in the next two
sections (theorems 3.2 and 3.3).

3.1 From a valid discrete sequence in

C to a valid continuous path in Ω

Theorem 3.2. If there exists a valid sequence (s1 =
si, s2, . . . , sn = sf ), then there exists a valid con-
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tinuous path (χ(t))t∈[0,1] such that s1 ∈ f(χ(0)),
s2 ∈ f(χ(0)), sn−1 ∈ f(χ(1)) and sn ∈ f(χ(1)).

Proof. We prove this implication by induction on n,
the size of the valid sequence. For n = 2, we have
R(si, sf ), and there exists ϕ ∈ Ω such that si ∈ f(ϕ)
and sf ∈ f(ϕ). The stationary path such that ∀t ∈
[0, 1], χ(t) = ϕ, is valid.
Let us now assume that the result is true for any

sequence of size n ≥ 2, and consider a valid se-
quence of size n + 1: (s1 = si, s2, . . . , sn+1 = sf ).
Let (χ(t))t∈[0,1] ∈ Ω[0,1] be a valid path such that
s1 ∈ f(χ(0)), s2 ∈ f(χ(0)), sn−1 ∈ f(χ(1)) and
sn ∈ f(χ(1)). We have R(sn−1, sn) and R(sn, sn+1),
so there exists a continuous path (ϑ(t))t∈[0,1] ∈ Ω[0,1]

from χ(1) to a configuration ϕf ∈ Ω verifying sn+1 ∈
f(ϕf ), such that for any configuration ϑ along this
path, we have sn ∈ f(ϑ), and thus κΩ(ϑ). Append-
ing this path to the path (χ(t))t∈[0,1] gives us a valid
continuous path, and this conludes the proof of The-
orem 3.2.

3.2 From a valid continuous path in Ω

to a valid discrete sequence in C

Theorem 3.3. If there exists a valid continuous
path (χ(t))t∈[0,1] ∈ Ω[0,1] with si ∈ χ(0) and
sf ∈ χ(1), then there exists a valid sequence (s1 =
si, s2, . . . , sn = sf ).

Proof. The second property of f implies that for any
ǫ > 0, there exists N ∈ N∗ such that the sequence
(χ(0/N), χ(1/N), . . . , χ(N/N)) verifies the following
property: ∀k ∈ {0, . . . , N − 1}, for any configura-
tion s ∈ f(χ(k/N)), the sphere S̊(s, ǫ) intersects the
non-empty set f(χ(k/N)) ∩ f(χ((k + 1)/N)). Be-
sides, since F is an open set, we have: ∀t ∈ [0, 1],
δobs(f(χ(t))) > 0. And t 7→ δobs(f(χ(t))) is contin-
uous, so there exists dinf > 0 such that ∀t ∈ [0, 1],
δobs(f(χ(t))) > dinf . It follows that for ǫ small
enough, for all t ∈ [0, 1] there exists st ∈ f(χ(t))
collision-free and such that the sphere S̊(st, ǫ) is en-
tirely inside F . We thus deduce that all the sets
f(χ(k/N)) ∩ f(χ((k + 1)/N)) have a non-empty in-
tersection with F . Using the property that two
elements s, s′ of the same set f(χ(t)) are always
such that R(s, s′), we can construct a valid sequence

Figure 5: From a valid continuous path (χ(t))t∈[0,1] ∈

Ω[0,1] to a valid finite sequence of configurations in C.

(s1, s2, . . . , sN+2) such that s1 = si, sN+2 = sf , and
∀k ∈ {2, . . . , N+1}, sk ∈ f(χ((k−2)/N))∩f(χ((k−
1)/N). Such a construction is illustrated in Figure 5,
and it concludes the proof of Theorem 3.3, and The-
orem 3.1.

In the two next sections, we present applications
of Theorem 3.1 to more practical problems.

4 Application to vision-based

reactive footstep planning

In this section we apply Theorem 3.1 to the problem
of footstep planning for humanoid robots. In previ-
ous work ([Perrin et al., 2011], [Perrin et al., 2012]),
we used a similar approach, but without establishing
a link with a more general theorem such as Theo-
rem 3.1, and with several significant differences. In
particular, the approach presented in this section is
designed to efficiently use input heightmaps acquired
by stereo vision, while in [Perrin et al., 2011] and
[Perrin et al., 2012] 3D models of the obstacles were
assumed to be known in advance.
In sections 4.1 to 4.4, we show how to apply Theo-

rem 3.1 so as to obtain an efficient algorithm for plan-
ning sequences of steps on heightmaps. Then, in sec-
tion 5, we describe our decentralized architecture for
real experiments of reactive footstep replanning with
the DLR-Biped robot. Obstacle avoidance is safe if
every obstacle is included in the heightmap, but not
all environments can be represented by heightmaps,
and in previous work, we addressed this issue by us-
ing a hybrid bounding box ([Perrin et al., 2012]) to
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Figure 6: On the left the outer and inner disks are
displayed, the latter one being a bit greater than the
width of the foot. As shown on the right, the region
between the inner and outer circles does not neces-
sarily have to be in contact with the ground for a
location to be safe.

perform full-body obstacle avoidance in complex en-
vironments.

4.1 Construction of the map of safe

foot locations

Let us assume that a discretized heightmap of the
environment is known, that is to say a matrix H =
(hi,j)0≤i≤k1,0≤j≤k2

, with hi,j = h(xi, yj) (we use a
fixed resolution along the x and y axes). Our first
objective is to build a map of the locations where the
feet of the robot can safely land. To keep a low dimen-
sionality and simplify the application of Theorem 3.1,
we assume that the robot has circular feet. Since the
real robot (the DLR-Biped) has in fact rectangular
feet, we consider two disks, the inner and outer disks,
as shown in Figure 6. For every location (xa, yb) in
the map, we first find the maximum height hm among
all the values of h(xi, yj) such that (xi, yj) is inside
the outer disk centered at (xa, yb). Then, we only
consider the locations (xi′ , yj′) inside the inner disk
centered at (xa, yb), and we verify that all the heights
h(xi′ , yj′) are above hm − τ , where τ is a very small
threshold determined experimentally. If this property
is verified, we consider the location (xa, yb) as safe,
and associate it with a height close to hm which de-
pends on the values of H inside the inner disk. This
verification ensures us that most of the part of the

Figure 7: On the left is displayed the heightmap of
an environment containing some small stairs. The
points in the purple zone in the map on the right are
the safe foot locations in this environment.

foot inside the inner disk is in contact with an al-
most flat and horizontal region of the ground. Once
this verification has been made for all the locations in
H, we obtain a new matrix M that stores all the safe
landing locations together with the height at which
the foot should land. Figure 7 illustrates the con-
struction of the matrix M for an example heightmap
built from a stereo image pair.

4.2 Application of Theorem 3.1

In this section we explain how we apply Theorem 3.1
to footstep planning. For now, we do not take into
account the height of the footsteps, and use the con-
figuration space C = (SE(2))2 (one element of SE(2)
for each foot, specifying the position of its center and
its orientation). We use Ω = SE(2), and denote el-
ements of SE(2) by triples (x, y, θ). We also define
the “difference” between two angles θ and θ′ as the
value difa(θ, θ

′) = θ′ − θ + 2πn with n ∈ Z minimiz-
ing |θ′ − θ + 2πn|. On C, we use a distance of the
form:

dist(((xl, yl, θl), (xr, yr, θr)), ((x
′
l, y

′
l, θ

′
l), (x

′
r, y

′
r, θ

′
r)))

= A. d2((xl, yl), (x
′
l, y

′
l)) +B. |difa(θl, θ

′
l)|

+A. d2((xr, yr), (xr, y
′
r)) +B. |difa(θr, θ

′
r)|,
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Figure 8: fLEFT (x, y, θ) and fRIGHT (x, y, θ).

with A > 0 and B > 0.
f is a function that maps elements of Ω to sets

of configurations in C. The sets f(x, y, θ) are sim-
ilar to the object Φ defined in [Perrin et al., 2011].
They are based on two subsets of R2, fLEFT (x, y, θ)
and fRIGHT (x, y, θ), which depend on two param-
eters, r and h. fLEFT (x, y, θ) and fRIGHT (x, y, θ)
are symmetric portions of a disk, and are defined as

shown in Figure 8. We also define f̂LEFT (x, y, θ) and
̂fRIGHT (x, y, θ), subsets of SE(2) that depend on two

parameters αin > 0 and αout > 0, as follows:

f̂LEFT (x, y, θ) = {(x, y, β)|(x, y) ∈ fLEFT (x, y, θ)

∧ −
αin

2
≤ difa(θ, β) ≤

αout

2
}

̂fRIGHT (x, y, θ) = {(x, y, β)|(x, y) ∈ fRIGHT (x, y, θ)

∧ −
αout

2
≤ difa(θ, β) ≤

αin

2
}

Finally, we have:

f(x, y, θ) = f̂LEFT (x, y, θ)× ̂fRIGHT (x, y, θ) (1)

It can be shown that for any open free space
F ⊂ C, f verifies the two first assumptions re-
quired for Theorem 3.1 to apply. Indeed, the func-
tion f basically only rotates and translates the fixed

set f̂LEFT (0, 0, 0) × ̂fRIGHT (0, 0, 0); hence, the sets
f(x, y, θ) are modified in a continuous manner, and
consequently δobs ◦ f is continuous. Besides, the sim-
ple geometry of the open sets f(x, y, θ) explains why

for s and s′ very close in SE(2), f(s) ∪ f(s′) and
f(s) ∩ f(s′) are very close in the sense of the Haus-
dorff distance, which implies the second assumption
required by Theorem 3.1.
In the problem of footstep planning, the relation R

should define the stepping capabilities of the robot,
i.e. R(s, s′) should be verified if and only if we can
go from the configuration s to the configuration s′

in one step. Yet, it is more convenient to deal with
sequences of two steps (because both footprints can
be modified), so we will use a relation R such that
R(s, s′) is verified if and only if it is possible to go
from s to s′ with two steps (we fix rules so that
these two steps are unambiguously defined by s and
s′). The relation R will of course not capture the
real stepping capabilities of the robot, but it must be
a conservative approximation. This means that the
steps allowed by R should always be feasible on the
robot, and R should not be too restrictive so as not
to under-exploit the robot capabilities.
For s, s′ ∈ C, we actually define R(s, s′) as follows:

R(s, s′) ≡ ∃ϕ ∈ SE(2), s ∈ f(ϕ) ∧ s′ ∈ f(ϕ) (2)

We do not prove it here, but this definition implies
the validity of the fourth and fifth assumptions re-
quired by Theorem 3.1 (for the fourth assumption, it
is a direct consequence of the definition of R; for the
fifth assumption, it is a consequence of some geomet-
ric properties of f).
So, in order to approximate the stepping capa-

bilites of the robot in a conservative way, we can
tune the parameters r, h, αin and αout. The con-
figurations that can be used by the robot with this
definition of R are described in Figure 9 (with the left
foot used as a reference). Attention must be paid to
the fact that the restrictions imposed by R are not
only on the configurations between steps: they are
also on the transitions between configurations (see
[Perrin et al., 2011] for a visual description of these
restrictions). On Figure 9, we can see that the max-
imum distance between the centers of the feet is r,
while h limits the closeness of the feet. The orien-
tation of the right foot relatively to the left one is
comprised between −αout and αin.

To adjust the values of r, h, αin and αout, we
use an empirical approach. The first constraint is
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that these values should lead to steps without self-
collisions. Due to the particular structure of the legs
of the DLR-Biped, a self-collision can easily occur
when its feet are turned inward, even just slightly:
see Figure 10. For this reason, we use asymmetric
constraints on the foot orientations, and set αin to
1◦ and αout to 15◦.
Furthermore, we sample many configurations of the

robot with both feet on the ground (and at the same
height), obtaining the results shown in Figure 11.
The left foot being used as a reference, each point
represents a position of the center of the right foot,
and for each location, we test several orientations
ranging from −αout to αin. The configuration of the
robot legs is set by inverse kinematics. In Figure 11,
the points inside the region defined by the thick line
segments are the ones for which there exists at least
one orientation so that self-collisions almost occur,
i.e. some body of the left leg is at most at distance
2cm from a body of the right leg. The other points
are “safe” configuration, and we must choose h so
that only safe configurations can occur. That’s why
we set h = 20cm. Besides, the steps allowed by R
should be executed without failure by the control al-
gorithm. This limits the maximum length of steps,
hence it limits r. With the values of αin, αout and
h already set, we test various gaits and various step
lengths to tune r. The value chosen according to
these tests is r = 32cm. Using such parameters leads
to the validity of the third assumption required by
Theorem 3.1: for any (x, y, θ) ∈ Ω = SE(2), and any
s, s′ ∈ f(x, y, θ), it is actually possible to go from
s to s′ with two steps, without falling and without
self-collisions.
Hence, all the assumptions of Theorem 3.1 are ver-

ified, and we can apply it. This means that in order
to look for sequences of steps, we can reason in the
smooth configuration space Ω = SE(2). The new
notion of collision on this space is κΩ, verified for
(x, y, θ) ∈ Ω if and only if there exists a configura-
tion s ∈ C inside f(x, y, θ) such that the centers of
both left and right foot are at safe locations (which
can be checked with the matrix M). Thanks to The-
orem 3.1, we know that any valid continuous path
in Ω can be converted into a finite sequence of valid
steps. Figure 12 illustrates an example of such con-

Figure 9: The configurations allowed by the definition
of R according to equation (2).

Figure 10: Due to the structure of the DLR-Biped
legs, self-collisions are likely to occur when its feet
are turned inward.

10



Figure 11: This shows how the values h and r (see
Figure 9) have been computed for the DLR Biped:
the left foot is kept at the zero position and orien-
tation, and each sample point corresponds to a posi-
tion of the center of the right foot. For each of these
sample points, stances obtained with different orien-
tations of the right foot ranging from −15◦ to 1◦ have
been tested. The points inside the region defined by
the thick line segments are the ones for which some
orientation of the right foot can bring the robot very
close to self-collisions. h must be chosen so as to ex-
clude this region, while r can be set as large as the
walking control algorithm allows it.

version, from a valid continuous path in SE(2) to a
finite sequence of valid steps (for the sake of clarity,
on Figure 12 we use and display inner disks smaller
than the ones corresponding to the dimensions of the
DLR-Biped).

There is however a problem remaining: so far we
haven’t introduced any verification that would pre-
vent the robot from walking on stairs with large step
height. Thus, we add a new test in κΩ: for a config-
uration (x, y, θ) ∈ Ω to be valid (collision-free), there
must not only be a valid configuration s ∈ f(x, y, θ),
there must also be a valid configuration in f(x, y, θ)
such that the minimum height z of both feet locations
(these heights are stored in the matrixM) verifies the

Figure 12: Conversion: from a valid continuous path
in SE(2) to a valid finite sequence of steps.

following property: no point inside the disk of center
(x, y) and radius r + ρ (where ρ is a small positive
constant) is above z+mSTAIR, where mSTAIR > 0 is
an empirically defined constant that depends on the
robot capabilities and roughly denotes the maximum
height of steps on which the robot can walk. This
constraint also prevents the robot from walking close
to high obstacles while still allowing it to step over
small obstacles (of height less than mSTAIR).

4.3 Construction of the matrix MκΩ

The tests κΩ are more complex than usual collision
checks. In this section we describe the construction
of a matrix MκΩ

that stores the results of the tests
for every location of the discretized heightmap.

Let us consider a location (xa, ya) in the discretized
map. For the tests κΩ, the orientation matters, so
the matrix MκΩ

will be 3-dimensional. We use a
1◦ precision, and thus to every location (xa, yb) cor-
respond 360 tests whose results must be stored in
MκΩ

: (xa, yb, 0
◦), (xa, yb, 1

◦), . . . , (xa, yb, 359
◦). For

every location (xa, yb) in the discretized map, we
perform a computation to find all the orientations
β such that κΩ(xa, yb, β) is verified. First of all, we

11



Figure 13: Finding orientations β such that
fRIGHT (xa, yb, β) contains a given safe location.

compute the maximum height zmax inside the disk of
center (x, y) and radius r + ρ (see previous section).
We only consider safe locations that are above height
zmax − mSTAIR. As shown on Figure 13, for every
such safe location l we can easily find the interval of
angles β such that l is inside fRIGHT (xa, yb, β) (resp.
fLEFT (xa, yb, β)). By scanning the locations inside
the disk of center (x, y) and radius r (and outside the
disk of center (x, y) and radius h) in a smart order
(and without considering the locations at a distance
from (xa, ya) less than h), we can manage to com-
pute the union of these intervals in an efficient way.
Afterwards, it is easy to fill the 360 values in MκΩ

associated with the location (xa, ya). After repeating
this process for all the locations in H, we obtain the
full matrix MκΩ

, which can be used to compute the
tests κΩ in constant time.

4.4 Footstep planning simulation

Algorithm 1 sums up the 4 steps of the main loop
of our footstep planning algorithm. After the dis-
cretized heightmap of the environment has been re-
ceived, we first construct the matrix M , and then the
matrix MκΩ

.

The fact that these matrices are constructed at ev-
ery iteration of the loop might seem unefficient, but it
has actually several advantages. The main one is that
it is very well suited for parallel computations (but

Algorithm 1

1: while (true) do
2: Receive the updated heightmap matrix H.
3: Construct the matrix M that stores safe foot

locations.
4: Construct the matrix MκΩ

.
5: If needed, perform motion planning in SE(2),

using MκΩ
for collision checks. Then, use a

greedy approach (similar to the one of the algo-
rithm for flea motion planning: see Section 2)
to convert the continuous path into a finite se-
quence of steps.

6: end while

we do not use parallel computations in the imple-
mentation described in the present paper). Thanks
to the matrix MκΩ

, the complex collision checks κΩ

can be evaluated extremely quickly, and thus, the
path planning itself is very fast (it is done in SE(2),
a space with only 3 dimensions). As a result, the
most time-consuming part of the computation is the
construction of the two matrices M and MκΩ

. Unlike
classical motion planning algorithms which are diffi-
cult to parallelize (see for example [Pan et al., 2010]),
it is straight forward to make the construction of M
and MκΩ

parallel. Besides, the time required for the
construction of M and MκΩ

does not vary a lot, while
the randomness in most motion planning algorithms
makes their duration hard to predict. It follows that
our approach is well suited for systems with hard real-
time constraints.
Figure 14 shows a simulation of footstep planning.

We use a kinematic model of the DLR-Biped, but
there is no physics simulation. The robot starts in
an initial configuration and must find a sequence of
steps toward a goal. The heightmap used is the same
as the one displayed in Figure 7. We resend it at every
iteration of the loop of Algorithm 1, and the matri-
ces M and MκΩ

are rebuilt from scratch every time.
The heightmap is a 200 by 200 matrix, which means
that for MκΩ

, 200 × 200 × 360 = 14, 400, 000 values
have to be computed and filled at each iteration. For
the motion planning, we use the RRT-Connect al-
gorithm [Kuffner and Lavalle, 2000] from the OMPL
library [OMPL, 2010] to find paths in SE(2), and
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Figure 14: A simulation of footstep planning. Below the snapshots are displayed maps of safe locations
(the matrix M) with additional data. In the first row below the snapshots are shown the sets fLEFT (ϕ) ∪
fRIGHT (ϕ) for milestones ϕ ∈ SE(2) chosen by the RRT-Connect algorithm, for a part of the last path
found. In the second row are shown “traces” of these sets along the paths. In the row at the bottom, we
also display the footprints resulting from the greedy conversion to finite sequences of steps.
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then use a greedy approach (as explained in Sec-
tion 2) to convert them into finite sequences of steps.
Thanks to the matrix MκΩ

(collision checks in con-
stant time), the motion planning is very fast, so we
actually repeat this process (RRT-Connect + greedy
conversion) 10 times, and keep the shortest sequence
of steps. To obtain short sequences of steps, some
more efficient strategies are made possible by our
novel continuous approach, such as trajectory opti-
mization on the path found in SE(2) (see for example
[Park et al., 2012]), or kinodynamic planning (see for
example [Sucan and Kavraki, 2008]). The use of such
strategies seems promising but is out of the scope of
this paper.
Simultaneously to motion planning, on the same

computer, a walking pattern generator is simulated
on another thread. It takes as input the sequence
of future steps, which is updated at each iteration.
The communication between the planning and con-
trol threads simulates the communication protocol
used for the experiments on the real DLR-Biped, ex-
plained in the next section.
In the simulation shown on Figure 14, the robot

first has to find its way through small stairs, and after
a few seconds, a bump is artificially introduced in the
heightmap, forcing the robot to quickly find another
path toward the goal. For 10 trials of this simulation
on an Intel(R) Core(TM) i7 1.60GHz CPU, we mea-
sure at each iteration (of the loop of Algorithm 1) the
time required for the construction of the matrices M
and MκΩ

. Figure 15 displays the mean time together
with the standard deviation for those 10 trials, and
only for the first 11 iterations of the loop (after that,
the robot had reached or almost reached the goal in
every trial). The first iteration takes a bit longer (2.4s
in average) because of the initial memory allocation.
The variations of the computation times are mostly
due to the thread that does the walking pattern gen-
eration and the 3D display. For the same 10 trials,
we also measure the time required at every iteration
for motion planning, i.e. the 10 executions of the
RRT-Connect algorithm, each followed by a greedy
conversion of the path found in SE(2) into a finite
sequence of steps. Path planning is performed at ev-
ery iteration, even if the environment has not changed
since the previous iteration. Since the robot is getting

Figure 15: Average time and standard deviation for
the construction of the matrices M and MκΩ

, at each
iteration of the loop of Algorithm 1 (10 trials).

Figure 16: Average time and standard deviation for
motion planning in SE(2) and the conversion to finite
sequences of steps, at each iteration of the loop of
Algorithm 1 (10 trials).

gradually closer to the goal, motion planning becomes
easier, which explains the decreasing tendency of the
computation times that can be seen in Figure 16. At
the first iteration, the robot has to find a sequence
of steps that goes across the small stairs, which ex-
plains why motion planning takes substantially more
time. A second peak can be observed at the third
iteration: it is usually the iteration before which the
bump appears in the heightmap. The average time
for motion planning is always less than 0.33s. This
means that one execution of RRT-Connect followed
by the greedy conversion takes in average no more
than 33ms.
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5 A decentralized software ar-

chitecture for reactive foot-

step planning

In this section we describe the decentralized software
architecture that we used for real experiments on the
DLR-Biped.
Unlike control or vision, motion planning is a task

that can be done at a relatively low frequency, and it
does not need to interact quickly with the robot sen-
sors. For this reason, we perform motion planning on
a computer which is not embedded in the robot. The
advantage of this approach is that it reduces the on-
board computational load and energy consumption.
The drawback is that it would not be suitable if the
robot were to explore an unknown environment with
significant communication delay (or no communica-
tion at all).
We use a total of 3 computers: 2 on the robot, and

one remote computer for the footstep planning. On
the robot, there is one computer for the control, and
one for the vision.
The role of the vision computer is to build the

heightmap matrix H. In the simulation, the size of
this matrix was 200 by 200, but in the real experi-
ment we use a 100 by 100 matrix in order to make
the vision algorithms faster. The resolution is 4cm,
which means that the size of the area covered by the
heightmap is 4m by 4m. Stereo image pairs are fre-
quently obtained by the robot cameras and used to
locally update the values of the heightmap matrix.
In the areas where no data has been acquired yet,
we assume a flat floor. The heightmap is updated
about every second, but this update does not neces-
sarily include data from a stereo image pair obtained
one second before: the delay can vary roughly be-
tween 1 and 3 seconds. Whenever the heightmap file
is being modified, we use a mutex to block any at-
tempt at reading the file. Details on the stereo vision
algorithm can be found in [A.Stelzer et al., 2012].
The control algorithm is based on capture point

dynamics [Englsberger et al., 2011], and its purpose
is to execute a list of steps received from the plan-
ner. Every step has an identifier. The control also
needs to send some information to the planner: it

Figure 17: Communications between the 3 computers
for vision, control and planning.

frequently sends the identifier of what we call the
“last unmodifiable step” (LUS). This step depends
on many parameters of the control algorithm, for ex-
ample the walking speed. If the robot walks slowly,
even the current step might be modifiable. But if the
robot walks fast, it might have to execute at least the
next two steps as they are currently planned. Since
the LUS is difficult to predict precisely, we use a sim-
ple definition verified empirically. Knowing the LUS,
the planner can decide from where (in the sequence
of steps currently planned) to replan when necessary.

When a sequence of steps is found by the plan-
ner, only a constant number of steps is sent to the
control. For example, only the first 7 steps of the
sequence are sent (unless the sequence contains less
than 7 steps). Every time a new list of steps is sent,
both the planner and the controller update the “se-
quence of steps currently planned” (SSCP). During
an iteration of the loop of Algorithm 1, replanning is
done if the SSCP does not reach the current goal, or
if it is not valid anymore in the current environment
described by the matrix H. Since only a few steps are
sent at each iteration, the SSCP grows progressively
toward the goal. The advantage of this is that as the
initial state for the replanning gets closer to the goal,
motion planning becomes easier and better solutions
can be expected in the same amount of time.
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Figure 18: An experiment of reactive footstep planning with the DLR-Biped

Before starting the replanning, the planner decides
which step of the SSCP will define the initial state.
The sequence of steps found must be concatenated
after this step in order to update the SSCP. There-
fore, whenever a new list of steps is sent to the con-
troller, the planner also indicates the identifier of the
step after which the list must be concatenated. Of
course, this identifier must never be before the LUS.
As we have seen in the previous section, the compu-
tation time of our footstep planning algorithm does
not vary a lot, and therefore, knowing approximately
the duration of one step, we can use an appropriate
margin to avoid the case where the SSCP would have
to be modified before the LUS. For example, if the
computation time for the planning is always much
shorter than the duration of one step, it is safe to
always replan only after the step following the LUS.

Figure 17 summarizes the communications be-
tween the 3 computers.

Figure 18 shows the result of an experiment on the
DLR-Biped. On a flat surface, the robot first plans a
sequence of steps toward a goal location. On its way
to the goal, some obstacles are suddenly put in front
of the robot which then updates the heightmap with
the stereo vision algorithm and quickly replans a new
sequence of steps.

6 Application to legged loco-

motion planning for a hexa-

pod robot

In this section, we show that we can also apply The-
orem 3.1 in order to use a continuous approach for
planning the walking motion of a hexapod robot (cf.
Figure 19). Our objective is to make the hexa-
pod walk on uneven terrain with non-gaited loco-
motion planning (which is typically computationally
costly). Again, the uneven terrain is described by a
heightmap matrix which is used to set the height of
the contact positions. We ignore the contact orienta-
tions, so we use (R2)6 as the configuration space (it
is easy to define a heuristic that sets a unique whole-
body configuration from the 6 contact positions; in
particular, we require the robot main body to remain
horizontal). Here is how we define the valid states:
from the heightmap we infer what locations are al-
lowed for individual contacts similarly as in the pre-
vious section (except that we only consider one disk
per leg, not an interior and an exterior disk), and for
a configuration in (R2)6, we require our heuristic to
lead to a valid whole-body configuration that does
not collide with the heightmap.
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Figure 19: At the top: the hexapod in front of an
uneven terrain it just crossed (cf. Figure 20). The
real version of this hexapod does not exist, but its
legs have the same structure as the legs of the DLR-
Biped. At the bottom: the six open disks that restrict
the configurations and steps of the hexapod (each
leg must have its contact with the ground within its
assigned disk).

Figure 20: The motion accross this challenging ter-
rain was planned in 57ms.

Figure 21: The algorithm presented in this section
can be slightly improved so as to allow locomotion
on more complex terrains. The motion accross this
terrain was planned in 0.33s.

We try to apply Theorem 3.1 with the configura-
tion space Ω = SE(2). For a configuration (x, y, θ),
we define f(x, y, θ) as the set of configurations in
(R2)6 such that each contact belongs to an open
disk, as shown on Figure 19 (it is important that
the disks are disjoint). With this assumption, we
first replace κ by heuristic checks: for a configuration
s ∈ f(x, y, θ), κ(s) is verified if the contacts are safe
(i.e. the heightmap is almost flat around their loca-
tions), if the maximum height difference between two
contacts with the ground is less than some threshold,
and if the maximum height of the heightmap in the
“robot zone” (i.e. the convex hull of the contacts) is
not much higher than the height of the contacts. We
consider transitions where all the 6 legs are moved
at the same time, and we say that a transition from
s ∈ (R2)6 to s′ ∈ (R2)6 is allowed if and only if there
exists (x, y, θ) ∈ SE(2) such that s ∈ f(x, y, θ) and
s′ ∈ f(x, y, θ). With this restriction, we can verify
that the conditions of Theorem 3.1 apply (only the
fifth property is difficult to verify), and thus we can
use the equivalence to convert our problem of loco-
motion planning into a continuous motion planning
in SE(2) (we use again the library OMPL and the al-
gorithm RRT-Connect to perform motion planning).
Once the conversion of a continuous path is done, we
obtain a finite sequence of transitions for which the
6 foot locations are changed at each transition. It
is not difficult to convert it into a sequence of feasi-
ble transitions where at most 3 feet are moved at the
same time (but sometimes 2, or just one).
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This original technique for legged locomotion plan-
ning is convenient and fast: in the example described
in Figure 20 where the hexapod must go across an
uneven and challenging terrain, the whole planning
(continuous planning and two-stage conversion into
a discrete sequence of steps) was done in 57ms on
an Intel(R) Core(TM) i7 1.60GHz CPU. The algo-
rithm can even be improved so as to change the hexa-
pod’s orientation according to the current height of
its legs, which enables it to cross even more challeng-
ing terrains. The motion accross the terrain shown
on Figure 21 was planned in 0.33s. However, we
cannot directly use the same method to solve plan-
ning problems as complex as the ones considered in
[Hauser et al., 2006], but it is an interesting compro-
mise between gaited methods and more complex ap-
proaches such as [Hauser et al., 2006].

7 Conclusion

The main contribution of this paper is to define a set
of conditions that make discrete motion planning for
legged robot equivalent to continuous motion plan-
ning in a dedicated configuration space using the no-
tion of weak-collision freeness. This equivalence pro-
vides a new way to reason about planning discrete
actions in continuous spaces.

We have successfully applied the technique to var-
ious systems and it has revealed rather efficient in
terms of computation. Furthermore, we believe that
it can have applications beyond footstep or multi-
contact planning, such as for example in dextrous
manipulation or hybrid systems.
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