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Extreme values for characteristic radii of a
Poisson-Voronoi tessellation

Pierre Calka∗and Nicolas Chenavier†

March 29, 2013

Abstract
A homogeneous Poisson-Voronoi tessellation of intensity γ is observed in a convex body W . We associate to

each cell of the tessellation two characteristic radii: the inradius, i.e. the radius of the largest ball centered at
the nucleus and included in the cell, and the circumscribed radius, i.e. the radius of the smallest ball centered
at the nucleus and containing the cell. We investigate the maximum and minimum of these two radii over all
cells with nucleus in W . We prove that when γ → ∞, these four quantities converge to Gumbel or Weibull
distributions up to a rescaling. Moreover, the contribution of boundary cells is shown to be negligible. Such
approach is motivated by the analysis of the global regularity of the tessellation. In particular, consequences of
our study include the convergence to the simplex shape of the cell with smallest circumscribed radius and an
upper-bound for the Hausdorff distance between W and its so-called Poisson-Voronoi approximation.

Keywords: Voronoi tessellations; Poisson point process; random covering of the sphere; extremes; boundary
effects.

AMS 2010 Subject Classifications: 60D05 . 62G32 . 60F05 . 52A22

1 Introduction
Let χ be a locally finite subset of Rd endowed with its natural norm | · |. The Voronoi cell of nucleus x ∈ χ is the
set

Cχ(x) = {y ∈ Rd, |y − x| ≤ |y − x′|, x 6= x′ ∈ χ}.

When χ = Xγ is a homogeneous Poisson point process of intensity γ, the family {CXγ (x), x ∈ Xγ} is the so-
called Poisson-Voronoi tessellation. Such model is extensively used in many domains such as cellular biology [32],
astrophysics [33], telecommunications [2] and ecology [36]. For a complete account, we refer to the books [30], [37],
[27] and the survey [6].

To describe the mean behaviour of the tessellation, the notion of typical cell is introduced. The distribution of
this random polytope can be defined as

E[f(Cγ)] = 1
γλd(B)E

 ∑
x∈Xγ∩B

f(CXγ (x)− x)


∗Postal address: Université de Rouen, LMRS, avenue de l’Université, BP 12 76801 Saint-Etienne-du-Rouvray cedex, France. E-mail:

pierre.calka@univ-rouen.fr
†Postal address: Université de Rouen, LMRS, avenue de l’Université, BP 12 76801 Saint-Etienne-du-Rouvray cedex, France. E-mail:

nicolas.chenavier@etu.univ-rouen.fr

1



where f : K d → R is any bounded measurable function on the set of convex bodies K d (endowed with the
Hausdorff topology), λd is the d-dimensional Lebesgue measure and B is a Borel subset of Rd with finite volume
λd(B) ∈ (0,∞). Equivalently, Cγ is the Voronoi cell CXγ∪{0}(0) when we add the origin to the Poisson point
process: this fact is a consequence of Slivnyak’s Theorem, see e.g. Theorem 3.3.5 in [37]. The study of the typical
cell in the literature includes mean values calculations [26], second order properties [11] and distributional estimates
[5], [3], [29]. A long standing conjecture due to D.G. Kendall about the asymptotic shape of large typical cell is
proved in [15].

To the best of our knowledge, extremes of geometric characteristics of the cells, as opposed to their means, have
not been studied in the literature up to now. In this paper, we are interested in the following problem: only a part
of the tessellation is observed in a convex body W (i.e. a convex compact set with non-empty interior) of volume
λd(W ) = 1 where λd denotes the Lebesgue measure in Rd. Let f : K d → R be a measurable function, e.g. the
volume or the diameter of the cells. What is the limit behaviour of

Mf (γ) = max
x∈Xγ∩W

f(CXγ (x))

when γ goes to infinity? By scaling invariance of Xγ , it is the same as considering a tessellation with fixed intensity
and observed in a window Wρ := ρW with ρ→∞. We give below some applications of such approach.

First, the study of extremes describes the regularity of the tessellation. For instance, in finite element method,
the quality of the approximation depends on some consistency measurements over the partition, see e.g. [18].

Another potential application field is statistics of point processes. The key idea would be to identify a point
process from the extremes of its underlying Voronoi tessellation. A lot of inference methods have been developed
for spatial point processes [28]. A comparison based on Voronoi extremes may or may not provide stronger results.
At least, the regularity seems to discriminate to some extent to some point processes (see for instance a comparison
between a determinantal point process and a Poisson point process in [23]).

A third application is the so-called Poisson-Voronoi approximation i.e. a discretization of a convex body W by
the following union of Voronoi cells

VXγ (W ) =
⋃

x∈X∩W
CXγ (x).

The first breakthrough is due to Heveling and Reitzner [14] and includes variance estimates of the volume of
symmetric difference. However, the Hausdorff distance between the convex body and its approximation has not
been studied yet. It is strongly connected to the maximum of the diameter of the cells which intersect the boundary
of ∂W . We discuss this in section 4 and prove a rate of convergence of the approximation to the convex body with
a suitable assumption on W .

Concretely, we are looking for two parameters af (γ) and bf (γ) such that

af (γ)Mf (γ) + bf (γ) D−→
γ→∞

Y

where Y is a non degenerate random variable and D−→ denotes the convergence in distribution. Up to a normaliza-
tion, the extreme distributions of real random variables which are iid or with a mixing property are of three types:
Fréchet, Gumbel or Weibull (see e.g. [24] and [21]). More about extreme value theory can be found in the reference
books by De Haan & Ferreira [8] and by Resnick [35]. Some extremes have been studied in stochastic geometry,
for instance the maximum and minimum of inter-point distances of some point processes (see [31], [25] and [16])
or the extremes of particular random fields [20] but, to the best of our knowledge, nothing has been done for
random tessellations. In our framework, the general theory cannot directly be applied for several reasons: unknown
distribution of the characteristic for one fixed cell, dependency between cells and boundary effects. Moreover, the
exceedances can be realized in clusters. For example, when the distance between the boundary of the cell and its
nucleus is small, this is the same for one of its neighbors. Such clusters lead to the notion of extremal index, which
was introduced by Leadbetter in [22], and that we will study in a future work.
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In this paper, we are interested in the characteristic radii i.e. inscribed and circumscribed radii of the Voronoi
cell CXγ (x) defined as

r(CXγ (x)) = max{r ≥ 0, B(x, r) ⊂ CXγ (x)} and R(CXγ (x)) = min{R ≥ 0, B(x,R) ⊃ CXγ (x)}

where B(x, r) is the ball of radius r centered at x. Two reasons led us to the study of these quantities. First, the
distribution tails of the inradius and circumscribed radius of the typical cell are easier to deal with [4] compared to
other characteristics such as the volume or the number of hyperfaces. Secondly, knowing these two radii provides a
better understanding of the cell shape since the boundary of CXγ (x) is included in the annulus B(x,R(CXγ (x)))−
B(x, r(CXγ (x))). We consider the extremes

rmax(γ) = max
x∈Xγ∩W

r(CXγ (x)), rmin(γ) = min
x∈Xγ∩W

r(CXγ (x))

Rmax(γ) = max
x∈Xγ∩W

R(CXγ (x)), Rmin(γ) = min
x∈Xγ∩W

R(CXγ (x)).
(1)

In the following theorem, we derive the convergence in distribution of these quantities over cells with nucleus in W .

Theorem 1. Let Xγ be a Poisson point process of intensity γ and W a convex body of volume 1 in Rd. Then

P
(
2dκdγrmax(γ)d − log(γ) ≤ t

)
−→
γ→∞

e−e
−t
, t ∈ R, (2a)

P
(
2d−1κdγ

2rmin(γ)d ≥ t
)
−→
γ→∞

e−t, t ≥ 0, (2b)

P
(
κdγRmax(γ)d − log

(
α1γ(log γ)d−1) ≤ t) −→

γ→∞
e−e

−t
, t ∈ R, (2c)

P(α2κdγ
(d+2)/(d+1)Rmin(γ)d ≥ t) −→

γ→∞
e−t

d+1
, t ≥ 0, (2d)

where α1 and α2 are given in (43) and (17) and κd = λd(B(0, 1)).

The limit distributions are of type II and III and do not depend on the shape ofW . One can note that the ratios
rmax(γ)/rmin(γ) and Rmax(γ)/Rmin(γ) are of respective orders (γ log γ)1/d and (γ1/(d+1) log γ)1/d. This quantifies to
some extent the irregularity of the Poisson-Voronoi tessellation. Moreover, the ratio rmax(γ)/Rmax(γ) is bounded.
It suggests that large cells tend to be spherical around the nucleus. This fact seems to confirm the D.G. Kendall’s
conjecture.

As it is written, Theorem 1 is not applicable for concrete data. Indeed, in practice, the only cells which can be
measured are included in the window. The following proposition addresses this problem.

Proposition 2. The extremes of characteristic radii over all cells included in W or over all cells intersecting ∂W
have the same limit distributions as rmax(γ), rmin(γ), Rmax(γ) and Rmin(γ).

The convergences are illustrated in Figure 1 for the cells which are included inW = [0, 1]2. For sake of simplicity,
the Poisson point process has been realized only in W . Because of Proposition 2 and related arguments, this does
not affect the distribution over cells included in W . Simulations suggest that the rates of convergence are not the
same for all these quantities. Indeed, in a future work, we will show that the rate is of the order of γ−1, γ−1/4 and
γ−1/6 for rmin(γ), rmax(γ) and Rmin(γ) respectively.

All results of Theorem 1 use geometric interpretations. For the circumscribed radii Rmax(γ) and Rmin(γ), we
write the distributions as covering probabilities of spheres. The inscribed radii can be interpreted as interpoint
distances. A study of the extremes of these distances has been done in several works such as [16] and [13]. For
sake of completeness, we have rewritten these results in our setting in particular because the boundary effects are
highly non trivial. Convergences (2a) and (2d) could be obtained by considering underlying random fields and using
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(a) (b) (c) (d)

Figure 1: Empirical densities of the extremes based on 3500 simulations of PVT in 2D with γ = 10000, for the cells
included in W = [0, 1]2, on Matlab c©. (a) Cell maximizing the inradius. (b) Cell minimizing the inradius. (c) Cell
maximizing the circumradius. (d) Cell minimizing the circumradius.

methods inherited for [1] and [39]. However, this approach does not provide (2b) and (2c). We will develop this
idea in a future work and deduce some rates of convergence.

The paper is organized as follows. In section 2, we provide some preliminary result which shows that the
boundary cells are negligible and implies Proposition 2. In sections 3, 4 and 5, proofs of (2d), (2a), (2c) and (2b)
are respectively given. Section 3 requires a technical lemma about deterministic covering of the sphere by caps
which is proved in appendix. Section 4 contains an application of (2c) to the Hausdorff distance between W and its
Poisson-Voronoi approximation. In section 5, we get a specific treatment of boundary effects which is more precise
than in section 2.

In the rest of the paper, c denotes a generic constant which does not depend on γ but may depend on other
quantities. The term uγ denotes a generic function of t, dependending on γ, which is specified at the beginning of
sections 3,4 and 5.

2 Preliminaries on boundary effects
In this section, we show that the asymptotic behaviour of an extreme is in general not affected by boundary cells.
We apply that result directly to the extremes of characteristic radii in order to show that Theorem 1 implies
Proposition 2.

Let f : Kd → R be a k-homogeneous measurable function, 0 ≤ k ≤ d (i.e. f(λC) = λkf(C) for all λ ∈ R+ and
C ∈ Kd). We consider for any l ∈ R

M b
f (γ, l) = max

x∈Xγ ,CXγ (x)∩W1+l 6=∅
f(CXγ (x)),

Mf (γ, l) = max
x∈Xγ∩W1+l

f(CXγ (x)),

M i
f (γ, l) = max

x∈Xγ ,CXγ (x)⊂W1+l
f(CXγ (x)),
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where W1+l = (1 + l)W . When l = 0, these maxima are simply denoted by M b
f (γ), Mf (γ) and M i

f (γ). We define,
for all ε > 0, a function lγ as

lγ = γ−(1−ε)/d. (4)

Under suitable conditions, the following proposition shows that M b
f (γ), Mf (γ) and M i

f (γ) satisfy the same conver-
gence in distribution.

Proposition 3. Let Y be a random variable and aγ , bγ two functions such that

aγ
aγ±

−→
γ→∞

1, lγbγ −→
γ→∞

0 and
bγaγ± − aγbγ±

aγ
−→
γ→∞

0 (5)

with γ+ = (1 + lγ)kγ and γ− = (1− lγ)kγ for a certain ε. Then

aγM
b
f (γ) + bγ

D−→
γ→∞

Y ⇐⇒ aγMf (γ) + bγ
D−→

γ→∞
Y ⇐⇒ aγM

i
f (γ) + bγ

D−→
γ→∞

Y.

Before proving Proposition 3, we need an intermediary result due to Heinrich, Schmidt and Schmidt (Lemma 4.1
of [12]) which shows that, with high probability, the cells which intersect ∂W have nucleus close to ∂W . Actually,
they showed it for any stationary tessellation of intensity 1 which is observed in a window ρW with ρ → ∞. For
sake of completeness, we rewrite their result in a more explicit version for a Poisson-Voronoi tessellation.

Lemma 1. (Heinrich, Schmidt and Schmidt) Let us denote by Aγ and Bγ the events

Aγ =

 ⋂
x∈Xγ

{CXγ (x) ∩W = ∅} ∪ {x ∈W1+lγ}

 and Bγ =

 ⋂
x∈Xγ

{
CXγ (x) ⊂W

}
∪ {x 6∈W1−lγ}


where lγ is given in (4). Then P(Aγ) and P(Bγ) converge to 1 as γ goes to infinity.

Proof of Lemma 1. In [12], it is shown that

P

({ ⋂
x∈X1

{CX1(x) ∩Wρ = ∅} ∪ {x ∈Wρ+q(ρ)}

}
∩

{ ⋂
x∈X1

{CX1(x) ⊂Wρ} ∪ {x 6∈Wρ−q(ρ)}

})
−→
γ→∞

1 (6)

where q(ρ) is the solution of the functional equation

ρd = H(qd(ρ)).

The function H : R+ → R+ is convex, strictly increasing on its support (xo,∞) (for some x0 ≥ 0), such that H(x)/x
is non-decreasing for x > 0, limH(x)/x = ∞ and E[H(Dd(C1))] < ∞ where D(C1) is the diameter of the typical
cell.

In the case of a Poisson-Voronoi tessellation, q(ρ) can be made explicit. Indeed, we can show that all moments
of D(C1) exist since D(C1) ≤ 2R(C1) and R(C1) is shown to have an exponentially decreasing tail in any dimension
by an argument similar to Lemma 1 of [9]. Consequently, for a fixed ε ∈ (0, 1), the functions H and q can be chosen
as H(x) = x1/ε and q(ρ) = ρε. Using the scaling property of Poisson point process,

X1 ∩Wρ
D= γ1/d(Xγ ∩W ) and X1 ∩Wρ±q(ρ)

D= γ1/d(Xγ ∩W1±lγ )

where γ = ρd and lγ = γ−(1−ε)/d. We deduce Lemma 1 from (6). �
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Proof of Proposition 3. First equivalence: Let us assume that aγM b
f (γ) + bγ converges in distribution to Y. On

the event Aγ , ∀x ∈ Xγ , CXγ (x) ∩W 6= ∅ =⇒ x ∈W1+lγ . Hence

M b
f (γ) ≤Mf (γ, lγ) ≤M b

f (γ, lγ). (7)

Because of Lemma 1, it is enough to show the convergence in distribution of the random variables conditionally on
Aγ . Thanks to the scaling property of Poisson point process and the k-homogeneity of f

M b
f (γ, lγ) D= (1 + lγ)kM b

f (γ+) (8)

with γ+ = (1 + lγ)kγ. We deduce from (7),(8) and (5) that aγMf (γ, lγ) + bγ converges in distribution to Y . By the
scaling property, we get

aγMf (γ) + bγ
D−→

γ→∞
Y. (9)

Conversely, if (9) holds then, using the fact that

Mf (γ) ≤M b
f (γ) ≤Mf (γ, lγ) D= (1 + lγ)Mf (γ+)

and proceeding along the same lines, we get aγM b
f (γ) + bγ

D−→
γ→∞

Y .
Second equivalence: On the event Bγ , ∀x ∈ Xγ , x ∈W1−lγ =⇒ CXγ (x) ⊂W . We prove the second equivalence

as previously noting that, conditionally on Bγ

M i
f (γ,−lγ) ≤Mf (γ,−lγ) ≤M i

f (γ) ≤Mf (γ). (10)

�

3 Proof of (2d) and (2a)

Proof of (2d). Let t ≥ 0 be fixed. We denote by uγ the following function:

uγ = uγ(t) =
(
α−1

2 κ−1
d γ−(d+2)/(d+1)t

)1/d
(11)

where α2 is given by (17). Our aim is to prove that P(Rmin(γ) ≥ uγ) converges to e−td+1 where Rmin(γ) has been
defined in (1). The main idea is to deduce the asymptotic behaviour of Rmin(γ) from the study of finite dimensional
distributions (R(CXγ∪{xK}(x1)), . . . , R(CXγ∪{xK}(xK)) for all {xK} = {x1 . . . , xK} and K ≥ 1. To do this, we
write a new adapted version of a lemma due to Henze (see Lemma p. 345 in [13]) in a context of Poisson point
process.

Lemma 2. Let f : Kd → R, F : Kd → R be two measurable functions and A a Borel subset of R. Let us assume
that for any K ≥ 1,

γK
∫
WK

P
(
∀i ≤ K, f(CXγ∪{xK}(xi)) < uγ , F (CXγ∪{xK}(xi)) ∈ A

)
dxK −→

γ→∞
λK (12)

where dxK = dx1 · · · dxK . Then

P

(
min

x∈Xγ∩W,F (CXγ (x))∈A
f(CXγ (x)) ≥ uγ

)
−→
γ→∞

e−λ.
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Proof of Lemma 2. Let K be a fixed integer. The proof is close to the proof of Henze’s Lemma and uses
Bonferroni inequalities: one can show that if Ax,Xγ is an Xγ-measurable event for all x ∈ Xγ ∩W , then

2K∑
k=0

(−1)k+1

k! E

 ∑
(x1,...,xk)6=∈Xγ∩W

1Ax1,Xγ
. . . 1Axk,Xγ

 ≤ P

 ⋃
x∈Xγ∩W

Ax,Xγ


≤

2K+1∑
k=0

(−1)k+1

k! E

 ∑
(x1,...,xk)6=∈Xγ∩W

1Ax1,Xγ
. . . 1Axk,Xγ

 . (13)

where (x1, . . . , xk)6= means that (x1, . . . , xk) is a k-tuple of distinct points. Applying (13) to

Ax,Xγ = {f(CXγ (x)) < uγ} ∩ {F (CXγ (x)) ∈ A},

from Slivnyak’s formula (see Corollary 3.2.3 in [37]), we obtain

2K+1∑
k=0

(−1)k

k! γk
∫
Wk

P
(
∀i ≤ K, f(CXγ∪{xK}(xi)) < uγ , F (CXγ∪{xK}(xi)) ∈ A

)
dxk

≤ P

(
min

x∈Xγ∩W,F (CXγ (x))∈A
f(CXγ (x)) ≥ uγ

)

≤
2K∑
k=0

(−1)k

k! γK
∫
Wk

P
(
∀i ≤ K, f(CXγ∪{xK}(xi)) < uγ , F (CXγ∪{xK}(xi)) ∈ A

)
dxk.

From (12), we obtain

2K+1∑
k=0

(−1)k

k! λk ≤ lim inf
γ→∞

P

(
min

x∈Xγ∩W,F (CXγ (x))∈A
f(CXγ (x)) ≥ uγ

)

≤ lim sup
γ→∞

P

(
min

x∈Xγ∩W,F (CXγ (x))∈A
f(CXγ (x)) ≥ uγ

)
≤

2K∑
k=0

(−1)k

k! λk.

We conclude the proof by taking K →∞. �

We apply Lemma 2 to f(CXγ (x)) = R(CXγ (x)). The function F (CXγ (x)) = Fd−1(CXγ (x)) denotes the number
of hyperfaces of the cell CXγ (x). In all the proof, the event considered is A = R. We notice that the choice of the
function F is of no importance here but will be essential in the proof of Propositions 4 and 5. From Lemma 2, it
is sufficient to study the limit behaviour of

γK
∫
WK

P
(
∀i ≤ K,R(CX∪{xK}(xi)) < uγ

)
dxK (14)

for all integer K. We divide the proof into two parts.

Step 1 When K = 1, using the stationarity of Xγ and the fact that λd(W ) = 1, we show that the integral (14)
is γP(R(CXγ∪{0}(0)) < uγ). As in [6] section 5.2.3, we can reinterpret the distribution function of R(CXγ∪{0}(0))
as a covering probability to get

γP(R(CXγ∪{0}(0)) < uγ) = γ

∞∑
k=0

e−2dκdγudγ
(2dκdγudγ)k

k! pk (15)

7



where pk is the probability to cover the unit sphere with k independent spherical caps such that their normalized
radii are distributed as dν(θ) = dπ sin(πθ) cosd−1(πθ)1[0,1/2](θ)dθ. The equality comes from the fact that

R(CXγ∪{0}(0)) < uγ ⇐⇒ the family {Ay(0), y ∈ Xγ} covers S(0, uγ)
⇐⇒ the family {Ay(0), y ∈ Xγ ∩B(0, 2uγ)} covers S(0, uγ)

where

Ay(x) = S(x, uγ) ∩H+
y (x) (16)

and H+
y (x) is the half-space which contains y and delimited by the bisecting hyperplane of [x, y].

Figure 2: Interpretation of the circumscribed radius as a covering of sphere.

We denote by

α2 :=
(

2d(d+1)

(d+ 1)!pd+1

)1/(d+1)

> 0. (17)

For example, when d = 2, α2 =
( 5

12 −
4
π2

)1/3.
Since pk = 0 for all k ≤ d, (15) gives

γP(R(CXγ∪{0}(0)) < uγ) = γ
(2dκdγudγ)d+1

(d+ 1)! e−2dκdγudγpd+1 + γ

∞∑
k=d+2

e−2dκdγudγ
(2dκdγudγ)k

k! pk.

The first term converges to td+1 from (11) and (17). The second term is negligible since γ(γudγ)d+2 = c · γ−1/(d+1)

converges to 0 as γ tends to infinity. This shows that

γ

∫
W

P(R(CXγ∪{x}(x)) < uγ)dx −→
γ→∞

td+1. (18)

8



Step 2 When K ≥ 2, we use the same interpretation as in step 1: for all xK = (x1, . . . , xK) ∈WK , and i ≤ K

R(CXγ∪{xK}(xi)) < uγ ⇐⇒ the family {Ay(xi), y ∈ Xγ ∪ {xK} − {xi}} covers S(xi, uγ)
⇐⇒ the family {Ay(xi), y ∈ (Xγ ∪ {xK} − {xi}) ∩B(xi, 2uγ)} covers S(xi, uγ).

Hence, writing the previous event as “S(xi, uγ) covered”, we have

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
= P

⋂
i≤K

{S(xi, uγ) covered}

 . (19)

We have now to consider the spherical caps induced by both the points xj , j 6= i and the points from Xγ . For
all xK = (x1, . . . , xK) ∈ WK , we denote by nl(xK) the number of connected components of

⋃K
i=1 B(xi, 2uγ) with

exactly l balls. Given n1, . . . , nK such that
∑K
l=1 lnl = K, we define

WK(n1, . . . , nK) = {xK ∈WK , nl(xK) = nl for all l ≤ K}. (20)

Let us note that the subsets WK(n1, . . . , nK), with
∑K
l=1 lnl = K, partition WK . We then deal with two cases.

1. If B(xi, 2uγ) ∩ B(xj , 2uγ) = ∅ for all i 6= j ≤ K i.e. xK ∈ WK(K, · · · , 0), the events considered in the
right-hand side of (19) are independent.

2. If not, we are going to show that the contribution of such xK in (14) is negligible.

More precisely, we write the integral (14) in the following way

γK
∫
WK

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK = γK

∫
WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK

+ γK
∫
WK−WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK . (21)

Step 2.1 (Case of disjoint balls) For all xK = (x1, . . . , xK) ∈WK(K, 0, . . . , 0), we obtain from (19) and (18)

γKP
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
=

K∏
i=1

γP(R(CXγ∪{xi}(xi)) < uγ) −→
γ→∞

(td+1)K . (22)

Moreover, λdK(WK(K, 0, . . . , 0)) −→
γ→∞

1. This shows that

γK
∫
WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK −→

γ→∞
(td+1)K . (23)

Step 2.2 (Case of non disjoint balls) In this step, we show that the second integral in the right-hand side of
(21) converges to 0. In particular, we study the limit behaviour of the integrand of (14) for all xK = (x1, . . . , xK) ∈
WK(n1, . . . , nK) with (n1, . . . , nK) 6= (K, 0, . . . , 0). The number of points of Xγ ∩

⋃K
i=1 B(xi, 2uγ) is Poisson

distributed of mean γλd
(⋃K

i=1 B(xi, 2uγ)
)
. From (19), we deduce that

γKP
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
= γK

∞∑
k=0

(
γλd

(⋃k
i=1 B(xi, 2uγ)

))k
k! e

−γλd
(⋃k

i=1
B(xi,2uγ)

)
× pk(x1, . . . , xK). (24)
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The term pk(x1, . . . , xK) denotes the probability to cover the spheres S(xi, uγ), i = 1 . . .K, with the spherical caps
{Axj (xi), i 6= j ≤ K} and {Aym(xi),m ≤ k}, defined in (16), where y1, . . . , yk are k independent points which are
uniformly distributed in

⋃K
i=1 B(xi, 2uγ). This probability satisfies the following property:

Lemma 3. Let xK = (x1, . . . , xK) ∈WK(n1, . . . , nK) and

N =
K∑
l=1

(d+ 1)nl. (25)

Then, for all k < N

pk(x1, . . . , xK) = 0. (26)

The proof of Lemma 3 is postponed to the appendix. From (24), (26) and the trivial inequalities 0 ≤
pk(x1, . . . , xK) ≤ 1 and λd

(⋃k
i=1 B(xi, 2uγ)

)
≤ k2dκdudγ , we deduce that there exists a constant c, depending

on K, such that

γKP
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
≤ γK

∞∑
k=N

(k2dκdγudγ)k

k! ∼
γ→∞

c · γK(γudγ)N

where φ(γ) ∼
γ→∞

ψ(γ) means φ(γ)
ψ(γ) −→γ→∞ 1. Using (11), (25) and the fact that K =

∑K
l=1 lnl, we obtain for γ large

enough

γKP
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
≤ c ·

K∏
l=2

γ(l−1)nl . (27)

Moreover, using the fact that λdK(WK(n1, . . . , nK)) ≤ c ·
∏K
l=2(udγ)(l−1)nl = c ·

∏K
l=2 γ

− (d+2)(l−1)
d+1 nl and (27), we

get

γK
∫
WK−WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK

=
∑

γK
∫
WK(n1,...,nK)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK ≤ c ·

∑ K∏
l=2

γ−
l−1
d+1nl . (28)

The sum above runs over all the K-tuples (n1, . . . , nK) such that
∑K
l=1 lnl = K and n1 6= K. Since (n1, . . . , nK) 6=

(K, 0, . . . , 0), there exists l ≥ 2 such that nl 6= 0. Consequently, we get from (28)

γK
∫
WK−WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK = O

(
γ−1/(d+1)

)
(29)

where φ(γ) = O(ψ(γ)) means that φ(γ)
ψ(γ) is bounded.

Conclusion From (23) and (29), we deduce that for all K ≥ 1

γK
∫
WK

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ

)
dxK −→

γ→∞
(td+1)K .

We then apply Lemma 2, with A = R, to conclude that

P (Rmin(γ) ≥ uγ) −→
γ→∞

e−t
d+1

.

10
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The cell which minimizes the circumscribed radius is asymptotically a simplex. To show it, we denote by

R′min(γ) = min
x∈Xγ∩W,Fd−1(CXγ (x))≥d+2

R(CXγ (x))

where Fd−1(CXγ (x)) is the number of hyperfaces of CXγ (x). The order of convergence of R′min(γ) is greater than
uγ according to the following proposition.

Proposition 4. Let Xγ be a Poisson point process of intensity γ and W a convex body of volume 1. Then, for all
t ≥ 0,

P
(
α2κdγ

(d+2)/(d+1)R′dmin(γ) ≥ t
)
−→
γ→∞

1.

Proof of Proposition 4. We apply Lemma 2 to f(CXγ (x)) = R(CXγ (x)) and A = [d+ 2,∞). We then study the
finite dimensional distributions i.e.

γK
∫
WK

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ , Fd−1(CXγ∪{xK}(xi)) ≥ d+ 2

)
dxK (30)

for all K ≥ 1. When K = 1, the integrand of (30) is

γP
(
R(CXγ∪{0}(0)) < uγ , Fd−1(CXγ∪{0}(0)) ≥ d+ 2

)
≤ γP

(
R(CXγ∪{0}(0)) < uγ ,#(Xγ ∩B(0, 2uγ)) ≥ d+ 2

)
= γ

∞∑
k=d+2

(2dκdγudγ)k

k! e−2dκdγudγpk ∼
γ→∞

c · γ−1/(d+1).

We deduce that γ
∫
W

P
(
R(CXγ∪{x}(x)) < uγ , Fd−1(CXγ∪{x}(x)) ≥ d+ 2

)
converges to 0. More generally, for all

K ≥ 1, we get

γK
∫
WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ , Fd−1(CXγ∪{xK}(xi)) ≥ d+ 2

)
dxK −→

γ→∞
0. (31)

Moreover, from (29)

γK
∫
WK−WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < uγ , Fd−1(CXγ∪{xK}(xi)) ≥ d+ 2

)
dxK −→

γ→∞
0. (32)

From (31), (32) and Lemma 2 applied to A = [d+ 2,∞), we get

P (R′min(γ) ≥ uγ) −→
γ→∞

1.

�

Corollary 1. Let Xγ be a Poisson point process of intensity γ and W a convex body of volume 1. Then

P
(
∀x ∈ Xγ , R(CXγ (x)) = Rmin(γ) =⇒ Fd−1(CXγ (x)) = d+ 1

)
−→
γ→∞

1.

Proposition 4 implies Corollary 1 but does not provide the exact order of R′min(γ). Nevertheless, when d = 2,
it can be made explicit. The key idea is contained in Lemma 4 and cannot unfortunately be extended to higher
dimensions.
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Proposition 5. Let Xγ be a Poisson point process of intensity γ and W a convex body of volume 1 in R2. Then,
for all t ≥ 0,

P
(
α′2πγ

5/4R′2min(γ) ≥ t
)
−→
γ→∞

e−t
4

where α′2 is defined in (35).

Proof of Proposition 5. Let t ≥ 0 be fixed and let us denote by

u′γ = u′γ(t) =
(
α′−1

2 π−1γ−5/4t
)1/2

(33)

where α′2 is specified in (35). As in the proof of (2d), we interpret the distribution function of R′min(γ) as
a covering probability of the circle. Let µk be the probability that S(0, u′γ) is covered with the circular caps
{Aym(0),m ≤ k} where y1, . . . , yk are k independent points which are uniformly distributed in B(0, 2u′γ) and such
that F1(C{0}∪{yk}(0)) ≥ 4 i.e.

P
(
R(CXγ∪{0}(0)) < u′γ , F1(CXγ∪{0}(0)) ≥ 4

)
=
∞∑
k=4

1
k! (4πγu

′2
γ )ke−4πγu′2γ µk. (34)

The constant α′2 is defined as

α′2 =
(

32
3 µ4

)1/4
> 0. (35)

We are going to apply Lemma 2 to the event A = [4,∞) replacing uγ by u′γ . To do it, we need to get the limit
behaviour of

γK
∫
WK

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < u′γ , F1(CXγ∪{xK}(xi)) ≥ 4

)
dxK (36)

for all K ≥ 1.
When K = 1, from (34) and (33), we deduce that γ

∫
W

P
(
R(CXγ∪{x}(x)) < u′γ , Fd−1(CXγ∪{x}(x))) ≥ 4

)
dx

converges to t4. More generally, for all K ≥ 1,

γK
∫
WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < u′γ , F1(CXγ∪{xK}(xi)) ≥ 4

)
dxK −→

γ→∞
t4K . (37)

Otherwise, for all xK ∈WK(n1, . . . , nK) with (n1, . . . , nK) 6= (K, 0, . . . , 0), the integrand of (36) is

γKP
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < u′γ , F1(CXγ∪{xK}(xi)) ≥ 4

)
= γK

∞∑
k=0

(
γλd

(⋃k
i=1 B(xi, 2u′γ)

))k
k! e

−γλd
(⋃k

i=1
B(xi,2u′γ)

)
× µk(x1, . . . , xK). (38)

The term µk(x1, . . . , xK) denotes the probability that S(xi, u′γ) is covered with the spherical caps {Axj (xi), i 6=
j ≤ K} and {Aym(xi),m ≤ k} where y1, . . . , yk are k independent points which are uniformly distributed in⋃K
i=1 B(xi, 2u′γ) and such that F1(CXγ∪{xK}(xi)) ≥ 4 for all i ≤ K. This probability satisfies the following

property:

12



Lemma 4. Let xK = (x1, . . . , xK) ∈WK(n1, . . . , nK) ⊂ R2 and

N ′ = 4n1 + 4n2 +
K∑
l=3

3nl. (39)

Then, for all k < N ′

µk(x1, . . . , xK) = 0. (40)

The proof of Lemma 4 is postponed to the appendix. From (38), (40) and (39), we deduce for γ large enough
that

γKP
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < u′γ , F1(CXγ∪{xK}(xi)) ≥ 4

)
≤ c · γK(γu′2γ )N

′
= c · γn2

K∏
l=3

γ
4l−3

4 nl .

Moreover, λ2K(WK(n1, . . . , nK)) ≤ c ·
∏K
l=2(u′2γ )(l−1)nl = c · γ− 5

4n2
∏K
l=3 γ

−5l+5
4 nl . This shows that

γK
∫
WK−WK(K,0,...,0)

P
(
∀i ≤ K,R(CXγ∪{xK}(xi)) < u′γ , F1(CXγ∪{xK}(xi)) ≥ 4

)
dxK = O

(
γ−1/4

)
. (41)

From (37), (41) and Lemma 2, we get

P
(
R′min(γ) ≥ u′γ

)
−→
γ→∞

e−t
4
.

�

We conclude the section with a quick sketch of proof for (2a).

Proof of (2a). We notice that

rmax(γ) = max
x∈Xγ∩W

r(CXγ (x)) = 1
2 max
x∈Xγ∩W

min
y 6=x∈Xγ

d(x, y).

The behaviour of the maximum of nearest neighbor distances was studied by Henze in Theorem 1 of [13] when the
input is a binomial process. His result did not include the contribution of boundary effects and is consequently
limited to the set of points in W 	 B(0, uγ). With Lemma 2 and proceeding along the same lines as in the proof
of (2d), we are able to show the convergence in distribution of the maximal inradius of Voronoi tessellation when
the input is a Poisson point process in W . �

4 Proof of (2c), consequence on Poisson-Voronoi approximation

Proof of (2c). First, we notice that

Rmax(γ) = max
x∈Xγ∩W

R(CXγ (x)) = max
x∈Xγ∩W

max
y∈CXγ (x)

d(x, y).

In order to avoid boundary effects, we start by studying an intermediary radius R′max(γ) defined as

R′max(γ) = max
x∈Xγ ,CXγ (x)∩W 6=∅

max
y∈CXγ (x)∩W

d(x, y).

In a first step, we provide the asymptotic behaviour of R′max(γ). Secondly, we study the effects of Voronoi cells
astride W and W c.
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Step 1 The distribution function of R′max(γ) can be interpreted as a covering probability. Indeed, if we denote
by

uγ = uγ(t) =
(

1
κdγ

t+ 1
κdγ

log
(
α1γ(log γ)d−1))1/d

(42)

where

α1 := 1
d!

(
π1/2Γ

(
d
2 + 1

)
Γ
(
d+1

2
) )d−1

(43)

and t is a fixed parameter, we have

R′max(γ) ≤ uγ ⇐⇒ ∀x ∈ Xγ , s.t. CXγ (x) ∩W 6= ∅,∀y ∈ CXγ (x) ∩W,d(x, y) ≤ uγ
⇐⇒ ∀y ∈W, ∃x ∈ Xγ , d(x, y) ≤ uγ
⇐⇒ {B(x, uγ), x ∈ Xγ} covers W.

We have to deal with the probability to cover a region with a large number of balls having a small radius when
γ → ∞. Asymptotics of such covering probabilities have been studied by Janson. We apply Lemma 7.3 of [17]
which is rewritten in our particular framework. Actually, Lemma 7.3 of [17] investigates covering with copies of a
general convex body and requires conditions which are clearly satisfied in the case of the ball (see Lemmas 5.2, 5.4
and (9.24) therein).

Lemma 5. (Janson) Let W be a bounded subset of Rd such that λd(∂W ) = 0 and Xγ a Poisson point process of
intensity γ. Let R a random variable such that E[R] > 0 and E[Rd+ε] for some ε > 0. We denote by α(B(0, R)) =
α1E[Rd−1]dE[Rd]−(d−1). If a = a(γ) is a function such that a(γ) −→

γ→∞
0 and

E [λd(aB(0, R))] γ− log λd(W )
E [λd(aB(0, R))] − d log log λd(W )

E [λd(aB(0, R))] − logα(B(0, R)) −→
γ→∞

t,−∞ < t <∞ (44)

then

P ({B(x,R), x ∈ Xγ} covers W ) −→
γ→∞

e−e
−t
.

Taking a = uγ , R = 1, λd(W ) = 1 and noting that E [λd(aB(0, R))] = κdu
d
γ and α(B(0, R)) = α1, we check

easily (44). From Lemma 5, we deduce that P ({B(x, uγ), x ∈ Xγ} covers W ) converges to e−e−t . Hence, for all
t ∈ R,

lim
γ→∞

P (R′max(γ) ≤ uγ) = e−e
−t
. (45)

Step 2 Taking f(CXγ (x)) = κd(maxy∈CXγ (x)∩W d(x, y))d, aγ = γ, bγ = γ log
(
α1γ(log γ)d−1) and Y a Gumbel

distribution (i.e. P(Y ≤ t) = e−e
−t
, t ∈ R), one can check condition (5) with k = d. From (45) and Proposition 3,

we deduce that P(maxx∈Xγ∩W maxy∈CXγ (x)∩W d(x, y) ≤ uγ) converges to e−e−t for all t ∈ R. Using the fact that,
on the event Aγ (given in Lemma 1),

max
x∈Xγ∩W

max
y∈CXγ (x)∩W

d(x, y) ≤ max
x∈Xγ∩W

max
y∈CXγ (x)

d(x, y) ≤ max
x∈Xγ∩W1+lγ

max
y∈CXγ (x)∩W1+lγ

d(x, y)

and proceeding along the same lines as in the proof of Proposition 3, we get

P (Rmax(γ) ≤ uγ) −→
γ→∞

e−e
−t
. (46)
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We can note that the asymptotic behaviour of Rmax(γ) gives an interpretation of Lemma 7.3 in [17]. Indeed,
(46) shows that the Gumbel distribution which appears as a limit probability of a covering is actually the limit
distribution of a maximum.

We now apply this convergence result to the so-called Poisson-Voronoi approximation defined as

VXγ (W ) =
⋃
x∈Xγ

CXγ (x).

It consists in discretizing a given convex window W with a finite union of convex polyhedra. This approximation
has various applications such as image analysis (reconstructing an image from its intersection with a Poisson point
process, see [19]) or quantization (see chapter 9 of [10]). Estimates of the first two moments of the symmetric
difference between the convex body and its approximation are given in [14] and extended to higher moments in
[34]. To the best of our knowledge, the convergence of VXγ (W ) to W in the sense of Hausdorff distance, denoted
by dH(·, ·), has not been investigated. Corollary 2 addresses that question with an assumption on the regularity of
W which is in the spirit of the n-regularity (see Definition 3 in [7]).

Corollary 2. Let us assume that there exists α > 0 such that, for v small enough and for all y ∈W ,

λd(B(y, v) ∩W ) ≥ αλd(B(y, v)). (47)

Then

P
(
dH(W,VXγ (W )) ≤

(
c(α)γ−1 log

(
α1γ(log γ)d−1))1/d) −→

γ→∞
1 (48)

where c(α) = κ−1
d + 2dκ−1

d α−1.

Proof of Corollary 2. Let us denote by

vγ =
(
c(α)γ−1 log

(
α1γ(log γ)d−1))1/d

. (49)

First, we show that maxy∈VXγ (W ) d(y,W ) ≤ vγ with high probability. For all t ∈ R, using the fact that uγ ≤ vγ for
γ large enough, where uγ = uγ(t) is given in (42), we get

P

(
max

y∈VXγ (W )
d(y,W ) ≤ vγ

)
≥ P (Rmax(γ) ≤ vγ) ≥ P (Rmax(γ) ≤ uγ) .

From (46) and Proposition 3, the last term converges to e−e−t as γ goes to infinity. Taking t→∞, we get

lim
γ→∞

P

(
max

y∈VXγ (W )
d(y,W ) ≤ vγ

)
≥ lim
t→∞

e−e
−t

= 1. (50)

In a second step, we are going to show that maxy∈W d(y,Xγ ∩W ) ≤ vγ with high probability via the use of a
covering of W by balls as in the proof of (2c). Now, the convex body W is covered by N = O

(
v−dγ

)
deterministic

balls B1, . . . , BN with center in W and radius equal to vγ/2. From (47), (49) and the fact that #(Bi ∩ (Xγ ∩W ))
is Poisson distributed with mean γλd(Bi ∩W ), we get for γ large enough

P

(
max
y∈W

d(y,Xγ ∩W ) > vγ

)
≤ P

(
N⋃
i=1
{#(Bi ∩ (Xγ ∩W )) = 0}

)
≤ N e−γακd(vγ/2)d ≤ α−1

1 γ−1(log γ)−(d−1)N .
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Using the fact that N = O(v−dγ ) i.e. N = O(γ(log γ)−1) according to (49), the right-hand side is O
(
(log γ)−d

)
.

Hence

P

(
max
y∈W

d(y,Xγ ∩W ) ≤ vγ
)
−→
γ→∞

1. (51)

Since dH(W,VXγ (W )) ≤ max
{

maxy∈VXγ (W ) d(y,W ),maxy∈W d(y,Xγ ∩W )
}
, we deduce from (50) and (51) that

P
(
dH(W,VXγ (W )) ≤ vγ

)
−→
γ→∞

1.

�

In [14], Heveling and Reitzner obtain that the volume of the symmetric difference between W and VXγ (W ) is
of the order of γ−1/d. The result above makes sense and could provide the right order of the Hausdorff distance.
Obviously, the constant c(α) = κ−1

d + 2dκ−1
d α−1 is not optimal. From Lemma 1, it would have been possible to get

an upper-bound of the order of γ−(1−ε)/d but it is less precise than Corollary 2.

5 Proof of (2b)

Proof of (2b). Let t ≥ 0 be fixed. We denote by uγ the following function:

uγ = uγ(t) =
(

2−(d−1)κ−1
d γ−2t

)1/d
. (52)

We start by finding a different expression of rmin(γ) which does not rely on the Voronoi structure. Indeed, for all
x ∈ Xγ ∩W we have

r(CXγ (x)) = max{r ≥ 0, B(x, r) ⊂ CXγ (x)} = 1
2 min
y 6=x∈Xγ

d(x, y).

Hence, rmin(γ) can be rewritten as

rmin(γ) = 1
2 min

(x,y)6=∈(Xγ∩W )×Xγ
d(x, y). (53)

The equality (53) implies that the problem is reduced to a study of inter-point distance. Such study is well known
for a binomial process X(n) of intensity n in W . In particular, Jammalamadaka and Janson (see [16], §4) have
shown that for all t ≥ 0,

P
(
r′min,n ≥ un

)
−→
n→∞

e−t (54)

where r′min,n is defined as

r′min,n = 1
2 min

(x,y) 6=∈X(n)×X(n)
d(x, y)

and un given in (52). In a first elementary step, we extend the limit to a Poisson point process. Our main
contribution is then to compare the obtained limit with rmin(γ) by dealing with boundary effects. In particular,
our study provides a far more accurate estimate of the contribution of boundary cells (see (66)) than what we could
have deduced from Proposition 3.
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Step 1 We extend (54) to a Poisson point process. We define

r′min(γ) = 1
2 min

(x,y)6=∈(Xγ∩W )2
d(x, y). (55)

Let us note that for all 0 < α < β < 1, and for all n ∈ {0, 1, 2, . . .}, |n − γ| ≤ γα =⇒ |n − γ| ≤ nβ for γ large
enough. Consequently, since uγ is non-increasing in γ, we have for γ large enough

∣∣P (r′min(γ) ≥ uγ)− e−t
∣∣ ≤ ∞∑

n=0

∣∣P(r′min,n ≥ uγ)− e−t
∣∣P(#(Xγ ∩W ) = n)

≤
∑

|n−γ|≤γα
max

{∣∣P(r′min,n ≥ un−nβ )− e−t
∣∣ , ∣∣P(r′min,n ≥ un+nβ )− e−t

∣∣}P(#(Xγ ∩W ) = n)

+ P(|#(Xγ ∩W ) − γ| > γα). (56)

The second term of (56) converges to 0 thanks to a concentration inequality for Poisson variables (see e.g. Lemma 1.4
in [31]). The first term is lower than maxn≥γ−γα max

{∣∣P(r′min,n ≥ un−nβ (t))− e−t
∣∣ , ∣∣P(r′min,n ≥ un+nβ (t))− e−t

∣∣}
which tends to 0 according to (54). This shows that, for all t ≥ 0,

lim
γ→∞

P (r′min(γ) ≥ uγ) = e−t. (57)

Step 2 We show that rmin(γ) = r′min(γ) with probability of order of O(γ−ε) with ε ∈ (0, 2
d ). Indeed, the random

variables rmin(γ) and r′min(γ), defined in (53) and (55), are equal if and only if no point of Xγ ∩W c falls into the
union of the balls B(x, 2r′min(γ)) for x ∈ Xγ ∩W such that d(x, ∂W ) < 2r′min(γ) i.e.

P(rmin(γ) 6= r′min(γ)) = P

#

Xγ ∩W c ∩
⋃

x∈Xγ∩W,
d(x,∂W )<2r′min(γ)

B(x, 2r′min(γ))

 6= 0



≤ E

 ∑
x∈Xγ∩W,

d(x,∂W )<2r′min(γ)

# (Xγ ∩W c ∩B(x, 2r′min(γ)))

 . (58)

From Slivnyak-Mecke formula (see e.g. Corollary 3.2.3 of [37]), we get

E

 ∑
x∈Xγ∩W,

d(x,∂W )<2r′min(γ)

# (Xγ ∩W c ∩B(x, 2r′min(γ)))

 =
∫
W

γE
[
#
(
Xγ ∩W c ∩B(x, 2r′(x)

min(γ))
)

1
d(x,∂W )<2r′(x)

min (γ)

]
dx

where r′(x)
min(γ) = 1

2 min(x′,y) 6=∈(Xγ∪{x}∩W )2 d(x′, y) for all x ∈ Xγ ∩W . Noting that r′(x)
min(γ) ≤ r′min(γ), we then

obtain

E

 ∑
x∈Xγ∩W,

d(x,∂W )<2r′min(γ)

# (Xγ ∩W c ∩B(x, 2r′min(γ)))

 ≤
∫
W

γE
[
# (Xγ ∩W c ∩B(x, 2r′min(γ))) 1d(x,∂W )<2r′min(γ)

]
dx

=
∫
W

γE
[
E [# (Xγ ∩W c ∩B(x, 2r′min(γ))) |Xγ ∩W ] 1d(x,∂W )<2r′min(γ)

]
dx. (59)
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Since # (Xγ ∩W c ∩B(x, 2r′min(γ))) is Poisson distributed, we get

γE
[
E [# (Xγ ∩W c ∩B(x, 2r′min(γ))) |Xγ ∩W ] 1d(x,∂W )<2r′min(γ)

]
= γ2E

[
λd(W c ∩B(x, 2r′min(γ)))1d(x,∂W )<2r′min(γ)

]
≤ 2dκd · γ2E

[
r′min(γ)d1d(x,∂W )<2r′min(γ)

]
. (60)

Using (58), (59), (60) and Fubini’s theorem, we obtain

P(rmin(γ) 6= r′min(γ)) ≤ 2dκd · γ2E

[
r′dmin(γ)

∫
W

1d(x,∂W )<2r′min(γ)dx

]
≤ c · γ2E

[
r′d+1

min (γ)
]
. (61)

The last inequality comes from Steiner formula (see (14.5) in [37]) and c denotes a constant depending on W .
Hence, to show that

P (rmin(γ) 6= r′min(γ)) −→
γ→∞

0 (62)

we have to find some upper-bound of γ2E[r′d+1
min (γ)]. We know, from (57) and (52) , that γ2r′dmin(γ) tends to 0

in distribution but it does not imply (62). Lemma 6 below provides an estimate of the deviation probabilities of
γ2r′dmin(γ) when the window W is a cube.

Lemma 6. Let C be a cube of side M and Xγ a Poisson point process of intensity γ. Let us denote by

r′min|C(γ) = 1
2 min

(x,y)6=∈(Xγ∩C)2
d(x, y).

Then, for all u ≤ min{ 1
4Md1/2, 1

2d
1/2γ−1/d}, there exists a constant c(M) such that

P(r′min|C(γ) ≥ u) ≤ e−c(M)γ2ud .

Proof of Lemma 6. Let u ≤ min{ 1
4Md1/2, 1

2d
1/2γ−1/d} be fixed.

We subdivide the cube C = [0,M ]d into a set of N subcubes C1, . . . , CN of equal size c with c = 2d−1/2u and
N =

⌊
Mc−1⌋d. Since diam(Ci) = 2u for each i ≤ N , we obtain

P(r′min|C(γ) ≥ u) ≤ P

(
N⋂
i=1
{#(Ci ∩Xγ) ≤ 1}

)
=
(
e−γc

d

(1 + γcd)
)N

.

Replacing cd by 2dd−d/2ud and N by b2−1Md1/2u−1cd we obtain the following inequality:

P(r′min|C(γ) ≥ u) ≤ eb2
−1Md1/2u−1cd(log(1+γ2dd−d/2ud)−γ2dd−d/2ud)

.

Since γ2dd−d/2ud ≤ 1 and 2M−1d−1/2u ≤ 1
2 , we have log(1 + γ2dd−d/2ud) − γ2dd−d/2ud ≤ − 1

4 22dd−dγ2u2d and
b2−1Md1/2u−1cd ≥ (2−1Md1/2u−1 − 1)d ≥ 2−2dMddd/2u−d. Hence

P(r′min|C(γ) ≥ u) ≤ e− 1
4d
−d/2Mdγ2ud = e−c(M)γ2ud

where c(M) = 1
4d
−d/2Md. �

18



Now, we can derive an upper-bound of γ2E[r′d+1
min (γ)]. Indeed, since W has non-empty interior, there exists a

cube C of side M included in W . Using the fact that #(Xγ ∩ C) ≥ 2 =⇒ r′min(γ) ≤ r′min|C(γ), we get

γ2E[r′d+1
min (γ)] = γ2

∫ diam(W )

0
P(r′d+1

min (γ) ≥ s)ds

≤ diam(W )γ2P(#(Xγ ∩ C) ≤ 1) + γ2
∫ Md1/2

0
P(r′d+1

min|C(γ) ≥ s)ds. (63)

The first term of the right-hand side of (63) is decreasing exponentially fast to 0 since #(Xγ ∩ C) is Poisson
distributed of mean γMd. For the second term, let us consider a fixed ε in (0, 2

d ). Then

γ2
∫ Md1/2

0
P(r′d+1

min|C(γ) ≥ s)ds =
∫ γ−(2+ε)

0
γ2P

(
r′min|C(γ) ≥ s1/(d+1)

)
ds+

∫ Md1/2

γ−(2+ε)
γ2P

(
r′min|C(γ) ≥ s1/(d+1)

)
ds

≤ γ−ε +Md1/2γ2P
(
r′min|C(γ) ≥ γ−(2+ε)/(d+1)

)
.

(64)

Since ε > 0, we have γ−(2+ε)/(d+1) ≤ min{ 1
4Md1/2, 1

2d
1/2γ−1/d} for γ large enough. Hence, from Lemma 6 applied

to u := γ−(2+ε)/(d+1), we deduce that for γ large enough,

γ2
∫ Md1/2

0
P(r′d+1

min|C(γ) ≥ s)ds ≤ γ−ε +Md1/2γ2e−c(M)γ(2−εd)/(d+1)
. (65)

The last term of the right-hand side of (65) converges exponentially fast to 0 as γ goes to infinity since ε < 2
d .

Combining that argument with (61), (63) and (65), we deduce that

P (rmin(γ) 6= r′min(γ)) = O
(
γ−ε
)
. (66)

We then deduce from (57) and (66) that∣∣P (r′min(γ) ≥ uγ)− e−t
∣∣ ≤ ∣∣P (r′min(γ) ≥ uγ)− e−t

∣∣+ 2P (rmin(γ) 6= r′min(γ)) −→
γ→∞

0.

�

Remark . The rate for the convergence in distribution of rmin(γ) to the Weibull distribution can be estimated.
For instance, we can show that Theorem 2.1 in [38] implies the rate of convergence of r′min(γ). Another way to get
it is to use Theorem 1 in [1]. We then obtain that there exists positive constants c(W ) and Γ(W ) such that, for all
ε < 2

d , t ≥ 0 and γ ≥ Γ(W ),∣∣P (2d−1κdγ
2rmin(γ)d ≥ t

)
− e−t

∣∣ ≤ c(W )γ−min{ 1
2 ,ε}.

The study of more extremes for general tessellations and their rates of convergence will be developed in a future
paper.

Appendix

Proof of Lemma 3. Actually, we show the following deterministic result: let K ≥ 2, k < N , (x1, . . . , xK) ∈
WK(n1, . . . , nK) with (n1, . . . , nK) 6= (K, 0, . . . , 0) and (y1, . . . , yk) ∈

⋃K
i=1 B(xi, 2uγ) such that {xK} ∪ {yk} are in
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general position i.e. each subset of size n < d + 1 is affinely independent (see [40]). Then there exists i ≤ K such
that sphere S(xi, uγ) is not covered by the induced spherical caps {Axj (xi), i 6= j ≤ K} ∪ {Aym(xi),m ≤ k}.

Indeed, from (25) there exists a connected component of
⋃K
i=1 B(xi, 2uγ) of size 1 ≤ l ≤ K, say

⋃l
i=1 B(xi, 2uγ)

without loss of generality, such that Nl < d+ 1 with

Nl = #
(
{yk} ∩

l⋃
i=1

B(xi, 2uγ)
)

(67)

Since {xl} ∪ {yNl} are in general position, the family {xl} is not included in the convex hull of {yNl}. In
particular, there exists i ≤ l such that xi is not in the convex hull of {xl} ∪ {yNl} − {xi}. Since a Voronoi cell
induced by a finite number of points is not bounded if and only if its nucleus is an extremal point of the polytope
induced by the points, it implies that the circumscribed radius of C{xl}∪{yNl}(xi) is not finite i.e. S(xi, uγ) is not
covered. �

Proof of Lemma 4. We show the following deterministic result: letK ≥ 2, k < N ′, (x1, . . . , xK) ∈WK(n1, . . . , nK)
with (n1, . . . , nK) 6= (K, 0, . . . , 0) and (y1, . . . , yk) ∈

⋃K
i=1 B(xi, 2uγ) such that {xK} ∪ {yk} are in general posi-

tion. Then there exists i ≤ K such that either the sphere S(xi, uγ) is not covered by the induced spherical caps
{Axj (xi), i 6= j ≤ K} ∪ {Aym(xi),m ≤ k} or F1(C{xK}∪{yk}(xi)) ≤ 3.

Indeed, from (39) there exists a connected component of
⋃K
i=1 B(xi, 2uγ) of size 1 ≤ l ≤ K, say

⋃l
i=1 B(xi, 2uγ)

without loss of generality, such that Nl < 4 if l = 1, 2 and Nl < 3 if l ≥ 3 where Nl is given in (67).

• If l = 1, either S(x1, uγ) is covered or F1(C{xK}∪{yk}(x1)) = F1(C{x1}∪{yN1}(x1)) ≤ 3 since N1 ≤ 3.

• If l ≥ 3, from Lemma 3 there exists i ≤ l such that S(xi, uγ) is not covered.

• If l = 2, we can assume that N2 = 3. We have to prove that if y3 = {y1, y2, y3} is a set of three points in
B(x1, 2uγ) ∪B(x2, 2uγ), then the following properties 1 and 2 below cannot hold simultaneously.

1. The circles S(x1, uγ) and S(x2, uγ) are covered by the induced circular caps

{Ax1(x2),Ax2(x1)} ∪ {Aym(xi),m ≤ 3}.

2. The number of edges of the Voronoi cells satisfy F1(C{x1,x2,y3}(x1)) ≥ 4 and F1(C{x1,x2,y3}(x2)) ≥ 4.

Let us assume that Properties 1 and 2 hold simultaneously. Let us denote by G the Delaunay graph associated
to {x1, x2, y1, y2, y3}. Then G is a connected planar graph with v = 5 vertices and e edges. From Euler’s
formula on planar graphs, e ≤ 3v − 6 i.e.

e ≤ 9. (68)

From Property 1 and according to the proof of Lemma 3, x1, x2 are in the convex hull of {y1, y2, y3} i.e.
{y1, y2}, {y1, y3} and {y2, y3} are edges of the associated Delaunay triangulation. From Property 2, x1, x2
are connected to every point i.e. {x1, x2}, {x1, y1}, {x1, y2}, {x1, y3}, {x2, y1}, {x2, y2} and {x2, y3} are also
edges of the Delaunay triangulation. The total number of these edges is e = 10. This contradicts (68).

�
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