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Acquisition, segmentati(jn and tracking of the cerebral vascular tree on
3D magnetic resonance angiography images

Nicolas Flasque®, Michel Desvignes, Jean-Marc Constans, Marinette Revenu

GREYC-ISMRA, 6 Bowlevard Marechal Juin, 14050 Coen Cedex, France

Abstract

This paper presents a method for the detection, representation and visualisation of the cerebral vascular tree and its application to
magnetic resonance angiography (MRA) images. The detection method is an iterative tracking of the vessel centreline with subvoxel
accuracy and precise orientation estimation. This tracking algorithm deals with forks. Centrelines of the vessels are modelled by
second-order B-spline. This method is used to obtain a high-level description of the whole vascular network. Applications to real
angiographic data arc presented. An MRA sequence has been designed, and a global segmentation of the whole vascular tree is realised in
three steps. Applications of this work are accurate 3D representation of the vessel centreline and of the vascular tree, and visualisation.
The tracking process is also successfully applied to 3D contrast enhanced MR digital subtracted angiography (3D-CE-MRA) of the
inferior member vessels. In addition, detection of artery stenosis for routine clinical use is possible due to the high precision of the
tracking algorithm., @ 2001 Elsevier Science BV. All rights reserved.
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1. Introduction

Magnetic resonance angiography (MRA) offers an inter-
esting alternative to computerised tomography angiography
{CTA) or other 2D angiograms for clinical use. MRA is a
non-invasive technique (as opposed to X-ray angiography)
and provides high-quality 3D images. The wide variety of
acquisition sequences and techniques {2D versus 3D, time
of flight (TOF) versus phase contrast (PC}] allows its use
for many clinical examinations, The lack of nocivity and
the speed of clinical acquisition make MRA a useful and
attractive tool for diagnosis and surgical planning of
arterio-venous malformations (AVM), aneurysms and
stenosis. AVM are congenital disorders in which arteries
and veins have direct and often complex connections,
depriving the concerned area of a normal blood supply.
Aneurysms are pockets of blood, sometimes very large,

caused by weakness in the arterial wall. The rupture of an
aneurysm can cause lethal haemorrhaging and severe
neurological deficiencies. Stenoses are occlusions of ves-
sels (from partial to even total obstruction as defined by
the NASCET criterion) with significant risk for the vascu-
larisation of the brain. In these cases, real 3D manipulation
and visualisation is helpful for cautiously examining the
pathological area for diagnosis and for surgical planning.
MRA has become a robust, available and cost-effective
tool in clinical routine.

Although numerous 3D visualisation tools exist, hand-
ling and visualisation of thin 3D structures such as
peripheral vessels is not easy. The most common tool is
the maximum intensity projection (MIP), which is a very
simple ray tracer. It remains a 2D projection of a 3D object
along a single direction, and presents many drawbacks
such as visual occultation of vessels and artificial crossings
that can only be detected by matching on several other
projections. Furthermore, low-intensity structures are al-
ways masked by high-intensity ones. Due to MIP image
formation, the size of objects is not correctly estimated.




Accurate visualisation by surface or volume rendering
techniques requires a segmentation step followed by a
rendering of blood vessels.

Obtaining quantitative measurements such as the diam-
eler or cross-sectional area of vessels which is necessary to
reveal pathologies is a very difficult task in 3D (Wilson
and Noble, 1997). The diameter is estimated visually, and
is largely underestimated in stenotic areas as the fow that
generates the MRA signal becomes irregular (Hoogeveen
et al,, 1998). A correct estimation of diameter and cross-
sectional area also requires that the direction of processing
lies in an interval of only a few degrees away [rom the real
axis of the blood vessel. Reliable visualisation and quanti-
fication requires a processing of the 3D images to properly
extract vessel parameters.

In this paper, we will present a general methed for the
accurate detection of 3D tubular vessels on 3D images. We
will first describe related works. Next, we will present the
detection and tracking process. Results for synthetic im-
ages are examined. This method has been applied to the
extraction of blood vessels on 3D MRA images. The
overall application will be presented, including MRA
image sequence design, segmentation and tracking results.
Synthetic images, real healthy and pathological examples
are examined. This application is a first step towards the
measurement of parameters such as the diameter and
cross-sectional area of a vessel.

2. Related works

Several works address the problem of scgmentation and
tracking of vessels on 2D or 3D images to visualise vessels
or to extract parameters, Most of them share a common
approach: in the first stage, the image is filtered to reduce
the noise and to highlight the structures of interest. The
detection of small structures is thus more robust (Klose et
al., 1995: Du and Parker, 1998). Linear and median filters
cannot be used as the finer structures to be detected reach
the resolution of the image. Diffusion filtering (Gerig et
al,, 1992; Wilson and Noble, 1999} reduces noise and
preserves geometry, topology and localisation of vessels.
The diffusion process can be guided with a priori knowl-
edge of the relevant image features (Sato et al.,, 1998).

A second common characteristic is the description of
structures by the centrelines. Junctions and forks are easy
to model, and geometrically complex structures are hand-
fed by a graph or tree representation with centrelines as
nodes, To extract the centreline, tracking algorithms are
based upon one of the following strategies.

« Segmentation/detection of edges and extraction of the
centreline without a priori knowledge. This method can
be used to extract curvilinear structures in many
application fields such as medical imaging (vessels,
bronchi) or map analysis (roads) (Kutka and Stier,
1996). Skeletonisation of structures is often used to
detect centrelines of structures. The accuracy for the

localisation is limited to the resolution of the image,

since this processing takes place in the discrete 3D

space of voxels.

e Modelling and malching. The model jis in this case
largely constrained by the application field {Wilson and
Noble, 1999). A priori knowledge has to be brought by
specialists.

e Extraction of the centreline by snakes (Cohen and
Kimmel, 1996). This method requires user interaction
to define the start and the end of a single line. Junctions
are not modelled.

¢ Multi-scale analysis (Krissian et al., 2000). Tubular
structures are identified by the response of voxels to
second derivatives of a set of Gaussian kernels with
which the image is convolved.

Some of these methods are purely dedicated to 2D
images and come from 2D image processing of classical
angiography. Sun et al. (1995) used continuity constraints
of vessel centrelines with orientation and density infor-
mation to detect the centreline. Directional low-pass filter
responses are compared {o estimate the borders of a vessel
and its diameter with subpixel accuracy. Figueiredo and
Ao (1995} used morphological operators and dynamic
programming to track the centre and the edges of a vessel.
In this work, the morphological appreach is preferred to
smoothing, as the latter process is known to modify the
edge location. Directional filters and Gaussian modellisa-
tion are used, but the accuracy of the orientation estimation
is directly related to the number of filters with which the
image is convoluted (Klose et al., 1995). A priori knowl-
edge and local constraints enhance the detection and the
localisation {Sonka et al., 1993),

Summers et al. (1997} proposed an octree decomposi-
tion of a velocity field image in order to find an optimal
tessellation. Each bleck of the octree contains at most one
feature, defined by a real grey-level function and local
orientation. This work 1s strictly dedicated to phase
contrast MRA, containing information about velocity of
the flowing blood.

The main drawbacks of these techniques are the difficul-
ty of handling the artificial junctions that occur in 2D
projections.

To take these junctions into account, Chen et al. (1998)
used directional Gabor filters. Another interesting approach
was proposed by Coatrieux et al. (1995), where the
tracking of the edges is processed with the uniform cost
algorithm A*. This finds an optimal border path in a graph
representation of the image, by searching the path with the
minimum cost, The cost is defined in order to match the
border of the vessels. The same idea is explotted by
Lecornu et al. (1994) to simultaneously detect the two
borders of a vessel. Overlapping structures are correctly
detected.

Most of these works are not easily transposable to 3D
images. Centrelines are always curvilivear, but edges
become 3D surfaces, which are difficult to follow and
require more sophisticated modelling.




Reuzé et al. (1993) and Hernandez-Hoyos et al, (1999)
detected vessels by cylinder matching. The method is
based upon minimisation of inertia moments of a cylinder
and a priori knowledge of the intensity profiles in and at
the edge of a vessel, This work does not take into account
the junctions. Calculation of moments leads to sirong
hypotheses on the local configuration of the image and on
the vessel geometry: there must be only one vessel in the
processed area, and the cross-section of the vessel must be
circular. While the latter hypothesis can be accepted in
non-pathological situations, the shape of a blood vessel can
be greatly modified near stenoses and aneurysms (Juhan et
al.,, 1997). Verdonck et al. (1995) used generalised cylin-
ders. The cross-section of a vessel is approximated by a
polygon. Continuity and orientation between consecutive
slices are used to calculate a locally optimal shape for the
polygon with good accuracy, without quantitative measure-
ment. Cohen and Kimmel (1996) proposed a multi-scale
space approach and a Gaussian modellization of the
intensity profile inside the vessels. The convolution of the
image with a series of Gaussian kernels with different
standard deviations gives a scale-set of images where
centrelines are detected as local extrema of a response
function designed for a set of models {Sato et al., 1998;
Krissian et al, 1998; Lorenz et al., 1997; Koller et al.,
1995; Poli and Valli, 1998). The localisation of vessels is
quite accurate and junctions can be detected. Wilson and
Noble (1997) estimated the centreline after segmenting the
image by skeletonisation. These works use convolations
with several Gaussian kernels and are thus time consum-
ing; furthermore, the accuracy of the centreline is limited
to one voxel. Frangi et al. (1999) used a model of the
centreline coupled with the wall surface of linear segments
of vessels. This model provides accurate detection and
quantification of stenoses but junctions are not modelled.

Muany works give accurate resulis in 2D, but are not
suited for 3D processing. In 3D approaches, accuracy of
the detection and/or handling of junctions is not complete-
Iy achieved. We chose to emphasise the following features;
s minimum user interaction in the segmentation and

tracking process;

o the junctions and branches should be efficiently hand-
led;

e accuracy of centreline detection has to be less than |
voxel for the location and 5° for the cross-section
orientation in order to provide reliable quantitative
measurements;

¢ processing should not be time-consuming in order to be
usable in a routine clinical environment.

3. Vessel tracking

The goal of the tracking process is to extract points of
the centreline of the vessel on a 3D angiographic image.
Tracking is an iterative search with subvoxel accuracy. The

two main features of the process are the subvoxel accuracy
and the detection of junctions.

The initial 3D angiographic image is filtered to suppress
noise. The tracking process can be done on grey-level
images, but the junction handling needs a binary one for
conmectivity purposes.

The result of the tracking process is a set of centreline
points which allows a continuous modelling by B-spline
and precise meastrements.

The global methodology of the tracking is an iterative
process: given an initial point P, and an initial direction
Dy, an ordered set of points {P,} is computed step by step
in a local area around the previous point P,_,.

3.1. Local search area

At a step or iteration 7 of the tracking process, a local
search area is huilt from the point P, and the direction I3,
This area is a parallelepiped (or box} of variable dimen-
sions L, {, {plane orthogonal to D,} and H, (parallel to D, ).
The next centreline point P, , and the next orientation
D, are estimated in this box (Fig. 1). We call face £ the
face of the box including the point P, orthogonal to the
direction D,. The grey levels in this box are over-sampled
from the initial image. In our experiments, we use trilinear
interpolation. The sampling within the local search area
has the same resolution as the image.

3.2. Detection of point P, _,

Let P. be the current point, D, the current tracking
direction and D ,,, D, two directions so that
D, LD 1D ,1D. D, D  and D , are unitary vectors.

Let L, 1, and H, be the dimensions of the box in integer
number of voxel.

Let a €[=L34] BE[TLLL v € (07,1

Let X, ;, =P teap,,tBp,+vp, and A, 5, a

weight associated with X, ..
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Fig. 1. Local search area.
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Parameters &, and &, have a fixed value corresponding
to the maximal curvature of vessels that can be tracked by
this technique. For a given set {k,k,}, the maximum
curvature that can be estimated by the tracking algorithm is
limited by the dimensions of the parallelepiped which are
computed at each step of the teacking. k, = 1/2 and k, =
30 are used in the following examples.

B, is the weighted centre of mass of the pertinent voxels
in the local search area (X sy EV). A priori knowledge
on the image can be exploited through the set {A, ;5 } of
weightings. A, , ., represents the weight at the point X, .,
depending on the imaging modality. If the shape of the
structure is more informative than its intensity distribution,
like in 3D-CE-MRA or in DSA, binary weights Ayp, ™
loIm(e,B,y) >0 are used. If the vessel presents a
Guaussian-like profile, an image weighting A, =
Im(e, B,y ) takes this information into account. If the vessel
profile is known to show a narrow grey-level maximum at
its centre, an exponential weighting A, ;. = !B etil]
allows us to use the image features.

3.3. Detection of junctions

The detection of junctions is realised by the analysis of
connected components in the volume and on the surface of
the parallelepiped obtained by clustering voxels in or on
the box. For a single vessel, the incoming flow through
face F must exit from the parallelepiped by only one
connected component,

Let NV be the number of volumic connected com-
ponents in the parallelepiped P and NS the number of
surfacic connected components on its surface. NV is the
number of vessels inside P and NS is the number of
ingoing/outgoing vessels. A single vessel gives values of |
for NV and 2 for NS. A vessel with a junction will give
values of 1 for NV and 3 for NS. For other values, each
surfacic component is also labelled with the label of the
volumic component it is attached to (Fig. 2). NS can be
restricted to 2 or 3 for each vessel and junctions are
detected with no ambiguity. Voxels that do not belong to
the main vessel introduce a bias in the computation of B,,
P, D, ., and are removed from the box.

When a junction is detected, the gravity centre of each
outgoing connected component gives a new starting point
for a tracking step. The initial orientation is given by the

Fig. 2. Possible local configuration in the parallelepiped (from left to
right and top to bottom): (a) single vessel, N§ =2, NV=1; (b} two
vessels, NS =4, NV=2; {c) simple fork, NS =3, NV=1; (d) simple fork
and a vessel, NS =35, NV=2.

difference between this new initial point and the last B,
point.

3.4. Computation of adaptive dimensions

The dimensions L,, I, and H, are calculated at each step
of the tracking algorithms to suit the local data with
maximal accuracy and speed.

We must ensure that only one vessel is tracked at a time
by the parallelepiped: dimensions L, and [, are computed at
each step so that only one connected component is visible
through the ‘lower’ face F. Non-circular sections for
vessels imply that I, and I, are computed separately.
Dimensions are first reduced, possibly several times, if all
the border voxels of the face F have a value of (. They are
then angmented once if any border pixel of the face ¥
belongs to the main connected component in this face,

The change of direction between two steps 7 and 7 + 1 is
evaluated by the following value:

—_,—_—
(Dil(Pi+l B Bi-< 1»

AE = arccos| —— = |
o, - Bl

Large values of A5 indicate a significant change of
direction between steps / and i + 1. This situation effec-
tively occurs in carotid artery and venous sinus tracking. In
this case, the direction change between D, and D, | must
be suited to those abrupt changes and the position update
must be as small as possible in order to stay in the correct
area. A large number of points must be computed in
sinuous areas for good accuracy.

H, is the horizon of the parallelepiped. Straight sections
do not require as many sampling points as sinuous ones. H,
evolves inversely proportional to the local curvature,




estimated by the direction change AZS, with a fixed
maximum value k, for straight sections,

H =ke *%.

The accuracy of the point location depends on k, and
H.: if v is the current curvature of the vessel (Fig. 3), the

i

expected position error is

1l | . rH? Hi?
Ty we | uE

This dynamic handling of the dimensions ensures that
the tracking process remains as close as possible to the
vessel. It also overcomes small disconnections of vessels
that occur in the segmentation step. Typical values of the
dimensions are 5+2 for L, and /,, and 3= for H,.

3.3. B-spline modelling for the centreline

The list {P} obtained by the tracking algorithm is
interpolated by a second-order B-spline curve. We choose
this modelling for three reasons:

» we have an analytic representation of the centreline
which allows resampling of the cross-section along the
whole course of the vessel, even at points that were not
directly computed by the tracking algorithm;

= those curves minimise their torsion, just as any physical
system submitted to a set of constraints;

o the underlying model for vessel description must deal
with pathological cases, namely stenosis.

We use two sets of descriptors for the vessel: a set {C,
i€[1,...,n]} of centre points and a set {S,, i €[1, ... ,nl}
of data on cross-sections. A section S, corresponds to the
point C,.

The points C; are computed along the second-order
B-spline interpolating the set {P.} of detected points. This

€= L ‘Pcemn"phi‘ l

]OF}“[ = ‘\f [OB'iF +|I’,+,B‘,]:

o' = r*—|PiBif

T LTS Yo
P8 = {H v }IP.B |

PiB]j = Hj / 2
|

Fig. 3. Position error, e, estimation for arbitrary values of », H, and & .

analytic representation allows resampling and computation
of a continuous first derivative A. Samples of 4 at the C,
points (4,) give the tangent direction to the B-spline curve.
The §, cross-sections are bwlt by interpolation in the plane
orthogonal to A, and are designed for quantification and
virtual endoscopy. C, and 4; are 3D vectorial values.

3.6. Evaluation of the accuracy

Several different synthetic image sets were used to test
the various aspects of the tracking algorithm (Fig. 4):
straight tubes, 3D-Lissajoux shapes, and Y-fork shapes
with the angle varying from 20 to 160° in steps of 20°. All
images were generated using a second-order B-spline
curve. The intensity of the cross-section has a Guaussian
profile. The intensity of each voxel of the image is
computed using the distance of the nearest point of the
B-spline curve. For each shape, four diameters are gener-
ated: 1, 2, 4 and 6 voxels, with a resolution of 1 mm.
These synthetic images are used directly as binary masks
for the tracking algorithm. The weights A, , ., = Im(e, 8,7}
are used.

The following parameters are measured between the
synthetic object real centreline {Li, i&(l,...,p]} and the
detected centreline {C,, i €[1,...,p]}: the difference AP
in position between the nearest points and the difference
A® in the orthogonal section orientation between those
points. The detected centreline is the bicubic B-spline
curve. The sets {A, i € [1,...,p]} and {4, i €[L,... 8]}
give the derivative for each L, or C, point.

The distance between the centrelines and the orientation
difference is measured between {(C,A), i €[1,....n]} and

@A) JED,..pTh

_ _—
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Jel ..., rl

(414,
A, = arccos (M) .

3.6.1. Tracking a single structure

Table | presents the results of the tracking process on
the following images: straight tubes in the X, ¥ and Z
direction and three 3D Lissajoux shapes. For each shape,
four diameters are tested: 1, 2, 4 and 6 isotropic voxels of
I mm’. On each image, the minimum, maximum and

Fig. 4. (from left to right} 3D rendering of a Lissajoux shape, & 20° Y
fork shape and a 160° Y fork shape. Diameter is 4 voxels.




Table 1
Global results for the tracking of straight tubes and Lissajoux shapes

AP (voxel) A® (deg)

Avg S5.D. Avg S.D.
Min 0.12 0.01 0.01 0
Max 1.49 12 26.32 6.58
Avg 0.68 ] 1.31 0.10

average value of AP and A® are measured. The average
and standard deviation of these values on the 24 images
are listed in Table 1.

We estimate the expected error on the cross-sectional
area as err = 1 —cos’(A@). err is always inferior to 1%.
Maximum A® values are reached during the first iterations
of the tracking process. A® values oscillate around the
calculated average value after a few iterations (7 > 10).

To evaluate the influence of the curvature on the
method, a 3D helix with increasing curvature from 4 to
100 mm and | mm diameter was processed with a constant
mean error AP = 0.4 mm and A® = 1.45° (Fig. 5).

3.6.2. Robustness to user interaction

Initial values D, and P, are interactively provided by the
user. The assumptions made on the choice of P, and D,
are that P, is inside the vessel, P, is not located on a
junction, and that the angle between the true orientation of
the vessel and D, is less than 45°. The limits of the
tracking accuracy with respect to the interactive initial
values are evaluated for three specific values of P, and D,
on a vessel of diameter r (Fig. 6).

The tracking fails for orientation shifts over 85°.

3.6.3. Robustness to noise

The vessels in real angiographic images do not have an
ideal grey-level profile. Images are noisy and vessels
sometimes present discontinuities or a varying intensity,
especially in MRA. The robustness of the tracking method
is evaluated relative to both phenomena.

Fig. 5. Tracking of synthetic structure with increasing curvature.

Initial position outside the structure with good orientation : <Dy

AP(voxel) | AG{®)
Min 0.01 0
Max 2.29 95,93
Avg 0.69 2.81

Drent>:(}o ;d(Pﬁ H Pren!)ﬂz’r

AP(voxel) | AG ()
Min G.11 0.01
Max 0.98 44.97
Avg 0.68 1.56

Initial position in the structure - : <Dy
Dy i>=d5° d{Py 3 Prqy)=r

AP{voxel} | AB® (%)
Min 0.12 0.01
Max 2.53 73.47
Avg 0.74 2.20

Tnitial position in the structure - © <Dy Dy >=060° d(Pp j P)=r

Fig. 6. AP and A@ values for different initial settings of P, and D,

The synthetic image of a straight structure is modified as
follows (Table 2, Fig. 7, from left to right): two consecu-
tive slices are removed from the image perpendicularly to
the structure, the intensity is progressively reduced to 50%
of its original value, and another slice is removed from the
image.

An additive uniform noise is added to the image. The
noise level is defined by its amplitude relative to the
maximum intensity in the image.

The position of the detected centreline method is very
robust to noise and the orientation is really robust below a
noise amplitude of 10% (Table 3). The tracking method
fails when the noise value reaches the intensity of the

Table 2

Values of AP and A for the tracking of a discontinuous tubular structure
AP (voxel) AB (deg)

Min 0.66 0.01

Max 144 17.55

Avg 0.74 2,01

Fig. 7.- Tracking of a discentinuous structure.




Table 3

Average values of AP and A® at different levels of nolse

Noise amp Avg AP (voxel) Avg A@ (deg)
5% (.68 1.49

10% 0.69 1.46

20% 0.73 5.02

Fig. 8. Curvature and intensity discontinuity.

structure to be detected. Voxels belonging to the back-
ground become connected to the structure.

We also tested the handling of intensity discontinuity
and noise in the case of curved vessels (Fig. 8). Several
images were generated with different discontinuity gap
length and curvature values. This process fails when the
gap length reaches the dimension of H,.

3.6.4. Evaluation of the junction detection algorithm

On synthetic images, the junctions from 20° to 160° are
always detected by our algorithm. Failure occurs for angles
of 10° or less and 170° or more. Another synthetic image
with three different junctions is used to demonstrate that
the algorithm is able to track complex networks (Fig. 9).

Fig. 9. Tracking of a complete tree structure from P, and D,.

4. Acquisition and segmentation of the vascular tree

The tracking method is designed to process images
composed of unstructured sets of connected voxels. We
apply this method to 3D MRA images. A segmentation of
those images is thus necessary to generate the sets of
connected voxels. The purpose of this segmentafion is not
to extract only the cerebral vasculature, but rather to ensure
that the cerebral vasculature s included in the segmented
sets.,

4.1, Image acquisition

MRA images were acquired on a General Electiic
Medical System scanner with a 1.5 Tesla magnetic field. In
all cases, a conventional head coil was used. Whole head
images of healthy volunteers were acquired. Pathological
images address carotid artery stenosis near the main
carotid artery separation and are located in the area of the
neck and lower head.

Recovering the cerebral vascular tree with accuracy
requires cautious design for an imaging sequence (Hooge-
veen et al,, 1998). Clinical use of MRA often assumes a
previous examination with CTA or X-ray angiography to
localise the area to be imaged. MR scan time is then
optimised (o a few minutes for an average resolution of 4
mmXx1 mmx1 mm.

We want, on the contrary, a high-resolution image of the
whole wvascular wree. The presence of neighbouring
anatomic structures is required for multi-modality match-
ing. PC sequences are very efficient for imaging arteries
and veins, even thinner ones, but the subfraction process
that is the base of this acquisition technique suppresses
anatomical information. Furthermore, two acquisitions are
needed to obtain an image and the signal-to-noise ratio is
not very good.

With TOF sequences, particular care has to be taken
when choosing the various parameters. Only one acquisi-
tien is needed. In 3D mode, only thin volumes can be
cotrectly acquired for our purpose. TOF sequences are also
used in clinical routine to acquire images for diagnosis of
arterial stenosis with good confidence (Wentz et al., 1994).

We use a 3D-TOF SPGR (gradient-echo) imaging
sequence in order to obtain a high signal-to-noise ratio.
Furthermore, TOF sequences do not entirely suppress the
neighbouring anatomical structures. Multi-modality match-
ing can be vseful for further registrations with anatomical
(sulci location, gray/white matter segmentation) and/or
functional maps (PET/functional MRI). The sequence was
designed with MOTSA (multislab overlay thin slice acqui-
sition) options to maximise the TOF effect along the whole
image. Each slab is 16 mm thick and is acquired in 16
slices. Thicker slabs lead to unrecoverable signal loss
(Hoogeveen et al, 1998). The signal is maximal for
vessels orthogonal to the slab and for a flow speed slightly




inferior to TE across a single slice, Faster flow generates a
signal void (bolus effect).

Healthy volunteer image dimensions are 256 X 256X 152
voxels in size, with each voxel having an isotropic size of
I mm>1 mmX1 mm. The scan time is 23 min. An axial
(from bottom to top) acquisition direction was chosen
because the vessels of greater interest for our work, the
carotid arteries and the vertebro-basilar artery, are pre-
dominantly orthogonal to the axial plane in their main
course. The high speed of the flow in those vessels
guarantees a sufficient amount of signal in the other
portions,

The segmentation of the images is realised in three
distinct steps:

» correction of the intensity artefacts generated by the

MOTSA acquisition;

e diffusion filtering to highlight the vessels while presery-
ing their geomeltry, topology and location;
& region growing to isolate vessel-like structures.

4.2, Intensity correction

The blood signal decreases inside a single slab due to
the partial saturation effect and the sequence generates
intensity artefacts in areas where the slabs overlay. An
intensity correction is needed before the filtering step.

This method is based on histogram homothesis after
histogram modellisation. The background is removed by
thresholding. The value of the threshold is computed as the
first local minimum on the slice histogram. It is actually a
Gaussian modelling of a blank noise with a low standard
deviation and zero average. The cumulative histogram of
the remaining voxels is built, and two intensity values 7,
and 1, are extracted from the histogram. {, (I,) is the
intensity reached at x,% (x,%) of the total population (Fig.
13). An extreme value of x, (>90) implies values of I,
given by marginal populations of voxels (essentially
noise); close values of x; and x, prioritise a particular
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Fig. 10. Determination of {, and I, on the cumulative histogram from x,
and x,,

grey-level distribution in the slice certainly associated with
a given structure which may not be present in all the
volume.

The best results were obtained empirically for 15 <x, =
20 and 80 =< x, = 85, This selection is processed on all the
image slices. A reference slice is then chosen, giving two
reference intensities I, and I,. The reference slice is
chosen according to two criteria:

e the slice does not belong to an overlay area;
° it must contain as many different structures (i.e. grey-
level distributions) as possible.

Each of the other slices is recomputed by linear interpo-
lation so that all voxels with /, intensity reach /| intensity
and all voxels with 7, intensity reach I, intensity. All
slices of the volume have the same dynamic after this
processing.

4.3. Diffusion filtering

The filtering step uses a priori knowledge about the
intensity features of the vessels. This information is
directly available from the parameters of the imaging
sequence.

Blood vessels appear as homogeneous regions of high
intensity and produce high contrast at their border. To
enhance these regions, an adaptive diffusion filtering is
used. Diffusion filtering is an adaptive and iterative
process based upon the heat diffusion equation (Orkisz et
al., 1996; Gerig et al., 1993), For each voxel of intensity «,
a quantity Su is computed at each step, depending on the
local gradient value Vir and a function g. The intensity u of
vessels is greater than for the other structures. We exploit
this information by introducing a term depending on the
intensity in the function g, instead of using only the
gradient estimation Vi, The voxel intensity value becomes
i+ Su, and du may be negative,

it .
7 = div( £, Ve War).

Different functions g exist (Perona and Malik, 1990),
and we choose the second Perona—Malik form,

1

Sy =—"""—-—"=
gl HI) l+(u|Vu|/k)2

This function is numerically stable and easy {o compute.
The strength of filtering depends on gradient and intensity,
and we are thus able to filter areas with high gradient
values if the intensity is Tow,

High intensity and high contrast areas are highlighted,
while other structures are strongly filtered. The border of
the vessels is well located, which is important for further
measurements. This process is computationally expensive
and converges slowly, The criterion used to end the
diffusion filtering process is reported in the application
seclion.




4.4, Segmentation of the connected sets of voxels

The vessels are curvilinear and connected structures. We
use voxel clustering to build regions of interest. Voxels are
merged into an exisiing region if they are likely to belong
to a vessel, according to two criteria: the intensity of the
voxel and its neighbourhood configuration.

The voxel clustering stage is initiated by the detection of
a seed voxel S, _/Im(S, }>1,, which is a fixed thres-

R

hold. S defines the first voxel of the region R,. The region

R, grows according to the criterion: V. . .€
Rie=Im{V,. . )>1, and one of the 26 neighbours of
V,\"‘_‘."‘.’.' eRl‘

When no new voxel can be added to R,, another seed
voxel is selected in the image to build a second region R,,
and this process continues until there are no seed voxels
lett.

Candidate voxels are then chosen among the voxels that
have not already been selected, depending on the number
of neighbours belonging to the same region.

Let NV, . .) be the number of 26 neighbours of a voxel
V... belonging to the region R, We define

N=max(N,), JIN,=N,
V. ;.. is a candidate to belong to R, <N > 13,

Among these candidates, only those with intensity
greater than a threshold 7, are kept. Regions including less
than 25 voxels are discarded. Both /, and {, threshold
values are determined on the filtered image histogram in
the following way: a least-squares fit of a Gaussian
function G{x,,;) is performed on the whole image histo-
gram which exhibits a strong peak corresponding to the
anatomical structures, We segment this peak using the
following values: I, =x, + 5.0, and I, =x, + 3.0,.

We now have a binary mask constituted of unstructured
sets of voxels. The core structure of the vascular network
has to be rebuilt from these data by a centreline tracking
algorithm able to handle junctions.

5. Results and discussion
3.1, Segmentation

3.1. 1. Intensity correction

Results of one correction scheme are presented in Table
3. The homogeneity of the signal has been restored, and
clearer sirips have disappeared from sagittal slices.

Fig. 11 shows that the average intensity value for the
corrected image is globally inferior to the average value
for the raw image. This effect is due to background
removal. The background grey level is set to zero in
corrected images.

Intensity gaps are computed on the average intensity of
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Fig. 11. Average intensity value on raw and comected images.

a given slice. Before correction, gaps reach values of 3,
and the maximum gap is 1 after correction.

The correction process takes 2 min for a 256 X256 X 152
voxel image. All computational times are given for an
Ultra2 Sun computer,

5.1.2. Diffusion filtering

The diffusion filtering process mainly enhances peculiar
areas in the intensity-corrected image, The enhanced areas
are connected to wvessel-like structures (Fig. 12). The
criterion used to end this process depends on the global
intensity change in the image, When this intensity change
reaches 10% of its value at the first iteration, the diffusion
process ends.

These areas are located near high intensity and high
contrast structures. At each step of the process, the border
voxels of the structures located along the axis of the area
are enhanced, thereby allowing restoration of missing
vessel parts.

The diffusion process takes 5 min for a 256 X256 X152
voxels image.

5.1.3. Voxel clustering

The resulting image is a grey-level mask of the cerebral
vascular network. The grey-level values can be used in the
tracking process by selecting an appropriate weighting set

A, 5, For connectivity purposes, this image is also

considered as binary: a voxel at location X, 5 is part of a

fad

Fig. 12. Non-filtered image (opaque} versus filtered image (transparent}
3D isosurfaces of the cerebral middle artery at intensity 1= 90.




Fig. 13. Left and right carotid artery and vertebral artery tracking on real MRA images.

structure <> A, , > 0. All results in the next section are
displayed relative to 3D isosurfaces of this binary image.

The clustering process takes less than 1 min for a
256 X256X 152 voxels image.

5.2. Detection of the cerebral vascular network

5.2.1. Healthy volunteer inages

No reference centreline is available to evaluate the
quality of our tracking algorithm. Results were examined
visually. Detected centrelines seem well located for both
carotid arteries, the vertebral artery, anterior cerebral
arteries, and middle cerebral arteries. The junction between
the vertebral artery and both posterior cerebral arteries is
detected (Fig. 13). The vessel diameter ranges from 3 to 6
voxels on these images.

5.2.2. Pathologic images
As for healthy volunteer images, no reference centreline
is available. Fig. 14 shows the centreline tracking on the

primitive carotid artery, before it splits into the internal and
external carotid arteries. Many stenoses are observed near
this junction. The tracking process does not stop at the
stenosis location, and the detected centreline follows the
axis of the vessel.

5.2.3. 3D contrast-enhanced MRA image

Blood vessels are well depicted on 3D-CE-MRA im-
ages. The connected sets of voxels are obtained by
thresholding the original image which is highly contrasted.
We successfully applied the tracking method to the arteries
of the inferior members and detected the junction (Fig.
15).

Fig. 15. Tracking on a 3D-CE-MRA image of the inferior members.

Fig. 14. Centreline tracking on a stenotic left carotid artery. The interruption is an artefact of the visualisation algorithm. Left column: standard MIP views

of the original dataset. Middle and right columns: surface view of the vessels.




