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Filtering non-stationary geophysical data with 
orthogonal wavelets 

Fr•d•rique Moreau, Dominique Gibert, and Ginette Saracco 
G6osciences Rennes - CNRS/INSU, Universit6 de Rennes 1, France. 

Abstract. A filtering inethod based on both orthogo- 
nal wavelet decomposition and chi-squared statistics is 
proposed to clean non-stationary signals embedded in a 
gaussian white noise. An application to a time series of 
thermistance data recorded in an tinderground quarry 
illustrates the interest of the technique. 

Introduction 

The wavelet theory (Grossmann and Morlet [1984]; 
see Meyer [1990], Daubechies [1992], and Holschneider 
[1995] for reviews) constitutes a powerful framework to 
process and analyze non-stationary geophysical signals 
[Foufoula-Geowiou and Kumar, 1994]. In particular, 
the important problem of signal denoising has recently 
been addressed by means of both continuous [e.g. Mal- 
lat and Hwang, 1992] and orthogonal wavelet decom- 
positions [Donoho and Johnstone, 1994; $aito, 1994]. 
Denoising needs to distinguish the noise from the sig- 
nal and, depending on the particular models assumed 
for these components, distinct algorithms may be pro- 
posed. In the present study we address the particular 
issue of cleaning signals embedded in gaussian white 
noise through orthogonal wavelet decomposition. We 
propose a special-purpose filtering criterion based on a 
Chi-Square Thresholding (CST), and compare its per- 
formance to those of two general-purpose and popu- 
lar threshold criteria: the Akaike's Information Crite- 

rion (AIC) [Akaike, 1965] and the Minimum Descrip- 
tion Length (MDL) [Rissanen, 1978; Wax and Kailath, 
1985]. Examples with synthetic tests and real geophys- 
ical data are given. 

Denoising Signals with Wavelets 

An orthogonal basis reads { 2-"*/2• (2-"•t - n)} with 
(m,, n) • Z 2 where the analyzing wavelet ½ (x) is an 
oscillating function localized around the origin. The 
wavelet coefficients of a discrete signal may be efficiently 
computed via a pyramidal algorithm Mallat [1989] and 
provide a •vay to examine the information content of the 
original signal in the time-scale half-plane. If the input 
signal s counts K = 22½ values, the first 2 N-• wa-velet 
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coefficients correspond to the finest scale available and 
fixed by the sampling interval, the next 2 N-• coeffi- 
cients are for the immediately upper scale (i.e. twice the 
finest scale), and so on until the last coefficient which 
corresponds to the largest scale available (i.e. the length 
of the signal). A filtered signal is obtained by perform- 
ing an inverse wavelet transform with a subset of the 
initial K wavelet coefficients. 

Filtering Criteria 

Since each of the K coefficients may be either rejected 
or retained, the set A = {s•} of the a priori possible 
filtered signals possesses 2 K elements, and a filtering 
criterion is necessary to decide which of the s•'s is the 
denoised signal. Of course, the final choice depends 
on the problem at hand, and for the particular case 
of gaussian-white and zero-mean noise we propose the 
CST criterion whose "best" signal SCST verifies 

CST (scsi) •- P0 (1) 
with 

where X•/• is the Chi-square probability function with n 
degrees of Seedom. The variance, •, of the noise is 
•ssumed • priori known, and 

K 

[18 -- 8l[[ 2 -- • (.5i- 81,i) 2 (3) 
i:1 

The probability threshold P0 in (1) fixes the level of risk 
accepted that some noise remains in scsy. 

In order to show the reader that the choice of a 

particular filtering criterion is critical and strongly de- 
pends on the problem at hand, we consider two generM- 
purpose criteria: the Akaike's Information Criterion 
(AIC) [Akaike, 1965] and the Minimum Description 
Length (MDL) [Rissaaea, 1978]. These criteria are of- 
ten used to choose among a collection of a priori mod- 
els, like for instance ARMA models in signal processing 
[Wax and Kailath, 1985], with different complexities k. 
The MDL criterion has been used by Saito [1994] in the 
context of wavelet filtering. When applied to the gaus- 
sian case, the AIC and MDL criteria respectively retain 
the signals sa•c and sa4• such that 

AIC (sa•c) = min[AIC(st)], (4) 
MDL (s•v;) = min[MDL(st)], (5) 

407 



408 MOREAU ET AL.: FILTERING WITH ORTHOGONAL WAVELETS 

with 

AZC(•) - II •-•,11 •/•q-2•, (6) 
J•iDL (8l) -- 118 - 8/ll 2 / (2 O-2) q- (3/2) k In K. (7) 

In our case, k is the number of wavelet coefficients used 
to produce Sl. 

The Denoising Algorithm 

The next step is to apply the criteria, (1), (4) and (5) 
to find the output filtered signal into A. Even for short. 
data series, the number of elements in A is considerable 
and disables an exhaustive search in the whole set of 

trial signals. However, the gaussian noise assumption 
allows a straightforward pre-selection of admissible trial 
models and limits the search in a subset B C A with 

only K elements. Let us define the set Au C A formed 
by the (•) trial signals reconstructed with k wavelet. 
coe•cients. Obviously, 

K 

U - x. (8) 

From (2), (6), and (7) we find that, for either criterion, 
the best candidate su belonging to Au is such that 

I1- - zNIv. (9) 
i 

where the sum is restricted to the K- k wavelet. coeffi- 

cients [•Vi discarded to reconstruct s•. Condition (9) is 
satisfied if s• is constructed from the k wavelet coeffi- 
cients with the largest modulus. Hence, the best signal 
belonging to each subset A• is directly obtained with- 
out spanning the whole subset,. Equation (8) shows that. 
the initial search performed in the entire set A may be 
replaced by a sequential search in the K subsets A•. In 
other words, the search is now restricted to the set 

B = {su ;k = 1,...,K} (10) 

where each element s• is constructed from the k largest 
wavelet coe•cients. Equation (9) holds because both 
the wavelet theory and the gaussian statistics rely on 
the same L 2 norm. If non-gaussian statistics were to 
be chosen for the noise model, another norm should be 
used and included in the wavelet, transform to produce 
a fast algorithm similar to the one established in the 
gaussian case. For instance, an exponential statistics 
corresponds to the L • norm. 

Examples 

Synthetic Noisy Signals 

The synthetic signals, named "Blocks" and "Heavi- 
sine" (Figure la), are the same as those used by Donoho 
and Johnstone [1994] and have been digitized over 2048 
values and contaminated by zero-mean gaussian white 
noises with er 2 = I (Figure lb). For all the following ex- 
amples, we used the Daubechies' analyzing wavelet pos- 

a) 

b) 

d) MDL=129 (.495 

., 

i I 

e) CST=164 (.324 

i I 

CST=39 (.086) 

Figure 1. a) Synthetic signals 'blocks' (left) and 'heav- 
isine' (right). b) The same signals contaminated by a 
gaussian white noise with a unit variance. c) Outputs 
obtained with the AIC filter, the numbers indicate the 
number of wavelet coefficients used to produce these 
reconstructed signals. d) Outputs obtained with the 
MDL filter. e) Outputs obtained with the CST filter. 
Numbers in parenthesis are average square errors. 

sessing 10 vanishing moments [Daubechies, 1992]. The 
AIC-filtered signals still contain a large amount of noise 
(Figure lc) which indicates that, for the gaussian statis- 
tics, the balance between the fitting and the penalty 
terms in (6) favors the models with too many degrees 
of freedom. The MDL- and CST-filtered (with P0 • 0.5) 
signals (Figure ld,e) are cleaner and we observe limited 
Gibbs effects in the Blocks signal and several spikes in 
the Heavisine signal produced by the CST filter. A 
visual comparison of our results with those obtained 
by Donoho and Johnstone [1994] with a Daubechies' 
wavelet shows that both the MDL and CST filters al- 

most work like the thresholding used by these authors 
who found average square errors differing by less than 
20% of ours (see Figure 1). Note that smaller errors 
have been obtained by $aito [1994] and by Donoho and 
Johnston. e [1994] for the Blocks signal and with the 
Haar wavelet which, for this particular type of signal, is 
more ei:ficient than the Daubechies' wavelet used in the 

present study. 
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Figure 2. Criteria curves AIU (sk)(left), MDL(sk) 
(middle), and (TST(s•) (right) corresponding to the 
heavisine signal and plotted for a limited range of k 
centered on the bes• value. Notice •he flatness of •he 

AIC (s•) curve and the sharp sigmoidal shape of the 
UST (su) curve. 

and U,S'T (s•;) corresponding to the Heavisine signal and 
plotted for a limited k range centered on the best value 
found (369, 25, and 39 for AIC, MDL, and CST, re- 
spectively). The curves corresponding to the AIC and 
MDL criteria are a, lmost symmetrical and fiat. in a wide 
interval centered on the minimum. Instead, the curve 
for the ('ST filter has a sigmoidal shape with a, narrow 
and steep transition zone between the region where the 
residuals have a very low probability (•_ 0) and becomes 
a, purely gaussian white noise and the region with high 
probability (•_ 1). This narrow transition zone makes 
the CST filter unambiguous since a very limited range 
of possible values for k is associated to the steep edge 
(Figure 2). As a, consequence, the choice of the prob- 
ability threshold p0 is not critical and, in most cases, 
choosing/90 > 0.5 implies a single value for k. 

The efficiency of the filters have also be assessed by 
filtering a pure gaussian white noise with a unit. vari- 

ance. The AIC filter gives a signal reconstructed with 
a large number (155) of wavelet coefficients. This con- 
firms that the AIC criterion is unable to remove a large 
part of the noise present in the data. Conversely, the 
signals obtained with both the MDL and the CST fil- 
ters are identically null. This agrees with $aito's results 
[5'aito, 1994] obtained with the MDL criterion. 

Electrical Geophysical Signal 

We now illustrate the utility of the method with an 
application of the MDL and CST filters to thermistance 

measurements made in a limestone underground quarry 
[Morat and Le Mou•'l, 1992; Morat ½t al., 1995]. This 
signal is strongly non-stationary and possesses abrupt 
variations (Figure 3). It is particularly interesting to 
check how the filters are able to account for the abrupt 
change of regime observed around t = 2000 s. A noise 
variance cr • - 9 x 10 -• Oh'm • estimated from the high- 
frequency part of the power spectrum of the entire sig- 
ha.1 has been used. The MDL- and CST-filtered signals 
are shown in Figure 3. In accordance with the previous 
synthetic t. ests, both filters give qualitatively equiva- 
lent results, although the MDL output seems slightly 
more smoothed than the CST output. A quantitative 
assessment can be made by examining the Fourier en- 
ergy spectra of both the initial and filtered signals (Fig- 
ure 4). Most of the energy of the left half (t < 2000 s) 
of the initial signal is located in the approximative 
low-frequency waveband 0 • f • 0.03 Hz while the 
right. half (t > '2000 s) has its energy essentially in the 
0.015 •< f •< 0.045 Hz waveband (Figure 4). These 
distinct spectral contents are a consequence of the sud- 
den change of the initia,1 signal around t = 2000 s. The 
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Figure 3. Top' original thermistance data. Middle' CST-filtered signal. Bottom: MDL-filtered signal. 
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Figure 4. Left' energy spectra of the left halves 
(t < 2000 s) of the original signal (upper curve), of the 
noise removed by the CST filter (lower solid curve), and 
of the noise removed by the MDL filter (dashed curve). 
Right: same as left part of the figure for the right halves 
(t > 2000 s) of the signals. 

energy spectra. of the left halves of the filtered signals 
show that both the MDL and the CST criteria filtered 

out the frequencies f ;h 0.035 Hz. We also observe that 
the CST filter is more efficient to preserve the energy in 
the low-frequency waveband where most of the informa- 
tion is expected. The energy spectra of the right halves 
of the filtered signals more clearly illustrate the differ- 
ence between the filters. In particular, one can see that 
most of the energy removed by the MDL filter lies in the 
waveband where the signal-to-noise ratio is high. Con- 
versely, the spectrum of the noise removed by the CST 
filter indicates that this filter correctly preserved the 
information waveband. This shows that the CST filter 

has correctly managed for the non-stationarities of the 
signal-to-noise ratio: the CST filter roughly acted like a 
low-pass filter with a cutoff frequency fc •- 0.03 Hz for 
the left half of the signal and with fc "-0_ 0.045 Hz for 
the right half. The CST filter automatically detects the 
waveband where the signal-to-noise ratio is high and fil- 
ters out the frequencies outside this waveband. Such a 
filtering with a varying and automatically adapted cut- 
off frequency is impossible by means of classical linear 
filtering. 

Conclusion 

Orthogonal wavelet decompositions coupled with the 
CST criteria is efficient to clean non-stationary signals 
embedded in gaussian white noise. Contrary to the 
classical Fourier filtering, the CST filter automatically 
adapts its cutoff characteristics through a local evalua- 
tion of the signal-to-noise ratio. For the gaussian case 
considered in this letter, the adapted CST criterion is 
more efficient than the general purpose AIC and MDL 
criteria. Fast algorithms may be designed as far as the 
norm used in the scalar product of the wavelet decom- 

position is compatible with the statistics assumed for 
the noise. 
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