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In the convergence context of identification technology and information-data transmission, the barcode
found its place as the simplest and the most pervasive solution for new uses, especially within mobile
commerce, bringing youth to this long-lived technology. From a communication theory point of view,
a barcode is a singular coding based on a graphical representation of the information to be transmitted.
We present an information theoretic approach for 1D image-based barcode reading analysis. With a bar-
code facing the camera, distortions and acquisition are modeled as a communication channel. The
performance of the system is evaluated by means of the average mutual information quantity. On
the basis of this theoretical criterion for a reliable transmission, we introduce two new measures:
the theoretical depth of field and the theoretical resolution. Simulations illustrate the gain of this ap-
proach. © 2008 Optical Society of America

OCIS codes: 100.2960, 110.3055.

1. Introduction

Since the beginning of the 1970s, barcodes have been
used for automatic identification and traceability of
consumer goods and parcel post. Because of its sim-
plicity, this technology quickly became inescapable in
electronic data interchange. Nowadays this tendency
has been strengthened with the development of tag
reading and new services such as mobile ticketing.
Basically, a barcode conveys binary information

to be decoded by a reading device. Barcode reading
technologies are thus singular communication sys-
tems in which messages are graphically modulated
before transmission. In several commercial appli-
cations 2D barcodes have progressively become wide-
spread. However, 1D barcodes still flood the market
of automatic identification, as they may require only
a simple linear imager as a reader and are more ro-
bust to relative misplacement. The scientific litera-

ture has dedicated few works to 1D and 2D
barcode coding. Pavlidis et al. [1,2] published a study
related to information theory fundamentals outlin-
ing the process for barcode design using error detect-
ing and correcting techniques. Tsi et al.[3] developed
a method that allows the calculation of the working
range in case of a CCD-based reader. Illumination
level, image contrast, and the number of pixels per
module — i.e., pixels per image bar width — have
been presented to be three important limiting factors
for the working range. From a technical point of view,
additional parameters specify the performance of
such readers, and wemention as instances resolution
(smallest readable bar width), scanning angle, and
acceptable skew or pitch rotations. Neither in the
scientific literature nor in technical booklets are spe-
cifications given concerning the quantity of informa-
tion that can be transmitted accurately, which is still
the goal of the system.

Our first objective is to evaluate the average infor-
mation quantity that can reliably be recovered by a
digital imager reading a barcode. A barcode indeed
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contains an amount of information measured in bits
and graphically mapped. As we are dealing with data
transmission, we consider the problem from a com-
munication point of view and model it according to
the Shannon paradigm with a source of information,
a channel, and the user of the information. The bar
width, the camera’s optical and electronic settings,
and the relative positioning of the barcode and the
sensor constitute the principal characteristics of
the channel. We then address the problem of the in-
formation quantity that this channel can transmit
accurately for a given probability distribution of its
input alphabet. From this point of view, the average
mutual information (AMI) between the input and the
output of the channel is the commonly accepted mea-
sure in bits/barcode or bits/sequence of the amount of
information transmitted through the channel.
The interest in information theory for optical sys-

tem design and analysis is indeed a growing trend.
Without being exhaustive, let us cite the works of
O’Sullivan et al., who proposed a survey [4] on the
image formation problem; in addition Brady and
Neifeld published an introductive paper on informa-
tion theoretic analysis of optical components [5].
More specifically, Wagner and Häusler in [6] and
Huck et al. in [7] proposed information theoretic tech-
niques for the optimization of image sensors to re-
duce redundancy in the acquisition process.
In a second phase of this work we evaluate some

performance measures regarding the computed
AMI. What are the minimum values required for
factors such as bar width, positioning, noise, impre-
cise handling, or relative positioning of the reader
and the barcode, in order to totally recover a given
amount of information? From these limits we
propose theoretical values for depth of field and
resolution.
AMI is not a measure of these performances but a

theoretical criterion needed to evaluate them. These
performances are theoretical in the sense that they
could be achieved under an infinitely hard hypoth-
esis. Other criterion could be used to quantify them,
such as visual acuity or digital imaging require-
ments. In [3] three factors are judiciously presented
to evaluate the working range and resolution. All
these factors have aminimum required value regard-
ing complexity of the signal processing circuitry and
decoding ability. The criteria in that case are prag-
matic and related to technology advances and detec-
tion algorithm sophistication, whereas the AMI
criterion is theoretical and disregards complexity
and decoding delays. Moreover, among all the criteria
noted above, only AMI is based on information,
which is the object and goal of the system.
In digital transmission, error probability is a qual-

ity measure evaluated under optimal detection
criteria and for a given barcode design. Like AMI,
it is based on information, but in terms of acceptable
loss of information bits in the transmission—
detection process. Computation of the error probabil-
ity requires knowledge of the coding design and is

intractable for channels with memory, so it is usually
represented by its upper and lower bounds. AMI in
return does not consider how the mapping of infor-
mation to a graphical representation is realized.
For these reasons we prefer AMI to the error prob-
ability criterion, as it is not limited to a particular
code design and opens up the way to new code design
motivated by the challenge of filling in the gap
between the actually achieved performances and
the theoretically possible ones.

The outline of this paper is as follows: in Section 2
distortions, including blur coming from both the free
positioning of the barcode and the optical character-
istics of the reader, are detailed. Section 3 is devoted
to AMI. A stochastic model of the captured linear im-
age is first developed. This model takes into account
all the characteristics described earlier in Section 2.
Then an algorithm based on the Monte Carlo method
and the algorithm of [15] (the BCJR algorithm) pro-
posed for the estimation of AMI. Section 4 shows
the relevance of AMI, theoretical depth of field,
and theoretical resolution through realistic examples
of linear imagers. Influences of both the optical block
characteristics and the free positioning of the bar-
code are also studied. Section 5 concludes this paper.

2. System Description and Distortions

The barcode is a graphical mapping of n independent
binary symbols into n black or white ω width bars
displayed on a white plane denoted Π. By conven-
tion, black and white bars, respectively, carry the
symbols 0 and 1 with probability 0.5. The right
and left sides of the white background are considered
start and end bars. They are indexed as 0 and nþ 1

[Fig. 1(a)]. The barcode is randomly oriented and
located in front of a camera characterized by its focal
length f , an aperture with specific shape (commonly
circular or square), and a sensor located on a plane
Π0. We deal in this paper with a linear imager as the
sensor with a row of N square pixels of side length ρ.
In the image plane each bar is represented by Nm

pixels. The Euclidean 3D space—denoted e—to
which the barcode and the camera belong is specified

by the Cartesian coordinate system RðO; x!; y!; z!Þ.O
and~z are, respectively, the optical center and the op-
tical axis of the linear imager. The sensor plane Π0 is
orthogonal to the optical axis and is centered on
O0 ¼ ð0; 0;ZcÞ. The barcode is arbitrarily moved,
giving it six degrees of freedom, three translations
and three rotations (ψ ;ϕ; θ) (Fig. 2). To each position
corresponds an image projected onto Π0, divided into
nþ 2 areas BC0

k, k ∈ f0; :::;nþ 1g [Fig. 1(b)]. Finally,
we assume that the linear imager reads the entire
width of the barcode.

A. Image Formation and Distortions

We consider here the image formation process, high-
lighting the link between positioning and distortions.
Camera characteristics and free positioning of the
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barcode induce four principal artifacts in the image
formation process:

• Geometrical distortions,
• Radiant flux decay,
• Blur,
• Spatial nonalignment between projected bar

frontiers and pixel borders.

1. Geometrical Distortions

Perspective projection onΠ0 induces geometrical dis-
tortions in the image of a barcode. The distortion is
defined by the mathematical operator Tð⋅Þ such that
to any pointMðu; v;ZÞ belonging toΠ corresponds its
projected point M0ðu; v;ZcÞ on Π0:

M0ðTðu; v;ZcÞÞ ¼ TðMðx; y; zÞÞ: ð1Þ

The positions of the bars of a barcode projected onto
Π0 are thus exactly known.

2. Radiant Flux Decay

We refer now to radiometric quantities to measure
power or its distribution radiating to the sensor
through the optical aperture [8,9]. BCi is an area re-
flecting or emitting light, and the radiance XðMÞ
measures the power per unit area per unit solid
angle ðWm−2 sr−1Þ leaving a point M in BCi. We con-
sider a homogeneous distribution over the surface,
that is, XðMÞ ¼ X i∀M ∈ BCi, and perfect diffuse sur-
faces (Lambertian surfaces), where the radiance

value is independent of the direction of illumination.
The radiated power per unit solid angle ðWsr−1Þ
emanating from any direction having an angle
β ¼ βðM;Ψ;ϕÞ with the normal to an elementary
area dS around M is X idS cosðβÞ. The solid angle
Γ subtended by the optical aperture of area Sa from
M is

Γ ¼ Sa cosðαMÞ=r2M

with r2M ¼ ‖OM
��!

‖2 and αM the angle betweenOM
��!

and
O~z. For barcode positions in which rM is much larger
than the optical aperture, the elementary area dS il-
luminates the thin lens with a total power equal to

ΦðMÞ ≈ X idS cosðβÞ
Sa cosðαMÞ

r2M
: ð2Þ

This expression shows that radiated power decays
with 1=r2M and falls as the barcode deviates and/or

is rotated relative to the image plane. For a lens
transmission factor equal to 1, i.e., with no power loss
between the lens and the sensor plane Π0, the sensor
irradiance (Wm−2) at point M0ðu; v;ZcÞ of BC0

i pro-
duced by the pointMðx; y;ZoÞ of BCi is approximately

IðM0Þ ≈ X i cosðβÞ
Sa cos αM

r2M

dS

dS0 ;

where dS0 is the image patch of dS centered on M0.
Using perspective projection geometry, one can es-
tablish the relation between the two elementary sur-
faces as

dS

dS0 ¼
cos αM
cos β

�

Zo

Zc

�
2

;

Fig. 1. Barcode displayed on (a) Π, (b) barcode projected on Π0, and (c) barcode capture.

Fig. 2. Spatial settings and conventions.
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where Zo is the coordinate of point M on the O~z axis
with rM ¼ Zo=jcos αMj, which yields

IðM0Þ ¼ X i cos
4ðαMÞðSa=Z

2
c Þ: ð3Þ

Finally, let us remark that IðM0Þ can be written as

IðM0Þ ¼
Xnþ1

j¼0

X j cos
4ðαMÞ

Sa

Z2
c

1BC0
j
ðM0Þ ð4Þ

with 1BC0
j
ðMÞ ¼ 1 for M0 ∈ BC0

j, 0 elsewhere.

3. Optical Blur

The blur is derived from the laws of both geometrical
optics and Fourier optics. The former establishes the
relation of the well-known thin lens formula [3]
(Fig. 3), expressed for an object point Mðx; y;Zof Þ
and its focused image point M0ðu; v;ZcÞ as

1

Zc

¼
1

f
�

1

Zof

: ð5Þ

Π0 has a single corresponding object plane Π placed
on Zof , and a misplacement of Π leads to an
unfocused image on Π0. In addition, Fourier optics
emphasizes diffraction, which also gives rise to blur
[10].
Thus, the blurring process is modeled by a global

optical transfer function HBðf u; f vÞ, with f u and f v
denoting spatial frequencies, and its equivalent point
spread function (hB) on the image planeHB is a func-
tion of optical aperture shape [10]:

HBðf u; f vÞ ¼ f ðoptical apertureÞ: ð6Þ

The resulting irradiance IBðM
0Þ at any point M0 of Π0

is then the 2D convolution of hB with IðM0Þ:

IBðM
0Þ ¼ ðI � �hBÞðM

0Þ; ð7Þ

where �� denotes 2D convolution.
In classical photography the spread of a light ray is

identified as a blur circle (circle of confusion) on the
sensor plane. As long as the blur circle does not ex-
ceed a given diameter, the image will appear to be in
focus to the human viewer. One can then define a
maximum permissible blur circle to ensure this
latter condition according to human eye acuity. Dis-
placements around the in-focus position give rise to
two possible values of Zo corresponding to the maxi-

mum permissible blur circle. One position is in front
of the focus point Zof , and another one, which here-
after is denoted Zd, beyond it. These two positions
give rise to a measure well used by photographers,
which is the depth-of-field region. As we deal with
automatic processing of barcodes, we omit the eye
resolution criterion and fix the maximum tolerable
blur circle to one pixel size, with the resulting
depth-of-field region as the reference.

4. Spatial Nonalignment

Each pixel integrates irradiance values in its area.
Because of the random width value ω0 of the pro-
jected bar BC0

j, this operation may involve irradiance
values resulting from one or more projected bars
[Fig. 1(b)]. This creates interference between adja-
cent data, referred to as spatial nonalignment inter-
ference. Spatial nonalignment interference depends
on ω0, on pixel size ρ, and on the shift amplitude be-
tween the edges of the projected image and the pixel.
If the barcode is orthogonal to the O~z axis, we can
express ω0 simply as a function of the magnification
factor and width ω of the bar. The number of pixels
NM involved to generate the gray levelGi can then be
expressed as

Nm ¼

�

Zc

Zo

ω

ρ

�

þ k; ð8Þ

where ½·� denotes the integer part of a real number
and k is a random variable taking its value from
the set f1; 2g. When this ratio decreases, the spatial
nonalignment artifact becomes the preponderant
cause of interference. Nm refers to the number of
pixels per module (the width of a projected bar).

The integration process over a pixel can be mod-
eled as a moving average filter with an impulse
response described as

hIðu; v; zÞ ¼ ð1=ρ2Þ1½�ρ=2;ρ=2�2ðu; vÞδðz� ZcÞ: ð9Þ

The resulting image is then the convolution of hI

with IB obtained in Eq. (7):

IRðM
0Þ ¼ ðIB � �hIÞðM

0Þ ¼ ðI � �hB � �hIÞðM
0Þ: ð10Þ

IRðM
0Þ is then sampled at points fM0

k; k ∈

f1; � � � ;Ngg, denoted fJk; k ∈ f1; � � � ;Ngg, and corre-
sponding to the centers of the N pixels of the sensor
and regularly spaced by distance ρ.

We aim now at studying the effects of all these dis-
tortions on the performances of an identification sys-
tem, based on reading a barcode with a linear imager.
To quantify these effects we adopt the AMI as a theo-
retical measure of achievable performance and as a
novel criterion for optical characteristics and layout
parameters.Fig. 3. Image formation diagram.
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3. Average Mutual Information

A. Definition

Reading a barcode with a linear imager is an in-
stance of a communication system. A sequence of
gray levels Y

0:nþ1
¼ ðY0;Y2; :::;Ynþ1Þ is captured as

the received samples through a channel, and the bar-
code bars X1:n ¼ ðX1;X2; :::;XnÞ are the transmitted
symbols. In digital communication, AMI is consid-
ered a measure of the average information quantity
that flows through a disturbed channel, having ran-
dom sequences X1:n and Y0:nþ1 as its input and out-
put, respectively. Let us first recall the general
definition of AMI [11,12].
Let X1:n ¼ ðX1;X2; :::;XnÞ and Y0:nþ1 ¼ ðY0;Y1; :::;

Ynþ1Þ be two sets of random variables. Each X i ð0 ≤

i ≤ nþ 1Þ and each Y i ð0 ≤ i ≤ nþ 1Þ takes its values
from a finite alphabet Ω of symbols and from the set
of real numbers IR. The AMI of a pair of random pro-
cesses IðX1:n;Y0:nþ1Þ measures the reduction in un-
certainty in one of the two sequences when the
second sequence is given. It can be expressed as

IðX1:n;Y0:nþ1Þ ¼ HðY0:nþ1Þ �HðY0:nþ1jX1:nÞ ð11Þ

with

HðY0:nþ1Þ ¼ �E
Y
½log2ðpðY0:nþ1ÞÞ�; ð12Þ

HðY0:nþ1jX1:nÞ ¼ � E
X;Y

½log2ðpðY0:nþ1jX1:n ¼ x1:n;X0

¼ Xnþ1 ¼ 1ÞÞ�: ð13Þ

Here pðY0:nþ1Þ is the probability density of Y0:nþ1),
and pðY0:nþ1jX1:n ¼ x1:n;X0 ¼ Xnþ1 ¼ 1Þ is the condi-
tional probability density with reference to x1:n (X0

and Xnþ1 are always known to the receiver). In Eq.
(12) expectation is processed over the random
sequence Y0:nþ1, while in expression (13) it is done
over the pair of random sequences (X1:n;Y0:nþ1).
HðY0:nþ1Þ defines the entropy of Y0:nþ1, which can

be interpreted as the average uncertainty about this
random sequence, and HðY0:nþ1=X1:nÞ defines the
conditioned entropy of Y0:nþ1 given X1:n , interpreted
as the part of uncertainty in Y0:nþ1 that can be
resolved when X1:n is known.
Uncertainty and information can be regarded as

two equivalent quantities. The information provided
by a given realization will fill in the information gap,
described as uncertainty. That is why in digital com-
munication IðX1:n;Y0:nþ1Þ measures the information
flow through a channel [13].
The calculation of AMI requires modeling the

channel on the basis of degradations described in
Section 2. This modeling will allow us to calculate
all the probabilistic functions needed to express
entropies and thus IðX1:n;Y0:nþ1Þ.

B. Channel Modeling

In order to construct our model, we describe in the
following the discrete image formation as a gray-
level observation vector ðY0 � � �Ynþ1Þ

T [ð⋅ÞT being
for transpose] obtained from input data vector
ðX0 � � �Xnþ1Þ

T . The sampled gray levels obtained
at points fM0

k; k ∈ f1; � � � ;Ngg are denoted fJk; k ∈

f1; � � � ;Ngg. From Eqs. (4) and (10), we obtain

Jk ¼
Xnþ1

j¼0

X jhk;j ð14Þ

with

hk;j ¼ C
Sa

Z2
c

½ðcos αMÞ41BC0
j
ðM0Þ � �ðhI � �hBÞ�M0¼M0

k
;

ð15Þ

where C is a scale factor depending on the character-
istics of the acquisition system (photosensitivity
of the CCD sensor, integrating time, quantum effi-
ciency, quantification transmittance function, etc.).
We assume, in addition to the reasonable hypothesis,
that variations of irradiance in the area of one pixel
are negligible. Accordingly, the mean gray level Gi of
the captured bar BC0

i is the weighted summation

Gi ¼
XN

k¼1

gi;kJk; ð16Þ

where gi;k is the normalized area of overlap between
the kth cell and BC0

i, 0 ≤ i ≤ nþ 1. Equation (16) can
also be written as

Gi ¼
Xnþ1

j¼0

X j

XN

k¼1

gi;khk;j: ð17Þ

In matrix notation, we have

Gðnþ2Þ ¼ AXðnþ2Þ; ð18Þ

where A is the so-called channel matrix and is
an ðnþ 2Þ × ðnþ 2Þ matrix with elements Ai;j ¼P

N
k¼1

gi;khk;j, Gðnþ2Þ and Xðnþ2Þ are the vectors

Gðnþ2Þ ¼ ðG0…Gnþ1Þ
T ; and X ðnþ2Þ ¼ ðX0…Xnþ1Þ

T .
An observed output channel Y i is associated with

each transmitted symbol X i. Y i results from the cap-
turedmean gray level, Eq. (18), corrupted by additive
noise disturbances, modeled by a Gaussian white-
noise process:

Y i ¼
Xnþ1

j¼0

X jAi;j þ Bi: ð19Þ

Let us emphasize that, rewriting Eq. (19), it is
straightforward to show that Y0:nþ1 is a hidden Mar-
kov model and that Fi ¼ ðX iþL …X i …X i�L Þ is a
Markov process, L representing the maximum mem-
ory length, i.e., Ai;j → 0 for all I and for jj� ij > L.
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C. Average Mutual Information Computation

AMI is obtained from computations of both the con-
ditional entropyHðY0:nþ1jX1:nÞ and the output entro-
py HðY0:nþ1Þ. HðY0:nþ1jX1:nÞ is fully determined by
the entropy of the noise process B0:nþ1[12]:

HðY0:nþ1jX1:nÞ ¼
nþ 2

2
log2ð2πeσ

2Þ; ð20Þ

where σ2 is the power of Bi. The exact calculation of
the output entropy HðY0:nþ1Þ (12) is, on the other
hand, intractable. We then resort to the Monte Carlo
method [14] to estimate it, which consists of an em-
pirical estimation from an Ns sample fpðy

ðsÞ
0:nþ1

Þ; s ∈
f1; � � � ;Nsgg:

ĤðY0:nþ1Þ ¼ �
1

Ns

XNs

s¼1

log2ðpðy
ðsÞ
0:nþ1

ÞÞ; ð21Þ

where each realization y
ðsÞ
0:nþ1

of Y0:nþ1 is obtained

from Eq. (19) and where X1:n follows a uniform dis-
tribution on f0; 1gn and each Bi has a zero mean nor-
mal distribution with variance σ2.
Using the Markovian property of F−1:nþ1 and be-

cause the original form of the BCJR algorithm
[15,16] is subject to numerical limitations, we resort
here to a variant proposed in [17,18]. This variant is
based, unlike classical BCJR, on the observation that
pðykjy0:k�1Þ does not suffer underflow, so that one can
estimate output entropy by

ĤðY0:nþ1Þ ¼ �
1

Ns

XNs

s¼1

Xnþ1

k¼0

log2ðpðy
ðsÞ
k jy

ðsÞ
0:k�1

ÞÞ; ð22Þ

and the conditional probability density function
pðy

ðsÞ
k jy

ðsÞ
0:k�1

Þ is given by the recursion of the two
equations:

pðy
ðsÞ
k jy

ðsÞ
0:k�1

Þ ¼
X

f k�1

X

f k

pðFk�1 ¼ f k�1jy
ðsÞ
0:k�1

Þ

× pðFk ¼ f kjFk�1 ¼ f k�1Þ

× pðy
ðsÞ
k jFk ¼ f k;Fk�1 ¼ f k�1Þ; ð23Þ

pðFk ¼ f kjy
ðsÞ
0:kÞ ¼

P

f k�1

PðFk�1 ¼ f k�1jy
ðsÞ
0:kÞPðFk ¼ f kjFk�1 ¼ f k�1Þpðy

ðsÞ
k jFk ¼ f k;Fk�1 ¼ f k�1Þ

P

f k

P

f k�1

PðFk�1 ¼ f k�1jy
ðsÞ
0:kÞPðFk ¼ f kjFk�1 ¼ f k�1Þpðy

ðsÞ
k jFk ¼ f k;Fk�1 ¼ f k�1Þ

: ð24Þ

At initialization, y
ðsÞ
�1

is without information about
F−1 for any s, so that F−1 is uniformly distributed:
PðF�1 ¼ f�1jy

ðsÞ
�1
Þ ¼ 1=2L.

D. Average Mutual Information: Theoretical Criterion for
Barcode Identification Performance

Our purpose is to assess AMI variations in the con-
text of barcode reading with a 1D camera. As the bar-
code is freely positioned in front of the camera,
variations of AMI depend on the overall layout, mod-
eled in this work as a transmission channel by
Eq. (19). In this equation the channel appears, being
a memory channel with additive white Gaussian
noise, where spatial interdependencies and radiant
energy decay are summarized in matrix A. Blur
and spatial nonalignment are responsible for the
interdependency between neighboring pixels, while
remote positions, rotations, and corresponding geo-
metrical image reductions lead to received energy
decays.

Let us consider a camera with optical and electro-
nic (pixels and noise) settings and a barcode with an
arbitrary position and a given bar width. AMI varies
whenever one of these parameters varies. We aim
first at studying how sensitive AMI is to changes
in one of these parameters. We define the range
in which one of the above parameters could vary
such that AMI remains greater than a given value.
Other criteria may be adopted, such as a maximal
acceptable error probability or achievable decoding
complexity. Both are practical and pragmatic. Error
probability depends on barcode design, and decoding
complexity depends on algorithmic sophistication
and advances in technology. Both are related to a re-
quired signal-to-noise ratio (SNR) or to a minimal-
noise-level power. The pertinence of AMI is that it
is strictly related to the information quantity, which
is specific for the system. In addition, it is a theore-
tical criterion that opens the way for new code design
to approach theoretical limits. Performance based on
the AMI criterion is independent of the state of the
art in technology and could be considered an upper
bound or a reference for actual and future work.

AMI is primarily a theoretical measure about the
information quantity that can be transmitted accu-
rately over a channel and for a given probability
mass distribution at its input. In our context and
for a given linear imager setting (including noise),
AMI varies with A as the barcode moves with respect

to the camera. One can then define an allowed region
in space for which AMI remains superior to a fixed
value. For pragmatic consideration let a barcode with
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given information content feed the channel. For
example, let a barcode of 95 bars with on average
76 bits of information content feed the channel. To
transmit all this information accurately, AMI must
be at least equal to 76 bits/sequence. All points in
the space allowing this AMI will fill this range, which
ensures efficient communication.
On the other hand, an important result from infor-

mation theory states that noise limits the average
information quantity that can be transmitted reli-
ably through a channel. For a given matrix A, AMI
decreases as noise power increases. The presence
of noise then has an impact on the allowed region
in space that ensures efficient communication.
Regarding the remarks in the preceding two para-

graphs, we present AMI as an objective criterion for
the estimation of what we shall define as the theore-
tical depth of field. In traditional photography, the
geometrical computation of depth of field is deter-
mined by parameters such as the focal length, the
aperture size, and a fixed permissible blur circle.
Geometrical computations do not consider noise in
expressing the depth of field, but only blur. We pro-
pose a theoretical depth-of-field measure related to
AMI that varies according to channel matrix A
and/or noise power. As we shall show, this theoretical
working region enlarges barcode reading capabilities
beyond the usual optical performances inherited
from classical photography. In all cases, it spurs re-
search to conceive optimal barcode configurations
and optimal detectors.

4. Simulations and Results

We evaluate and plot AMI variations for different
positioning of the barcode in front of the camera
and for different noise levels. These curves, giving
AMI with respect to distance Zo, encompass all the
channel artifacts presented in Section 2. We also plot
AMI as a function of SNR in order to emphasize the
influence of positioning on the channel memory and
its effects on the transmissible information quantity.
In the following, we consider a linear imager with a

square aperture of 2d side length and focal length f .
We define the f -number of the imager as the ratio
f =2d. The linear sensor is fixed at distance Zc and
is designed as a row of square pixels with side length
equal to 5 μm. Because of the square aperture, the
optical transfer function HB (Subsection 2.A.3) can
be split into two functions,HG andHD, related to geo-
metrical and diffraction blur and defined by [10]

HGðf X ; f YÞ ¼ sin c

�

8WmðZo;ΔZÞ

ν

�

f X
2f 0

��

1�
jf X j

2f 0

��

× sin c

�

8WmðZo;ΔZÞ

ν

�

f Y
2f 0

��

1�
jf Y j

2f 0

��

ð25Þ

where ν is the optical wavelength, f 0 ¼ d=vZc is the
optical cutoff frequency, ΔZ is the shift position with
respect to the focused point set at Zo ¼ Zof , and

WmðZo;ΔZÞ is the shift function, such as

WmðZo;ΔZÞ ¼
d2

2

�

1

Zo

�
1

Zo þΔZ

�

;

HDðf X ; f YÞ ¼ Λ

�

f X
2f 0

�

Λ

�

f Y
2f 0

�

; ð26Þ

where Λð⋅Þ is the triangle function.
The terms “long-range” (LR) or “short range” (SR)

are used in the following to specify the optical config-
uration of the simulated imagers. More precisely,
those cameras are

• A LR one with Zof ¼ 300mm, f ¼ 7:6mm,
Zc ¼ 7:8 mm, and aperture f =8;

• A compact LR (cLR) one with same Zof ¼
300mm but f ¼ 1:492mm, Zc ¼ 1:5mm, and aper-
ture f =1:4;

• A SR one with Zof ¼ 45mm and aperture f =8.

These specifications, quite arbitrary although refer-
ring to common industrial equipment, were chosen to
study the effect of blur and spatial nonalignment
separately.

We simulate a barcode pattern composed of 95 bars
of constant width ω set to 1mm. For each bar BCi we
consider a random symbol X i taking its values from a
binary set Ω of arbitrary radiance quantities. Noise
power spectral densityNo is set to values that ensure
a SNR varying from −10 to 35dB with respect to ra-
diance. Common values of an array sensor SNR are
between 0 and 50dB [19]. Our lower SNR range is set
to determine whether, when performance is mea-
sured with AMI, efficient transmission remains
achievable with noisier systems.

A. Theoretical Depth of Field

Let Zo be the distance between the center of the bar-
code and the thin lens on the ~Oz axis (see Fig. 2). In
this paragraph we consider cameras with only one
possible focused distance, Zo ¼ Zof . Let Zo vary from
Zof to 2Zofand the orientation of BC vary from 0 to
0.2π relative to the angle ϕ. We first consider the
LR linear imager. The geometrically computed far-
extreme point of the depth-of-field region is about
380mm. These computations are obtained for a per-
missible blur circle diameter equal to a pixel width.
AMI variations are plotted with respect to the dis-
tance Zo [Fig. 4(a)] and angle ϕ. The mean channel
memory length L for this imager varies from two
to four symbols.

For a low-noise power quantity, AMI losses are less
than 1% even in a region beyond the classically com-
puted depth-of-field region. Conceptually speaking,
all information can undeniably be recovered in a
noiseless channel after an exact estimate of its ma-
trix A, whatever A is, in other words, however large
the blur circle is. This result confirms the need to
define a theoretical depth of field related to an accep-
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table loss of AMI. Nevertheless, we note a drastic de-
crease of AMI in the case of a noisy channel. As noise
is a limiting factor for AMI, it consequently limits the
theoretical depth-of-field region. For instance, if we
consider a minimum acceptable AMI of 90 bits/
sequence, then the far-extreme point of the theoreti-
cal depth of field goes beyond 2Zof at No ¼ 10−3, re-
duces to 2Zof at No ¼ 10−2, and is confined to about
380mm at No ¼ 10−1. For positions in front of Zof

AMI losses are less than 1% for all simulated noise
power quantities; so the theoretical depth of field is
equal to the far-extreme point measured on the
curve. In Table 1 we note some theoretical depth-
of-field distances measured for different acceptable
AMI values for No ¼ 10−1. We sketch in Fig. 4(b) var-
iations of the theoretical depth of field as a function
of the SNR Eb=N0, Ebbeing the mean received binary
energy. Figure 4(b) gives a global view of theoretical
depth-of-field notion: it depicts the admitted barcode
position range for a fixed AMI level. Eb is a function
of the integrated irradiance on the image plane; that
is, it encompasses the effects of illumination varia-
tion, spatial nonalignment, geometrical distortions,
and blur.
In the following we study the influence of optical

characteristic changes on the theoretical depth of
field. Classical photography rightly states that, with
the same aperture size, reducing the focal length

leads to a greater depth of field and, inversely, this
depth of field is reduced for focusing at a shorter
distance.

We consider for this purpose the cLR linear imager.
As mentioned above, a shorter focal length gives rise
to a larger depth-of-field region. The far-extreme
point of the computed standard depth of field is in-
deed 4:2m. But for the theoretical depth of field
we observe a reverse phenomenon. The mean chan-
nel memory length varies from two to six symbols,
and for an acceptable AMI of 90 bits/sequence, the
far-extreme point of the theoretical depth of field
approaches 2Zof at N0 ¼ 10−3, is reduced to
400mm at N0 ¼ 10−2, and is in front of Zof at N0 ¼
10−1 [Fig. 5(a)].

Values corresponding to other AMI limits are
noted in Table 1 for N0 ¼ 10−1, and Fig. 5(b) shows
how these distances vary as a function of Eb=N0.
One can clearly see how this parameter is reduced
compared with the earlier case. This reduction is
especially due to other terms of intersymbol interfer-
ence, which are not taken into account when comput-
ing the depth of field geometrically. We will see below
that spatial nonalignment is the principal cause of
this reduction.

We now consider the optical block focusing on a clo-
ser point object Zof ¼ 45mm, introduced above as a
SR linear imager. The far-extreme point of the stan-
dard depth of field Zd is about 50mm. Simulation re-
sults for AMI variations are presented in Fig. 6(a).Fig. 4. (a) LR imager AMI variations regarding Z0. (b) LR theo-

retical depth of field for fixed AMI levels.

Fig. 5. (a) cLR imager AMI variations regarding Z0. (b) cLR
theoretical depth of field for fixed AMI levels.

1032 APPLIED OPTICS / Vol. 47, No. 8 / 10 March 2008



Whereas simulations show that L remains a two-
symbol-longmemory, theoretical depth of field values
for different acceptable AMI quantities at N0 ¼ 10−1

are in Table 1. Figure 6(b) represents variations of
this theoretical limit with respect to of Eb=N0. Recal-
ling classical photography statements, the ratio
Zd=Zof diminishes for focusing on closer objects. A
quick comparison with the LR linear imager shows
that this statement does not concord with the results
obtained with the theoretical depth of field. This is
because the LR linear imager is limited by other
terms of intersymbol interference, whereas the SR
camera is not. In the subsequent paragraphs we ana-
lyze the implications of the use of an autofocus and
how the effects of other sources of distortions affect
the AMI and therefore the theoretical depth of field.

B. Autofocusing Effect on Average Mutual Information

Diffraction, unfocusing, and spatial nonalignment
produce intersymbol interference that leads to AMI

degradations. Below we measure the effect of autofo-
cusing on the system.

Starting with the LR imager, we plot AMI varia-
tions by varying the center of the barcode location
Zo, considered here the focused point. These varia-
tions are reported in Figs. 7(a) and 7(b) with respect
to Zo and the SNR Eb=N0, respectively. Figure 7(b)
shows different curves, each one corresponding to
a different position of the barcode, and so to a differ-
ent channel matrixA. When the barcode is parallel to
the sensor plane the light energy spread due to aber-
ration is null [i.e.,HGðf x; f yÞ ¼ 1 in Eq. (25)], asΔZ ¼
0 for all points in the object plane and WmðZo;ΔZÞ ¼
0. Only the diffraction term is present in the global

Table 1. Barcode Positions under AMI Constraint when Facing the Camera ðN0 ¼ 10−1Þ

AMI (bits/sequence)

ZoðmmÞ, LR ZoðmmÞ, cLR ZoðmmÞ, SR

f ¼ 7:6mm;Zof ¼ 300mm f ¼ 1:49mm;Zof ¼ 300mm f ¼ 7:6mm;Zof ¼ 45mm

90 380 280 80
80 425 290 85
60 480 340 100
40 540 380 125

Fig. 6. (a) SR imager AMI variations in Z0. (b) SR theoretical
depth of field for fixed AMI levels.

Fig. 7. LR AMI variations in the case of normal transmission and
autofocus with respect to (a) Z0 (with N0 ¼ 10−1), (b) SNR.
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transfer function. Figures 7 show that autofocus
slightly enhances (a few bits/sequence) the overall
performances of the LR camera configuration. We
will see below that for the SR camera autofocus gives
substantial ameliorations.
From imprecise handling, the object may be ro-

tated by angle ϕ with respect to the O~y axis. In this
case, the shift function WmðZo;ΔZÞ is not null for all
points in the object plane such as ΔZ ≠ 0, and the
aberration term remains in the transfer function.
In Fig. 7(b) no significant effects on AMI could be
measured for ϕ ¼ 0:2π.
We now emphasize AMI losses caused when spa-

tial nonalignment is the preponderant factor in the
intersymbol interference channel. We encounter this
situation when the image bar width is almost equal
to the pixel side length, which is the case for a cLR
imager. AMI variations after autofocusing are
plotted in Fig. 8.
Compared with the LR camera, where Zc ¼

7:8mm, the sensor plane position Zc ¼ 1:5mm of
the cLR camera is approximately one fifth. These
two cameras have the same nominal focused point
Zof ¼ 300mm; so the magnification factor ðZc=Zof Þ

is approximately five times smaller for the cLR cam-
era. This leads to a smaller projected image BC0. The
bars are therefore captured by fewer pixels, increas-
ing the effects of intersymbol interference and thus
rendering the communication system more sensitive
to noise. The number of pixels per module Nm

[Eq. (8)] varies from 2 to 1 when moving from Zof

to 2Zof . Figure 8 plots AMI after autofocusing, and
it is obvious that focus handling brings no relevant
improvement in AMI. Consequently, spatial nona-
lignment appears to be the principal cause of inter-
symbol interference. Compared with Fig. 7 of the LR
settings, Fig. 8 shows how degradations due to the
smaller projected image are significant. One can
then classify this cLR camera as a detector-limited
linear imager from a technological point of view,
and it is rather limited to large-size barcode design.

Finally, an autofocus process is also added to the
SR camera. The results are presented in Fig. 9,
where AMI is much more improved than for LR
and cLR. Indeed, autofocus brings a gain of up to
20 bits/sequence. In fact, with SR camera settings,
spatial nonalignment has a low impact: Nm ≥ 20

within the range [Zo f : 2Zof ]. This is supported by

Fig. 8. cLR AMI variations in the case of normal transmission
and autofocus with respect to (a) Z0 (with N0 ¼ 10−2), (b) SNR.

Fig. 9. SR AMI variations in the case of normal transmission and
autofocus with respect to (a) Z0 (with N0 ¼ 10−1), (b) SNR
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Fig. 9(b), where AMI curves plotted with respect to
the SNR for all focused positions are approximately
the same as the curve of the nominal position Zof .
This camera is very sensitive to displacements, but
once autofocusing is used, the large magnification
factor yields a substantial tolerance to free handling.
Last, plotting the variations of the fixed focal

length version PSFs of the three optical blocks for dif-
ferent Zo highlights their very different behavior
relative to displacement. The curves are plotted
in Fig. 10.

C. Theoretical Resolution

We now relate AMI to resolution, which we define as
the minimal bar width needed to recover a specific
amount of information. We thus introduce a theore-
tical value for this resolution after inspection of
curves relating AMI to the SNR. Considering, for
instance, an AMI curve at a distance 2Zof , one can
move along its trajectory for different SNR values,
which could be obtained by fixing N0 and varying
the radiated energy. This latter may vary with bar
width ω, and this enables us to draw a direct link be-
tween AMI and ω.
As an illustration, we consider the LR and cLR

imagers (Fig. 11). To ensure a reliable transmission
of 80 bits over 94 transmitted bars at N0 ¼ 10−2, the
minimal required bar width is 0:25mm at Zo ¼ 2Zof

for the LR settings and shifts to 0:5mm and 1:7mm,
respectively, at the same positions for the cLR cam-
era. The main reason for these stronger require-
ments for the cLR is the smaller magnification
factor within the range of measurements. What is
in fact important for AMI performance is to ensure
a good signal-to-interference ratio by augmenting
the magnification factor, providing a system more
compatible with higher-density codes. Thus the LR
camera has a higher resolution despite the fact that
it is less robust to displacements, as classical optics
suggests.

5. Conclusion

We have presented a novel method for performance
analysis of 1D barcode reading with linear imagers.
We have demonstrated that standard optics does not
yield a measure of the transferable information,
especially because it does not take into account noise
and spatial nonalignment of the barcode. As a conse-
quence, we have considered barcode displaying –
capturing – decoding as a digital communication
system.

The depth of field and the resolution have been re-
defined according to the objective mathematical
measure of the transferable information known as
average mutual information (AMI). Through the

Fig. 10. Point spread function variations for different Z0 for
(a) LR, (b) cLR, and (c) SR optics.

Fig. 11. AMI constrained minimal bar width estimations for
(a) LR and (b) cLR imagers.

10 March 2008 / Vol. 47, No. 8 / APPLIED OPTICS 1035



model we have developed, AMI encompassed all the
channel artifact sources (blur, geometrical distor-
tions, and noise) so that its estimation draws a direct
link between system design and information theory.
The performance of common industrial barcode

linear imagers has been analyzed in terms of AMI,
theoretical depth of field, and resolution. The AMI-
based analysis has also been compared with the stan-
dard optical one, and its relevance has been high-
lighted for the design of a communication system
based on 1D barcode technology.
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