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Abstract, It is shown how a continuous wavelet technique may be used to locate and
characterize homogeneous point sources from the field they generate measured in a distant
hyperplane. For this a class of wavelets is introduced on which the Poisson semi-group
essentially acts as a dilation.

1. Introduction

Consider a point source located at the origin, and assume that you can measure the field it
generates in a distant hyperplane. The problem is to recover the properties (type, strength,
location, orientation, and so on) of the source from this measurement. A naive approach
might be to use a deconvolution technique. ,However, because of the finite accuracy of
measurements, this method cannot really be used in practice. The approach we propose
is based on the continuous wavelet transform. Since this is a family of convolutions with
well localized functions, we shall not encounter the instabilities of deconvolutions. This
kind of technique might have applications in remote sensing of sources. Obvious examples
are subsurface imaging in geophysics from potential field measurements on the Earth’s
surface. Also, in medicine where stationary temperature fields obey the Poisson equation,
applications to infrared thermography are in sight.

In the present study, we limit our discussion to homogeneous point sources. These
constitute a natural family to represent local heterogeneities. However, we shall limit
ourselves to the single-source problem and leave the discussion of the multisource situation
to a subsequent paper.

The main results of this paper can be summarized as follows. As is well known
in the case of signal analysis, the continuous wavelet transform allows detection and
characterization of homogencous singularities [7]. Indeed, the lines of constant phase
or maxima or zero-crossings, etc in the parameter half-space of the wavelet coefficients
converge towards the point on the borderline where the singularity is located (figure 1).
Now suppose this singularity is the source of a potential field measured in a hyperplane at a
distance z. In this paper we show that there are wavelets such that the wavelet coefficients
of this remote field also exhibit lines of constant phase or maxima or zero-crossings, etc,
that converge, but now to a point located at a distance z outside the parameter half-space

(figure 1). ‘
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Figure 1. Wavelet transforms of singularities against wavelet transforms of potential fields.
The wavelet transforms (middle) of singularities (lower left) possess lines of maxima, of zero
crossings, etc, which converge on the borderline of the (b,a) half-space at the location of
the singularity, The wavelet transforms (right) of potential fields (upper left) due to singular
sources (e.g. point mass, lower left) and measured at a distance z possess lines of maxima,
of zero crossings, etc, which converge outside the (b, 2) half-space at a distance z from the
borderline. This property is satisfied only for a particular class of analysing wavelets introduced
in this paper.

2. Wavelet analysis: the basic formulae

2.1. Wavelet transform and wavelet synthesis

In this section the basic formulae of wavelet analysis are summarized for the convenience
of the reader (see [8,2] for general theory on the continuous wavelet transform). For the
sake of generality we work in n dimensions and state the results on a formal level.

Let s and g be complex valued functions over R*. The wavelet transform of s with
respect to the analysing wavelet g is defined through [6,7]

Wig, s)(b,a) = f dx ig(x—_b) $(x) (1)
a a

= [ & l,;g(b_f_") ) @
n a a

where 2(x) = g(—=x) and dx is the n-dimensional Lebesgue measure. Here b € R" is a
position parameter and a € R, is a scale parameter. The wavelet transform of a function
over IR is thus a function over the position-scale half-space H"*! = R" x R.. The first
formula expresses the wavelet transform in terms of a correlation function whereas the
second is a convolution. If the wavelet is symmetric and real valued, § = g and both
notions coincide.

By introducing the dilation (D,) and translation operators (7,) whose actions are
respectively defined by

Dys(x)=a"s(x/a) 3
Tps(x) =s(x — b) @)

the wavelet transform may be written either as a family of scalar products or as a family
of convolutions indexed by the scale parameter a:

Wig,sl(b,a) = (T Dag | 5) (3)
= (D,g * 5)(b). (6)
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Here the convolution product is defined as usual,

G = [ dyFc=»s0) =6 * D@, %)
In the Fourier space the wavelet transform reads

Wig, s1(b, a) = ] du Fam) 7 5u) ®

where the independent variable u is dual of either x or b and the direct and inverse Fourier
transforms are respectively defined by

Fls()lw) =5u) = [ dx e 374 g (x) 9)
R‘"
FIFwW(x) = s(x) = f du 75 (w). (10)
IRH

The wavelet synthesis M maps functions r(b, a) over H'*' to functions over R" and
the synthesis of r with respect to the synthesizing wavelet k reads

Mk, F1(x) =f s (I - b) r(b,a) (11)
Hr#t a @
= f 08 48 o o) TR, ), : (12)
e+t A

2.2. Relation between VW and M

The wavelet synthesis M is the adjoint of the wavelet transform W,

dbda ———
f Wiz, s)(b, a)r (b, a) = j dx 5(x) M[g, r1(x) (13)
m a Rn

and, in the Fourier space, the combination of these operators reads

MLk, Wlg, s1] : 5(u) b fig p(u)5(u) (14)
with

o~ o daz -

Mg p(u) = f ?g(au)h(au). (15)

0

Note that the Fourier multiplier 77, » only depends on the direction of u, fiy 5 = g n(u/ul).
This is because the measure da/a is scaling invariant.

In case that g and A are such that g (i) = cgp With 0 < [cg 4| < 0o, we say that g,
h are an analysis reconstruction pair, or that i is a reconstruction wavelet for g. We say
that g is admissible if g is its own reconstruction wavelet, or (what is the same) if

Yu e R"\(0} : f ‘i—f@(aunz = cpp < 0O. (16)
0

Note that if g is continuous at the origin, then we have necessarily g(0) = 0 if g is

admissible. Note also that s may be recovered from its wavelet transform with respect to

a non-admissible wavelet if a suitable reconstruction wavelet is chosen. Therefore, in what

concerns the analysis using wavelets, the admissibility of the wavelets is not mandatory.
If ¢ and h are an analysis reconstruction pair, then the following formula holds:

[ dbadﬂm(b‘ ﬂ)W[h: ).](b’ a} — Cg,.'l f dx E(x) r(x)- (17)
Hn+l .
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In particular, if g is admissible, then we have conservation of energy

d
f L . f dx [s ()| (18)
Mo+l a R

2.3. Covariance and homogeneous functions

The wavelet transform is covariant with respect to both translations and dilations,

Wilg, Tpsl(b, a) = Wig, s1(b — B, a) (19)
1 b a
W[g: Dlsl(bl a) = A._"W[g, S] (Kl I) r (20)

The last invariance implies a certain behaviour for wavelet transforms of homogeneous
functions s(x) of degree & € IR, i.e. such that

s(Ax) = A% (x)VA > 0. (21)
Indeed, the wavelet transform of homogeneous functions satisfies [5]

Wlig, s1(Ab, Aa) = A*Wlg, s](b, a) (22)
and is fully determined by dilating and scaling one voicef:

Wig.s1(b, a) = a"Wig, s1(b/a, 1). (23)

As a consequence the points where W(g, s1(b, a) = 0 are unions of straight lines converging
towards the centre of homogeneity. In the same way, the local maxima for each voice, that
is the set of points where 3,W(g, s1(b, @) = 0, form cone-like structures pointing towards
the origin. More precisely, if the voice of the wavelet transform is locally maximum at
position b and scale a, so will it also be at position Ab and scale Aa. The set of points
obtained as A > O varies is a line along which the wavelet transform scales with a power
law revealing the degree of homogeneity, ¢, of s.

A natural generalization of homogeneous functions are quasi-homogeneous functions
where (21) is replaced by

s(Ax) = A% (x) + (Ax)" log A. (24)

Obvious examples are the functions x® log x. Note that for o € N, the wavelet transform
of a quasi-homogeneous function satisfies again [2]

Wig, s1(Ab, Aa) = X*W([g, s](b, a) (25)
provided the wavelet has at least « vanishing moments,

fdx xﬂg(x) =0 18] € . (26)
Indeed, in this case the second term in formula (24) is not visible in the wavelet transform.

| According to the primeval literature concerning the wavelet transform [4], we shall hereafter call a line
Wg, s](b, a = constant) a ‘voice’ of the wavelet transform.
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3. Wavelet analysis based on the Poisson semi-group

3.1. Harmonic extension as a wavelet transform
Consider the following boundary value problem for a function of ¢ = (x,2) € H'+!
(i) Ag(g) = 0¥g € H*"!
() ¢(x,z=0)=s5(x) 27)

(iii)j dxlp(x,z20) < K <00
]er

where s is a function in R” that we suppose bounded and in L*(R") and K is a constant.
Condition (iii) implies that ¢ is of limited growth when z — 400 and then that the field ¢
is uniquely determined by s and its boundary behaviour at infinity. Such a field is called
the harmonic extension of s into the upper half-space HI"*! and can be obtained explicitly
from s by means of the Poisson semi-group:

¢(x,z) = (Dp # 5)(x) (28)
= Wi[p, sl(x, 2) (29)
where the Poisson kernels are defined by [1]
p(x) = cupr (L4 702 Bu) = &7 (30)
and verify the semi-group property
D;p* Dyp = Dyizp. (31)

As the remaining analysis will show, this semi-group structure is the basic algebraic
requirement and our analysis applies to the heat semi-group as well. Owing to both
equation (6) and the symmetry properties of the Poisson kernel (see formula (30)), the
harmonic extension of § may be written under the form of a wavelet transform with respect
to p (equation (29)). Let us remark that in the present case the analysing wavelet is not
admissible since p(i) is continuous and p(0) = 1. Also, the scale parameter a plays the
role of the physical dimension z along which the function s is upward-continued, while the
translation parameter is the equivalent of x (compare equations (6) and (29)).

For later reference we note that relation (28) holds even in the case of tempered
distributions as boundary values. More precisely, if ¢ satisfies Ag = 0 in H™ and if
¢ is of at most polynomial growth

|p(b, a)| < cla+ 1/a) (1 + |b)* (32)
for some ¢ and K > 0, then the limit
¢ (- 2) = ¢, 0%) (z \ 0) (33)

holds in the sense of distributions [1,3]. In addition, the field ¢ (-, z) may be recovered, up
to some polynomial, from the boundary distribution by means of the harmonic continuation
formula,

¢C,2) = Dyp+ (-, 07) + P. (34)

Here P is a polynomial in n + 1 variables. However, to give a precise meaning to the
convolution, we have to regularize p in such a way that its Fourier transform is regular
around the origin. That is if we consider the functions p; defined through

is}(u) —— e—2rr[u|-—27r/|lu| (35)
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then p;(u) — p(u) as | — co. Now we have more precisely
¢(.2) = im Dyp+ ¢ (-, 07) + 2. (36)

However, to simplify the notation, we shall not use this cumbersome formula and
convolutions of distributions with the Poisson kernel always assume this limit.

3.2. Homogeneous sources

In this section we recall the main propertics of homogeneous distributions in R™. A
distribution ¢ is called homogeneous of degree « if for all test functions ¥ we have

a(¥n) =A% (¥) ¥ =AY () A > 0. G7N

If ¢ is allowed to vary over all test functions with support in R™ we say that o is a
distribution in R™. If instead (37) holds only for those i whose support does not contain
the origin, we say that o is a distribution in R™\{0}. For instance, every homogeneous
function of degree o > —m defines a distribution of degree v, Other examples are given by
the & distribution and suitable superpositions of its partial derivatives 378 with the multi-
index 8 € N™. These are the only distributions having their support in one single point,
and they can be identified with the classical multipoles. More general examples are given
by replacing the ordinary derivative with the fractional derivative defined by

3% T ) — Qiru)’5Tw) g € R" ‘ (38)

where the branch cut of the logarithm 1s taken on the negative part of the real axis. Note,
however, that the distributions 88 with 8 € R™ are not sharply localized anymore but
exhibit a power-law decay at large distances.

We now list some well known properties without proof [3]. The space of homogeneous
distributions in respectively R” and R™\{0) for a fixed degree « is a vector space. It can
be shown that every homogeneous distribution in R™ is automatically tempered, Therefore,
its Fourier transform is defined in the sense of distributions. It follows, from the continuity
of the Fourier transform and its covariance under dilation, that the Fourier transform of
homogeneous distributions in R™ of degree « is again a homogeneous distribution but of
degree —m — «.

We now come to the problem of extensions. Every homogeneous distribution in [R™
defines a homogeneous distribution in BR™\{0} by restricting the set of test functions.
However, the converse is not true. More precisely, not every homogeneous distribution
ap in R™\{0} has a homogeneous extension to a distribution ¢ in B™, and we have to
distinguish two different situations. First, if ¢ ¢ —m, —m — 1, —m — 2 - - - a homogeneous
distribution ap in R™\[{0} can be extended to a homogeneous distribution o in R™ of the
same degree. Moreover, this extension is unique in the class of homogeneous distributions.
In the remaining case, m —« € N, things are a little more complicated since a homogeneous
extension does not always exist. Clearly an extension exists by the Hahn-Banach theorem,
however the extension need not be homogeneous any more. However, there always exists
an extension that is quasi-homogeneous in the sense that there is some distribution n such
that

oY) = A% (%) + n(¥) log A Y = A (L) A>0 (39)

for all test functions in R™. Here 1 is a linear combination of derivatives 9§ with the
multi-index g € N™. However, this quasi-homogeneous extension ¢ is not unique. Note
that the class of those homogeneous distributions over R™\{0} that have a homogeneous
extension to R™ can be completely characterized. However since we will not use this we
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will skip the details and we refer to the literature. For later reference, note that the Fourier
transform of a quasi-homogeneous distribution satisfies

T(Ya) = A"" () - 0(¥) log A Y = A"y () A>0 (40

where # = 77 is a homogeneous polynomial of degree —~m—a. It follows that the distribution
v =73 + 0log| - | is homogeneous of degree —m — . Therefore we have that & can be
written as a sum of a homogeneous distribution and a logarithmic correction:

T=v—6log|-| (41)

3.3. The field of homogeneous sources
Consider now the Poisson equation in R"*+!

Ap(g) = —a(q) g e R*! (42)

where the (generalized) function o is a source term and this equation is to be understood
in the sense of distributions. We work from now on in n dimensions because the (n + 1)th
direction will play a privileged role and we shall write ¢ = (x, z), with x € B", z € R.
Clearly, in application in geophysics we have n = 2, the two horizontal dimensions. The
third dimension is the vertical direction. As it stands the solution ¢ in terms of o is not
unique. However, the tempered solutions to the homogeneous equation are the harmonic
polynomials, and thus ¢ is essentially determined by o, up to some polynomial. In addition,
for physical reasons, we add the following requirements on the growth behaviour at infinity.
We suppose that as ¢ — oo

clog|q| forn=1
43
¢ forn > 1. (43)

¢ (@] < {

Then the solution is actually unique up to a global constant.

We are particularly interested in homogeneous sources of the type discussed in the
previous section. Suppose now that ¢ is a homogeneous distribution of degree & in R,
Consider first the case where o ¢ N. We claim that there is a unique distribution ¢ which
is homogeneous of degree « + 2, and satisfies (42). Indeed, the Fourier transform & is a
homogeneous distribution in R**! of degree —n — 1 —a. It follows that ¢ = & /|u|? defines
a distribution in R"*1\ {0}, Now this distribution is homogeneous of degree p = —n—3 —cr.
Since now p ¢ N, we may extend ¢ to a homogeneous distribution in all of R™*+?, Tts inverse
Fourier transform ¢ is then clearly a solution of the Poisson equation we have considered
and the degree of homogeneity is @ -+ 2 as claimed. -

Suppose now that ——n —1—« € N. Again we may set ¢ = o/|u|? to define a distribution
in R"F1\ {0}, but now it is not clear whether or not it has a homogeneous extension. However
a quasi-homogeneous extension exists. Its inverse Fourier transform satisfies therefore the
decomposition of quasi-homogeneous distributions

b(yn) = A2 () + () In A (44)

where @ is a polynomial of degree @ + 2. Therefore, in particular, for « < —2 the field
is again homogeneous. Note that this general discussion is nicely exhibited by the Green’s
functions where o = §[1]:

caln|g| n=1
Golg) = 45
D=1 cutlal™ @1, .
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Until now we have discussed general homogeneous sources. However, for obvious
physical reasons, we have to require that o is supported by a subset of the lower half-
space z < 0. As an additional property we may introduce the boundary distribution of the
field ¢ in the hyperplane z = 0. More precisely the following limit exists in the sense of
distributions

¢C.2) > ¢, 0") (z 0. (46)
This boundary distribution satisfies the same homogeneity and quasi-homogeneity properties
as ¢. In addition, the field ¢ (-, z) may be recovered from the boundary distribution by means
of the harmonic continuation formula,

$(,2) = D, p * $(-, 07). 47)

4. Wavelet analysis of homogeneous fields

4.1. Wavelets based on the Poisson semi-group

We now introduce a class of wavelets that behave nicely under the Poisson semi-group.
This will be necessary to analyse homogeneous potential fields and will be used in the next
section. More precisely, we say that a wavelet g satisfies the dilation-continuation condition
if the following holds true:

Dyg *Dpp =cDpg. ‘ (48)
Here ¢ = c(a, a’) and a” = a”(a, a') are functions of the scales a and a’. This means that
the continuation operator maps the dilated wavelet D,g into a wavelet at the same position
but at scale a” and amplitude c. In this section we will discuss some properties of wavelets
that satisfy the dilation-continuation property. In particular, we want to construct a large
family of solutions of (48).
First note that an immediate solution is given by the Poisson kernel itself. Indeed the
semi-group property
Dyp# Dyp = Dgyap (49)
shows that the Poisson kernel is a (non-admissible) wavelet that satisfies the dilation-
continuation property with ¢ = 1 and a” = a +a’. To obtain more general solutions,
consider a linear operator £ which satisfies the following properties with respect to the
dilation and translation operators,
D,L =a"LD, yeR (50)
T =L} (51)
Property (51) means that £ is a Fourier multiplier which by (50) is homogeneous of degree
y. Thus
L 5(w) = m)s(u) m(Au) = A m(u). (52)
Now if g has the dilation-continuation property, we claim that £g too has the dilation-
continuation property with the same function a” and ¢ replaced by (a/a”)”c. Indeed we
may write
D.Lg % Dypp =a¥L(Dyg # Dy p) (53)
= (a/a”)YCDﬂHEg. (54)
Therefore, in particular, all functions given by
) = m(u)e m(Oau) = A m(u) (55)
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are solutions of equation (48). In the special case where we have in addition ¢ = ¢(a”) and
a" = a+a’, a second family of solutions can be obtained as follows: suppose g satisfies
Dyg % Dy p = c(a)Dayarg (56)

a differentiation with respect to a shows that (xd,)g is again a solution of (56) with the
same function c. Therefore, a general family of solutions is given by

P(xd)Lp (57)

where P is a polynomial in one variable and £ is the operator (52).

4.2, Wavelet analysis of homogeneous fields

Both the covariance of the wavelet transform with respect to dilations (20) and the
homogeneity of degree « - 2 of the field ¢ ensure that

Wig, ¢, )b, a) = Wlg, D,p * ¢ (-, 0M)](b, a) (58)
= [Dyg * Dyp + ¢ (-, 0%)])(b) (59
= c(a, 2)[Dara,ng * ¢ (-, 0H)](b) (60)
= c(a, 2)WIg, ¢ (-, 0], a"(a, 2)). (61)

Now, using the covariance of the wavelet transform and the homogeneity of the boundary
distribution ¢ (-, 07), we obtain

b
Wig, ¢ (, D1, a) = c(a, 2)a"(a,2) ™ *Wlg, ¢ (-, 01)] (a,,(a D' 1) : (62)

To simplify the discussion, let us assume that the wavelet g belongs to the class defined by
(57). Then the last equation becomes

¥ b
Wig, (-, 2)](b,a) = (aiﬂ) (a+2)7**Wig, ¢(, 0] (m 1) . (63)

In order to get some insight into the geometry of this equation note that there are two
functions f and F such that the wavelet transform can be written as

b
Wig, ¢, 2)1(b,a) = f(a)F (—) (64)
Z+a
where f and F read
i —ax—2 a B
fla)=(a+72) (aH) (65)
F(b) = W(g, ¢(-,0M]1(b, 1). (66)

Note that the set of points (b, @) which satisfy b/(z + a) = constant are located on the
straight line in the half-space. For various constants, we obtain a family of lines that
intersect at the point (0, —z) outside the half-space H"*+!. Therefore, the wavelet transform
exhibits a cone-like structure where the top of the cone is shifted to the location of the
source outside the half-space. This provides a natural geometric way to locate the source.
The homogeneity « of the source, can be obtained either from the full expression of f(a)
using the formerly estimated ¢ or from the asymptotic behaviour f(a) =2 a~*~2 in the limit
a— 0o,

It might be instructive to give a second derivation of these results using only the
homogeneity of the field ¢ and not using the boundary field ¢ (-, 0F). Again, the covariance
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of the wavelet transform with respect to dilations (20) and the homogeneity of the field ¢
imply that

!

n b '
Wig, ¢ (- 216, a) = (5':;) Wig, Dajat (- 2)] (f—.a') (67)

a

\ n—a—=2 ’ '
-(5) e (D) 8
a a a

Here the dilation is acting on the first n variables only. Now, the harmonic extension
relation (28) enables us to obtain ¢ (-, za'/a) from ¢ (-, 2):

1 =2 b L :
W[S‘: d)(‘, Z)](b, a) = (%) W[g: DZ(G'/ﬂ—l)p * ¢(': Z)] (_;l_, a ) (69)

7

N\ n—a—2 - b
m(%) (Dwg*DHWmﬂP*¢@ZD( a)- (70)

a

As before, assume that the wavelet g has the dilation-continuation property (48). Then we
obtain

al n—o-2 ~ ba'
Wig, ¢(,2))(b,a) =c- (E) (Darg x (-, 2)) (7) (71)
i\ n—a—2 '
=c: (i) Wig, ¢(, 2)] (bi. a") ' (72)
a a

where ¢ and a” are functions of a’, @ and z (62). If, in addition, g belongs to the family
(57) and verifies (52), this last expression simplifies to

Qo a”+z ytn—a—=2 a”-l—z Y
Wig, 6 ¢, 2100 = (=) (HZ) Wiz, ¢, )] (ba+z .a ) (73)

This equation is valid for all a” > 0 which now plays the role of a parameter. In order to
recover from this expression the geometry of the shifted cone-like structure in the wavelet
transform, consider two points Q = (b, a) and Q" = (b(a" + z)/(a + z), a"). The straight
line they define passes through the location of the source (0, —z). From (73), we see that
the ratio of the wavelet coefficients at these points can be written as

Wig, 60, DUQ) _ @
Wig, 60, 01@) ~ f@)’

(74)

5. Examples of source characterization

We shall now examine how the wavelet transform enables both a localization and a
characterization of homogeneous sources responsible for an observed field. For an easy
display of the results, we work in a two-dimensional physical space (i.e. with n = 1).
Equation (73) is our basic working equation from which the horizontal and the vertical
coordinates of the source are to be determined together with its homogeneity «. The
wavelet used in the present example is displayed at the upper right corner of figures 2-4
and is defined by

- d
g1(x) = ‘d;P(x) (75)

and such that y = 1. For this wavelet, equation (73) reduces to

Wigs, ¢ ¢ )b, @) = ai (“a ::) Wiz, (. 2] (b‘; j::a) . (76)
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Figure 2, Wavelet analysis of the potential field measured at z = 20 and created by a
homogeneous source with @ = —3 located at the origin (upper-left comer). Middle-left: wavelet
transform of the field obtained with the analysing wavelet shown at the upper-right corner and
given by equation (75). Middle-right: two voices of the wavelet transform corresponding to
a = 6 (dashed curve) and a = 20 (full curve). Lower-left: the intersection of the straight
lines formed by the extrema of the voices of the wavelet transform is at the source location,
Lower-right: the variation of the amplitude of the wavelet transform along any line of extrema
is controlled by both the depth z and the homogeneity « of the source (see equations (73) and

(76)).



176 F Moreau et al

0=-3.5 025
o 0.0 0.1
&
& T ]
X 5 0.0-
-©-
5.0+ 0.1
-0.2+ "
¥ X
g 2.
20 e
>
c = — -
S - = 1
= -
I s
© 40 = &
- I§ 0._
.1,-
dilation
a 4 3
20~ ]
J & %
- 'U =
. =t i
10 (E‘.; N
1 1.
i .
0 ] = s VO T RN Y SR TR RN R RN
i i x 0 20
J i dilation
(R
1 t
10+ i
i
] H
-1 1]
20 ;
depth § :
Zz

Figure 3. Same as figure 2 for ¢ = —3.5.

We consider three examples of sources localized at the origin and corresponding to
o = —3,-3.5 and —4. The potential fields ¢(x,z = 20) created by these sources are
respectively shown at the upper-left corner of figures 2-4, and the wavelet transforms of the
fields are shown in the middle-left of the same figures. Note that the field created by the
source with a non-integer homogeneity & = —3.5 has a non-symmetric wavelet transform
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Figure 4. Same as figure 2 for ¢ = —4.

(see figure 3). Two voices of these wavelet transforms corresponding to the dilations @ = 6
(full curves) and a = 20 (dashed curves) are displayed in the middle-right part of the
figures. The voices of the wavelet transforms of the fields for the sources with & = —3, and
@ = —3.5 possess two extrema and the voices for @ = —4 have three. A two-step algorithm
can be used to estimate both the homogeneity index ¢ and the depth z to the source from
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the measurement plane (here, z = 20). First, the depth is geometrically determined by
using equation (74) and is given by the location outside H? where the lines of extrema
of the wavelet transform cross (see the lower-left corner of figures 2-4). Remark that the
convergence of the lines of extrema of the wavelet transforms also gives a determination
of the horizontal position of the source which creates the analysed field. Once z is known,
the exponent « is computed by examining the variation of the amplitude of the wavelet
transform along a given line of extrema (see the lower-right corner of figures 2—4). This
procedure accurately (i.e. up to the numerical precision of the computer) restitutes the
theoretical values of @ and z.

6. Conclusion

We have shown that the wavelet transform of the potential field generated by a homogeneous
source and measured in a hyperplane possesses truncated cone-like structures pointing
towards the Jocation of the source. In addition, the variation of the wavelet coefficients
over the scales reflects the degree of homogeneity of the source. This simple geometric
interpretation allows an easy localization. and characterization of point sources. At the
basis of this result is the construction of wavelets that behave nicely under the harmonic
continuation. As we have shown, a large family of such wavelets exists.
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