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Abstract—We present a low resolution face recognition tech-
nique based on a special type of convolutional neural network
which is trained to extract facial features from face images
and project them onto a low–dimensional space. The network
is trained to reconstruct a reference image chosen beforehand,
and it has been applied in visible and infrared light. Since the
learning phase is achieved separately for the two modalities,
the projections, and then the new spaces, are uncorrelated for
the two networks. However, by normalizing the results of these
two non–linear approaches, we can merge them according to a
measure of saliency computed dynamically. We experimentally
show that our approach obtain good results in terms of precision
and robustness, especially on new and unseen subjects.

I. INTRODUCTION

Face recognition is a topic which has been of increasing

interest during the last two decades due to a vast number

of possible applications: biometrics, video–surveillance, ad-

vanced HMI or image/video indexation. One of the main

challenge in face recognition for the visible light modality

is the illumination changes in uncontrolled condition. A

way to tackle this problem, and then to increase the global

recognition rate, is to use other modalities, like infrared

light, conjointly with visible light. Another advantage of

infrared light allows furthermore the system to run even in

bad lighting condition, like night.

A. Classical approaches of the task

Several approaches have been proposed, they can mainly

be divided into two parts :

• the local approaches, which extract features and then

combine them into a global model to do a classification.

• the global approaches which realize often a form of

linear projection of the high–dimensional space (i.e. the

face images) onto a low–dimensional space.

The local approaches first extract some features (like eyes,

nose and mouth) by the use of special feature extractors. The

recognition task is then performed using some measures (like

the distance between the eyes) on these features.

The most popular local technique is the Elastic Graph

Matching (EGM) where a set of interest points is extracted

from the face, and then a graph is created. Brunelli and Pog-

gio [5] used geometric models like the distance between pairs

of feature points to complete the face recognition. Wiskott

et al.[17] used some Gabor filters on the neighborhood of

these points to compute a set of jets to create the Elastic

Bunch Graph Matching method (EBGM). Here the shape of

the face is modeled into the jets to enhance the recognition.

The main drawback of the local approaches is that the

extractors have to be chosen by hand and can be sub–optimal.

Moreover, it is difficult to deal with different scales and

poses.

The global approaches perform a statistical projection of

the images onto a face space. The most popular technique

called Eigenfaces (first used by Turk and Pentland [16]) is

based on a Principal Components Analysis (PCA) of the

faces. It has also been applied to infrared faces by Chen

et al. [7]. Jung et al. [10] use it conjointly with an analyse

of the shape of the face. Another popular technique is the

FisherFacesmethod based on a Linear Discriminant Analysis

(LDA), which divides the faces into classes according to the

Fisher criterion. It has been applied early by Kriegman et

al.[11].

A comparison of these methods is made by Socolinsky

and Selinger in [15], or by Wu et al. in [18] which test also

a Discrete Cosine Transform.

Other methods are specific to the infrared modality, like

the work of Akhloufi et al. [4] where features are computed

from extracted blood vessels.

The main drawback of the global approaches is their

sensitivity to the illumination changes for the visible light

modality, and the thermal distribution of the face over time

for the infrared modality. When the illumination (or the

thermal distribution) of a face changes, the appearance of it

undergoes a non–linear transformation, and due to the linear

projection of the global approaches, the classification can

fail.

Extensions of these linear approches have been proposed

like kernel–PCA [13], or kernel–LDA [9] for face recog-

nition. The drawback of these extensions is there is no

invariance unless it is built into the kernel, and once again

by hand. This is also the drawback of other machine learning

technics like Support Vector Machine.

B. Our approach

We propose an approach that alleviates some of these prob-

lems by using a special type of Convolutional Neural Net-

work (CNN). The network, called the Face–Reconstruction

Network is based on the diabolo network model [14] where

the output is the same vector as the input, with a less

dimensional intermediate layer. The networtk then learns a

compact code of the input. By applying some transformations

to the input vector, while not changing the output, the

network is then able to learn a compact code of the input



invariant to those transformations. Inspired by the work of

Duffner and Garcia [8], the Face–Reconstruction Network

acts like a diabolo network. It projects non–linearly the input

onto a subspace and then tries to reconstruct a reference face

that has been chosen beforehand. It can be seen as a kind of

non–linear PCA, where a face is reconstructed using a set of

reconstruction vectors. The Face–Reconstruction Network is

used for the two modalities, visible an infrared.

This approach is based on convolutional neural networks

architecture. CNN offers the advantage of learning how to

extract the face features automatically, so no choice of a

particular extractor or of a particular kernel has to be made.

They are also designed to be more robust to illumination

change, and pose variation.

The paper is organized as follow : The architecture is

described in section II. The database, the preprocessing and

the learning phase are detailled in section III. Sections IV, V

and VI detail the three experiments we conducted. Section

VII shows the importance of the gallery and the number of

samples to enroll a subject. We present then our technique

to merge the scores of the two modalities and its results in

Section VIII. Finally, we present our conclusions and further

work in section IX.

II. ARCHITECTURE OF THE NETWORK

The Face–Reconstruction Network (see Fig.1) takes in in-

put an image of size 56×46 (i.e.: the size of the retina of the

network) and passes it through a succession of convolution

Ci, subsampling Si and fully connected Fi layers. The output

of the Network is an image, of the same size than the input,

which is reconstructed by the last layer F7. Each pixel of the

output is one neuron, so there are 56 × 46 = 2576 neurons

on the last layer.

We choosed a configuration of the first six layers, adapted

to our problem, which is similar to the LeNet Network[12]:

• C1. Feature maps : 15; Kernel size: 7×7; (Maps) Size:

50 × 40. Fully connected to the input.

• S2. Feature maps: 15; Kernel size: 2×2; Size: 25×20.
• C3. Feature maps: 45; Kernel size: 6×6; Size: 20×15.

Partial connections to break symmetry.

• S4. Feature maps: 45; Kernel size: 4 × 3; Size: 5 × 5.
• C5. Feature maps: 250; Kernel size: 5× 5; Size: 1× 1.

Fully connected to S4.

• F6. Neurons: 50; Fully connected to C5.

• F7. Neurons: 2576; Fully connected to F6.

All the neurons use the sigmoid activation function, which

is of the form : Φ(x) = 1.7159× tanh(2

3
x).

Note that when testing the network, this is not the state of

the last layer which is taken into account, but the compact

code represented by the state of the penultimate layer (that to

say 50 values). Some distances (L1, L2, Mahalanobis) have

also been tested during the test, the mahcosine giving the

best results has been retained for all the results presented

here :

d(x, y) = − x · y
‖x‖ · ‖y‖ = −

∑N6

k=1
xiyi

√

∑N6

k=1
(xi)2

∑N6

k=1
(yi)2

where N6 is the number of neurons of layer F6.

This architecture has already been tested on the visible

ORL/AT&T database [2] which contains 10 images for each

40 subjects with variations of lighting and head positions.

Tests on 50 images from unseen subjects (that has not

been used for training) of this database are reported Table

I. We can see that the face reconstruction network gets

better results than the eigenfaces method (PCA), which

validates the convolutional neural network approach for face

recognition.

Rank
Face

PCA
Reconstruction

0 38 29
1 45 33
2 45 38
3 47 40
4 47 42
5 49 44
6 50 44

TABLE I

Cumulative matches on unseen faces of the ORL/AT&T database. (The

last match for the Eigenfaces (PCA) is at rank 23).

III. LEARNING PHASE

The Notre–Dame Database [1] (Collection X1) is used to

train and test our networks. It has the advantage to present

images of subjects with the two modalities, visible and

infrared.

It can be divided into two parts : the first part, called

Training set, is composed of 159 subjects who all have only

one image in infrared light and its visible counterpart. The

second part, called Test set, is composed of 82 subjects, for

a total of 2292 infrared light images and 2292 visible light

images. While the train set contains no facial expressions or

head positions variations, the test set is composed of several

images containing variations in lighting, expressions, thermal

changes and head positions. The test set is also divided into

two parts, called Same–session and Time–lapse sets in order

to test the lighting problem, and the recognition through time

respectively. For each of these subsets, there are files named

f{a,b}l{f,m} which can be used for gallery or probe sets

during the test. These subsets have been designed to test

independantly the effect of a facial expression (fa: neutral

expression, fb: smiling expression), under different lighting

(lf : Feret style lighting, lm: mugshot lighting).

For a subject, a reference image has to be chosen before-

hand for the training phase. It is in fact the face for the

subject that the network has to recontruct.

The training is then performed using the descent gradient

with the classical regression cost function:

E =
1

2
‖op − tp‖2



Fig. 1. Architecture of the Network

where op and tp are the output values and the target values

respectively for the pattern p.

For all the learnings, second order method is used to

compute an approximation of the per-parameter optimal

learning rate, in order to speed–up the learning process

through the convergence of the network.

All the images have been resized to 56 × 46, their his-

togramm normalized and their pixel values scaled to ensure

for each image µ ≈ 0 and σ ≈ 1.

IV. FIRST EXPERIMENT

In a first experiment, we used the sets provided with the

database which are explained in Sec. III. The first problem

with the train set is that there is only one image per subject,

so we created new images by applying some transformations

to the original image, like a flip, a contrast enhancement

or by adding some artificial lighting to parts of the image.

We finally get 159 × 12 = 1908 images in the train set,

which we divided into two parts: the first part composed

of 159 images (one per subject chosen randomly) is used

for the cross–validation, and the rest to train the network.

For each subject, the reference image (i.e. the image to be

reconstructed) is the original image. A cross–validation is

performed during training after each iteration. It is useful to

avoid the network overfitting the data, and then to improve

its capacity of generalization.

The results for the two modalities of the two experiments

are shown Fig.2, 3, 4, 5. Each curve has a name where the

first part is the name of the gallery set, and the second part

the name of the probe set. We can see that the results for

both modalities are good for the Same–session experiment

(Fig.2 and 4), but quite bad for the Time–lapse experiment

(Fig.3 and 5) where the match rate at rank 0 is about 30%.

The main reason for the bad rates for the Time–lapse

experiment is that we used only one image per subject

during training. By applying some transformations (flip,

contrast enhancement, blur ...) to the input, the network is

able to learn them. But, some other variations (like facial

expressions) are not taken into account (there are little or

no facial expressions in the train set), so the network is not

invariant to them, and since there are facial expressions both

in gallery and probe sets, the recognition fails.

Fig. 2. ROC curves for the Same–session experiment, Visible, first
experiment

Fig. 3. ROC curves for the Time–lapse experiment, Visible, first experiment

V. SECOND EXPERIMENT

In this second experiment, we tried to bypass the lack of

facial expressions present in the train set. We applied the

same transformations to the 159 images of the train set, and

we added a subset of the FERET database [3] composed

of 2708 face images from 994 subjects. This subset of

the FERET database presents some head rotations, facial

expressions and lighting variations. The train set is finally

composed of about 4608 images from 1153 subjects. From

this, we remove 355 images from different subjects to make

the validation set (as in Sec.IV).



Fig. 4. ROC curves for the Same–session experiment, IR, first experiment

Fig. 5. ROC curves for the Time–lapse experiment, IR, first experiment

Fig. 6. ROC curves for the Time–lapse experiment, Visible, second
experiment

The results we obtained with this second experiment for

the Time–lapse experiment in visible light are presented Fig.

6. The results for the Same–session experiment are quite the

same than in the first experiment, so we do not display them

here.

Compared to the first experiment, the results are better (the

recognition rate at rank 0 is between 60% and 76%), which

confirms the lack of expression variations of the previous

train set.

The major problem with this second approach is that we

can’t do the same thing for the infrared modality due to the

lack of images avalaible.

VI. THIRD EXPERIMENT

In order to increase the number of training images, and

then the number of variations the network can learn, we

decide to use some subjects of the test set (2292 images

of 82 subjects) for the training phase. We split it randomly

into two disjoint parts of 41 subjects each to form SET1

and SET2. SET1 and SET2 are then composed of 1256
and 1036 images respectively. Some variations have been

applied to the original train set (composed of 159 subjects),

and SET1 has been added to it. One image per subject has

been retained to form the validation set, so we finally have

a train set composed of 159× 11 + 1256 = 2964 images of

159 + 41 = 200 subjects, and a validation set composed of

200 images (of 200 different subjects).

The test sets have been changed, because we do not want

to test the network on subjects that have been seen during

the training phase. So the 41 subjects of SET1 have been

removed from the probe lists (but not from the gallery lists).

The tests consist then to match the images of 41 subjects

(from SET2) against 82 subjects (SET1+SET2).

Table II shows that the results for the Same–session experi-

ment are good, with visible modality outperforming infrared

modality. However results for Time–lapse experiment (see

Tbl. III) is worse than those obtained by Chen et al. [6].

The main reason to explain this is that our approach runs

in low dimension (the size of the images is 56 × 46), while
Chen et al. use a PCA in a higher dimension, so they are

able to extract more relevant and precise informations (the

eigenvectors of the PCA), and the classes are finally more

separable.

X
X

X
X

X
X

XX
Gallery

Probe
FALF FALM FBLF FBLM

FALF
1.00 0.97 1.00
0.90 0.87 0.87

FALM
1.00 0.97 0.97
0.95 0.87 0.87

FBLF
0.95 0.95 1.00
0.97 0.87 0.97

FBLM
1.00 1.00 1.00
0.95 0.85 0.92

TABLE II

Rank–0 recognition rates for the Same–session experiment, third approach.

Top: Visible, bottom: IR



X
X

X
X

X
X

XX
Gallery

Probe
FALF FALM FBLF FBLM

FALF
0.80 0.76 0.68 0.67
0.41 0.44 0.37 0.38

FALM
0.73 0.75 0.68 0.65
0.42 0.38 0.34 0.38

FBLF
0.72 0.71 0.77 0.78
0.44 0.37 0.46 0.42

FBLM
0.73 0.71 0.73 0.73
0.43 0.34 0.41 0.42

TABLE III

Rank–0 recognition rates for the Time–lapse experiment, third approach.

Top: Visible, bottom: IR

VII. IMPORTANCE OF THE GALLERY SET

The relative bad rates of the Time–lapse experiment are

due to the gallery sets. In our approach, the intra–classe

variance may be higher than the inter–classe variance. In

the one image to enroll scenario (like in the experiments

above), if the image which will define the class of a subject

is not well chosen, the class may not be clearly separable,

and false positives occur.

To show this, we have conducted experiments, where one

image per subject is used to enroll and the rest to test.

The weight vector of the third experiment (see Sec.VI)

has been reused to compute the projection of the images.

Then one image per subject from SET2 has been chosen

randomly to form the gallery set, the rest forming the probe

set. Because of the randomness of the choice of the images

in the gallery set, the process has been iterated 1000 times

and the mean of the recognition rates has been calculated.

The final result is shown on Fig.7.

Fig. 7. Mean ROC curves of the random gallery experiment

Fig.7 shows us that recognition rate for visible light at rank

0 is about 84.%. It outperforms all the 16 Time–lapse tests

made at experiment 3 (see III). For the infrared modality, the

recognition rate for infrared light at rank 0 is about 41.9%.

It is about the mean of the results of the 16 Time–lapse tests

made at experiment 3 (see III). From this, we can conclude

two things: first, the visible modality outperforms infrared

modality in all cases, second, the gallery sets of the Time–

lapse experiment for visible light offers less separability of

the classes than other gallery sets. The problem is then: what

image will be the best to enroll one subject ? As we can have

no a priori about the answer to this question, a possible way

to tackle this problem is to enroll with more than one image.

We have then conducted similar experiment to the one

explained above with more images to enroll (always chosen

randomly), by simply averaging their projections. The pro-

cess is iterated 1000 times. For some subjects who have few

images, the maximum number of images avalaible has been

used. More formaly:

niep = min (λ, nip) − 1 for a subject who is tested

niep = min (λ, nip) for others

where niep is the number of images used to enroll subject

p, λ is the desired number of images to enroll and nip the

number of images avalaible for the subject p. The term −1
in the first case appears because we do not use the test image

to enroll.

Modality
2–images 3–images 4–images 10–images
enroll enroll enroll enroll

Visible 91.9 94.5 95.7 97.6
IR 55.4 61.6 65.4 72.9

TABLE IV

Rank–0 recognition rates according to the number of images used to enroll

As we can see on Tbl. IV, the rank–0 recognition increases

with the number of images used to enroll a subject. The

extremal case where all the images (except the one to test)

are used gives a rank–0 recognition rate of 98.4% for visible

light and 76.4% for infrared light. However, this extremal

case is for example purpose and does not take into account

the date of the images.

The reason of these results is by averaging the projections

of multiple views, the signature of a subject is more stable

to variations (facial expressions, lighting changes or head

poses) and the classes become more separable. Moreover, in

an operational scenario, the use of more than one image to

compute a signature is not unrealistic, and an update of this

signature through time can also be done easily.

VIII. FUSION

In this section we present the technique we proposed to

merge the results obtained from the two modalities.

In order to enhance the recognition rate, we use the

results on the two modalities and merge them according to

a measure of saliency.

For a given test image Iv of a subject in visible modality,

the distances of its projection to all the models mk of the

visible gallery are computed. We then have a distribution

of distances. After a linear normalization of this distribution

between 0 and 1, we compute its mean µ and its standard

deviation σ. By fitting a gaussian curve on the distribution,

we find a measure of saliency sk for each of the distance dk

of the distribution :



sk = σ
√

2π
1

e−
1

2 (
d−µ

σ )
2

The idea behind this is to give a big weight to a distance

which is very different from the others (even if it is a big/bad

distance), and inversely, to give a little weight to a distance

which is quite the same as others, so we take the inverse of

a gaussian.

This procedure gives us for the visible modality a distri-

bution of distances dkv
, each of it having a certain saliency

skv
.

The same procedure is applied to the infrared modality

with the infrared counterpart of Iv . It gives a distribution of

distances dki
, each of it having a certain saliency ski

.

The final distances are obtained by computing a weighted

sum of each couple of distances (dkv
, dki

) according to their

respective saliency (skv
, ski

):

dk =
dkv

× skv
+ dki

× ski

skv
+ ski

∀k

X
X

X
X

X
X

XX
Gallery

Probe
FALF FALM FBLF FBLM

FALF
1.00 0.97 1.00
0.90 0.87 0.87
1.00 1.00 1.00

FALM
1.00 0.97 0.97
0.95 0.87 0.87
1.00 1.00 1.00

FBLF
0.95 0.95 1.00
0.97 0.87 0.97
1.00 1.00 1.00

FBLM
1.00 1.00 1.00
0.95 0.85 0.92
1.00 1.00 1.00

TABLE V

Rank–0 recognition rates for the Same–session experiment, third

experiment. Top: visible, middle: ir, bottom: fusion

X
X

X
X

X
X

XX
Gallery

Probe
FALF FALM FBLF FBLM

FALF
0.80 0.76 0.68 0.67
0.41 0.44 0.37 0.38
0.85 0.83 0.75 0.76

FALM
0.73 0.75 0.68 0.65
0.42 0.38 0.34 0.38
0.82 0.80 0.72 0.73

FBLF
0.72 0.71 0.77 0.78
0.44 0.37 0.46 0.42
0.82 0.80 0.80 0.88

FBLM
0.73 0.71 0.73 0.73
0.43 0.34 0.41 0.42
0.82 0.81 0.80 0.83

TABLE VI

Rank–0 recognition rates for the Time–lapse experiment, third experiment.

Top: visible, middle: ir, bottom: fusion

Tables V and VI present the results we obtained for the

Same–session and Time–lapse experiment respectively. The

test sets are the same as in Sec.VI. Fusion of both modalities

outperforms either modality alone in all cases, even when the

scores of one modality are bad (like our scores on infrared

modality).

IX. CONCLUSION AND FUTURE WORK

We presented a low resolution face recognition method

for visible and infrared light imagery for telecom appli-

cations. Based on a special type of convolutional neural

network, it receives a face image in input, and, for both

modality, projects it onto a low–dimensional space where

the recognition is performed. We successively show the

importance of the training set for the training phase of

the network, and the need of multiple samples to enroll in

order to get a better classification. Results on the infrared

modality give relative bad results, we think this is due to

the high variablity of thermal distribution of the face over

time. However, we present a fusion method of visible and

infrared modalities which outperforms both. We are currently

conducting experiments to correlate the projections of the

two modalities to extend the possibilities of the multimodal

face recognition.
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