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Abstract

We present a generic classificationmethod based on a la-

bel diffusion on graph. Inspired by the watershed transform

widely used in the image segmentation field, we propose a

simple algorithm working on distances graphs of any topol-

ogy. Applied to the faces identification problem, this method

can deal with any type of distances. We propose also two

penalty functions that clearly improve the identification re-

sults when used within the diffusion process.

1. Introduction

Face recognition is a topic which has been of increasing

interest during the last two decades due to a vast number of

possible applications: biometrics, video–surveillance, ad-

vanced HMI of image/video indexation.

Biometric identification consists in finding an unknown

identity (the probe image) among a set of known identities

(the gallery). Most of the approaches proposed in the lit-

terature [6] are built on the same three–steps scheme: 1)

preprocessing of the images, 2) extraction of features from

faces, 3) classification of these features. This paper deals

with the last part, the classification step.

Image preprocessing The first step tends to localize the

faces in an image, to resize it, to apply a geometric normal-

ization and to use some algorithms to improve the image

quality.

Features extraction The second step computes facial fea-

tures from the preprocessed image. These features have to

be simple to compute, robust to facial appearance (facial

expression), and discriminative in order to differentiate per-

sons. For a recent survey on facial features extraction, see

[9]. This step can globally be divided into two main parts:

• the local approaches, which act locally on the face by

extracting salient interest points (like eyes or mouths),

and combine them into a global model [3] [15];

• the global approaches which often relie on a projec-

tion of the whole image onto a new low–dimensional

space (these methods are then named Subspace meth-

ods). Numerous dimension reduction technics have

been used like PCA [14], LDA [8], or their non lin-

ear version Kernel–PCA [11], and Kernel–LDA [10].

Classification The last step aims to compare a features

vector extracted from a probe face to a set of features vec-

tor computed from known subjects. Data classification is

a general task in computer science that is not restricted

to the biometric area. Numerous algorithms can then be

used. However, learning–based methods, like SVM or neu-

ral networks, cannot be used in practice. These methods

indeed learn a discriminative function that try to separate

identities of the gallery. As the number of classes (the

known identities) may change (a subject is removed/added

to the gallery), these classification models have to be re-

considered and the learning phase to be re-processed, which

may be impracticable in a real scenario.

Classification algorithms generally used in biometric

systems compare directly features vectors in a one–to–one

scheme.

The well–known Nearest Neighbor algorithm simply se-

lects the features vector vg from the gallery G that is the

closest to the probe vector vp according to a given distance

measure:

vg = min
i∈G

‖vgi − vp‖

The identity corresponding to vp is then the one of vg .

Other classification algorithms make use of the features

vectors of the entire gallery set to obtain a model of the

probe. That is the case with the mixture of gaussians.

Used when there are more than one image per person in the

gallery, a probe vector is decomposed as a weighted sum of

gaussian models:

vp =
∑

i

πi ∗ G(id)

where πi are the mixture coefficients and G(id) are the cre-

ated models (gaussians) for each subject id. The identity
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of vp often corresponds to the identity with the maximum

mixture coefficient.

Another classification algorithm makes use of the entire

gallery to decompose in a sparse manner a probe vector onto

the gallery set [16]. Here the sparse decomposition is pro-

cessed according to the energy:

E = min
x∈Rm

(‖vp −Ax‖22 + λ‖x‖1)

where A ∈ R
n×m is the matrix containing the features vec-

tors of the gallery (in column) and x ∈ R
m is the vector

containing the coefficients of the sparse decomposition. The

identity of vp is then deduce with:

identity(vp) = identity(min
i
‖vp −Aixi‖2)

In this paper, we propose another scheme for the identi-

fication: using both the entire gallery and probe sets for the

classification. Relations between vectors are modeled with

a graph where each node represents a features vector. A la-

bel (the identity) is given to each node corresponding to fea-

tures vectors of the gallery. A label diffusion onto the graph

then assigns a label to each node. As relation between two

unlabeled nodes can be less relevant that a relation between

an initially–labeled and an unlabeled node, we propose two

penalty functions that can be used during the process to fa-

vor the last case (or to penalize the first case).

The paper is organized as follow: Section 2 details the

proposed algorithm for the label diffusion and two penalty

functions that may be used during the diffusion process.

The conducted experiments and results obtained are de-

scribed in section 3. In section 4, we discuss about the al-

gorithm and its links with other diffusion on graph technics.

Finally we present our conclusions and further work in sec-

tion 5.

2. Label diffusion on graphs

In this section, we recall definitions of graphs, detail the

proposed algorithm, and explain the penalization functions

used within the algorithm.

2.1. Notations and definitions

Preliminaries on Graphs We consider the general sit-

uation where any discrete domain can be modeled as a

weighted graph. A weighted Graph G = (V,E,w) is com-

posed of a finite set V = {u1, . . . , uN} of N vertices (or

nodes), a set of edgesE ⊂ V ×V , and a weighting function

w : E → R
+. An edge (u, v) ∈ E connects two adjacent or

neighbor vertices u and v of V . In the rest of the paper, such

an edge will be noted u ∼ v. We assume that the graph G
is simple, connected and undirected, which implies that the

weighting function w is symmetric i.e. w(u, v) = w(v, u)
if (u, v) ∈ E.

In the rest of the paper, we only deal with distances

graphs. The weight associated to an edge in such a graph

represents the distance between two vertices according to a

given distance.

The label diffusion The Watershed transform is a well-

known tool principaly used in image segmentation. Intu-

itively, the watershed of a function (seen as a topographical

surface) is composed of locations from which a drop of wa-

ter could flow towards different minima. The formalisation

and proof of this statement is related to the optimal span-

ning forests relative to the minima [5]. Widely used in im-

age segmentation, classical algorithms use automatically–

computed or user–defined seeds as starting pixels. The gra-

dient image is also used as the topological map, seen as a

relief map. As a result, each pixel belongs to a basin de-

rived from an initial seed, and all pixels are clustered in a

local manner.

The watershed transform can be seen as a clustering tool

which assigns to pixels (in the case of image segmentation)

the label of the seed to which they are attached. Inspired

from the watershed transform, we propose a similar trans-

formation applied to a weighted graph. In the rest of the

paper, the data attached to each vertice v correspond to a

feature vector.

2.2. Proposed algorithm

Given a weighted graph G of distances, we propose a

simple algorithm (Algorithm 1) that computes a label diffu-

sion on graph.

The algorithm starts with a set S of labeled vertices. A

label function f is then defined on each vertex such that:

{

f(u) > 0 ∀u ∈ S
f(u) = 0 ∀u /∈ S

Algorithm 1: Label diffusion on distances graph

Data: a weighted graph G,

a set S of vertices u with label f(u) > 0
Result: S
initialize f(u) = 0, ∀u /∈ S;

initialize the list L of edges eu∼v , ∀u ∈ S;

while L 6= ∅ do
eu∼v = minw L;

if f(v) = 0 then
f(v) = f(u);
S = S ∪ {v};
L = L ∪ ek∼v ∀k ∼ v such that f(k) = 0;

L = L− {eu∼v};

All edges that contains an element of S are added to a

list L of edges. At each step, the algorithm finds the edge

eu∼v in L of minimal weight that has one and only one



Figure 2. Left: The original image, the two seeds are the black and

white dots. Right: the clustering result. All the three nuclei are

well detected.

labeled vertex. The unlabeled vertex v connected to the la-

beled vertex u is then labeled f(v) = f(u). The edges ev∼k

connecting any unlabeled neighbor k of v are then added to

L.

The complexity of the algorithm essentially relies on the

function that aims to find the minimum weight among a list

of weighted edges. This has been conveniently processed

with a heap structure which complexity is O(n log(n))
where n is the number of edges.

A schematic view of the algorithm is shown at the figure

1. In this example, seeds (blue and red dots) are associated

to the nodes a and d. Assuming w1 < w2 < w3, nodes b
and c take each the label of a (red label).

A clustering example of nuclei in a cytological image

obtained with this algorithm is shown at figure 2. In this

example, each pixel (in the RGB colorspace) corresponds

to a vertex u ∈ R
3, and the weighting function is given by

w(u, v) = ‖u− v‖2. Note that the constructed graph is a

k–nearest neighbor graph, in which each vertex is connected

to its k nearest neighbors according to the L2 norm, inde-

pendantly of their location on the grid. To ensure that there

are no disjoint parts in the graph, each vertex u correspond-

ing to a pixel (i, j) is also connected (4–connexity) to its

neighbors on the grid. The algorithm allows the detection

of the three nuclei although only one was initially marked.

2.3. Penalty functions

The proposed algorithm acts locally on nodes. Since

a propagated label could be less relevant than an initial

one, we introduce two penalization functions to reflect the

saliency of a label. These functions act on the edges of the

graph, and introduce the notion of globality in the process.

Intuitively, these functions penalize edges between two ver-

tices that are not labeled: the farthest an edge is from a seed,

the higher its penalty will be.

We first introduce the notion of step (noted pu→v ∈ N
∗)

that represents for a given node u the number of edges to

reach a node v. This step can easily be updated during the

diffusion process when edges are added to L. Nodes u ∈ S
have a fixed step pu = 0. In the example (Figure 1), pa =
pd = 0, pb→a = pc→d = 1, and pc→a = pb→d = 2.
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Figure 3. Penalty functions Ψ1 (top) and Ψ2 (bottom) for different

values of γ (noted as g) and with C = 9.

The two penalty functions proposed Ψ1 and Ψ2 are:

Ψ1
C,γ(p) = 1 + C(1 − 1

pγ )

Ψ2
C,γ(p) = 1 + C(1 − exp (− 1

2
(p−1)2

γ2 ))

These functions are strictly increasing according to p (with

C > 0), and are defined on [1,+∞[ taking values in [1, C+
1] (see figure 3). Since these functions are only used for

unlabeled nodes u, we always have pu > 0. Note that for

C = 0, we have Ψ1 = Ψ2 = 1, which means that no

penalization is applied.

The penalization of an edge eu∼v added to L is then

computed as:

w(u, v)← Ψi
C,γ(p) · w(u, v) with i ∈ {1, 2}

These functions allow to control the diffusion speed of

the label. When C = 0, the process is exactly the one de-

scribed by the algorithm 1. If γ → +∞ for Ψ1 (or γ → 0
for Ψ2), weights become equal to (C + 1) · w(u, v).



Figure 1. Algorithm process for a graph where w1 < w2 < w3.

3. Experiments and results

In this section, we detail the database used as benchmark,

the preprocessing applied on the images, the features extrac-

tion step, and the conducted experiments.

3.1. Details of the database

The Notre–Dame database [4] (see figure 4 for some

samples) is a reference publicly avalaible database. A test

protocol is given with images lists to be use for learn-

ing/enrolment/test. Two main experiments have been de-

signed, named Same–session and Time–lapse. In this pa-

per we focus on the Time–lapse experiment which includes

images taken within weeks/months. This experiment seems

more relevant than the Same–session one which is less com-

plex.

The Time–lapse experiment is composed of 16 separate

sub–experiments, varying in illumination and facial expres-

sion of the gallery/probe sets (see [4] for details).

Each sub–experiment consists in finding the identity of

431 probe images among a gallery set composed of 63 im-

ages of 63 different subjects.

In the rest of the paper, and for clarity purposes, although

the 16 sub–experiments have been conducted separately,

only the mean rank–1 recognition rates are presented.

Figure 4. Samples of the Notre–Dame database. Top: some gallery

images. Bottom: some probe images.

3.2. Preprocessing step

Each image of the database is normalized before the fea-

tures extraction step. Images are geometrically normalized,

eyes are roughly at the same position for each image (see

figure 5). Images are resized to a fixed size 150×200. Their

pixel values are scaled to ensure they are centered (µ = 0)

and normalized (σ = 1).

Figure 5. Preprocessing of the images.

3.3. Features extraction step

Once all the images have been preprocessed, the features

extraction step consists in a simple Principal Component

Analysis (Eigenfaces method [14]). Each image is charac-

terized by a vector Φ ∈ R
n. In our tests, eigenvectors of

the PCA representing 95% of the total energy inducted by

the eigenvalues are retained, which corresponds to vectors

of size 97.

3.4. Identification results

The identication tests involve a comparison between the

label diffusion method with a nearest neighbor classifier

(noted NN) and the Sparse Representation–based Classi-

fication (noted SRC) framework [16].

Distances used Some distances have been tested for the
graph construction and the nearest neighbor classifier. For
the distances related to the Mahalanobis space (Equations
5, 6 and 7), features vectors u and v have to be transformed
such that variance along each dimension is equal to 1. Let
m and n be the vectors in Mahalanobis space corresponding
to u and v. The vectors are related though the following
equations [2]:

mi =
ui

σi

, ni =
vi

σi

Interested reader can find more details on equations 1
through 7 in [2]. Equations 8 and 9 are explained in [13]
and [1] respectively.

DCityBlock(u, v) =
∑

i

|ui − vi| (1)

DEuclidean(u, v) =

√

∑

i

(ui − vi)2 (2)



DCorrelation(u, v) =

∑

i
(ui − ū)(vi − v̄)

(N − 1)
√∑

i (ui−ū)2

N−1

√∑
i (vi−v̄)2

N−1

(3)

DCovariance(u, v) =

∑

i
uivi

√
∑

i
u2
i

√
∑

i
v2i

(4)

DMahL1(u, v) =
∑

i

|mi − ni| (5)

DMahL2(u, v) =

√

∑

i

(mi − ni)2 (6)

DMahCosine(u, v) =
m · n

|m||n|
(7)

DHellinger(u, v) =

√

∑

i

(

√

|ui| −
√

|vi|
)2

(8)

DCanberra(u, v) =
∑

i

|ui − vi|

|ui + vi|
(9)

Results The table 1 presents the main results obtained

from our experiments. For each distance, the rank–1 mean

recognition rates (and their standard deviation) are shown.

The results for the label diffusion (Lab. Diff. in the table)

are composed of two parts according to the penalty function

applied (see section 2.3).

Since the SRC method cannot be derived for the con-

sidered distances, its results have not been included in the

table. It gives a rank–1 mean identification rate of 60.70%
(with a standard deviation of 9.81).

For the label diffusion method, a grid search has been

performed on the two parameters γ and C. The best pa-

rameters (those giving the best results) are grouped into the

variable φ.

One can see that the label diffusion process gives always

better results than the nearest neighbor classifier, whatever

the distance used.

When no penalization is used during the label diffusion

process (C = 0), identification rates are the lower. This

clearly shows that faces from different persons are close in

the projection space defined by the main eigenvectors of the

PCA, which indicates that the eigenfaces method is not op-

timal for the face clustering task.

4. Discussion

The constructed graphs in all our experiments are fully

connected graphs: each node is connected to all other. We

prefered this type of graph, since we made no assump-

tion about the distribution of the features vectors in the

eigenspace. Nevertheless, other types of graph can be con-

sidered, like a k–nearest neighbor graph (similar to the one

used in the example at figure 2). For such a graph, one has

to be careful that there exist no disjoint sub–graphs.

The label diffusion method has several links with the dif-

fusion methods on graphs like the Dijkstra [7] or the more

NN
Lab. Diff. Lab. Diff.

Ψ1 Ψ2

Eq.1 69.76% (10.44)

74.59% (9.24) 75.20% (9.53)

φ = (1, 1) φ = (4, 3)
C = 0 : 52.43% (17.71)

Eq.2 59.09% (8.17)

65.74% (8.24) 65.61% (8.72)

φ = (1, 1) φ = (1, 1)
C = 0 : 42.24% (15.16)

Eq.3 58.06% (8.27)

65.84% (8.83) 65.83% (9.31)

φ = (2, 1) φ = (2, 1)
C = 0 : 41.79% (14.99)

Eq.4 58.55% (8.22)

65.71% (8.58) 65.82% (8.84)

φ = (2, 1) φ = (2, 1)
C = 0 : 42.32% (15.04)

Eq.5 68.14% (11.89)

73.53% (11.05) 75.50% (11.82)

φ = (1, 1) φ = (5, 4)
C = 0 : 59.61% (20.24)

Eq.6 71.70% (11.65)

76.42% (10.38) 78.19% (10.80)

φ = (1, 1) φ = (10, 5)
C = 0 : 58.91% (21.33)

Eq.7 74.23% (10.57)

80.48% (8.90) 80.32% (9.62)

φ = (1, 2) φ = (3, 2)
C = 0 : 60.78% (21.91)

Eq.8 54.81% (11.77)

58.40% (11.90) 62.83% (11.46)

φ = (1, 2) φ = (3, 3)
C = 0 : 43.31% (18.81)

Eq.9 41.83% (12.14)

42.57% (12.33) 49.20% (16.06)

φ = (1, 1) φ = (1, 3)
C = 0 : 34.71% (16.37)

Table 1. Rank–1 mean identification rates, standard deviation in

parenthesis. φ: parameters (C, γ) used within the penalty func-

tions Ψ1 and Ψ2. C = 0: Rank–1 mean identification rates ob-

tained without penalization. Best rates per distance in bold.

general eikonal–based methods [12]. A difference is that

it does not explicitely compute any distance between two

nodes.

Dijsktra algorithm computes a sum of weights of edges

which represents the distance of a node from a seed. In the

particular case of a complete connected graph, it is equiva-

lent to a nearest neighbor classification (we have indeed for

the graph example at figure 1: wa→c ≤ wa→b+wb→c). The

classification method differs from the eikonal–based reso-

lution methods since it only deals with edges of the graph

when eikonal–based methods compute gradients on nodes

for example. Moreover, algorithms needs often numerous

iterations to converge [12], which can be slow in practice.

Parameters C and γ of the penalty functions play a sig-

nificant role for the final identification rates. Although the

best combination was found by a grid search for the results

presented in table 1, some other combinations work almost

as well. Table 4 shows the rank–1 mean identification rates

obtained with the penalty function Ψ2 for different values

of C and γ. For a fixed couple (C, γ), they are computed as

the mean identification rates of all the distances considered

above. This table clearly shows that there exists some cou-

ples which offers good results whatever the considered dis-

tance. A similar result has been observed for the Ψ1 penalty



H
H
H
H

γ

C
1 2 3 4 5 10

1 66.82% 65.21% 64.28% 63.56% 63.04% 62.19%
2 65.58% 66.68% 66.72% 66.07% 65.68% 64.06%
3 62.79% 65.52% 66.38% 66.75% 66.64% 65.52%
4 60.64% 63.39% 65.08% 65.70% 66.28% 66.59%

5 59.11% 61.66% 63.33% 64.53% 65.26% 66.65%

6 57.95% 60.20% 61.97% 63.08% 63.85% 66.02%

7 57.24% 59.27% 60.60% 61.91% 62.75% 65.44%
8 56.23% 58.46% 59.55% 60.75% 61.69% 64.53%
9 55.60% 57.68% 58.99% 59.83% 60.72% 63.38%

10 54.86% 57.22% 58.44% 59.29% 59.92% 62.70%

Table 2. Rank–1 mean identification rates of the tested distances for different values of C and γ for the penalty function Ψ2. Rates greater

than 66% in bold.

function, but not shown in this paper to avoid overburden-

ing.

The proposed classification scheme is quite new in the

biometric field. It is efficient when one has to classify many

unknown faces, especially when some of these faces belong

to the same subject. A typical operational scenario involves

face recognition through time via a camera for example. In

such a case, faces spread out on the feature space, and form

a graph, on which a label diffusion can be processed.

Note that the proposed classification scheme can easily

be adapted to similarity graph. In such graphs, weights mea-

sure the degree of similarity between two nodes, and are

generally in [0, 1].

5. Conclusion and future work

We presented a generic classification method applied

to a face identification problem. Inspired from the well–

known watershed transform, it is based on a label diffusion

on graph. Samples of the gallery are considered as initial

seeds, the diffusion process then assigns to each probe a

label corresponding to an identity. Tested on the Notre–

Dame database, the proposed algorithm together with the

penalty functions provides better identification results than

the other classification methods considered. For compar-

ison purposes and simplicity, we have tested this method

only with a PCA approach for the features computation,

which has been showed to be not optimal. Further exper-

iments will be conducted on other types of features, other

types of graphs, as well as other biometrics.
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