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Abstract

We present a low resolution face recognition tech-
nique based on a Convolutional Neural Network ap-
proach. The network is trained to reconstruct a
reference–per subject image. In classical feature–based
approaches, a first stage of features extraction is fol-
lowed by a classification to perform the recognition.
In classical Convolutional Neural Network approaches,
features extractor stages are stacked (interlaced with
pooling layers) with classical neural layers on top to
form the complete architecture of the network. This pa-
per addresses two questions : 1. Does a pretraining of
the filters in an unsupervised manner improve the recog-
nition rate over filters learned in a purely supervised
scheme ? 2. Is there an advantage of pretraining more
than one feature extractor stage ? We show particu-
larly that a refinement of the filters during the supervised
training improves the results.

1. Introduction

Face recognition is a topic which has been of in-
creasing interest during the last two decades due to a
vast number of possible applications: biometrics, video–
surveillance, advanced HMI or image/video indexation.
The main challenges in face recognition are illumination
changes, head poses, artefacts (like glasses) or facial ex-
pressions.

1.1 Classical approaches of the task

Several approaches have been proposed [3], they can
mainly be divided into two parts :

• the local approaches, which extract features and
combine them into a global model to do a classifi-
cation.

• the global approaches which realize often a form
of linear projection of the high–dimensional space

(i.e. the face images) onto a low–dimensional
space.

The local approaches first extract some features (like
eyes, nose and mouth) by the use of special feature ex-
tractors. The recognition task is then performed using
some measures (like the distance between the eyes) on
these features.

The most popular local technique is theElastic Graph
Matching (EGM) where a set of interest points is ex-
tracted from the face, and then a graph is created. It has
been widely used in the litterature [2], [18], [9], [21].
Most of the time, some Gabor filters are used on the
neighborhood of these points to take into account ap-
pearance informations of the face.

The main drawback of the local approaches is that the
extractors have to be chosen by hand and can be sub–
optimal. Moreover, it is difficult to deal with different
scales and poses.

The global approaches perform a statistical projec-
tion of the images onto a face space. The most popular
technique calledEigenfacesis based on a Principal Com-
ponents Analysis. First introduced by Turk and Pentland
[20], it has been intensely studied in the face recognition
community [12], [6], [19]. Another popular technique is
theFisherFacesmethod [13], [10], [7] based on a Linear
Discriminant Analysis (LDA), which divides the faces
into classes according to the Fisher criterion.

The main drawback of the global approaches is their
sensitivity to the illumination changes. When the illumi-
nation of a face changes, the appearance of it undergoes
a non–linear transformation, and due to the linear pro-
jection of these global approaches, the classification can
fail.

Extensions of these linear approches have been pro-
posed like kernel–PCA [16], or kernel–LDA [8] for face
recognition. The drawback of these extensions is there
is no invariance unless it is built into the kernel, and
once again by hand. This is also the drawback of other
machine learning technics like Support Vector Machine.



2. Our Method

Our method relies on a special type of Convolutional
Neural Network. Acting like adiabolo network [17]
where the output vector is the same vector as the input
with a less dimensional intermediate layer, ourFace–
Reconstruction Networktakes in input some faces for
each subject and tries to reconstruct areferenceface that
has been chosen beforehand. Here, the inputs of the
network are images of size56 × 46 which is a quite
low resolution compared to most of others face recog-
nition algorithms. Inspired by the work of Duffner and
Garcia [5], the network learns automatically the feature
extractor, and combines them to produce a more global
model. The classification is then made by some classical
feed–forward layers.

The principle problem of such an architecture is that
the whole network is trained traditionnally with gradient
descent, including the first layers. The saliency of the
filters learned with backpropagation then depends es-
sentially on the connections between layers. Moreover,
the number of sufficient filters per layers is difficult to
evaluate a priori.

One way to tackle these problems is to pretrain the
first layers in an unsupervised manner. In order to have
salient face features, we use a sparse coding algorithm
which learns an overcomplete basis of filters. These
filters are then used to initialize the first layers of our
network.

The paper is organized as follow : the filter banks
learning is described in section 3. The architecure is
detailled in section 4. The training procedure and the
results are presented in sections 5 and 6. Finally, we
present our conclusions and further work in section 7.

3. Learning the sparse filters banks

The aim of the unsupervised sparse coding algorithm
is to find a representationZ ∈ ℜm for a given signal
Y ∈ ℜn by linear combination of an overcomplete set
of basis vectors, which are the columns of a matrixB ∈
ℜn×m with m > n [14]. In optimal sparse coding, the
problem is formulated as :

min ‖Z‖
0

s.t. Y = BZ

where thel0 ‘norm’ is defined as the number of non–zero
elements in a given vector. We can fortunately make a
convex relaxation by turning thel0 norm into anl1 norm
[4]. The problem can then be written as :

L(Y, Z; B) =
1

2
‖Y − BZ‖

2

2
+ λ‖Z‖

1

In this work, we used the PSD algorithm (forPre-
dictive Sparse Decompositionproposed in [15]) slightly
modified to fit our data. It is composed of an encoder
which produces a sparse codeZ from an inputY , and
a decoder which reconstructs the input from the sparse
code. The global loss to minimize is defined as :

L(Y ; G, W, D) = ‖Y − BZ‖
2

2
+ λ‖Z‖

1

+ α‖Z − F (Y, Pf )‖
2

2

where the first term represents the error reconstruction,
the third term denotes the error of the encoder predic-
tion, and thel1 norm ensures the sparsity of the codeZ.
F (Y ; Pf ) defines the output of the encoder, wherePf

denotes the parameters that are learned by the encoder,
and specially the filters matrixW ∈ ℜm×n.

Learning proceeds in an iterative way, alternating the
two steps : (1) minimizeL with respect toZ keeping
Pf andB constant, and (2) using the coefficients ofZ,
updatePf andB by stochastic gradient descent.

To proceed the learning of the sparse filters bank, we
extracted20000 patches of size7 × 7 with sufficient
standard deviation (to avoid too uniform patch) from the
ORL face database [1]. The numberm of filters (rows
of W ) has been set to100, which is more than twice the
dimension of the patches, so as to ensure the sparsity of
the produced codes.

After training, filters are localized oriented edge de-
tectors, see Fig.1.

A second stage sparse feature extraction is then pro-
cessed, where the training patches are the outputs of
the first stage feature extraction.150 filters of size6×6
have been learned from a training set composed of40000
patches.

4. Architecture

The Face–Reconstruction Network (see Fig.2) takes
in input an image of size56 × 46 (i.e.: the size of the
retina of the network) and passes it through a succession
of convolutionCi, subsamplingSi and fully connected
Fi layers. The output of the Network is an image, of the
same size than the input, which is reconstructed by the
last layerF7. Each pixel of the output is one neuron, so
there are56 × 46 = 2576 neurons on the last layer.

Due to our aim to pretrain some layers with a sparse
coding technic, our network is considerably larger than
classical ones (like the LeNet Network[11]):

• C1. Feature maps :100; Kernel size:7×7; (Maps)
Size:50 × 40. Fully connected to the input.

• S2. Feature maps:100; Kernel size:2 × 2; Size:
25 × 20.



Figure 1. The100 learned filters of size7× 7.

• C3. Feature maps:150; Kernel size:6 × 6; Size:
20 × 15. Connection rate =0.5.

• S4. Feature maps:150; Kernel size:4 × 3; Size:
5 × 5.

• C5. Feature maps:200; Kernel size:5 × 5; Size:
1 × 1. Fully connected toS4.

• F6. Neurons:100; Fully connected toC5.

• F7. Neurons:2576; Fully connected toF6.

All the neurons use a sigmoid activation function.
Note that when testing the network, this is not the state
of the last layer which is taken into account, but the
compact code represented by the state of the penultimate
layer (that to say100 values).

5. Training the Network

Training the network consists on finding the optimal
parameters of the network for a loss function. Here, we
want to minimize the classical regression cost function
E = 1

2
‖op − tp‖

2 whereop and tp are the output
values and the target values respectively for the pattern
p.

The ORL database [1] is used to train the network, it
contains10 images for each of40 subjects, with varia-
tions in lighting, facial expressions,accessories and head
positions. The images have been resized to56×46, and
their values normalized between−1 and1.

The database is divided into two disjoint parts, the
first one for the training, and the second one for the
tests. For each subject in the train set, areferenceimage
is chosen to be the target of the subject that the net-
work has to reconstruct. In the9 per subject remaining
images, one image is chosen randomly to form the vali-
dation set. During the training phase, a cross–validation
is performed with this set to avoid overfitting the data.

6. Results

In all the experiments, the database is divided ran-
domly into two disjoint parts, the first one composed of

35 subjects (350 images) is used to train the network,
and the second one composed of5 subjects (50 images)
to test. The test protocol consists of 4 steps. (1) For a
test imageIs of a subjects, the projectionPIs

(the vector
of dimension100 extracted from layerF6) is computed.
(2) For each subject in the database, a model is created.
It is defined as the mean vector of the projections of all
the subject images (except the imageIs). (3) Distances
of PIs

to all the models are then processed and (4) the
rank of the recognition forIs is computed. In this study,
we choose thel2 distance for all the experiments.

All the trainings and tests are processed20 times with
different (random) separations of the database, and the
mean result is computed.

We conducted6 different experiments to test the use-
fullness of the sparse pretraining,differing in the number
of pretrained layers. We denote afterwards RR the exper-
iment where the two feature extraction layers are clas-
sicaly initialized randomly. U denotes the experiment
where the parameters of the first convolutional layer are
initialized with the first stage of sparse filters that have
been learned previously in an unsupervised manner. UU
denotes the experimentwhere the first two convolutional
layers are initialized with the first and second stages of
sparse filters respectively. Each of these experiments is
doubled, depending on if we allow or not a refinement
of the filters by gradient descent during final supervised
training. The results of these experiments are presented
in the table 1.

Table 1. Results. R: randomly initialized layer, U:
layer pretrained in an unsupervised manner.

`
`

`
`

`
`

`
`

`
`

`
`

Training
Experiment

RR U UU

Not refined 84% 88.7% 82%
Refined 87.1% 90.2% 88.2%

From the results in the table 1, we can draw three
conclusions : 1. The most surprising result is the good
recognition rate with the two feature extraction layers
initialized at random andkept fixedduring the training
phase. We think this is due to the high number of filters,
so we can capture sufficient variability of the input.



Figure 2. Architecture of the Network.

2. The refinement of the filters gives always better results
than keeping them fixed. 3. Using a second stage of
pretrained filters gives in our case worst recognition rates
than only one.

7. Conclusion and Future Work

We presented a low face recognition method based
on Convolutional Neural Networks. This network takes
a face image in input and projects it onto a low–
dimensional space where the recognition is performed.
This paper adresses more particularly the problem of
pretraining the features extraction layers in an unsuper-
vised sparse manner. We successively show that using
a second stage of unsupervised pretrained filters does
not give better results than only one, using only random
filters gives decent recognition rates, and refining the
filters during the final supervised training gives always
better recognition rates. We are currently conducting
experiments to better understand the surprising good re-
sults with the pure random filters, and eventually apply
the best method to infrared face images.
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