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Abstract—We present a study on different levels of visible
and infrared modalities fusion for face recognition. While
visible modality is the most natural way to recognize some-
one, infrared presents thermal distribution that can be useful
for face recognition. We compare the well–known eigenfaces
method as a baseline to an approach based on sparsity for
the feature extraction and the classification. Applied on the
Notre-Dame database, we showed that the three levels of fusion
considered are not equivalent in term of final identification
rates. We also show that the sparse approach at the decision
level outperforms the state-of-art on this database.

I. INTRODUCTION

Although considerable progress has been made in the

domain of face recognition over the last decade, especially

with the development of powerful methods (such as the

Eigenfaces or the Elastic Bunch Graph Matching methods),

face recognition has shown to be not accurate enough in

uncontrolled environments. Face recognition performances

of a system can be degraded by many factors, including

facial expression, head pose variation, occlusion and most

importantly illumination changes.

In the particular case of uncontrolled illumination, previ-

ous studies have demonstrated that infrared imagery can be a

promising alternative to visible imagery. An infrared capture

of a face is nearly invariant to illumination changes, and

allows a system to process in all the illumination conditions,

including total darkness like night.

Despite these advantages, infrared imagery has other limi-

tations. Since a face captured under this modality renders its

thermal patterns, a temperature screen placed in front of the

face will totally occlude it. This phenomena appears when a

subject simply wears glasses. In this case, the captured face

has two black holes, corresponding to the glasses, which is

far more unconvenient than in the visible modality.

However, since these two modalities do not present the

same advantages/limitations, using informations of both can

decrease the disadvantages of each and globally enhance the

recognition rates.

This paper adresses the question of how to fuse these

modalities. Three different levels of fusion have been consid-

ered, an image-based level, a feature-based level and a score

level. This paper adresses more particularly the question

of robustness and feasability of the proposed algorithm

across these levels, compared to the state-of-art eigenfaces

algorithm.

A. Overview of Face Recognition Technics

Most of the approaches that have been proposed in the

litterature for the problem of face recognition are built with

the same three–steps scheme:

• preprocessing of the images

• extraction of features from faces

• classification of these features

The preprocessing step intends to locate a face, resize it if

necessary and apply algorithms to enhance the quality of

the images. Many systems use some illumination correction

algorithms to simplify the features extraction step.

The most important step is the extraction of salient features

from the faces. Two main strategies can be considered for

this step:

• the local approaches, which extract features and then

combine them into a global model,

• the global approaches which take the image as a whole

to realize often a kind of linear projection of the high–

dimensional space (i.e. the face images) onto a low–

dimensional space (in this case, these technics are called

Subspace methods).

A well–known local approach is the Elastic Bunch Graph

Matching [10] method where interest points are extracted

from the face. These points may then be treated as a weighted

graph, local features extractors (like the widely used Gabor

filters) may be applied in the neighborhood of these points

to enhance the robustness of the final features. The main

drawback of these local approaches is their sensitivity to the

features extractors. Moreover, it is difficult to deal with dif-

ferent scales and poses. The eigenfaces [13] and fisherfaces

[8] methods are probably the most popular global methods.

Based on a Principal Component Analysis (PCA) and on

a Linear Discriminant Analysis (LDA) respectively, these

methods belong to the class of the Subspace method. This

class of algorithms relies on the assumption that faces span a

small area in the image space (called the face space). The aim

of this class of algorithms is often to find a discriminative

projection that maps faces onto this face space. The main

drawback of the global approaches is the sensitivity of the

projection to the illumination changes for the visible light

modality, and the thermal distribution of the face over time

for the infrared modality.

The last step intends to classify the extracted features.

There are plenty of technics, simple ones based on distances

between features, others based on learning methods such

Support Vector Machine or Neural Networks. All these tech-



nics have their own advantages/disadvantages, their results

depending in fact often on the robustness of the previously

extracted features.

B. Multimodal Fusion technics

Some work has been realized in the face fusion technics

domain. We can mainly divide it into three parts, according

to the level of fusion applied :

At the sensor (or image) level, the fusion is realized in [7]

as a weighted sum of the face patterns. The main challenge

of this level of fusion is the high precision required (pixel–

level typically). In [11], a multi–resolution fusion of images

is achieved by merging wavelet coefficients obtained by the

Haar transform. This kind of fusion mainly tries to bypass

the illumination and the eyeglasses problem.

At the feature level, extracted features from different

modalities are merged to create a single feature vector. In

[11], the eigenfeatures (obtained with the eigenfaces method)

are merged with the use of a Genetic Algorithm. A hierarchy

of features is learned in [9] with a specific framework to

produce local features combinations.

At the decision (or score) level, the distances (or scores)

of each of the two modalities probe images are merged.

This is often realized in two steps: 1) the scores are first

transformed to make them comparable, by applying linear,

logarithmic or exponential rules [5]. In [4], these scores are

weighted according to a measure of saliency, depending on

the distribution of the distances. 2) the transformed scores

are combined into one final score. This is classically realized

with a sum rule, which has been demonstrated to be efficient,

or by a weighted sum, with fixed or dynamic weights.

The rest of the paper is organized as follow : Section

II recalls the two approaches we have tested in this paper

(the eigenfaces method and a sparse approach). Section III

details the Notre–Dame Database (UND) and the results we

obtained for the three levels of fusion we have distinguished.

Finally section IV summarizes and compares previous results

on the UND database, and we present our conclusions in

section V.

II. TESTED FACE RECOGNITION APPROACHES

In this paper we have tested two different approaches to

perform the recognition. The classical eigenfaces method and

a sparse approach described in [3] and modified to process

the identification faster, while improving slightly the results

of identification. We now briefly recall the principle of these

two approaches.

A. The eigenfaces method

The Eigenfaces method based on a Principal Component

Analysis is one of the most popular method in face recogni-

tion. In this section, we briefly recall its principle. We also

describe the preprocessing of the images and the important

point of the choice of the distance measure.

1) Training and Projection: The eigenfaces algorithm

aims to find a basis which maximizes the recovery of

a sample according to the variance of its vectors. These

eigenvectors are computed from the total scatter matrix of

training samples. Then only relevant eigenvectors (those with

the largest corresponding eigenvalues) are kept to form the

projection basis. There are different ways to choose the

number of eigenvectors retained. In this work, we choose to

keep the eigenvectors whose eigenvalues represent at least

90% of the total energy (the sum of eigenvalues). Once the

basis has been found, a face sample is first mean centered

and then projected onto the basis. The projections are then

the feature vectors of the face (and are sometimes called

eigenfeatures).

2) Distance Measure and Classification: In order to com-

pare the projected vectors of two images in the face space,

we have to compute a distance between these vectors. Many

distances have been tested such the Euclidean distance, the

CityBlock distance or the Mahalanobis distance, which is

computed as the distance between values of vectors taking

into account the correlation between these values :

DM (x,y) =

√

(x− y)
T
S−1(x − y) (1)

We found that the Mahalanobis distance offered the best

performance, greater than 10% in mean compared to other

distances. This is then the Mahalanonis distance we chose

for all results of PCA experiments presented in this paper.

B. Sparse Approach

The sparse approach (detailed in [3]) is based on the

sparsity theory both for the features extraction and the

classification. However, this method has been modified to

have a faster computation while improving slightly the results

of identification.

1) Learning of the Dictionary: In order to extract relevant

features, we decompose faces onto a dictionary, following

a sparse scheme. Although pre–defined dictionaries exist

in the litterature (wavelets, curvelets, ridgelets or DCT),

dealing with texture is more efficient with a dictionary that

has been learned from data. In this work, we have learned

three different dictionaries depending on the modality of the

images (visible, infrared or the fusion of both). The size of

the atoms has been fixed to 10 × 10. All these dictionaries

have been learned with efficient algorithms such the OMP

algorithm (for Orthogonal Matching Pursuit) [12] for the

inversion of the input, and the K–SVD algorithm [2] to

update the atoms. In each case, randomly extracted patches

have served as the train set. A random selection of 50 atoms

of the 200 learned from the image fusion of visible and

infrared data is presented Fig. 1. One can see that some

atoms encode low frequency patterns, while others are more

oriented edge selective.

2) Feature Extraction: Once the dictionary is learned,

a face is then decomposed into non–recovering 10 × 10
patches. The faces are of size 90 × 110, so there are 99
extracted patches. Each of these is then decomposed onto the

dictionary, see Fig. 2. In order to have a fast approximation



Fig. 1. Random selection of 50 atoms learned on the low–level fusion
images.

of the sparse vector from a patch, we used an iterative soft–

thresholding approach [6].

Fig. 2. Sparse decomposition of a face image.

3) Classification: In order to perform the classification,

we use a similar approach as the one presented in [14] or

in [3]. A schematic view of the process is shown in Fig. 3.

Each patch of a probe face image is processed independantly.

Its sparse vector is assumed to span the corresponding sparse

vectors of the gallery. A vector of residuals is then computed

regarding the gallery. Each vector of residuals (one per

patch) is then normalized between 0 and 1, and all these

residual vectors are summed into one final residual vector.

The identity returned by the system is then the one which

corresponds to the minimum of this final residual vector.

Preprocessing of the images. The necessary steps for the

preprocessing of the images are :

• the images have been cropped and rescaled to the

size 90 × 110. This geometric normalization has been

realized according to the distance between the eyes,

• an elliptical mask centered just below the eyes has been

applied (PCA approach only) to obscur irrelevant parts

of the faces (essentially the corners of the images),

• the pixel values have been normalized to ensure a mean

pixel value of 0.0 and a standard deviation of 1.0. Note
that, for the PCA approach, this transformation has been

applied only on the ‘visible’ pixels, not on those that

have been masked. For the sparse approach, all the

pixels have been taken into account.

An example of the preprocessing of a visible face image

for the subspace approach is shown on Fig. 4. Note that the

preprocessing applied for the sparse approach is simpler and

then faster than the one applied for the PCA approach.

III. RESULTS OF FUSION

In this section, we propose to study the impact of the

level of fusion on the identification rates on the Notre–Dame

database. Since identification proceeds in a classical two

Fig. 4. Geometric preprocessing of an image.

Fig. 5. (Preprocessed) Samples of the database for the Visible and IR
modalities.

steps way (1. Extract features from an image, 2. Compute a

distance between features in order to classify the image), we

have distinguished three different levels of fusion :

• a low–level fusion, also called a sensor or image fusion,

where images from the modalities are merged before

any feature extraction,

• a mid–level fusion, also called features fusion, where

features are extracted separately for the two modalities,

and are then concatenated,

• a high–level fusion, also called decision level fusion,

the features extraction and the distances to the gallery

for probes are computed separately depending on the

modalities. The distances are then merged.

Although the last is often preferred due to its simplicity and

flexibility, ‘earlier’ fusion scheme have been less studied and

may offer interesting alternatives. We now briefly recall the

architecture of the Notre–Dame database, and in the rest

of the paper, only the results of the fusion of visible and

infrared modalities are shown. They present the identification

rates for the Same–session and Time–lapse experiments for

all the differents gallery–probe combinations of the Notre–

Dame database.

A. Details of the Database

In order to test the approach, we used the Notre–Dame

[1] (Collection X1) database (see Fig. 5 for samples of

the database). The main advantage of this database is to

present images of subjects both in visible and infrared

modalities. Although corresponding images have not the

same resolution, they are taken at the same time, which is

usefull in order to test the gain of infrared modality accross

illumination changes.

The database can be divided into two distinct parts : the

first one, called Training set, is composed of 159 pairs of

visible/infrared images for a total of 159 subjects. The second
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Fig. 3. Schematic view of the classification process: Each patch is processed separately through the sparse process. The final residual is the sum of
normalized per-patch residuals.

one, called Test set, is composed of 82 subjects, for a total

of 2292 image pairs.

While the train set contains no facial expressions or head

positions variations, the test set is composed of several

images containing variations in lighting, expressions, thermal

changes and head positions.

Two experiment protocols have been designed:

• In the Same–session experiment, gallery and probe im-

ages have been taken within seconds. There is no major

changes in the thermal distribution, so this experiment

is mainly usefull to test the effect of illumination on

algorithms. 4 subsets are avalaible, serving as gallery

or probe depending on the subexperiment that is con-

ducted.

• In the Time–lapse, gallery and probe images have been

taken within minutes, days or weeks. As images are

taken at different time, the thermal distributions of

infrared faces for a same subject have sometimes a great

variation. 4 gallery and 4 probe subsets are avalaible.

This experiment has mainly been designed to quantify

the robustness of infrared through time.

In both experiments, there is only one image per subject in

the gallery, acting like a 1–image–to–enroll scenario. The

Same–session experiment is composed of:

• 4 sets used as galleries and probes

• sets: 1 image for each of the 82 subjects.

The Time–lapse experiment is composed of:

• 4 galleries, and 4 probe sets

• gallery sets: 1 image for each of the 63 subjects

• probe sets: 431 images of the 63 subjects.

The avalaible subsets are named F{A,B}L{F,M} and are

composed of :

• FA where faces have a neutral expression,

• FB where faces have a smiling expression,

• LF where faces are under the Feret Style Lighting,

• LM where faces are under a Mugshot Lighting.

B. Low Level of Fusion

In the image fusion approach, we made the assumption

that visible and infrared images have been taken at the same

time. Visible images have the advantage to be more natural

than IR ones, they present the texture of the face, but may

be subject to illumination problems. Infrared images show

a thermal distribution of a face, so they are not subject to

illumination, but they are a far less natural way to identify a

person. Nevertheless, we propose to merge them following

a particular scheme :

• normalize the pixels values of the infrared face Ii
between 0 and 1,

• multiply each pixel value of the visible face Iv by its

infrared counterpart Ii to obtain the merged image If :

If (x, y) = Iv(x, y)× Ii(x, y).

An example of such a fusion is shown in Fig. 6 for the

two different preprocessing. This multiplicative way applied

for the image fusion allows to take more into the thermal

distribution of the infrared face than a simple sum of pixels

of the two modalities.

Fig. 6. Examples of image fusion. Rows differs from the preprocessing
that has been applied. Left:Visible, Center:Infrared, Right: Fusion.

This fusion scheme has been applied to all the subsets

of the database, especially to the Train set from which the



TABLE I

RANK–0 RECOGNITION RATES FOR THE LOW–LEVEL FUSION.

TOP TABLE: Same-session, BOTTOM TABLE: Time-lapse EXPERIMENT.

IN EACH CELL, TOP: PCA, BOTTOM: SPARSE APPROACH.

X
X
X
X
X
X
XX

Gallery
Probe

FA|LF FA|LM FB|LF FB|LM

FA|LF
0.98 0.97 0.96
0.98 0.98 0.97

FA|LM
0.98 0.91 0.95
1.00 0.98 1.00

FB|LF
0.96 0.93 0.97
0.98 1.00 1.00

FB|LM
0.95 0.95 0.98
0.97 1.00 1.00

X
X
X
X
X
X
XX

Gallery
Probe

FA|LF FA|LM FB|LF FB|LM

FA|LF
0.70 0.68 0.55 0.58
0.91 0.88 0.85 0.85

FA|LM
0.70 0.67 0.58 0.60
0.90 0.88 0.84 0.84

FB|LF
0.61 0.58 0.63 0.65
0.83 0.82 0.97 0.89

FB|LM
0.64 0.61 0.67 0.64
0.88 0.82 0.80 0.90

dictionary was learned. Results with this low–level fusion

scheme for the Same–session and the Time–lapse experi-

ments are shown successively in Tab. I. Results for the

Same–session, which is an easy test, are quite similar for the

two approaches. The Time–lapse results show that the PCA

method performs poorly. We think this is due to the fact

that illumination changes are amplified by our multiplicative

merging technique based on the thermal distribution of the

infrared face. The sparse approach gives decent results. This

level of fusion can then become a realist alternative to other

levels of fusion.

C. Middle Level of Fusion

Here we have processed the features extraction separately

for the two modalities, and have realized a middle–level fu-

sion by concatenating the features extracted from visible and

infrared images. The feature vector for the PCA approach is

a vector of size m, where m is the number of eigenvectors

retained during the PCA. Given two vectors of size mv and

mi for the visible and infrared images respectively, the final

feature vector is then of size m = mv +mi. Distances are

then computed between these vectors. Since we used the

Mahalanobis distance for the PCA, distance between two

final vectors is not just the sum of distances of visible and

infrared (as it would be if we have used the L1 distance for

example).

A similar fusion is realized for the sparse approach. The

two sparse vectors are concatenated, the size of the fused

vector is then two times the size of the dictionary.

Results for the Same–session and the Time–lapse experi-

ments are successively shown in Tab. II. The Same–session

identification rates are slightly better than the already good

results of the low–level fusion. Results of the Time–lapse

experiment are improved over the low–level fusion results.

TABLE II

RANK–0 RECOGNITION RATES FOR THE MID–LEVEL FUSION.

TOP TABLE: Same-session, BOTTOM TABLE: Time-lapse EXPERIMENT.

IN EACH CELL, TOP: PCA, BOTTOM: SPARSE APPROACH.

X
X
X
X
X
X
XX

Gallery
Probe

FA|LF FA|LM FB|LF FB|LM

FA|LF
1.00 1.00 1.00
1.00 1.00 1.00

FA|LM
1.00 0.95 1.00
1.00 1.00 1.00

FB|LF
0.98 0.96 0.98
1.00 1.00 1.00

FB|LM
1.00 1.00 1.00
0.98 1.00 1.00

X
X
X
X
X
X
XX

Gallery
Probe

FA|LF FA|LM FB|LF FB|LM

FA|LF
0.81 0.80 0.65 0.66
0.98 0.96 0.95 0.92

FA|LM
0.82 0.79 0.66 0.67
0.98 0.96 0.95 0.93

FB|LF
0.66 0.65 0.77 0.76
0.93 0.92 0.97 0.97

FB|LM
0.68 0.68 0.79 0.77
0.96 0.93 0.96 0.95

D. High Level of Fusion

In this part, we have applied the most popular fusion

scheme, the decision level fusion. Features are extracted

separately for the visible image and its infrared counterpart.

Distances dv and di (for the visible and infrared part respec-

tively) are then computed between the features of the probe

images and their corresponding galleries. The distances dv
and di are then merged and the identification decision is

taken via the nearest neighbor classifier.

Before applying a merging technique to the distances dv
and di, it is necessary to normalize them. Distances to the

gallery of a probe image can be seen as a vector of distances,

so we simply normalize it between 0 and 1 : d = dv + di.

Results for the Same–session and the Time–lapse exper-

iments are successively shown in Tab. III. They are all

improved over the mid–level fusion presented above. We

can see that the PCA approach is less robust than the sparse

approach to facial expression changes between the enrolment

and the test.

IV. SUMMARY OF RESULTS

A summary of the results and a comparison to previous

ones on the UND database with the same protocol are

shown in Tab. IV. We can see that a decision level fusion

leads to better identification rates in all cases. At this level,

identification rates for the Same–session experiment are

nearly perfect for all the approaches, it is mainly due to

the quite ‘simplicity’ of this experiment, where gallery and

probe images are taken within seconds. In [5] is published

better identification rates than ours with the PCA approach.

This is mainly due to the size of the images (bigger in [5])

and a more sophisticated transformation of the scores before

their combination. The sparse approach presented here offers

slightly better results than those in [3], and offer always the



TABLE III

RANK–0 RECOGNITION RATES FOR THE HIGH–LEVEL FUSION.

TOP TABLE: Same-session, BOTTOM TABLE: Time-lapse EXPERIMENT.

IN EACH CELL, TOP: PCA, BOTTOM: SPARSE APPROACH.

X
X
X
X
X
X
XX

Gallery
Probe

FA|LF FA|LM FB|LF FB|LM

FA|LF
1.00 0.98 0.98
1.00 1.00 1.00

FA|LM
1.00 0.96 1.00
1.00 1.00 1.00

FB|LF
1.00 0.96 1.00
1.00 1.00 1.00

FB|LM
1.00 1.00 1.00
0.98 1.00 1.00

X
X
X
X
X
X
XX

Gallery
Probe

FA|LF FA|LM FB|LF FB|LM

FA|LF
0.92 0.92 0.75 0.76
0.98 0.97 0.94 0.94

FA|LM
0.91 0.91 0.77 0.79
0.99 0.98 0.96 0.94

FB|LF
0.81 0.78 0.87 0.87
0.96 0.94 0.98 0.97

FB|LM
0.86 0.86 0.86 0.86
0.98 0.95 0.96 0.97

TABLE IV

COMPARISON OF METHODS. TOP TABLE: Same–session, BOTTOM

TABLE: Time–lapse EXPERIMENT. MEAN RECOGNITION RATE OVER THE

12 (OR 16 SUB–EXPERIMENTS) AND STANDARD DEVIATION IN

PARENTHESIS. BEST SCORE PER LINE IN BOLD.

This paper This paper
[5] [3]

PCA Sparse

Low–level 0.95 (0.02) 0.98 (0.01) N/A N/A

Mid–level 0.98 (0.01) 0.99 (0.01) N/A N/A

High–level 0.99 (0.01) 0.99 (0.01) N/A 0.99 (0.01)

Low–level 0.63 (0.04) 0.87 (0.04) N/A N/A

Mid–level 0.72 (0.06) 0.95 (0.02) N/A N/A

High–level 0.84 (0.05) 0.96 (0.01) 0.92 (0.02) 0.95 (0.02)

best score for the image and feature fusion levels. We think

that the local normalization of each patch makes the system

more robust to global changes (like illumination or thermal

variations).

V. CONCLUSION

We presented a numerical study of different fusion lev-

els of visible and infrared face images. The well-known

eigenfaces method is compared to an approach based on

the sparsity theory. As feature extractor, it decomposes a

face onto a dictionary that has been learned from data, and

processes the identification by considering this feature vector

as a linear combination of corresponding gallery’s feature

vectors. Three levels of fusion have been considered : the low

(image/sensor) level where images from the two modalities

are merged, the middle (feature) level where features from

both modalities are merged, and high (decision/score) level

where scores from the two modalities are merged. Results

on the Notre-Dame database show that a decision level

fusion improves identification rates over image or feature

level fusion, the sparse approach giving the best results in

most cases. However, an image fusion scheme could be more

interesting in case of eyeglasses for example. Moreover, it is

not sure that the score fusion level would be the best choice

if the illumination conditions are very bad. Nevertheless,

our results for the first fusion levels are relevant and show

the feasability of such approaches. The choice of the fusion

scheme should then depend on the kind of extern conditions

or the type of application. Further work has to be conducted

on other merging technics at all levels.
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