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Abstract— We present a face recognition technique based
on the sparsity principle. Parsimony is used both to compute
the face feature vector and to process the classification of
these vectors. Applied to visible and infrared modalities on the
Notre–Dame, we showed that this approach has equal or better
performances than those of the state–of–art on this database.
This classification allows to use a simple method to merge the
scores of these two modalities in order to enhance significantly
the identification rates. We show also that this approach is quite
robust to corrupted probe images.

I. INTRODUCTION

Face recognition is a topic which has been of increasing
interest during the last two decades due to a vast number
of possible applications: biometrics, video–surveillance, ad-
vanced HMI or image/video indexation. One of the main
challenge in face recognition for the visible light modality
is the illumination changes in uncontrolled condition. A
way to tackle this problem, and then to increase the global
recognition rate, is to use other modalities, like infrared
light, conjointly with visible light. Another advantage of
infrared light allows furthermore the system to run even in
bad lighting condition, like night.

A. Classical approaches of the task

Several approaches have been proposed to the problem of
automatic face recognition. Most of them are built with the
same two–steps scheme:

• extract relevant features from faces
• classify these features

While it can be difficult to characterize the features classi-
fiers, mainly due to the vast number different approaches,
the feature extraction phase in the litterature can be divided
into two parts :

• the local approaches, which extract features and then
combine them into a global model,

• the global approaches which take the image as a whole
to realize often a kind of linear projection of the high–
dimensional space (i.e. the face images) onto a low–
dimensional space.

The local approaches first extract some local features (like
the location of the eyes, nose or mouth) by the use of special
feature extractors. The saliency of the extracted featuresrelie
then on the robustness of these extractors. The most popular
local approach is theElastic Graph Matching(EGM) where
a set of interest points is extracted from the face, and then
a graph is created. Brunelli and Poggio [3] used geometric
models like the distance between pairs of feature points to

achieve the face recognition. Wiskottet al.[15] used some
Gabor filters on the neighborhood of these points to compute
a set of jets to create theElastic Bunch Graph Matching
method (EBGM). Here the shape of the face is modeled into
the jets to enhance the recognition.

The main drawback of these local approaches is their
sensitivity to the features extractors. Even the best feature
classifier will fail if the extractor is not well chosen. More-
over, it is difficult to deal with different scales and poses.

The global approaches often take the face image as a
whole and perform a statistical projection of the images onto
a face space. The most popular technique calledEigenfaces
(first used by Turk and Pentland [14]) is based on a Principal
Components Analysis (PCA) of the faces. It has also been
applied to infrared faces by Chenet al. [6]. Junget al. [9]
use it conjointly with an analyse of the shape of the face.
Another popular technique is theFisherfacesmethod based
on a Linear Discriminant Analysis (LDA), which divides the
face images into classes according to the Fisher criterion.It
has been applied early by Kriegmanet al.[10].

A comparison of these methods is made by Socolinsky and
Selinger in [12], or by Wuet al. in [17] where a Discrete
Cosine Transform is also tested.

Many classifiers have been used conjointly with these
global approaches: simple ones like distance between fea-
tures, others more complex like Neural networks, Support
Vector Machine or some cascade of classifiers.

The main drawback of the global approaches is their
sensitivity to the illumination changes for the visible light
modality, and the thermal distribution of the face over time
for the infrared modality. When the illumination (or the ther-
mal distribution) of a face changes, its appearance undergoes
a non–linear transformation, and due to the linear projection
performed by the global approaches, the classification can
fail.

B. Contribution of sparsity to face identification

A sparse representationof an input signal refers to a
representation of this signal as a linear combination of
base elements in which many of the coefficients are zero.
A parallel can be drawn between this principle and face
identification. Wrightet al.are the first (to our knowledge) in
[16] to use sparse representations to process the classification
for face identification. A sparse representation of a face
supposes that many coefficients of the decomposition over
the gallery are zero, which then discard on first sight all
these identities. In this paper, we propose to use a projection



of a face onto a sparse dictionary as the feature extractor,
and the sparse principle for the classification.

The paper is organized as follow: Section II describes the
feature extraction process, classification method is explained
in section III, and experimental results are shown in section
IV. In section V, we test the fusion of modalities, while in
section VI we confront our approach to corrupted images.
Finally we present our conclusions and further work in
section VII.

II. FEATURES EXTRACTION

In order to extract relevant features, we decompose faces
onto a dictionary, following a sparse scheme. The aim of the
sparse coding algorithm is to find a representationX ∈ R

n

for a given signalY ∈ R
m by linear combination of an

overcomplete set of basis vectors, which are the columns
of a matrix D ∈ R

m×n with n > m [11]. These columns
are often calledatoms, and are notedφi. In optimal sparse
coding, the problem is formulated as :

min ‖X‖
0

s.t. Y = DX (1)

where thel0–norm is defined as the number of non–zero
elements in a given vector. This problem is NP–hard, for-
tunately, under mild conditions, we can make a convex
relaxation by turning thel0–norm into al1–norm [7]. The
problem can then be written as :

min
X∈Rm

‖Y − DX‖
2

2
+ λ‖X‖

1
(2)

whereλ is a sparsity penalty term.
A lot of pre–defined dictionary exists in the litterature,

such those based on wavelets, curvelets, ridgelets or DCT.
Although these dictionaries are well suited forcartoon
images, they are not very efficient to deal with textures.
For our problem, it is more efficient to learn the dictionary
directly from data. Starting from a random initialization of
the atoms, learning the dictionary proceeds in an iterative
way, alternating the two steps : 1) minimize Eq. 2 with
respect toX keepingD constant, and 2) update the atoms
of D with X found at previous step.

In this paper, we used for the two steps the OMP algorithm
conjointly with the K–SVD algorithm respectively. The OMP
algorithm (for Orthogonal Matching Pursuit) [13] is a greedy
algorithm which selects atoms iteratively until the error
reconstruction is low or the maximum number of atoms has
been reached. The K–SVD algorithm [2] updates the atoms
from the sparse representation provided by the first step.
It is based on a Singular Value Decomposition, and is a
generalization of the K–Means, hence its name.

III. CLASSIFICATION

A wide variety of approaches has been proposed to classify
feature vectors. The popular subspace methods remain on the
observation that the images of faces under varying lighting
and expression lie on a special low–dimensional subspace
[10], often called theface subspace. This is the assumption
we have done in this work. We use a similar approach as the

one presented in [16] to process the identification. Given a
gallery with one image for each of then subjects, the matrix
A can be constructed by concatening then feature vectors of
gallery‘s faces. In an optimal sparsity scheme, a test sample
y ∈ R

m of classk will then be decomposed intox ∈ R
n,

whose coefficients entries are zero except the one associated
with classk:

y = Ax with ‖x‖
0

= 1 (3)

Unfortunately, this problem is hard to solve. It depends
essentially on the matrixA which represents the features
of the gallery’s faces. Nevertheless, one can decompose the
test imagey onA into x by relaxing the condition‖x‖

0
= 1,

like as we have done at section II. The problem to solve then
becomes :

x̂ = arg min ‖x‖
1

s.t. y = Ax

or

x̂ = arg min ‖x‖
1

s.t. ‖y − Ax‖
2

2
< ǫ

This is a typically lasso problem, for which many algorithms
have been developed. We choose to process by an iterative
soft–thresholding approach [8], which is efficient and fast.
Once the solution has been computed, we have an estimate
ŷ of the test vectory which is a linear combination of vectors
of A:

ŷ =
∑

i=1,n

xiAi (4)

whereŷ is the approximation ofy, Ai is the ith column of
A, and most ofxi are zeros. Finding the identity ofy is
then processed by computing the residualsri of y for each
feature vectorAi of the gallery :

ri(y) = ‖y − Aixi‖2
(5)

The smallest residual then corresponds to the vectorAi that
is the closest toy in the meaning ofl1–norm :

identity(y) = argmini(ri(y)) (6)

A schematic view of the classification process is shown
on Fig. 1.

IV. EXPERIMENTS AND RESULTS

In order to test the approach, we used theNotre–Dame
[1] (Collection X1) database (see Fig. 2 for samples of the
database). It has the advantage to present images of subjects
with two modalities, visible and infrared, taken at the same
time.

It can be divided into two parts : the first part, called
Training set, is composed of159 subjects who all have only
one image in infrared light and its visible counterpart. The
second part, calledTest set, is composed of82 subjects, for
a total of2292 infrared light images and2292 visible light
images.

While the train set contains no facial expressions or head
positions variations, the test set is composed of several
images containing variations in lighting, expressions, thermal
changes and head positions. The test set is also divided into



Fig. 1. Schematic view of the classification process: the feature vector of a probe face is decomposed onto the gallery feature vectors. From this
decomposition, residuals are computed, and identity is deduced from the minimum residual.

Fig. 2. Samples of the database for the Visible and IR modalities

two parts, calledSame–sessionandTime–lapsesets in order
to test the lighting problem, and the recognition through time
respectively. For each of these subsets, there are files named
f{a,b}l{f,m} which can be used for gallery or probe sets
during the test. These subsets have been designed to test
independantly the effect of a facial expression (fa: neutral
expression,fb: smiling expression), under different lighting
(lf : Feret style lighting, lm: mugshot lighting).

In the rest of the paper, we assume that all the faces
have been geometrically normalized according to the distance
between eyes, cropped and resized to90 × 110, as we can
see an example on Fig. 3.

Fig. 3. Geometric preprocessing of the images

A. Learning of the Dictionary

In order to train the dictionary, we randomly extract10000
patches of size10 × 10 with sufficient standard deviation
(to avoid too uniform patches) from theTrain–set. The

maximum number of atoms for the OMP algorithm has
been fixed to5, which means that each training pattern is
decomposed into a sum of5 atoms, the coefficients of the
other atoms being0. The redundancy of the dictionary has
been set to2 which means2×10×10 = 200 atoms to learn.
The iterative process has been stopped after100 iterations. A
random selection of100 atoms is presented Fig. 4. One can
see that some atoms encode low frequency patterns, while
others are more oriented edge selective.

B. Creation of the Feature Vectors

Once the dictionary is learned, a face is then decomposed
into non–recovering10 × 10 patches. The faces are of size
90 × 110, so there are99 extracted patches. Each of these
is then decomposed onto the dictionary, see Fig. 5. The
decomposition consists on solving Eq. 2 without updating
the atoms matrixD. In order to have a fast approximation
of X , we used an iterative soft–thresholding approach [8]
which minimizes‖X‖

1
.

The Xs of each patch are then stacked into one column
vector to form the face feature vector. Since each patch is
decomposed into a200–dimensional vector, the final face
feature vector is of size200 × 99 = 19800.

Fig. 5. Decomposition of a face image.

C. Results of Identification

In order to test the approach, we used the imagelists
provided with the database. The tests can be divided into
two experiments: theSame–sessionand theTime–lapseex-
periments which mainly test the impact of illumination and
facial expression changes in a short (minutes) and medium
term (days or weeks) respectively. In both experiments, there
is only one image per subject in the gallery, acting like a1–
image–to–enroll scenario. TheSame–sessionexperiment is
composed of:



Fig. 4. Random selection of100 atoms learned.

TABLE I

RANK –0 RECOGNITION RATES FOR THESame–SessionEXPERIMENT.

TOP: V ISIBLE, BOTTOM: IR.

X
X

X
X

X
X

XX
Gallery

Probe
FA|LF FA|LM FB|LF FB|LM

FA|LF 1.00 1.00 0.98
0.98 0.97 1.00

FA|LM 0.98 1.00 0.98
0.96 0.95 0.96

FB|LF 0.97 0.97 1.00
1.00 0.92 0.97

FB|LM
0.98 0.98 1.00
0.98 0.97 0.98

TABLE II

RANK –0 RECOGNITION RATES FOR THETime–LapseEXPERIMENT.

TOP: V ISIBLE, BOTTOM: IR.

X
X

X
X

X
X

XX
Gallery

Probe
FA|LF FA|LM FB|LF FB|LM

FA|LF 0.95 0.92 0.87 0.87
0.83 0.79 0.76 0.77

FA|LM 0.95 0.93 0.87 0.85
0.83 0.81 0.77 0.77

FB|LF
0.86 0.83 0.93 0.91
0.77 0.74 0.79 0.80

FB|LM
0.92 0.87 0.88 0.88
0.79 0.80 0.78 0.82

• 4 sets used as galleries and probes
• sets:1 image for each of the82 subjects.

The Time–lapseexperiment is composed of:

• 4 galleries, and4 probe sets
• gallery sets:1 image for each of the63 subjects
• probe sets:431 images of the63 subjects.

Results for the two experiments are presented Tables I and
II.

The results for theSame–sessionexperiment, which is an
easy test, are quite the same as those given in [4] based on
a Convolutional Neural Network, or those in [5] using PCA.
However, there is a significant improvement of recognition
rates for theTime–lapseexperiment.

V. FUSION

Results at section IV-C show that visible modality per-
forms better than IR. This result has already been shown in
[4] and [5]. However the sets of mismatched probes of the
two classifiers do not necessarily overlap. This suggests that
the two modalities could offer complementary informations

TABLE III

RANK –0 RECOGNITION RATES FOR THESame–SessionEXPERIMENT.

TOP: V ISIBLE, MIDDLE : IR, BOTTOM: FUSION.

X
X

X
X

X
X

XX
Gallery

Probe
FA|LF FA|LM FB|LF FB|LM

FA|LF
1.00 1.00 0.98
0.98 0.97 1.00
1.00 1.00 1.00

FA|LM
0.98 1.00 0.98
0.96 0.95 0.96
1.00 1.00 1.00

FB|LF
0.97 0.97 1.00
1.00 0.92 0.97
1.00 1.00 1.00

FB|LM
0.98 0.98 1.00
0.98 0.97 0.98
0.98 1.00 1.00

about a probe face. A merging scheme then could enhance
identification rates. Since the classifiers for the two modali-
ties yield decision rankings as results, we chose to merge the
results on the decision level. We have tested some algorithms
like the one presented in [4], which realizes a weighted sum
of the scores of the two modalities according to a measure of
saliency computed dynamically. Nevertheless, we found that
the simple sum rule on the residual gives the best results.
That is, for a probe imagey, each residualsrvk

and rik
of

samplek in the galleries for the visible and ir modalities are
computed. Finals residuals for a samplek in the gallery are
:

rk = rvk
+ rik

(7)

The smallest residual then correspond to the identity ofy :

identity(y) = argmin(rk(y)) (8)

Results of fusion scores for theSame–sessionand Time–
lapse experiments are shown in Tables III and IV respec-
tively. They show that the fusion scheme always improves
the best result of one modality alone. They are also always
better than those given in [4] and [5].

VI. T ESTS ON CORRUPTED IMAGES

In order to test the robustness of our approach, we apply
two types of degradation to the probe images. Only the probe
images are corrupted, not the images from the galleries.
We apply the same protocol as above : 1) decomposition
of the images onto the dictionary and 2) classification via
minimization of thel1–norm. For the two types of corruption,
we used the same test sets as above.



TABLE IV

RANK –0 RECOGNITION RATES FOR THETime–LapseEXPERIMENT.

TOP: V ISIBLE, MIDDLE : IR, BOTTOM: FUSION.

X
X

X
X

X
X

XX
Gallery

Probe
FA|LF FA|LM FB|LF FB|LM

FA|LF
0.95 0.92 0.87 0.87
0.83 0.79 0.76 0.77
0.98 0.96 0.94 0.93

FA|LM
0.95 0.93 0.87 0.85
0.83 0.81 0.77 0.77
0.99 0.97 0.95 0.92

FB|LF
0.86 0.83 0.93 0.91
0.77 0.74 0.79 0.80
0.93 0.91 0.97 0.95

FB|LM
0.92 0.87 0.88 0.88
0.79 0.80 0.78 0.82
0.97 0.93 0.95 0.95

A. Noisy probes

In this experiment, we corrupt the images by adding
some gaussian noise. The standard deviation of the gaussian
distribution is computed according to a ratio of the dynamic
of the original image. The ratio we used are10%, 20%, 30%,
40%, and50%. An example for these noises is shown on Fig.
6. Results for theSame–sessionandTime–lapseexperiments
are shown on Fig. 7 and 8 respectively. These figures show
the mean rank–0 identification rates for the12 and16 sub–
experiments of the two experiments according to the amount
of noise in the probe images. The standard deviation to each
measure is quite similar to those reported in section IV-C, so
it has not been included in these figures to avoid burdening
them.

(a) Original (b) 10% (c) 20%

(d) 30% (e) 40% (f) 50%

Fig. 6. Percentage of noise in a probe image.

As we might expect, identification rates decrease while
noise strength increases. Moreover, this decrease is quite
linear and is not significantly different for the two modalities.

B. “Missing pixels” probes

In this experiment, we corrupt the images by “removing”
a ratio of pixels of the image. The value of these pixels is set
to 0. We used ratios from10% to 90% with a step of10%.
An example for this corruption is shown on Fig. 9. Results
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Fig. 7. Results for the “noisy”Same–sessionexperiment.
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Fig. 8. Results for the “noisy”Time–lapseexperiment.

for theSame–sessionandTime–lapseexperiments are shown
on Fig. 10 and 11 respectively. These figures show the mean
rank–0 identification rates for the12 and16 sub–experiments
of the two experiments according to the amount of “missing
pixels” in the probe images.

We can see that the visible modality resists far better
to missing pixels than infrared modality, which rank–0
identification rates quickly decrease.

VII. CONCLUSION AND FUTURE WORK

We presented a face recognition method for visible and
infrared light imagery. Based on the sparsity theory, it
decomposes a face onto a dictionary that has been learned
from data. Identification is then processed by considering
this feature vector as a linear combination of the gallery’s
feature vectors with as criterion the minimization of thel1–
norm. Results on theNotre–Damedatabase for theTime–
lapseexperiment are always better than the state-of-art (see
Tab. V). Moreover, we show that a simple scores fusion
of the two modalities enhances always and significantly
the identification rates. We also show that this approach is
quite robust to restricted corruptions applied to the probe
images. We are conducting experiments to adapt this method
to bigger galleries sizes, to quantify the contribution of a
multiscale sparse decomposition of faces, and to construct



(a) 10% (b) 20% (c) 30%

(d) 40% (e) 50% (f) 60%

(g) 70% (h) 80% (i) 90%

Fig. 9. Percentage of “missing pixels” in a probe image.
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Fig. 10. Results for the “missing pixels”Same–sessionexperiment.
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Fig. 11. Results for the “missing pixels”Time–lapseexperiment.

TABLE V

COMPARISON OF METHODS FOR THE TWO EXPERIMENTS. MEAN

RECOGNITION RATE OVER THE12 (OR 16 SUB–EXPERIMENTS) AND

STANDARD DEVIATION IN PARENTHESIS. BEST SCORE IN BOLD.

same-session time-lapse
[5] [4] this paper [5] [4] this paper

Visible
97.08 98.41 98.66 82.66 72.50 89.31
(3.13) (1.97) (1.17) (7.75) (4.01) (3.56)

IR
97.41 90.5 97.00 77.81 40.06 78.87
(2.01) (4.27) (2.08) (3.31) (3.47) (2.46)

Fusion N/A 100. 99.83 92.5 80.12 95.00
(0.) (0.54) (2.71) (4.13) (2.17)

a cascade of sparse classifiers. Learning a rotation invariant
dictionary could also help in case of non–frontal head pose.

REFERENCES

[1] http://www.nd.edu/cvrl/undbiometricsdatabase.html.
[2] M. Aharon, M. Elad, and A. Bruckstein. K–svd: Design of dictionaries

for sparse representation.IEEE Transactions On Signal Processing,
2006.

[3] R. Brunelli and T. Poggio. Face recognition: Features versus templates.
IEEE Pattern Analysis and Machine Intelligence, 1993.

[4] P. Buyssens, M. Revenu, and O. Lepetit. Fusion of ir and visible light
modalities for face recognition. InBiometrics: Theory, Applications
and Systems, 2009.

[5] X. Chen, P. J. Flynn, and K. W. Bowyer. IR and visible lightface
recognition. Computer Vision and Image Understanding, 2005.

[6] Xin Chen, Patrick J. Flynn, and Kevin W. Bowyer. PCA-based face
recognition in infrared imagery: Baseline and comparativestudies. In
AMFG. IEEE Computer Society, 2003.

[7] David L. Donoho. Sparse components of images and optimalatomic
decomposition. Technical report, Department of Statistics, Stanford
University, 1998.

[8] M.J. Fadili and J.L. Starck. Sparse representation-based image
deconvolution by iterative thresholding. InAstronomical Data Analysis
ADA’06, 2006.

[9] Soon-Won Jung, Youngsung Kim, Andrew Jin Tech, and Kar-Ann
Toh. Robust identity verification based on infrared face images.
In International Conference on Convergence Information Technology,
2007.

[10] D. J. Kriegman, J. P. Hespanha, and P. N. Belhumeur. Eigenfaces
vs. fisherfaces: Recognition using class-specific linear projection. In
European Conference on Computer Vision, 1996.

[11] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete
basis set: A strategy employed in V1?Vision Research, 1997.

[12] Diego A. Socolinsky and Andrea Selinger. Thermal face recognition in
an operational scenario. InComputer Vision and Pattern Recognition,
2004.

[13] Joel A. Tropp. Greed is good: algorithmic results for sparse approxi-
mation. IEEE Transactions on Information Theory, 2004.

[14] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In
IEEE Computer Vision and Pattern Recognition, 1992.

[15] L. Wiskott, J. M. Fellous, N. Kruger, and C. von der Malsburg. Face
recognition by elastic bunch graph matching.IEEE Pattern Analysis
and Machine Intelligence, 1997.

[16] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma. Robust
face recognition via sparse representation.IEEE Pattern Analysis and
Machine Intelligence, 2008.

[17] Shi-Qian Wu, Li-Zhen Wei, Zhi-Jun Fang, Run-Wu Li, and Xiao-
Qin Ye. Infrared face recognition based on blood perfusion and sub–
block dct in wavelet domain. InInternational Conference on Wavelet
Analysis and Pattern Recognition, 2007.


