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Abstract
This article is mainly devoted to a review on fast BEMs for elastodynamics, with

particular attention on time-harmonic fast multipole methods (FMMs). It also includes
original results that complete a very recent study on the FMM for elastodynamic prob-
lems in semi-infinite media. The main concepts underlying fast elastodynamic BEMs
and the kernel-dependent elastodynamic FM-BEM based on the diagonal-form ker-
nel decomposition are reviewed. An elastodynamic FM-BEM based on the half-space
Green’s tensor suitable for semi-infinite media, and in particular on the fast evalua-
tion of the corresponding governing double-layer integral operator involved in the BIE
formulation of wave scattering by underground cavities, is then presented. Results
on numerical tests for the multipole evaluation of the half-space traction Green’s ten-
sor and the FMM treatment of a sample 3D problem involving wave scattering by an
underground cavity demonstrate the accuracy of the proposed approach. The article
concludes with a discussion of several topics open to further investigation, with relevant
published work surveyed in the process.

1 Introduction

The boundary element method (BEM), pioneered in the sixties as a numerical solution
methodology, results from the discretization of boundary integral equation (BIE) formula-
tions. The latter are known since a long time for many classical problems of physics such
as electricity and magnetism, heat transfer, fluid flow, mechanics of deformable solids... As
it exploits the conversion of partial differential equations supported on domains to integral
equations supported on domain boundaries, the BEM is a mesh reduction method, subject
to restrictive constitutive assumptions but yielding highly accurate solutions. The reader is
referred to the recent review article [54] for an abundant bibliography on the general topic
of BIE/BEM formulations which includes historical aspects and recent developments, see
also [11, 13].

BEMs are in particular well suited to dealing with unbounded-domain idealizations,
since computations on large domains are condensated on its boundary. Such idealizations
are for example commonly used for computations involving electric or magnetic fields,
which arise in the surrounding air or vacuum as well as inside solid materials, and also
in many situations involving (electromagnetic, acoustic, elastic) waves. What makes BIE
formulations well suited to configurations involving infinite media is the fact that integral
representation formulae automatically verify decay or radiation conditions. BEMs thus
constitute an appealing alternative to domain discretization methods for wave propagation
problems, as artificial boundary conditions [7] are not required for dealing with the radiation
conditions, and grid dispersion cumulative effects are absent [45].
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The theory of BIE formulations for elastic waves and the resulting basic BIE formu-
lations have been known since several decades, see e.g. [1, 32, 51]. As a result, BEMs for
elastodynamics appeared over four decades ago [26]. They have hence been the subject
of sustained research and applications, as witnessed by e.g. the review article [12]. The
modelling of waves propagating in soils and geological structures, with applications in geo-
physics, seismology or civil engineering, often resorts to BEMs, sometimes in association
with FEMs or other methods [24, 63, 71].

In traditional boundary element (BE) implementations, the dimensional (and induced
mesh reduction) advantage with respect to domain discretization methods is offset by the
fully-populated nature of the BEM coefficient matrix, which results in computational work
and memory requirement that grow rapidly with the problem size N ; in other words,
the high complexity of traditional BEMs precludes its application to large models. This
severe limitation has prompted the development of alternative, faster solution strategies
that allow to still exploit the known advantages of BEMs when large N rules out its use
in standard form. Fast BEMs, i.e. BEMs of complexity lower than that of traditional
BEMs, appeared in [65], where a fast multipole method (FMM) is proposed for solving
2-D Laplace problems within O(N) CPU time per iteration. The scope and capabilities
of fast multipole boundary element methods (FM-BEMs) thereafter rapidly progressed,
especially in connection with applications in electromagnetics [55, 75], but also in other
fields including acoustics(e.g. [68, 70]) and computational mechanics (e.g. [53]). Many of
the early investigations are surveyed in the review article [62]. The FMM, as well as other
fast BEM approaches [10, 81, 85], relies upon an iterative solution approach for the linear
system of discretized BEM equations, with solution times typically of order O(N logN) per
iteration for frequency-domain wave propagation problems (instead of O(N2) per iteration
with traditional forms of the BEM).

This article is mainly devoted to a review on fast BEMs for elastodynamics, with partic-
ular attention on fast multipole methods for time-harmonic problems, while also including
some original results that follow up a very recent study on a new FMM for elastodynamic
problems in semi-infinite media [18], a configuration for which no FM-BEM was previously
available. It is organised as follows. Background material is gathered in the remainder
of this section. The main concepts underlying fast elastodynamic BEMs and the kernel-
dependent elastodynamic FM-BEM based on the diagonal-form kernel decomposition are
reviewed in Sections 2 and 3, respectively. Section 4 is then devoted to a FM-BEM based
on the half-space Green’s tensor suitable for semi-infinite media, with emphasis on the fast
evaluation of the corresponding governing double-layer integral operator involved in the
BIE formulation of wave scattering by underground cavities. Results on numerical tests on
the multipole evaluation of the half-space traction Green’s tensor and on a sample 3D scat-
tering problem are presented. Finally, Section 5 discusses several issues deserving further
investigation and surveys relevant published work in the process.

1.1 Frequency-domain BIE formulation

Integral representation. The BIE formulation for frequency-domain elastodynamics
is now summarized in its basic form, as it defines a convenient framework and notational
setting for starting the discussion of fast BEMs for elastodynamics. Accordingly, let Ω ⊂ R

3

denote the region of space occupied by a three-dimensional elastic solid with constitutive
properties defined by the fourth-order elasticity tensor C and the mass density ρ. Assume
for definiteness that time-harmonic motions, with circular frequency ω, are induced by a
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prescribed traction distribution tD on the boundary ∂Ω and in the absence of body forces
(with straightforward modifications allowing the discussion of other boundary conditions
or other integral formulations). The displacement u is given at an interior point x ∈ Ω by
the following well-known representation formula [32]:

u(x) = −
∫

∂Ω
u(y)·T (x,y) dSy +

∫

∂Ω
tD(y)·U(x,y) dSy (x ∈ Ω), (1)

where U(x,y) and T (x,y) denote an elastodynamic Green’s tensor, defined such that U·F
and T ·F are the displacement and traction vector, respectively, generated at any point
y of a region O ⊂ R

3 by a unit point force F applied at x ∈ O. The region O must
contain Ω, and many Green’s tensors may then be defined according to the choice of O ⊃ Ω
and boundary conditions on ∂O (later in this article, the case where O is a half-space with
traction-free conditions on ∂O will be considered). The simplest, and most commonly used,
Green’s tensor corresponds to the isotropic full-space, i.e. O = R

3 and

C = 2µ
[ ν

1− 2ν
I⊗I + I

]
, (2)

where µ and ν are the shear modulus and the Poisson’s ratio of the material, I being the
second-order identity tensor and I the symmetric fourth-order identity tensor. In this case,
one has [32]:

U(x,y) =
1

k2Sµ

[(
I∆−∇y∇x

)
G(|y−x|; kS) +∇x∇yG(|y−x|; kP)

]
,

T (x,y) = n(y)·C :∇yU(x,y),

(3)

where n(y) is the unit normal to ∂Ω directed outwards of Ω; kS and kP are the respective
wavenumbers of S and P elastic waves, so that

k2S =
ρω2

µ
, kP = κkS, with κ2 =

1− 2ν

2(1− ν)
; (4)

andG(·; k) is the free-space fundamental solution for the Helmholtz equation with wavenum-
ber k, given by

G(r; k) =
exp(ikr)

4πr
. (5)

Boundary integral equation. Well-known results on the limiting values of elastic po-
tentials as the collocation point x reaches the boundary [51] allow to deduce from (1) the
boundary integral equation

K[u](x) = S[tD](x) (x ∈ ∂Ω) with K[u](x) := D[u](x) + c(x)·u(x), (6)

where the right-hand side and the linear operator K respectively involve the single-layer
integral operator S and the double-layer integral operator D, defined by

S[t](x) :=

∫

∂Ω
t(y)·U(x,y) dSy, D[u](x) := (P.V.)

∫

∂Ω
u(y)·T (x,y) dSy (7)

Due to the strong singularity of T for y = x, the integral defining D is understood in
the Cauchy principal value (CPV) sense (as indicated by the notation P.V.) while a free-
term c(x) arose from the limit-to-the-boundary process. The latter is equal to 0.5I (with
I denoting the second-order identity tensor) in the usual case where ∂Ω is smooth at x,
and is otherwise a known (second-order tensor-valued) function of the local geometry of
∂Ω at x. Kernel singularities are extensively studied in the literature in terms of their
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consequences on the fundamental properties of integral operators [61] and the specialized
numerical quadrature methods allowing to handle them in implementing the BEM [80].

1.2 Boundary element method

The numerical solution of boundary integral equation (6) is based on a discretization of
the surface ∂Ω into boundary elements. This discretization process, either based on nodal
collocation or on a Galerkin approach, transforms (6) into a square complex-valued matrix
equation of the form

Ku = f, (8)

where the N -vector u collects the sought degrees of freedom (DOFs), namely the nodal
displacement components, K is the N ×N influence matrix and the N -vector f arises from
the discretization of S[tD]. Setting up the matrix K classically requires the computation
of all element integrals for each collocation point, or of double integrals over all products
of elements in the Galerkin approach, thus needing a computational time of order O(N2).

The influence matrix K is fully-populated. Usual direct solvers, such as the LU fac-
torization, then require O(N3) arithmetic operations (i.e. they have a O(N3) complexity)
and O(N2) memory, limiting the applicability of the traditional BEM to moderately-sized
models (with typically N = O(104) or less using double-precision complex arithmetic).
BEM problems of larger size are preferably solved by means of iterative algorithms (GM-
RES [66] being the usual choice), which build sequences (u(k))k∈N of solution candidates
until ‖Ku(k) − f‖/‖f‖ is less that a predefined tolerance. Each GMRES iteration requires
one evaluation of Kw for given w, a task of computational complexity O(N2) whether K
is set up and stored prior to the iterations, or Kw is evaluated directly by means of stan-
dard BEM numerical integration and assembly procedures. In the latter case, the O(N2)
complexity results from the need to compute all element integrals for each collocation point.

2 Fast BEMs for frequency-domain elastodynamics

Applications of the BEM to large models (typically at least N = O(106)) require evaluation
procedures for Kw whose complexity is lower than O(N2) and which do not require explicit
setup and storage of K. Several approaches, collectively referred to as fast BEMs, have
been proposed and developed towards meeting these requirements on complexity. They
are reviewed in this section, with emphasis on application to elastodynamics. One notes
that w → Kw is (up to the additive free term) a discretized version of the double-layer
integral operator w → D[w], so that fast BEMs essentially consist in accelerated methods
for the evaluation of discretized integral operators on given densities. The standard BIE
formulation (6) applied to exterior problems is known to break down when ω is a so-called
fictitious eigenvalue. Fast integral operator evaluation methods discussed here do nothing
by themselves to remedy this issue. They may however be derived and applied to other
BIE formulations which are immune to fictitious eigenvalues such as that of Burton and
Miller, see e.g. [27].

To reduce the complexity incurred by matrix-vector products Kw, one needs to define
an approximation Kε of K such that (a) ‖K−Kε‖ ≤ ε‖K‖ (where ε is a preset desired
relative accuracy) and (b) Kε is increasingly sparse as N grows, so that the computational
cost of evaluating good approximations Kεw of Kw grows at a rate lower than O(N2).
The fast BEMs essentially differ in how Kε is defined.
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FMM based on explicit kernel decomposition. The FMM consists in formulating
sparse approximations of integral operators such as K by recasting the fundamental solu-
tions, e.g. U(x,y), T (x,y) in (1), in terms of products of functions of x and of y. On
recasting the position vector r = y − x in the form r = ỹ− x̃+r0, having set ỹ := y−y0,
x̃ := x−x0 and r0 := y0−x0 in terms of two chosen poles x0, y0 (Fig. 1), decompositions
of the form

K(x,y) =

p∑

n=1

Tn(r0)Xn(x̃)Yn(ỹ) + E(p), (9)

called separated decompositions, are sought for generic fundamental solutionsK(x,y) (with
E(p) denoting the truncation error). Selecting a truncation level p such that E(p) < ε
and substituting the above kernel approximation into the relevant integral operators, the
resulting BE-discretized influence matrix Kε is seen to be of rank at most p. The desired
sparsity of Kε is thus achieved if p is small enough. Note also that the separated character
of expansion (9) allows to re-use integrations with respect to y when the collocation point
x is changed. This defining feature of the FMM is one of the main mechanisms for lowering
the O(N2) complexity per iteration entailed by standard BEMs, and was in particular at
the heart of the original fast summation method for electrostatics [41] (wherein K(x,y) =
C‖y−x‖−1).

The truncation error E(p) is in general such that it is controllable, and moderate values
of p sufficient (i.e low-rank approximations of K are accurate enough), when ‖x̃‖, ‖ỹ‖ are
sufficiently small compared to ‖r0‖ (e.g. ‖x̃−ỹ‖/‖r0‖ ≤ 2/

√
5 for the Helmholtz-type ker-

nels of frequency-domain acoustics or elastodynamics). This naturally lead to subdividing
the (collocation, integration) points involved in the BE-discretized integral equation into
clusters and applying decompositions of type (9) to well-separated clusters. This subdi-
vision is usually effected by means of a 3D cubic grid of linear spacing d embedding the
geometrical support ∂Ω of (1), so that ∂Ω is enclosed in a set of cubic cells. The FMM
basically consists in using (9), with the poles x0 and y0 chosen as the cell centers, whenever
x and y belong to non-adjacent cubic cells. When x and y belong to adjacent cells, the
original (i.e. non-separated) definitions of the kernels (e.g. (3) with (5)) are used together
with classical BEM element integration techniques. To further improve the computational
efficiency of the FM-BEM, standard (i.e. non-FMM) calculations must be confined to the
smallest possible spatial regions while retaining the advantage of clustering the computation
of influence terms into non-adjacent large groups whenever possible. This is achieved by
recursively subdividing cubic cells into eight smaller cubic cells. New pairs of non-adjacent
smaller cells, to which expansion (9) is applicable, are thus obtained from the subdivision
of pairs of adjacent cells. The cell-subdivision approach is systematized by means of an
oct-tree structure of cells. At each level ℓ, the linear cell size is denoted dℓ. The level
ℓ = 0, composed of only one cubic cell containing the whole surface ∂Ω, is the tree root.
The subdivision process is further repeated until the finest level ℓ = ℓ̄, implicitly defined
by a preset subdivision-stopping criterion (dℓ̄ ≥ dmin), is reached. Level-ℓ̄ cells are usu-

x

x0 y0

y

r r0

Figure 1: Decomposition of the position vector: notation.
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ally termed leaf cells. This octree-based recursive clustering, which defines the so-called
multi-level FMM, is the other main mechanism for lowering the complexity of BEMs. The
theoretical complexity of the multi-level FMM for Helmholtz-type kernels is in fact known
to be O(N logN) per GMRES iteration both for CPU time and memory [73].

FMMs for (acoustic, electromagnetic, elastic) waves are often based on the fact that the
Helmholtz Green’s function (5) is known [28, 31] to admit the separated decomposition

G(|r|; k) = lim
L→+∞

GL(|r|; k), with GL(|r|; k) :=
∫

Ŝ
eikŝ·ỹGL(ŝ; r0; k)e

−ikŝ·x̃ dŝ, (10)

where Ŝ ⊂R
3 is the unit sphere and the transfer function GL(ŝ; r0; k) is defined in terms of

the Legendre polynomials Pn and the spherical Hankel functions of the first kind h
(1)
n by:

GL(ŝ; r0; k) =
ik

16π2

∑

0≤n≤L

(2p+ 1)inh(1)n (k|r0|)Pn

(
cos(ŝ, r0)

)
. (11)

Replacing the integration over Ŝ with a numerical quadrature then yields a decomposition
of the type (9). Then, since the elastodynamic Green’s tensors U(x,y), T (x,y) given
by (3) are linear combinations of derivatives of the Green’s function (5), they are amenable
to a decomposition similar to (10) [19].

Decomposition (10), often called the diagonal form decomposition of G, is known to
fail in the low-frequency limit [28]. Other decompositions that are well-behaved at low
frequencies are available, based on either the Gegenbauer addition theorem [87] or Fourier
transforms along coordinate planes [40]. So-called wideband FMMs have then be proposed,
combining kernel expansions appropriate for low frequencies with the diagonal-form decom-
position for higher frequencies [22]. All these approaches are kernel-dependent in that they
rely on analytical identities (such as (10) and all representations deriving from it) giving
separable decompositions of specific kernels.

A 3D elastodynamic implementation of the low-frequency approach, based on the appli-
cation of the Gegenbauer addition theorem to G, has been proposed in [86] for the scattering
of waves by multiple cracks in unbounded media. Early developments of the diagonal-form
decomposition for 3D elastodynamics were presented in [37], with applications to the scat-
tering of seismic waves by basins and topographies. Improved versions of this approach
were more recently proposed in [19, 82], with numerical examples involving BE models of
size up to N = O(106). Moreover, a 2D elastodynamic version of the wideband approach
has been recently proposed in [77], while periodic 3D elastodynamic problems are addressed
in [46] using a low-frequency separable decomposition of periodic Green’s tensors.

Kernel-independent FMM. More recently, kernel decompositions of the form

K(x,y) =

p∑

m,n=1

K(xm,yn)Im(x)In(y) + E(p)

where In is a family of chosen interpolation functions (e.g. Lagrange or Chebyshev polyno-
mials) and xm,yn are interpolation nodes, have been investigated [34]. The main conceptual
advantage over kernel-dependent decompositions is that the only required knowledge about
the kernel is a procedure allowing its evaluation at chosen points. This approach is more
recent, and hence less-developed, than the kernel-dependent approach, but oscillatory ker-
nels of type (5) are considered in [30, 59], paving the way to application of this “black-box”
approach to elastodynamic FMMs.
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Formulations based on the fast Fourier transform (FFT). Another kernel-indepen-
dent approach exploits the fact that integral operators of convolutional form (i.e. whose
kernels are translation-invariant, which includes all full-space fundamental solutions) can be
evaluated in O(N logN) time using the FFT. As in the FMM, an octree is introduced, with
each cell discretized into a Cartesian grid that supports FFT operations. Transfers between
non-uniform BE meshes and Cartesian grids are effected using sparse anterpolation and
interpolation matrices. This approach has been successfully applied to 3D frequency-domain
elastodynamics [84] and to a time-frequency treatment of transient elastodynamics [83].

Algebraic methods. A third type of kernel-independent approach for defining a sparse
approximation Kε of K, is purely algebraic in nature; it is based on the concept of hierar-
chical matrices, or H-matrices [9]. Here, the influence matrix K is hierarchically partitioned
into blocks in such a way that the lines and columns of the largest blocks correspond to
well-separated clusters of collocation and integration nodes (one may note that the octree-
based multi-level FMM implicitly defines a hierarchical partition of K). Then, each block is
replaced with a low-rank approximation computed using the adaptive cross approximation
(ACA) method [10]. Here also, the only required knowledge about the kernel is the ability
to evaluate it for any chosen points. Applications of this approach to elastodynamic BEM
include [58, 60].

3 Formulations based on the full-space Green’s tensor

An initial series of investigations on the elastodynamic FMM [19, 20, 39], whose main fea-
tures and findings are summarized in this section, has concentrated on the kernel-dependent
approach based on the full-space Green’s tensor (3).

Single-domain elastodynamic formulation. Multi-level FM-BEM formulations were
first considered for single-domain problems, involving (possibly unbounded) homogeneous
isotropic elastic media, using integral equations based on the full-space Green’s tensor.
The acceleration was based on separated decompositions of (3) obtained by substituting
decomposition (10) into (3). Many implementation issues arising in this elastodynamic FM-
BEM revolve around how to choose the truncation level L in (11) so that (10) is sufficiently
accurate. The overall computational cost indeed is strongly dependent on L through not
only the number of terms in the transfer function (11), but also the correct number Q
of quadrature points on Ŝ, with Q = O(L2). Selection rules for L in all Helmholtz-type
FMMs rest on a key error analysis result [28], which states that there exist four constants
C1, C2, C3, C4 such that

L = C1 + C2k|r − r0|+ C3 ln(k|r − r0|) + C4 ln ǫ
−1 =⇒

∣∣G(|r|; k)−GL(|r|; k)
∣∣ < ǫ (12)

for any chosen error level ǫ < 1, whenever ‖r − r0‖/‖r0‖ ≤ 2/
√
5. First, noting that the

magnitude of ‖r − r0‖ and ‖r0‖ depend on the level (through the linear size of cells for
that level), estimate (12) dictates that suitable values of L in (10) are level-dependent. The
following selection rule for L (whose form is known from previous studies on FMMs for
Maxwell equations [29]), inspired by (12), proved satisfactory:

Lα(d) =
√
3kαd+ Cǫ log10(

√
3kαd+ π), α = P,S (13)
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(with d denoting the linear size of a cell, making the rule level-dependent). Note that the
recommended value of L depends on whether it is used for the contribution of G(·; kP) or
G(·; kS) to (3). Empirical tuning of (13) by means of numerical experiments led to set
Cǫ = 7.5 as the best trade-off between accuracy and efficiency.

Moreover, the known low-wavenumber breakdown of decomposition (10), manifested by
the C2k|r−r0| contribution in (12), prevents the use of arbitrarily small cells (thus limiting
the number of usable levels in the octree). Numerical experiments indicated that the leaf
cell size d̄ be set so as to verify d̄ ≥ 0.6π/kS.

The version of the elastodynamic FM-BEM incorporating the above-described features
was shown (both theoretically and numerically) to conform to the expected O(N logN) per
GMRES iteration computational complexity, and has been validated using a single-CPU
desktop computer on test cases involving up to N = O(106) BE unknowns.

Multi-domain elastodynamic formulation. The previous treatment has been ex-
panded in [20] so as to allow piecewise-homogeneous media, by coupling integral equations
arising from writing (1) separately for each homogeneous component (of course using the
Green’s tensor with the corresponding material parameters). Then, perfect-bonding trans-
mission conditions were used in weighted combinations of the integral equations obtained
for each subdomain, reducing the unknowns to one displacement field and one traction field
on each interface. Particular attention needed to be devoted to multiple points (i.e. BE
nodes simultaneously belonging to three or more subdomains) and the choice of weight-
ing coefficients. In the resulting implementation of FMM-based BE-BE coupling, surface
displacements and tractions are interpolated using piecewise-linear and piecewise-constant
functions, respectively (the latter choice of element-based tractions allowing to avoid cum-
bersome issues related to tractions at multiple points). Contributions from each subdomain
to the global matrix-vector product required by the GMRES solver applied to the complete
set of equations can be computed by using the single-region elastodynamic FM-BEM in
black-box fashion (in particular, octrees are defined separately for each subdomain).

This formulation has been tested on 3D examples including a two-layered semi-spherical
basin embedded in an infinite half-space, in particular for the computation of transient
responses using Fourier synthesis. The GMRES iteration count was found to be (i) too
high for the largest sampling frequencies used and (ii) strongly dependent on the material
contrasts between subdomains. These observations highlighted the necessity of addressing
the then-current lack of a preconditioning strategy (Sec. 5).

Visco-elastodynamic formulation. The applicability of the single-domain and multi-
domain elastodynamic FM-BEM formulations to weakly dissipative visco-elastic media
characterized (for fixed frequency) by complex-valued wavenumbers k⋆α = kα(1 + iζα)
(α = P,S), where k⋆α are the elastic pressure and shear wavenumbers and ζα ≪ 1 are
the damping ratios, has been examined in [39]. In particular, the validity of selection rules
such as (13) in the complex-wavenumber case, an issue only sparingly addressed in the
available literature, was examined. In contrast to the already-mentioned real-wavenumber
case, no mathematical error analysis is available. An empirical study based on numerical
simulations has shown that a slightly altered version of (13) performs satisfactorily, leading
to the adoption of the following damping-dependent selection rule:

Lα(d; ζα) = k⋆αd+ (Cǫ + Cζα) log10(k
⋆
αd+ π), α = P,S (14)
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with Cǫ = 7.5 as before and C = 60. This multi-domain visco-elastodynamic FM-BEM
has been applied to the problem of a wave propagating in a semi-infinite medium with a
lossy semi-spherical inclusion (seismic wave in alluvial basin). Moreover, the semi-infinite
configurations considered, typical of applications to soil-structure interaction or seismology,
require meshing a portion of the free surface around the irregularities (topography, basins...)
considered. In such cases, the potentially large number of additional DOFs required for
the free surface and the selection of a suitable truncation radius are serious issues. The
latter has been considered through parametric studies using the multi-domain FM-BEM
on a semi-spherical basin configuration, with the truncation radius required for making
the results reasonably insensitive to truncation found to be of order 13a for purely elastic
materials (with a denoting the basin radius) while weakly dissipative media allowed to
settle for lower values of order 3a − 6a. Clearly, employing the half-space Green’s tensor
instead of its (simpler) full-space counterpart used so far would greatly reduce, for a given
configuration, the size of the BE model; this approach is addressed next.

4 Formulation based on the elastodynamic half-space Green’s tensor

Available (visco)elastodynamic FM-BEMs are to date based on the full-space Green’s ten-
sor. However, many applications in e.g. civil engineering or geophysics involve semi-infinite
media, and therefore entail a costly BE discretization of a portion of the free surface within
a truncation distance that is sufficiently larger than the region of interest (see [6] for the 2D
case, where the Rayleigh-wave part of the solution is accounted for beyond the truncation
distance). To avoid both this additional computational burden and accuracy control issues
raised by the truncation, a natural idea is to use the Green’s tensor UHS,THS satisfying
the traction-free boundary condition

THS(x,y) := e3 ·C ·∇yUHS(x,y) = 0 (y ∈ ΓF ), (15)

on the planar infinite surface ΓF := {y | y3 = 0} bounding the half-space ΩF := {y =
(y1, y2, y3) | y3 < 0} (in (15) and thereafter, the gradient operator ′∇

′ conventionally adds
one tensorial order from the left, i.e. (for example) (∇U)kij = ∂kUij). This choice of
Green’s tensor is well suited to semi-infinite configurations that feature wave scattering
by topographic irregularities or buried objects, modelled as semi-infinite domains Ω which
deviate from the half-space ΩF only in a region of finite size. Here, the boundary ∂Ω is
assumed of the form ∂Ω = S∪Γ0, where the bounded (and possibly non-connected) surface
S := ∂Ω \ (∂Ω ∩ ΓF ) defines topographic irregularities or buried obstacles and Γ0 ⊂ ΓF is
the unbounded planar component of the traction-free surface (Fig. 2). In this setting, the
integral equation (6) takes the form (with collocation now needed on S only)

KHS[u](x) = SHS[t
D](x) (x ∈ S) (16)

with KHS[u](x) := DHS[u](x) + c(x)·u(x), (17)

Γ0(D) Γ0

S
Ω

x

y1, y2

y3

S

Figure 2: Elastic semi-infinite medium: geometry and notations.
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where the single-layer and double-layer integral operators SHS and DHS defined by

SHS[t](x) :=

∫

S
t(y)·UHS(x,y) dSy,

DHS[u](x) := (P.V.)

∫

S
u(y)·THS(x,y) dSy

(x ∈ S) (18)

The overall size of the BE model is therefore much smaller than using the full-space Green’s
tensor (3) since the planar part Γ0 of the free surface is no longer discretized (Fig. 2). The
derivation and implementation of UHS,THS are however involved [64]. In particular, UHS

and THS cannot be expressed in the fashion of (3) in terms of simpler kernels having
already-known multipole expansions, and a specific approach is needed.

4.1 Multipole expansions of the half-space Green’s tensor

Complementary displacement Green’s tensor. The formulation of a multipole ex-
pansion for UHS has very recently been addressed in [18], and is now summarized for
convenience. It exploits the additive decomposition

UHS(x,y) = U(x,y) + Ũ(x,y) +UC(x,y), (19)

where U is the full-space Green’s tensor (3) and Ũ is the image full-space Green’s tensor
corresponding to an image point force S ·F applied at the mirror image source point S ·x
(Fig. 3), i.e.

Ũ(x,y) := U(S ·x,y)·S, (20)

with S := I − 2e3 ⊗ e3 denoting the symmetry with respect to the free surface y3 = 0.
The complementary Green’s tensor UC must then satisfy the homogeneous field equation
and be such that UHS given by (19) satisfies the free-surface condition (15). A separated
representation of UC was found [18] in the form of an inverse partial Fourier transform:

UC(x,y) =

∫

R2

ei(ξ1y1+ξ2y2) ÛC(ξ, y3;x) dξ1dξ2, (21)

where ξ := (ξ1, ξ2) ∈ R
2 are the transformed coordinates associated with (y1, y2) and with

ÛC(ξ, y3;x) =
1

4π2µk2S

sP(ξ)

δ(ξ)

[
2V +

S (ξ)e
sS(ξ)y3 + β(ξ)V +

P (ξ)e
sP(ξ)y3

]

⊗
[
2V −

S (ξ) e
q−

S
(ξ)·x + β(ξ)V −

P (ξ) e
q−

P
(ξ)·x

]
. (22)

In addition, the various scalar or vector functions appearing in (22) are defined by

q±a (ξ) = ±iξ + sa(ξ)e3, sa(ξ) =
√

ξ2 − k2a (a = P,S),

β(ξ) = k2S − 2ξ2 = −(s2S(ξ) + ξ2), δ(ξ) = β2(ξ)− 4ξ2sP(ξ)sS(ξ),

V ±
S (ξ) = ±

[
sS(ξ) q

±
S (ξ) + k2Se3

]
, V ±

P (ξ) = ±s−1
P (ξ)q±P (ξ)

y1, y2

y3
ΓF

Ω
x

Sx

y

F

SF

Figure 3: Image full-space Green’s tensor: notations.
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with ξ := |ξ| = (ξ21 + ξ22)
1/2. Upon inserting (22) into (21), introducing polar coordinates

in the Fourier space (i.e. setting ξ = (ξ1, ξ2) = ξ(cosα, sinα)) and rearranging terms, the
above formula can be recast in the following form:

UC(x,y) =
1

4π2k2Sµ

∑

a,b=P,S

∫ +∞

0
ξsP(ξ)Aab(ξ)

{∫ 2π

0

[
exp(q+a (ξ, α)·y)V +

a (ξ, α)
]

⊗
[
exp(q−b (ξ, α)·x)V −

b (ξ, α)
]
dα

}
dξ. (23)

with

APP(ξ) :=
β2(ξ)

δ(ξ)
, APS(ξ) = ASP(ξ) :=

2β(ξ)

δ(ξ)
, ASS(ξ) :=

4

δ(ξ)
.

Decomposition (23) is separated, and has a structure reminiscent of the diagonal form (10).

Complementary traction Green’s tensor. Most integral equations for semi-infinite
media, such as (16), also require the complementary traction Green’s tensor TC, which is
not addressed in [18]. To this aim, the complementary stress Green’s tensorΣC := C :∇yUC

is first derived by invoking Hooke’s law (2) and noting that

∇̂UC(ξ, y3;x) = iξ⊗ ÛC(ξ, y3;x) + e3⊗ Û ′
C(ξ, y3;x) (24)

(with the prime (′) symbol denoting partial derivatives with respect to y3) as a consequence
of the partial Fourier representation (21) of UC, to obtain

Σ̂C(ξ, y3;x) = µ(κ−2−2)I⊗
[
iξ ·Û(ξ, y3;x) + e3 ·Û ′

C(ξ, y3;x)
]
+ 2µ∇̂U

sym

C (ξ, y3;x)

(with κ defined by (4), and where “sym” indicates symmetrization with respect to the first

two indices, noting that ∇̂U is a third-order tensor). Substituting expression (22) into the
above formula, performing straightforward derivations and rearranging terms, one arrives
at the explicit formula

Σ̂C(ξ, y3;x) =
1

4π2k2Sδ(ξ)

(
β(ξ)esP(ξ)y3

[
2q+P (ξ)⊗q+P (ξ) + (2κ2−1)k2SI

]

+ 2sP(ξ)e
sS(ξ)y3

[
2sS(ξ) q

+
S (ξ)⊗q+S (ξ) + k2S

(
e3⊗q+S (ξ) + q+S (ξ)⊗e3

) ])

⊗
(
2V −

S (ξ) e
q−

S
(ξ)·x + β(ξ)V −

P (ξ) e
q−

P
(ξ)·x

)
(25)

Finally, the traction Green’s tensor TC := n·ΣC for a given unit normal n is obtained in
Fourier form as

T̂C(ξ, y3;x) =
1

4π2k2Sδ(ξ)

(
2W S(ξ)e

sS(ξ)y3 + β(ξ)W P(ξ)e
sP(ξ)y3

)

⊗
(
2V −

S (ξ) e
q−

S
(ξ)·x + β(ξ)V −

P (ξ) e
q−

P
(ξ)·x

)
(26)

with the vector functions W S and W P given by

W S(ξ) := sP(ξ)
(
q+S (ξ)·n

)[
2sS(ξ)q

+
S (ξ) + k2Se3

]
+ k2SsP(ξ)(n·e3)q+S (ξ)

W P(ξ) := 2
(
q+S (ξ)·n

)
q+S (ξ) + (2κ2−1)k2Sn

One notes the formal analogy between the partial Fourier expressions (22) of ÛC and (26)
of T̂C, the only difference lying in V +

S ,V
+
P being replaced by W S,W P. Now, expressing
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TC in terms of physical coordinates as the inverse partial Fourier transform (21) with ÛC

replaced by T̂C and using polar coordinates in the Fourier space, one finally obtains

TC(x,y) =
1

4π2k2S

∑

a,b=P,S

∫ +∞

0
ξAab(ξ)

{∫ 2π

0

[
exp(q+a (ξ, α)·y)W a(ξ, α)

]

⊗
[
exp(q−b (ξ, α)·x)V −

b (ξ, α)
]
dα

}
dξ. (27)

with the Aab(ξ) again as defined for (23).

4.2 Fast multipole algorithm for the half-space Green’s tensor

The single-layer and double-layer operators S[t], D[u] applied to given densities t, u can
then be, following (19) and using obvious notation, additively decomposed as

SHS[t](x) = S[t](x) + S̃[t](x) + SC[t](x), (28)

DHS[t](x) = D[t](x) + D̃[t](x) +DC[t](x). (29)

The contributions S[t](x), S̃[t](x) andD[u](x), D̃[u](x) are then evaluated using the stan-
dard diagonal-form FMM [19], whereas the complementary operators SC, DC requires a
specific treatment. Since the case of SC is treated in detail in [18], attention is now focused
on the computation of the complementary potential DC[t](x).

Substituting the representation (27) of TC into the definition of DC[t](x) and rearrang-
ing terms, the complementary double-layer operator is given by

DC[t](x) =
1

4π2k2S

∑

a,b=P,S

∫ +∞

0
ξAab(ξ)

{∫ 2π

0
Ru

a(ξ, α)
[
exp(q−b (ξ, α)·x)V −

b (ξ, α)
]
dα

}
dξ

(30)
where the multipole moments are given by

Rt
a(ξ, α) :=

{∫

S
exp(q+a (ξ, α)·y) t(y) dSy

}
·W a(ξ, α). (31)

Convergence of radial integral. The radial integral in (30) is convergent whenever
x3 + y3 < 0 due to the exponential decay of the integrand as ξ → +∞. On the other
hand, noting that W S = O(ξ4), W P = O(ξ2), V −

S = O(ξ2), V −
P = O(1), β(ξ) = O(ξ2)

and δ(ξ) =O(ξ2) (the latter estimate requiring straightforward derivations) for large ξ, the
integrand of (30) is thus O(ξ5) if x3+ y3 = 0, making the radial integral divergent. The
proposed acceleration approach is thus subject to the restriction x3 + y3 < 0, and is not
applicable when x3+y3 =0 (i.e. for integration and collocation points both lying on ΓF ).

Clustering. If convergent (i.e. whenever x3 + y3 < 0), integral (30) can be evaluated
accurately, see next. In particular, unlike for more usual forms of the FMM, the represen-
tation (30) of TC is valid without requiring that clusters of source and collocation points be
well-separated, making it unnecessary to subdivide the spatial region of interest into cells.
The simplest option of applying (30) to all source and collocation points at once (i.e. of
enclosing all points in one single cell) is permitted, and is used here.
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Quadrature in Fourier space. The radial integration featured in (30) requires a quadra-
ture rule that is suitable for a limited set of L integrals of the form

Iℓ(p) =

∫ ξmax

0
fℓ(ξ;p) dξ (1 ≤ ℓ ≤ L, p ∈ P)

where (fℓ)1≤ℓ≤L are real-valued square-integrable functions, whose (singular, oscillatory...)
behavior may make numerical quadrature difficult (or a priori expensive). The fℓ are
chosen so that all integrands appearing in (30) are linear combinations of them, while the
parameters gathered in p are the frequency ω and the source and observation points x,y.
The quadrature rule then must accurately evaluate all integrals Iℓ(p) for all values of p in a
given parameter domain P, whose definition reflects the clusters of source and observation
points used in TC(x,y) and the frequencies of interest. To this aim, generalized Gaussian
quadrature (GGQ) rules that are specific to the set of integrals Iℓ(p) are computed by
means of the GGQ generation methodology proposed in [14]. Its implementation for UC

is described in detail in [18]; it is here adapted to the treatment of (30) by appropriately
modifying the choice of input functions fℓ (the current treatment of (30) is based on L=38
such functions, with a large number K of sampling values pk ∈P used for each fℓ).

As a result, the Fourier integral (30) is evaluated by means of a product quadrature
rule in (ξ, α)-space of the form

DC[u](x) =
1

4π2k2S

∑

a,b=P,S

nξ∑

i=1

wξ
i ξiAab(ξi)

{ nα∑

j=1

wα
j Ru

a(ξi, αj)
[
exp(q−b (ξi, αj)·x)V −

b (ξi, αj)
]}

+ E(nξ, nα) (32)

where (ξi, w
ξ
i )1≤i≤nξ

are the nξ GGQ nodes and weights for the radial integration, obtained
by the procedure outlined above, (αj , w

α
j )1≤j≤nα are the nα nodes and weights correspond-

ing to a simple trapezoidal rule for the angular quadrature, and E(nξ, nα) is the quadrature
error. Finally, the simultaneous evaluation of both complementary operators SC[t] and
DC[u] is decomposed into two steps: (i) computation of multipole moments (a, b=P, S)

Rt
a(ξi, αj) :=

1

4π2k2Sµ

{∫

S
exp(q+a (ξi, αj)·y) t(y) dSy

}
·V +

a (ξi, αj)

Ru
a(ξi, αj) :=

1

4π2k2S

{∫

S
exp(q+a (ξi, αj)·y)u(y) dSy

}
·W a(ξi, αj),

and (ii) operator evaluation at collocation points (quadrature in Fourier space)

SC[t](x) =
∑

a,b=P,S

nt
ξ∑

i=1

wt
iξ

t
iAab(ξ

t
i)

{ nα∑

j=1

wα
j Rt

a(ξ
t
i , αj)

[
exp(q−b (ξ

t
i , αj)·x)V −

b (ξ
t
i , αj)

]}

DC[u](x) =
∑

a,b=P,S

nu
ξ∑

i=1

wu
i ξ

u
i Bab(ξ

u
i )

{ nα∑

j=1

wα
j Ru

a(ξ
u
i , αj)

[
exp(q−b (ξ

u
i , αj)·x)V −

b (ξ
u
i , αj)

]}

Note that to minimize the overall quadrature work, separate GGQ rules (ξti , w
t
i)1≤i≤nt

ξ
and

(ξui , w
u
i )1≤i≤nu

ξ
are generated and used for SC[t] and DC[u].
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Extension to visco-elastodynamics. The extension of the FM-BEM for the elastic
half-space Green’s tensors to visco-elastodynamics is again done by introducing complex
wavenumbers k⋆α = kα(1 + iζα) (α = P,S), where 0≤ ζα ≪ 1 are the damping ratios. This
modification does not affect the above methodology and results in any essential way. The
only significant change caused by the switch to complex-valued wavenumbers consists in
the redefinition of the collection of real-valued input functions that are used for generating
the GGQ rule.

4.3 Accuracy of the elastodynamic half-space FMM

All the tests to follow assume material characteristics such that µ = 3, ρ = 1 (in arbitrary
units) and ν = 0.25.

Accuracy of the radial quadrature. This first set of comparisons aims at checking
the accuracy of the generalized Gaussian quadrature, a key component of the proposed
treatment, for computing THS in elastic or weakly dissipating media. For this purpose,
the integral (27) is computed with the angular integration over α performed analytically
(for this set of tests only) in order to focus on the accuracy of the GGQ for the radial
quadrature, noting that (27) would in that case be exact were it not for the inability to
perform analytically the radial integration. Due to the resulting lack of available exact
reference values for THS, the numerical evaluations of THS are compared to corresponding
values T ref

HS yielded by a non-multipole code (provided by B.B. Guzina [42]) which com-
putes the viscoelastodynamic layered half-space Green’s tensor using numerical evaluation
of Bessel transforms. The contributions T and T̃ induced by the decomposition (19) of
THS are computed using the closed-form expression (3). The relative discrepancy on the
(ijk) component of ΣHS is evaluated according to

εijk =
‖(ΣHS)ijk − (Σref

HS)ijk‖2
‖(Σref

HS)ijk‖2
. (33)

While the GGQ rule was set to accurately evaluate THS(x,y) for all (x,y) such that
−4d ≤ y1, y2 ≤ 4d and −4d ≤ y3 ≤ −d, the discrepancies (33) were evaluated for a source
point at x= (2d, 3d, 2d) and observation points y on the line defined by y1 =0.5d, y2 =0.75d
and −4d ≤ y3 ≤ −d, with the normalized frequency set to kSd = 1/

√
3. In Table 1, the

relative discrepancies (33) on several components of THS are shown for several sizes nξ of
the GGQ rule and levels ζP = ζS = ζ of damping. As expected, the accuracy achieved
on THS increases with nξ; moreover, all the components have a similar level of accuracy,
confirming the validity of using the same quadrature for all the components. Another useful
observation is that the GGQ-based treatment works satisfactorily for purely elastic as well
as weakly dissipative media, with the quadrature size nξ moreover seen to decrease when
damping is present.

Moreover, the absolute accuracy of the quadrature rules produced by the GGQ gener-
ation algorithm can be assessed on a related situation for which exact reference values are
available, namely that of the image full-space stress Green’s tensor Σ̃ associated to (20).
The resulting GGQ rule, generated under the same conditions (frequency, point clusters)
as Table 1 and without damping (ζP = ζS = 0), is of size nξ = 28. The relative RMS errors

on components of Σ̃, shown in Table 2, have magnitudes similar to the discrepancies given
in Table 1 using the finest quadrature rule. This test thus confirms the reliability of the
GGQ generation algorithm.
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nξ ε111 ε112 ε113 ε331 ε333

ζ = 0
39 3.7 10−5 1.1 10−4 1.6 10−4 3.4 10−4 2.6 10−4

36 1.2 10−4 1.7 10−4 7.8 10−4 4.6 10−4 5.4 10−4

30 7.3 10−4 6.7 10−4 7.6 10−3 2.3 10−3 4.2 10−3

ζ = 0.01
34 9.3 10−5 1.3 10−4 7.7 10−4 2.6 10−4 5.4 10−4

30 2.7 10−4 2.7 10−4 2.5 10−3 8.4 10−4 1.3 10−3

27 2.5 10−3 2.5 10−3 5.6 10−3 7.6 10−3 5.2 10−3

ζ = 0.05
33 4.5 10−5 1.1 10−4 4.7 10−4 3.0 10−4 4.3 10−4

28 4.4 10−4 5.1 10−4 3.0 10−3 1.3 10−3 1.7 10−3

26 1.7 10−3 1.7 10−3 1.1 10−2 5.2 10−3 5.8 10−3

Table 1: Relative discrepancy (33) on entries of the Green’s tensor ΣHS for various values nξ

of the radial quadrature rule density and for various levels ζP = ζS = ζ of damping
(kSd = 1/

√
3).

nξ ε111 ε112 ε113 ε331 ε333
28 1.9 10−5 1.0 10−4 8.1 10−5 1.0 10−4 7.7 10−5

Table 2: Relative discrepancy (33) on entries of the Green’s tensor ΣFS for a GGQ rule with
nξ = 28 points.

Example: scattering of an incident plane P wave by a spherical cavity in a
half-space. To check the accuracy of this new FM-BEM based on the elastic half-space
Green’s tensors, the scattering of a vertical incident plane P wave by a spherical cavity
bounded by the sphere S of radius r centered at (0, 0,−3r), embedded in an elastic half-
space y3 ≤ 0, is considered (Fig. 4). This problem may be formulated by means of either
the integral equation for the total field u

KHS[u](x) = uF (x) (x ∈ S) (34)

based on the half-space Green’s tensor, or the integral equation for the scattered field
uS := u−uF

K[uS ](x) = −S[tF ](x) (x ∈ S ∪ Γ0) (35)

based on the full-space Green’s tensor and having set tF = n ·C :∇uF . Note that (34)
results from the well-known expedient of applying the integral representation theorem to
uF inside S and combining the resulting identity with (16), and as a result involves only the
double-layer integral operator DHS. Moreover, the given free field uF is a known seismic
wave in the reference half-space, here composed of the incident plane P wave and the wave
reflected by the free surface ΓF .

Results from FM-BEM formulations based on either (34) or (35) are compared in
Fig. 5. Formulation (35) required the meshing of a disk-shaped truncated free surface
Γ0(D) (Fig. 4a), with the truncation radius set to D = 5r, while formulation (34) needed
only a mesh of the cavity surface S (Fig. 4b). Enforcing a uniform, and identical, mesh
density in both formulations (here set to 10 BE nodes per S wavelength), the number of
DOFs for the full-space BIE formulation (NFS) and the half-space BIE formulation (NHS)
are such that NFS ≈ 7.25NHS. The non-dimensional frequency used was kSr = 2.5π, leading
respectively to NFS = 38, 934 and NHS = 7, 686. The total displacement computed on S
using the two approaches coincide within a relative discrepancy of about 10−3.
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Γ0(D) Γ0

y1, y2

y3

S r

3r

plane P wave

elastic half-space

D = 5r

(a) Using full-space Green’s tensors (Eq. (35)).

Γ0

y1, y2

y3

S r

3r

plane P wave

elastic half-space

(b) Using half-space Green’s tensors (Eq. (34)).

Figure 4: Scattering of a vertical incident plane P wave by a spherical cavity in an elastic half-
space. In case (a), the BE mesh includes the artificially truncated free surface Γ0(D).

|Uz|

|Uy|

(a) Full-space Green’s tensor (b) Half-space Green’s tensor

Figure 5: Comparison of the vertical and horizontal modulus of displacement obtained with (a)
the full-space formulation (35) and (b) the half-space formulation (34).

Remarks on computational complexity. The computational complexities of the full-
space and half-space formulations are different. The former is known to be O(NFSlogNFS).
The latter is O(NHSnξnα), where the GGQ size (nξ, nα) cannot easily be evaluated by
analytical means as (i) it is obtained using a numerical algorithm, and (ii) it depends on
preset accuracy level, frequency, and on the size and depth of clusters of points x,y (with
the radial size nξ increasing as clusters of points x,y are closer to ΓF ). The half-space FMM
complexity is estimated in [18], using numerical experiments and for single-layer potentials,
to be ≈ O(N1.5) for clusters of points at shallow depth. This matter requires substantial
additional investigation.
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5 Ongoing work and directions for future work

Directions for future work that aims at building on the encouraging results already achieved
by the 3D visco-elastodynamic FM-BEM and expanding its scope and capabilities are now
discussed, with pointers to relevant published material given in the process.

Preconditioning. Many studies, including [19, 20] for elastodynamics, have shown that
the GMRES iteration count can significantly hinder the overall efficiency of the FM-BEM,
especially for multi-region configurations. Preconditioning the FM-BEM is therefore an
important practical issue. A natural candidate for the preconditioning matrix is the (sparse)
matrix Knear gathering the contributions to K arising from adjacent cells. For example,
a simple preconditioning approach, based on an inner-outer GMRES algorithm where the
preconditioning system Knearw(k+1) = Kw(k) yielding the k + 1-th Krylov vector w(k+1)

(with w(k) known) is solved using a low-accuracy GMRES, was found in [21] to improve
the computational performance, with analysis running times roughly halved. Numerical
tests included a seismological configuration, namely the propagation of seismic waves in an
alpine basin (Grenoble, France).

The inner-outer GMRES approach, while usefully improving performance and being
simple to implement, suffers from the fact that the iteration count still grows with the
problem size and frequency and thus remains a major limiting factor. Other approaches
for preconditioning the FM-BEM have been considered. A two-level iterative approach,
where the Krylov vector computed at each iteration of the main GMRES solver is ob-
tained by solving a low-accuracy FMM used as preconditioner, has been proposed in [17]
for electromagnetic problems. Other, more traditional, preconditioning approaches such
as incomplete LU, SParse Approximative Inverse [17], multi-grid methods [16] have also
been applied to electromagnetic FM-BEMs. All these approaches are algebraic in nature.
Since the FMM allows to assemble a small part of the complete influence matrix K (e.g.
Knear) but not K in full, insufficient information is available for the definition of an ef-
ficient algebraic preconditioner. Algebraic approaches are hence inherently limited in the
performance improvement they can deliver, as is witnessed by the various studies done for
electromagnetic FM-BEMs, and the same conclusion is expected for elastodynamics.

A completely different approach to FM-BEM preconditioning, analytic in nature, con-
sists in exploiting mathematical properties of the relevant continuous integral operators.
It is so far less developed and more intrusive in terms of coding. In particular, precondi-
tioners based on the Calderón identities verified by the integral operators, have produced
good results, for both the standard BEM and the FM-BEM. Calderón analytic precon-
ditioners have for example been proposed for the Laplace equation [74], the Helmholtz
equation [23], non-periodic problems for 2D Helmholtz [4] and periodic FMMs for 3D elas-
todynamics [46]. Other strategies have been proposed in electromagnetism to reformulate
the integral operator, at the continuous level, to obtain well-conditioned formulations. For
example in [3, 5, 15] the boundary integral operator is forced to be a compact perturba-
tion of the identity operator. Darbas et al. [27] present the successful combination of an
On-Surface Radiation Condition (OSRC)-based preconditioner and a FM-BEM to define
an efficient solver for 3-D acoustic scattering by sound-hard obstacles at high frequencies.
The main advantages of this preconditioner are its simple implementation and its very low
additional computational cost. Most importantly, this approach is found to be much more
efficient than algebraic preconditioners as numerical experiments show the iteration count
to be essentially independent on both the frequency and the problem size [27]. OSRC-based
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preconditioners are expected to be equally suitable for for elastodynamic FM-BEMs. They
will be developed in future work, a task that requires substantial preparatory mathematical
work in view of the higher complexity of elastodynamic integral operators.

Direct solvers for fast BEMs. Fast BEMs have been so far primarily developed in
conjunction with iterative solvers. The latter however still suffer from limitations caused
by the growth of the condition number of K with N or ω. This has motivated recent
interest in fast direct solvers that are applicable to large-scale BE models. Indeed, direct
solvers are robust and lead to solution times that do not depend on the condition number.
Moreover, they allow to deal efficiently with multiple right-hand sides, which is very useful
in e.g. parametric studies. Methods proposed so far for solving (8) directly rely on the
rank-deficient character of the off-diagonal blocks (a property also implicitly used by the
FMM). In [72], the ACA is used for accelerating the LU factorization of the system arising
from a frequency-domain BEM for the Maxwell equations. Another approach, based on a
data-sparse hierarchical factorization, is proposed in [43, 57] for Laplace or low-frequency
Helmholtz equations. Even though the solver efficiency is found to deteriorate for oscillatory
kernels, the method remains competitive for objects of characteristic size less than about
two hundred wavelengths. To the present authors’ best knowledge, similar approaches
have not yet been tried for 3D elastodynamics, and certainly deserve investigation in that
context.

Parallelization. In [18–20], the implementation of the elastodynamic FM-BEM has been
done for single-processor platforms. While that form of the FM-BEM has been shown to
already perform considerably better than the standard BEM, its parallelization will further
extend its capabilities in terms of e.g. BEM model size or frequency range.

The parallelization of the FMM is a timely issue, as witnessed e.g. by the 2010 Gordon
Bell Prize (rewarding outstanding achievement in high-performance computing) awarded
to the team led by G. Biros for its work on the simulation of red blood cells with the
FMM [52]. They created a blood-flow simulation of 260 million deformable red blood
cells flowing in plasma (corresponding to 90 billion unknown DOFs). To achieve such
performance, the kernel-independent FMM [30] was massively parallelized to accelerate the
long-range hydrodynamic interactions between cells and plasma.

The parallelization of the FMM is not an easy task. A natural idea is to associate an
octree cell to a single processor. However, various stages of the algorithm (near contri-
butions, upward and downward passes, transfers) link at least two cells. As a result, it
is important to assign the cells to the processors so as to minimize communication time
between processors. This issue has been studied, for real-world applications of FMM-based
solvers for Maxwell’s equations, in [17, 76, 78]. Seismology-oriented applications of the visco-
elastodynamic FM-BEM will also require parallelization in order to be applicable to the
frequencies and complex geometrical configurations of interest.

Computation of transient responses. The time-domain BEM involves convolution
integrals with respect to time. Such convolutions can be computed directly in the time
domain by using time-domain fundamental solutions. The stability in time of transient
BIE formulations is however known to be very sensitive to the choice of the time step [36].
Even though a stable formulation, stemming from an energy-based variational principle, is
known for the wave equation [2], the derivation and implementation of a transient FMM is
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not easy (see e.g. the 3D transient elastodynamic fast BEM formulation of [79], where the
required separated decomposition of the space-time kernels is achieved by means of plane
wave expansion).

An alternative approach is to solve the problem via a frequency-domain BEM and then
apply a Fourier transform to synthesize the results in the time domain. The solution of the
time-dependent problem is turned into the solution of a sequence of independent frequency-
domain problems. In [20], time-domain results have been obtained via frequency-domain
analyses at sampling frequencies and a Fourier transform. However this method is known
to suffer from instabilities related to the choice of the sampling parameters.

Another promising avenue, which is intermediate between a direct time-domain ap-
proach and a frequency-time domain approach is to use the Convolution Quadrature Method
(CQM) [56] for developing a time-stepping scheme in conjunction with the Laplace-transformed
fundamental solution. This approach avoids highly technical implementation work required
by, and stability issues arising with, time-domain BIEs based on retarded potentials. It also
allows to re-use known kernel decompositions in the Laplace domain and to easily accommo-
date visco-elastic behavior. CQM-based transient BEMs have been successfully developed
for 3D elastodynamics [49], viscoelasticity [69] and wave problems [8]. The CQM is also
used in the fast ACA-based BEM for elastodynamics of [58] and in conjunction with the
FMM for scalar wave problems in [67]. To the authors best knowledge, no CQM-based
FM-BEM elastodynamic formulation has yet been proposed.

Coupling with other numerical methods. Except for a few, very specific types of
heterogeneity for which fundamental solutions are explicitly known, BIE formulations are
restricted to piecewise-homogeneous media, an assumption which is often inadequate at
least for near-field modelling purposes. A natural approach then consists in coupling do-
main discretization methods such as the FEM, which has the necessary flexibility for dealing
with non-homogeneous or non-linear materials, with the FM-BEM, which efficiently han-
dles unbounded media with simple properties, an assumption which is usually acceptable
for long-range modelling. This approach allows to avoid large domain meshes and artificial-
truncation issues, and as such can be viewed as an alternative approach to standard ab-
sorbing boundary conditions (ABCs). Perfectly matched layers (PMLs) and the high-order
ABCs rely on, and are sensitivity to, algorithmic parameters such as the thickness of the
layer for PMLs, whereas the FM-BEM/FEM is not expected to critically rely on specific
parameters.

In a recent study in the context of dynamic soil-structure interaction, Coulier et al. [25]
compare three methods for coupling the ACA-accelerated BEM to the FEM: (i) a classical
direct coupling [48] (where the FE and BE domains are assembled into a single matrix
equation to which a direct solver is applied), (ii) an iterative coupling (where the FE and
BE equations are solved independently but the boundary conditions are updated at each
iteration) and (iii) a monolithic coupling (where the BE and FE equations are solved si-
multaneously as strong fluid-structure coupling [44]). Option (i) is found to be the least
efficient, the relative performance of (ii) and (iii) being strongly application-dependent. A
preliminary, and incomplete, study on the coupling of elastodynamic FM-BEM with the
FEM is proposed in the recent thesis [38], where a sequential Dirichlet-Neumann coupling
(which is a kind of iterative coupling) and a simultaneous coupling (using an implicit con-
densation approach for the FE contribution to the system [35]) are compared.
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A posteriori error estimate and adaptive mesh refinement. So far, most of the ef-
fort has been dedicated to the acceleration of the solution of the boundary integral equation.
To address real-life computational problems, it is also necessary to develop tools for guar-
anteeing a prescribed level of solution accuracy. Moreover, adaptive meshing procedures
also allow to reduce CPU time, since an optimal mesh will minimize the problem size N
necessary for achieving a desired level of accuracy. Employing sequences of adapted meshes
can also be considered as a simple non-intrusive way to reduce the number of iterations used
by the linear solver. Since the iteration count increases with N , one may start from a coarse
mesh, for which the iteration count is expected to be small, followed by increasingly refined
and adapted meshes with the initial guess for each mesh set to the solution obtained with
the previous mesh. The number of iterations required for each refinement level is expected
to be stable, and the total CPU time to be competitive with solving the problem directly
on a fine enough mesh with an algebraic preconditioner.

The development of a posteriori error estimation methodologies, while being essential
for reliable and efficient computations, is at a less advanced stage for the BEMs than for
the FEMs. Significant advances on error estimation for Galerkin BEM formulations of 3D
Laplace problems have been recently made in the group of D. Praetorius [33]. The most
challenging aspect of error estimation for BEMs is its potentially high computational cost
caused by the non-local character of integral operators.

Regarding the collocation BEM approach, which is up to now often used in elasto-
dynamic (FM)-BEM implementations, the main error estimation strategies are of two
types [50], namely the residual type (using the value of the integral equation residual as
an error estimate) and the interpolation error type (using higher interpolation order in the
shape functions). Since, by definition, the BIE residual is forced to be zero at collocation
points, techniques specific to collocation BEM have been proposed. Other error estima-
tion methods proposed for the Galerkin BEM or for FEMs can also be extended to the
collocation BEM.

The aforementioned error estimation methods have been proposed for standard BEM,
and have not so far been tested on large-scale problems due to the usual limitations of non-
accelerated BEMs. An extensive study of the behavior of error estimates applied to FM-
BEMs is needed. An additional motivation for such an investigation lies in the possibility
of defining efficient stopping criteria for iterative solvers, by comparing the discretization
and algebraic error estimates; this approach has been studied in [47] for elliptic problems
solved by the FEM.
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[61] Nédélec, J. C. Acoustic and electromagnetic equations. Applied mathematical sciences
(vol. 144). Springer (2001).

[62] Nishimura, N. Fast multipole accelerated boundary integral equation methods. Appl.
Mech. Reviews, 55:299–324 (2002).

[63] Pak, R.Y.S., Guzina, B. B. Seismic soil-structure interaction analysis by direct bound-
ary element methods. Int. J. Solids Struct., 36:4743–4766 (1999).

[64] Pan, L., Rizzo, F., Martin, P.A. Some efficient boundary integral strategies for time-
harmonic wave problems in an elastic halfspace. Comp. Meth. Appl. Mech. Eng.,
164:207–221 (1998).

[65] Rokhlin, V. Rapid solution of integral equations of classical potential theory. J. Comp.
Phys., 60:187–207 (1985).

[66] Saad, Y., Schultz, M. H. GMRES: a Generalized Minimal Residual Algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Comp., 7:856–869 (1986).

[67] Saitoh, T., Hirose, S. Parallelized fast multipole BEM based on the convolution quadra-
ture method for 3-D wave propagation problems in time-domain. IOP Conference
Series: Materials Science and Engineering , 10:012242 (2010).

[68] Sakuma, T., Yasuda, Y. Fast multipole boundary element method for large-scale
steady-state sound field analysis. Part I: setup and validation. Acta Acustica united
with Acustica, 88:513–525 (2002).

[69] Schanz, M. A boundary element formulation in time domain for viscoelastic solids.
Comm. Numer. Meth. Eng., 15:799–809 (1999).

[70] Schneider, S. FE/FMBE coupling to model fluid–structure interaction. Int. J. Num.
Meth. Eng., 76:2137–2156 (2008).

[71] Semblat, J. F. Modeling Seismic Wave Propagation and Amplification in 1D/2D/3D
Linear and Nonlinear Unbounded Media. ASCE Int. J. Geomech., 11:440–448 (2011).

[72] Shaeffer, J. Direct solve of electrically large integral equations for problem sizes to 1
M unknowns. IEEE Trans. Antennas Propag., 56(8):2306–2313 (2008).

[73] Song, J. M., Chew, W. C. Multilevel fast-multipole algorithm for solving combined
field integral equations of electromagnetic scattering. Microw. Opt. Technol. Lett.,
10:14–19 (1995).

24



[74] Steinbach, O., Wendland, W.L. The construction of some efficient preconditioners in
the boundary element method. Adv. Comp. Math., 9:191–216 (1998).

[75] Sylvand, G. La méthode multipôle rapide en éléctromagnétisme : performances, par-
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