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Abstract—In this paper, we present a joint blind channel
estimation and symbol detection for decoding a blurred and noisy
1D barcode captured image. From an information transmission
point of view, we show that the channel impulse response, the
noise power and the symbols can be efficiently estimated by
taking into account the signal structure such as the cyclosta-
tionary property of the hidden Markov process to estimate.
Based on the Expectation-Maximisation method, we show that
the new algorithm offers significative performance gain compared
to classical ones pushing back the frontiers of the barcode
technology.

I. I NTRODUCTION

Barcode is an essential element of electronic data inter-
change. Since its birth in 1948, this technology is continuously
growing up. Its success comes from the simplicity of the binary
data representation and the efficiency of the reading device
in a controlled acquisition environment. Originally, barcodes
represent data through the width and the spacing of parallel
lines, and may be referred to as 1D barcodes. Binary data can
also be depicted in geometric patterns such as dots or squares
within images known as 2D barcodes.
When shooted, the original barcode is degraded by blur caused
by a bad focalisation and/or a camera movement, in addition
to noise, the whole resulting in a blurred noisy received signal,
Fig.1. In fact, two main types of blur can affect the received
signal; the optical blur owing to bad focus and diffraction
phenomena and the motion blur coming from the camera
mobility with respect to the barcode. Many models have been
proposed for these two kinds of blur such as parametric models
[10], Gaussian models [4] and models based on the global
transfer function [3] and [7].
In the scientific literature few works are related to 1D and
2D barcode coding. Pavlidis et al. [13] have published a
study related to information theory fundamentals outlining the
process for barcode design using error detection and correction
techniques. Tsi et al. [14] have developed a method that
allows the calculation of the working range in case of a CCD-
based reader. Houni et al [8] have studied the performance
in the framework of the information theory and they have
proposed two new measures: the theoretical depth of field
and the theoretical resolution. In [11], a method of reading
linear barcodes using the Hough transform is proposed. The
algorithm is designed to a particular type of barcode (Code39).
Recently Ould Barikalla et al [12] have proposed a 2D barcode
decoder using an iterative structure based on a factor graph
representation. In all these works, decoders take into account
the prior knowledge of the channel at the receiver. In practice,

a training sequence enables the channel to be estimated but
the estimation error leads to performance degradation of the
decoder.
In this paper, we consider the decoding problem of barcode
without training sequence. In particular, we propose a blind
decoder that jointly estimates the channel and the symbols.
This joint channel estimation and symbol detection can be
performed, using probabilistic algorithm based on maximum
likelihood criterion [1], [5], [6] and [9]. Here, we show that
the channel state of a barcode is a cyclostationary process and
we propose a new joint channel estimator and symbol detector
based on the Expectation Maximisation algorithm which takes
advantage of this property. By exploiting the cyclostationarity
property, the number of paths of the channel state in the lattice
diagram is reduced. As a consequence, the detector is more
robust to noise and the detector performances are significantly
improved.
The paper is organised as follow. In Section 2, both the barcode
and the channel are modeled respectively, by a cyclostationary
process and by a finite impulse response filter with an additive
white Gaussian noise. Section 3 describes the Expectation -
Maximisation algorithm used for the channel estimation. Sec-
tion 4 is focused on the symbol detection. Section 5 presents
the results of a simulation study that has been conducted to
assess the new algorithm’s performance. Conclusions are given
in Section 6.

Fig. 1: Original and blurred barcode

Notation
⌊x⌋ returns the smallest integer value greater than or equal
to x. x(i : j) = (xi, xi+1, ..., xj). xT is the classical matrix
transpose.

II. SYSTEM MODEL

Let x′
0, x

′
1..., x

′
N−1 be a sequence ofN bits to transmit.

Each bit is represented by a bar of widthrx. So the barcode
is given byxk = x′

⌊ k
rx

⌋
, k ∈ {0, ..., K − 1} with K = Nrx.



When shooted, the barcode is degraded by a blur coming from
both the optical block and the movement of the camera which
are modeled by a finite impulse response filter of lengthL.
Besides, an additive white Gaussian noise takes into account
the residual stochastic imperfections. Using matrix notation,
the observed sequenceY = (y0...yK−1)

T is given by:

yk = HT Xk + wk ∀k ∈ {0, ..., K − 1} (1)

whereH = (h0...hL−1)
T is the channel coefficients vector,H

is symmetric and decreasing from central maximum. Indeed,
the blur is the result of the bad focalisation and the camera
motion, which belongs to the class of this symmetric blur [3],
[4], [10] and [7].
Xk = (xk...xk−L+1)

T is the displayed symbol vector and
wk is an additive white Gaussien noise with varianceσ2. Xk

verifies the equation :

Xk = BXk−1 + Vk (2)

With B =







0 0 ··· 0

1
...

...
...

... 0
0 ··· 1 0






andVk = (xk0...0)

T .

From (2), we deduce thatXk is a Markovian process which
belongs to a set

{

ξ0,rx , ..., ξM−1,rx
}

in which the cardinal
numberM and the states are relied to both the channel length
L and the bar widthrx. Specifically, the number of statesM
follows the equation :

M =







2L if L ≤ rx

rx−1
∑

i=0

2(1+⌊(L−1)/rx⌋) − 2 (rx − 1) otherwise

(3)
Let’s point out from equation (3) thatM is decreasing with
rx which is an interesting property when dealing with the
recovery of the information carried by the barcode. The
distance between the various states becomes larger so that
detection is less sensitive to the noise.
By denotingAk = (amn (k))0≤m,n≤M−1, the transition ma-
trix of Xk is given by :

amn (k) = P (Xk = ξn,rx |Xk−1 = ξm,rx) (4)

=

{ 1

2
δ (ξn,rx(1 : L − 1) − ξm,rx(0 : L − 2)) if

k − 1

rx

∈ N

δ (ξn,rx(1 : L − 1) − ξm,rx(0 : L − 2)) otherwise

with δ (.) the Kronecker symbol. As shown in equation (4),
if Xk is at the border of the bar, two transitions are possible,
otherwise only one transition is allowed.
From equation (1) and the Markovian properties of
X = (X0...XK−1), we deduce the distribution of(X, Y ):

Pθ(Y, X) = P (X0)

K−1
∏

k=1

P (Xk|Xk−1)

K−1
∏

k=0

fYk|Xk,θ (yk) (5)

where fYk|Xk,θ (yk) =
1√

2πσ2
exp−1

2

(

yk − HT Xk

σ

)2

,

P (Xk|Xk−1) is given by equation (4) andθ =
(

H, σ2, rx

)T

is the parameter vector of the model.
From the described model,Xk can be represented in a trellis
diagram. Since the Markov process is cyclostationary, the
lattice is cyclic so that the number of paths is reduced.
As a consequence, the detection of the optimal sequence is
simplified and more robust to noise.

III. PARAMETER ESTIMATION

A. EM algorithm

The maximum likelihood ofθ is given by :

θ̂ = argmax
θ

fY,θ (y) (6)

wherefY,θ is the likelihood of the observation. Nevertheless in
our application the likelihood maximisation is not tractable. On
the other hand, when considering the complete data(X, Y ),
the maximum likelihood estimation can be closely approxi-
mated by the Expectation-Maximisation algorithm (EM). This
recursive algorithm consists of an iterative maximizationof
the auxilliary functionQ(θ, θ(i−1)).
At the ieme iteration, the two following steps are performed:
E step

Q(θ, θ(i−1)) = EX|Y,θ(i−1) [log(Pθ(X, Y ))] (7)

M step
θ(i) = argmax

θ
Q(θ, θ(i−1)) (8)

In order to proceed to the estimation of the three components
of θ, Q is first maximised with regards to

(

H, σ2
)

and the
result is maximised relatively to the widthrx.

max
θ

Q
(

θ, θ(i−1)
)

= max
rx

max
H,σ2

Q
(

θ, θ(i−1)
)

(9)

When considering the special case where the widthrx = 1, Xk

is a stationary Markov process and the estimation algorithm
of (H, σ2) has been proposed by Kaleh et al. [9]. In general
case, i.e. whatever the value ofrx, we show that the channel
coefficients and the noise variance estimates are respectively
given by these two equations:
{

K−1
∑

k=0

M−1
∑

m=0

Pθ(i) (Xk = ξm,rx |Y ) ξm,rT
x ξm,rx

}

H(i+1)
rx

=
K−1
∑

k=0

M−1
∑

m=0

Pθ(i) (Xk = ξm,rx |Y ) ykξm,rT
x (10)

and

σ2(i+1)

rx
=

1

K

K−1
∑

k=0

M
∑

m=0

Pθ(i) (Xk = ξm,rx |Y ) ×

|yk − H(i+1)
rx

ξm,rx |2 (11)

wherePθ(i) (Xk = ξm,rx |Y ) is obtained by the forward back-
ward algorithm [2].
We propose to consider the estimation of the widthrx as well
as the estimation of the channel impulse response. Moreover,
the cyclostationarity ofXk is exploited to optimise the accu-
racy of the estimates.



B. Joint estimation of H and σ2 given rx

For a givenrx, the estimates ofHrx
andσ2

rx
are obtained

by solving the equations (10) and (11), where the marginal
posterior probabilityPθ(i) (Xk = ξm,rx |Y ) is recursively cal-
culated by the forward backward algorithm adapted to the
cyclostationarity of the hidden processXk. When rx > 1,
the algorithm chooses the optimal sequence in a reduced set
of paths in the lattice diagram, since some transitions are not
possible.
Let us note

γm(k) = Pθ (Xk = ξm,rx |Y ) (12)

∀m ∈ {0, · · · , M − 1} ∀k ∈ {0, · · · , K − 1}, the marginal
posterior distribution ofXk. One shows that :

γm (k) =
αm (k)βm (k)

M−1
∑

n=0
αn (k)βn (k)

(13)

whereαn (k) andβn (k) are respectively the forward and the
backward probabilities defined as follow :

αm(k) = Pθ(Y1 = y0, ..., Yk = yk, Xk = ξm,rx) (14)

βm(k) = Pθ(Yk+1 = yk+1, ..., YK−1 = yK−1|Xk = ξm,rx)
(15)

These probabilities can be calculated recursively by :

αm(k + 1) = [

M−1
∑

n=0

αn(k)anm (k)]fm(yk+1) (16)

βm(k) =

M−1
∑

n=0

βn(k + 1)amn (k) fn(yk+1) (17)

where

• fn(yk) is the density probability function ofY given
Xk = ξn,rx . From equation (1), the Gaussian density
with meanξn,rx and varianceσ2 is deduced.

• amn (k) is the transition probability (4).

The initialisation step of the forward and the backward algo-
rithm are:
αm(1) = πmfm(y0) andβm(K) = 1, ∀m ∈ {0, · · · , M − 1}

C. Estimation of rx

rx is estimated using the maximum likelihood criterion

r̂x = argmax
rx

(

g(Hrx
, σ2

rx
, rx)

)

(18)

with g is the pesudo likelihood

g(Hrx
, σ2

rx
, rx) = max

H,σ2
Q

(

θ, θ(i−1)
)

(19)

Hrx
andσ2

rx
are the estimates obtained using equations(10)

and (11). Maximisation ofg with regard torx is equivalent
to maximisation of the likelihood. Since, explicit expression
of the estimatorr̂x can not be identified,g is calculated for
all possible value ofrx ∈ {1, ..., K − 1}. Next, we choose
(Ĥrx

, σ̂2
rx

, r̂x) that gives the highest likelihood.

IV. SYMBOL DETECTION

The optimal decision on symbol is obtained using the
Marginalised Posterior Mode (MPM) criterion, which is based
on the maximisation of the marginal posterior probability.For
symbol x′

k from the transmitted sequence of lengthN , the
decision is taken by:

Pθ(x
′
k = 0|Y )

x̂′

k=1

≶
x̂′

k
=0

Pθ(x
′
k = 1|Y ) (20)

Let Ωj be the set of realisationsξ =
(

ξ0, ..., ξrx−1
)

of
Xkrx:(k+1)rx−1 such asx′

k = j. Since, there is a one to one
relation betweenx′

k andXkrx:(k+1)rx−1

Pθ(x
′
k = j|Y ) = Pθ(Xkrx:(k+1)rx−1 ∈ Ωj |Y ) (21)

With,

Pθ(Xkrx:(k+1)rx−1 ∈ Ωj |Y ) =
∑

ξ∈Ωj

Pθ

(

Xk = ξ0|Y
)

×

l=rx−1
∏

l=1

P (Xk+l = ξl+1|Xk+l−1 = ξl) (22)

Where,Pθ

(

Xk = ξ0
∣

∣ Y ) is obtained by the forward backward
algorithm (III-B) and the transition probabilities are given by
equation (4). This criterion takes into account the structure
of the barcode signal, via the marginal probability and the
transition probability matrix.

V. JOINT CHANNEL AND RESOLUTION ESTIMATION

ALGORITHM

From, subsections (III-A), (III-B), (III-C) and (IV), we
deduce the algorithm to joint channel and barcode resolution
estimation and symbol detection (CRESD):

Algorithm 1 Joint channel and resolution estimation and
symbol detection algorithm

1: for rx = 1, . . . , K − 1 do
2: Calculate the number of state and the transition probability

matrix using equations (3) and (4).
3: Initialisation, H(0), (σ2)(0).

We denote byε a predetermined threshold
4: while |Hk

rx
− Hk+1

rx
| > ε do

5: Calculate the marginal posterior probability using equations
(16), (17) and (13).

6: Estimation ofHrx andσ2
rx

from (10) and (11).
7: end while
8: Given Hrx and σ2

rx
, calculate the pseudo likelihood using

equation (19).
9: end for

10: Select the parameter̂θ =
{

Ĥrx , σ̂2
rx

, r̂x

}

that maximises the
pseudo likelihood (19).

11: Detection of symbol using equations (20), (21) and (22).



VI. SIMULATIONS RESULTS

In this section, the performance of the proposed algorithm
is illustrated through numerical simulations.
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Fig. 2: Blurred signal with blur length L=10,rx = 3 and
N = 100

Fig.2 shows the observed signal degraded by blur and noise
distortion versus the initial transmitted signal. It confirms that
the received signal can not be directly decoded. Indeed, a joint
blur identification and symbol detection algorithm is required
to efficiently recover the original signal.
In the following, a set of binary symbol{0, 1} have been
considered and the results have been obtained withNs = 1000
Monte Carlo runs. For each run, a new sequence of length
N = 100 has been generated with a barcode resolution
barcoderx = 3 and a new simulated channel of lengthL = 3,
the tresholdε = 10−5.
To analyse the performances of the proposed algorithm, we
consider three cases:

• The Kaleh’s algorithm [9], constructed without exploiting
the cyclostationarity of the hidden Markov process.

• The CRESD algorithm, described in Algorithm1.

• A simple algorithm which does not take into account the
channel model (1), but assumes known the resolution.
The decision rule is:





1

rx

(k+1)rx
∑

i=krx

yi





x̂′

k=0

≶
x̂′

k
=1

1

2
(23)

∀k ∈ {0, ..., N − 1}
In the experiments,Eb/N0 is the energy per bit to noise power
spectral density ratio, with energy per bit defined as:

Eb = rxHT E
[

XkXT
k

]

H (24)

Estimation of the resolution rx

Table (I) illustrates the performance of estimation ofrx.
We calculate for different value ofrx the error rate defined
as ρ =

nb

Ns
, wherenb is the number of false detection and

Ns the number of trials. As shown in Table (I) the error rate
decreases rapidly, withEb/N0. In fact, the error rate is due to
noise distortion and interference intersymbol. The later,related

P
P

P
P

P
PP

rx

Eb

N0 2dB 4dB 6dB 8dB 10dB

rx=2 0.218 0.032 0.008 0.002 0.001
rx=3 0.169 0.019 0.002 0.001 0
rx=4 0.083 0.005 0 0 0
rx=5 0.057 0.006 0 0 0

TABLE I: rx error rate for channel lengthL = 3 and block
lengthN = 100

to rx/L, is reduced whenrx/L > 1. Obviously, for the same
value ofEb/N0, estimation performance is better forrx/L >
1.

Channel estimation

The Root Mean Squared Error (RMSE), assessing the
quality of the estimation of the channel, is defined as:

RMSE =

√

(H − Ĥ)T (H − Ĥ)

HT H

With H and Ĥ are respectively the true channel coefficients
vector and the estimated one.
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Fig. 3: RMSE vsEb/N0, for N=100, L=3 andrx = 3

Fig.3 shows the superiority of CRESD algorithm, in term
of RMSE. This clearly illustrates the benefit of exploiting
the cyclostationarity of the hidden Markov process in the
trellis diagram. This leads to a more accurate estimation of
the marginal posterior probability, which directly impacts the
channel estimation equation(10). Besides, when the barcode
resolutionrx is estimated, the RMSE is larger forEb/N0 <
4dB, but becomes identical to the one whenrx is known for
Eb/N0 ≥ 4dB.
For the estimation of the noise variance, we note the same
behavior. TheRMSE = 6.7710−2 for the CRESD algorithm
and it is equal to the double for the Kaleh’s oneRMSE =
13.0510−2, for Eb/N0 = 5dB. Indeed, as channel coefficients,
the estimation of the noise variance depends on the marginal
posterior probability equation(11) which takes into account the
true sequence structure of the barcode.
Now, the rapidity of convergence of the estimation is assessed.
Fig.4 shows that the CRESD is both more accurate and faster
than the Kaleh’s one. In this exemple,the convergence has



been achieved at the4th iteration, while the Kaleh’s algorithm
requires twice as much iterations.
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Symbol detection

0 1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

E
b
/N

0
[dB]

A
ve

ra
ge

 B
E

R

 

 

Kaleh algorithm
CRESD algorithm r

x
 is estimated

CRESD algorithm r
x
 is known

Directed decision

Fig. 5: BER performance for known and estimatedrx, L=3,
rx = 3, N = 100

Fig. 5 illustrates Bit Error Rate (BER) performance, curves
with solid and dashed line correspond respectively to the
CRESD algorithm and Kaleh’s method. Whenrx is known,
we note that BER performance is significantly improved using
CRESD algorithm, and this performance gain increases with
Eb/N0. This result is explained by the fact that, with the
CRESD algorithm, decision is taken in a trellis diagram
constructed with respect of the original signal structure.
When rx is estimated, the resolution and channel estimation
error lead to an increase of the BER forEb/N0 < 4dB for
the CRESD algorithm. For the Kaleh’s one,rx is supposed to
be known. Nevertheless, the CRESD algorithm still performs
better forEb/N0 > 4dB, and the estimation ofrx does not
really degrades the overall performance. ForEb/N0 > 4dB,
the curve obtained with and without estimation ofrx are the
same.
On the other hand, the poor performances of the method based
on the decision without channel estimation confirms the need
of a more accurate algorithm to ensure correct reconstruction
of the original signal.

VII. C ONCLUSION

In this paper, we have proposed a blind channel estimation
and symbol detection algorithm. Blur identification has been
performed using the EM algorithm. Besides, given that the
received signal is modeled as a hidden Markov chain, a
version of the forward-backward algorithm, suitable to the
cyclostationarity of the Markov process, has been proposed
to estimate the marginal posterior probability. We have shown
that, when the barcode structure is taken into account in the
lattice, the estimation of the marginal posterior probability is
easier and more accurate. This advantage directly impacts both
the channel estimation and the symbol detection. Simulation
results show a fast convergence, a large gain for the parameter
estimation and a smaller symbol error rate compared to
existing approaches. As a consequence, the CRESD algorithm
can be efficiently used with larger intersymbol interference,
thus enabling to read more compact barcode and to allow
higher mobility between the barcode and the camera.
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