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Wavelet-Based Multiscale Texture Segmentation: Application to Stromal
Compartment Characterization on Virtual Slides.
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Abstract

We aim at segmenting very large images of histopathology virtual slides with an heterogeneous and complex content. To this end,
we propose a multiscale framework for texture-based color image segmentation. The core of the method is based on a wavelet-
domain hidden Markov tree model and a pairwise classifiers design and selection. The classifier selection is based on a study of the
influence of the hyper-parameters of the method used. Over the testing set, majority vote was found to be the best way of combining
outputs of the selected classifiers. The method is applied to the segmentation of various types of ovarian carcinoma stroma, on
very large virtual slides. This is the first time such a segmentation is tested. The segmentation results are presented and discussed.
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Introduction

To estimate the potential of evolution of cancer lesions,
it is often necessary to identify and quantify cell and tis-
sue compartments on histological sections. To perform au-
tomatically this measurement in an objective way, an im-
age of the whole tissue preparation must be recorded and
fully analyzed, as structures of interest are often heteroge-
neously spread all over the slide. ” Virtual microscopy” de-
vices allow the acquisition and storage of digital images of
microscopic structures. When the whole tissue slice is ac-
quired, the recorded image is named ” Virtual Slide” (VS).
Once they have been acquired, virtual slides can then be
viewed through the screen of a monitor without using a
microscope (Rojo et al., 2006) or automatically analyzed.

It is also mandatory to adapt the working resolution to
the size of the structures to be measured. The high reso-
lution VS which are recorded for the identification of tiny
microscopical structures occupy a considerable volume in
memory (several GigaBytes) and cannot be processed at
once. Special techniques have to be used to overcome this
problem. Recent works suggest to use multi-resolution
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approaches. The method our team chose is a multiscale
analysis of high resolution VS, allowing to adapt the work-
ing resolution to the various structures to be segmented
(i.e. cancer lesion, intra-tumoral tissue compartments, cells
and intra-cellular structures).

The present study addresses the segmentation of the var-

ious types of stromal compartments on ovarian carcinoma
virtual slides. It aims first at partitioning cancer cells and
intra-tumoral connective tissue, and then at differentiating
the various stromal compartments (fibrous tissue, loose
mesenchymatous connective tissue, inflammatory cell ac-
cumulation). This work is pioneering in this field.
Each stromal compartment can be identified mainly by its
cell shape and organization. This individual pattern can
be exploited by a texture-based analysis. It is the way our
work focuses on. Furthermore, in order to be easily applied
in the anatomopathology laboratories, the method should
have a rather low calculation time.

Many studies have already been conducted on the seg-
mentation of textured images. Several categories of meth-
ods may be distinguished : the statistical methods which
exploit the spatial distribution of the gray levels, the meth-
ods based on the construction of a texture model, and the
methods which mimic the mechanism of the human vision,
integrating several levels of resolution (Xie, 2008, e.g.).
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We chose to use the Hidden Markov Tree (HMT) pro-
posed by Crouse (Crouse et al., 1998) as a descriptor
because it combines these different approaches. It enables
us to make a statistical modeling of intra-scale and inter-
scale properties of the coeflicients of the wavelet transform
(WT) (Mallat, 1999), and it exploits the decorrelation
power of this transform. The goal is to capture the inter-
scale dependency factor and the non-gaussian distribution
of the coefficients computed at each scale. We also use
the segmentation proposed by Choi (Choi and Baraniuk,
2001) as a classifier because it allows us to perform texture
classification at a range of different scales. Thereby, infor-
mation collected at coarser-scales guide the segmentation
at finer-scale quite in the way the pathologists do.

These tools are used in a framework for the segmention of
the various compartments of stroma identified inside VS of
ovarian carcinomas, recorded at a high resolution (0.5 ym).

The paper is organized as follows : in section 1, we first
discuss previous works in the field of large VS segmentation
and classification, then, in section 2, due to the complex-
ity and variability of the structures to be segmented, we
precisely described the ”domain objects” of our images. In
section 3, the mathematical background of the used tools
is detailed and the results are presented and discussed in
section 4 before concluding on the offered prospects.

1. Related work

The analysis of restricted fields of histological slides has
long been practiced, but it has been applied only within
the past ten years to virtual slides. We will review some
solutions proposed in the literature for the segmentation of
virtual slides.

One of the first teams that investigated to segment im-
ages larger than just a microscopic field is Hamilton’s one
(Hamilton et al., 1997). They wanted to automatically
distinguish the dysplastic tissue from the normal mucosal
in colorectal cancer by analyzing texture (using a vector
of features, consisting of co-occurrence matrix, run-length
matrix, gray level histograms, and then applying a clas-
sification rule). The processed images (which size was
3040x2048 pixels) did not yet covered the whole histologi-
cal slide.

Other teams managed to process an image of the entire
slice. The strategies may be grouped into 4 classes: low
resolution processing, block processing, multiscale analysis
and use of dedicated architectures. These strategies have
been used separately or jointly.

1.1. Processing of the whole image recorded at low
resolution

An image of the whole slice can be obtained at low res-
olution (from 4000 to 5000 dots per inch). The size of the
resulting image (40MB to 100MB) is small enough to al-
low loading and processing of the whole VS in memory.
This strategy was applied to images of the whole histologi-
cal slide to detect and quantify : blood vessels (Tran et al.,
2003; Chantrain et al., 2003), immunolabeled cells (Elie
et al., 2003; Mesker et al., 2003) and stromal compartment
(Elie et al., 2005). However, low resolution acquisition may
be not sufficient to detect tiny structures. This is the reason
why high resolution image processing has to be performed.

1.2. Image processing by blocks

To avoid to overload the memory, it is possible to cut the
image into smaller images and to process them indepen-
dently. This approach, however, must take into account the
associated edge effects. Indeed, structures, cut by the edges
of one image, can be detected and counted on several im-
ages. An overlapping adapted to the size of the objects to
be detected and/or dedicated counting strategies, such as
the forbidden line of Gundersen (Gundersen et al., 1988),
must be implemented.

The Aperio company, for example, has developed algo-
rithms to quantify nuclear and membrane immunolabeling
on 20x recorded images. The image is divided in smaller
images of size 1000x1000 with an overlapping of 100 pixels
in every direction and forbidden line correction. Although
the processing is theoretically possible on the whole image,
it is generally applied to areas of interest (Olson, 2006).
This approach, however, does not reflect the distribution
heterogeneity of structures of interest that is very frequent
on tumor sections.

Mete et al. used images of 128x128 with an overlapping of
64 pixels to automatically detect tumor foci on 40x vir-
tual slides of malignant cancers of the head and neck (Mete
et al., 2007). Mosaliganti et al. chose to make a classifica-
tion of different structures on a slice of mouse embryo from
20x20 pixel patches of a 20X image (Mosaliganti et al.,
2008).

Image processing by blocks solves the problem of image
size but it doesn’t solve the problem of the computing time
required when the algorithms get more complex. This is
why processing by blocks is often coupled with a multi-
resolution analysis.

1.3. Multi-resolution analysis

The multi-resolution analysis is based upon the state-
ment that all the details are not essential for the identifi-
cation of a structure. It is sometimes necessary to reach a
certain level of abstraction to process a good segmentation
(Signolle et al., 2008). Thus, Ficsor et al. proposed to seg-



ment at full resolution the epithelial nuclei of colon cancer,
while the glands are detected on an eight time subsampled
virtual slide (Ficsor et al., 2008).

He and his team have proposed a multi-resolution strategy
in which data are classified at low resolution. The region
borders are then refined at a higher resolution (He et al.,
2005). Wang and his team have applied a similar method
to the segmentation of the squamous epithelium in cancer
of the cervix (Wang et al., 2007). The processing time is
about 3 hours for a slice of 152,000x42,000 pixels (recorded
at 40x) processed by a PC with a 3.4 GHz Pentium IV
and 2 GB of RAM. Within the epithelium, areas of intra-
epithelial neoplasia are then analyzed (area, density and
distribution of the nuclei) at full resolution to classify im-
ages of size 250x250 (Wang, 2008).

To separate stroma rich and stroma poor areas in neurob-
lastoma, Sertel and his team used a weighted k-nearest
neighbor classifier at each level of subsampling (Sertel et al.,
2009). If an area is classified at any resolution with a confi-
dence index below a chosen threshold, the classification is
revised at a higher scale. The more the resolution increases,
the more the required level of threshold of the confidence
index decreases. This makes the classification fitted to the
content of the image and saves about 85 % of computing
time.

Kong et al. also proposed to use the optimum resolution for
classification according to the degree of differentiation of
neuroblastoma images (Kong et al., 2007b). If the charac-
teristics calculated for the classification at a given resolu-
tion are outside a confidence level predetermined by learn-
ing, the analysis is carried on at a higher resolution. The
authors noticed that this approach had enabled them to
halve the computing time. Kong et al., concerning the same
problem, adopted another rule to control the transition be-
tween resolutions (Kong et al., 2007a). They determine the
class of an area by combining seven different classifiers.
Each classifier has a previously learnt confidence index. If
the sum of the confidence index of classifiers who voted for
the majority class is below a threshold, the analysis is con-
ducted at a higher resolution.

1.4. Using dedicated architectures

To reduce the computing time, some authors use a dedi-
cated hardware. A grid of computers (Hastings et al., 2005;
Gortler et al., 2006) can be used. Those who cannot afford
these devices can use Graphic Processing Units (Hong and
Wang, 2004; Ujaldon and Saltz, 2005), of the joint use
of processor and GPU (Sertel et al., 2008) or even of a
PlayStation 3 (Hartley et al., 2007). Other authors have
proposed to employ the specific processor instructions or
to create cards dedicated to time consuming operations
(Diou et al., 2002).

Among the studies presented above, Kong et al. use a
grid consisting of 64 nodes for parallel calculations (Kong
et al., 2007b; Sertel et al., 2008; Kong et al., 2009). A

75,000x68,000 pixel image is segmented in half an hour,
using only 32 of the 64 nodes (Kong et al., 2007a).

By using a grid of 16 multi-processor nodes (Opteron X2
2218) with multi GPU (Quadro FX 5600), Hartley et al.
obtained the record processing time of 4 seconds for an
image of size 33,000x66,000 and 11 seconds for an image
of size 110,000x80,000 (both 40x recorded) (Hartley et al.,
2007).

Despite these record processing time, beyond the price of
the equipment required for a routine pathology depart-
ment, the major problem of the use of GPU is their low
”programmability” (there are few development tools, and
they require a good knowledge of the architecture of the
card) and the low portability of the written code because
of frequent changes in the architecture of the cards.

To summarize, the main approach to tackle large virtual
slide segmentation and classification is to process multi-
scale analysis. This multiscale analysis should be applied to
splitted images (tiles) when necessary, but attention has to
be paid to the management of tile overlapping. The strat-
egy we adopted takes into account these two points. We
process 2048x2048 pixel tiles of the original image with an
overlapping of 24 pixels in every direction (these sizes are
suited to the resolution and to the size of structures). We
chose to use the framework of wavelets to perform a multi-
scale texture analysis on these tiles.

2. Material

An image can be described considering three levels of
description (Renouf et al., 2007):

(i) the physical level that focuses on the characterization

of the acquisition system effects on the images.

(ii) the perceptive level that focuses on the description of
the visual primitives (regions, lines, ...) without any
reference to business objects.

(iii) the semantic level that focuses on the identification
of the business objects visualized in the images.

To lay clearly the problem, and to guide the choice of im-
age representation and of segmentation parameters, we will
describe the images according to these three levels.

When a patient undergoes surgery for tumour resection,
the excised biopsy is fixed in formalin, paraffin embedded
and splitted off in 5 um thick slices. Slices are then affixed
on a glass slide prior to be stained. The special staining
using immunohistochemistry or histochemistry aims at re-
vealing particular cell types or proteins which amount can
then be estimated in order to assess the potential evolu-
tion of the tumour and to help choosing the best therapy
protocol. In the case of ovarian carcinoma [Fig.1] the prog-
nostic impact of the proportion of stroma is demonstrated
(Elie et al., 2005). The researchers need to further clarify
the participation of the various stromal compartments in
the evolution of tumours and their response to therapy.



Figure 1. a) Image of an histological section of ovarian carcinoma
after DAB immunostaining of proliferation cells (brown) and hema-
toxylin counterstaining of non proliferating nuclei (blue). The orig-
inal size of the recorded image is 62000x41404 pixels (acquisition
resolution 0.5 pm). b) Detail image. ¢) Manual drawing of the ideal
segmentation of three compartments which can be identified on this
detail (1 is loose connective tissue, 2 is cancer cell foci and 3 is in-
flammatory stromal compartment).

The ovarian carcinoma is made of two types of tissue:
cancer epithelial cells and stroma. Stroma refers to the con-
nective tissue which provides supportive framework and
nutriments to epithelial cancer cells.

After hematoxylin staining, several types of stromal tissue

can be identified inside tumours, some of which correspond-

ing to various maturation degrees: loose connective tissue,
cellular stroma and fibrous connective tissue. Inflammatory
cell riched foci can also be found [Fig.2].

— The loose connective tissue is an immature stroma. It
is made of an abundant extracellular matrix and star
shaped mesenchymatous cells. The density of these cells
is low. Cell nuclei are small and round.

— The cellular stroma is a young connective tissue. It con-
sists mainly of myofibroblasts organized in sheets and
bundles with a high density of cells. The cell nuclei are
elongated and plump.

— The fibrous connective tissue is a mature stroma with a
density of cells which is somewhat lower than the cellu-
lar stroma and a large number of extra-cellular collagen
fibers. The nuclei are very thin and elongated. Their op-
tical density is high, due to chromatin condensation.

— The inflammatory stromal compartment is characterized
by small round nuclei with a high optical density (lym-
phocytes and plasma cells) and clover shaped dense nu-
clei (polymorphonuclear cells).

Extravased red blood cells, necrosis foci and mucus sheets
can also be found inside the tumor [Fig.2].
After immunohistochemical staining of proteins associated
to cell proliferation (Cyclin A for example), Diaminoben-
zidin (DAB) labelling of the antibody-antigen reaction and
Mayer hematoxylin counterstaining, epithelium appears as
blue (non proliferating) and brown (proliferating) cells with
large size nucleus [Fig.2]. Nevertheless, with such a staining
protocol, the various types of stroma can only be identi-
fied thanks to the morphology of their nuclei. Extracellular
fibers and matrix are not stained as well.

Finally, we decided to take into account 5 classes : back-

ground, epithelial cancer cells, loose connective tissue, cel-

lular stroma and inflammatory stroma.

These descriptions give us valuable information. We can,

to some extent, help us with color of the nuclei. Several
color components have to be tested to select the best seg-
mentation space(s).
We said that we wanted to use the wavelet framework.
The fact that stromal compartments have various density
indicates that we should use wavelet filters with various
support to characterize them. The various morphology of
nucleus will lead us to try wavelets specialists in the detec-
tion of details.

Tiled tiff VIS were recorded at a resolution of 0,5 um
thanks to a microscopic slide scanner (ScanScope CS from
Aperio Technologies) provided with a 20z objective. A 30%
loss Jpeg compression was applied to each tile when record-
ing images. Uncompressed Images are 3 to 10 GigaBytes
files, depending on the scanned tissue area. Images are
60000x40000 pixels large on average.

3. Method description

Our contribution is the design of an operational process-
ing chain based on:
— A multiscale approach,
— The design of specialist classifiers,
— The merging of classification results.

3.1. Multiscale strategy

Previous works of our team, based on low resolution
analysis strategy (6.3 um), already allowed to segment
and quantify tissue components (quantification of stained
nucleus, of epithelium, of blood vessels, of stroma (Tran
et al., 2003; Elie et al., 2003)). However, the fine analysis
of stroma compartments, which needs a cell to cell dis-
crimination, is impossible at this scale as a cell nucleus is
represented by only two or four pixels.

For this purpose, we propose a high resolution analysis
strategy. As we have seen previously, the image volume (3
to 10 GB) prevents to process VS at once. The tempting so-
lution is to process tiles of a splitted image. But this implies
hard constraints on elementary image edges, especially
when managing large structures that can be spread over
several tiles. Furthermore, large scale structure segmenta-
tion can imply local as well as global characteristics which
are difficult to take into account. The proposed multiscale
approach consists in selecting, at various scales, regions of
interest containing objects to be further segmented. This
allows the user to adjust the decomposition of the image to
its contents. A large structure will be segmented at a low
resolution (subsampled image size is then small enough to
be held in memory, so that there will be no edge effect to
manage). The result of this segmentation will serve as a
mask to segment a smaller structure at a higher resolution.
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Figure 2. First row (from the left to the right), various types of stroma: loose connective tissue, cellular stroma, inflammatory stroma, and

fibrous connective tissue (surrounded area). Second row: other types of tissue compartments encountered in an image of ovarian carcinoma:

Epithelial cancer cells, Background, Red Blood Cells, Mucus.

The procedure can be reiterated until the localization of
tiny structures inside the full resolution virtual slide.

We use wavelet transform (WT) to subsample the im-
ages because we observed that it better preserves the
structures and colors than bilinear or bicubic subsampling.
A first partitioning between background and tissue can
be done at a very low resolution (32 pm) [Fig.3]. For this
purpose, the image histogram was regarded as a mixture
of three gaussian curves (one mode for background, and
two closer modes for stroma and epithelium). The param-
eters of these three gaussian curves are estimated by an
histogram analysis. The likelihood of a pixel to belong
to a class (background or tissue) is computed and the
image is then segmented by maximum of likelihood. The
resulting binary mask of tissue compartment is improved
thanks to mathematical morphology operations (hole fill
and geodesic opening).

Preliminary tests have been conducted to find the best
method to segment the various stromal compartments. The
first try aimed at detecting each cell and to analyze the mor-
phology of its nucleus. The difficulty lies in the following
fact: at this acquisition resolution, the cells can’t be individ-
ualized. Therefore, nuclei can’t be analyzed. That’s why we
opted for a more global, texture-based, method. Based tex-
ture segmentation methods (such as JSEG criterion (Deng
and Manjunath, 2001) or active region based segmentation
(Lecellier et al., 2006)) were not able to provide good results
of segmentation. Then we choose a method that could com-
bine texture and multiscale analysis : the HMT method.

3.2. Hidden Markov Tree (HMT) model

At each scale, the value of coefficients of a wavelet trans-
form depends on the regularity of the signal. A singularity
would yield a large coefficient of wavelets that could cas-
cade through scales, while an area with small variation
values would produce a series of small coefficients. These
properties of the wavelet transform mean that there is a
small number of large coefficients bringing most of the
energy of the signal, and many small coefficients. To ap-
proximate both the marginal and joint wavelet coefficients
statistics, Crouse (Crouse et al., 1998) proposed to use a
model of Gaussian mixture applied to wavelet coefficients
in each sub-band, and a hidden Markov tree (HMT). To
each wavelet coefficient, the HMT model associates a (hid-
den) state variable that controls whether it is Large (L) or
Small (S). The joint density of each coefficient is then mod-
eled as a gaussian mixture with a high variance and null
average gaussian for the L state and with a low variance one
for the S state. The model captures inter-scale dependen-
cies between the wavelet coeflicients using a Markov chain,
with one dependency between the resolution levels [Fig.4].
This model has been used by Choi (Choi and Baraniuk,
2001) to achieve the segmentation of textured images.
The method consists in three phases: a learning phase,
a phase of segmentation at each level and a phase of
inter-scales merging. During the learning phase, the model
parameters M are learnt for each texture, through an
EM (FEzpectation Mazimization) algorithm suited to HMT
(Crouse et al., 1998): for each state (L or S), each level
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Figure 3. Segmentation of background: a) Original image subsampled 6 times (up to a resolution of 32 um), b) histogram of the red component
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Figure 4. Drawing from (Choi and Baraniuk, 2001) a) The father-son dependencies of WT sub-bands. (b) The quad-tree structure of the
model, detailed for a sub-band. (¢) The HMT model, detailed for a sub-band. Each wavelet coefficient (black node) is modeled by a gaussian

mixture controlled by a hidden state (white node).

and each sub-band, the parameters of the representative
Gaussian curves (mean, variance and probability of occur-
rence) are learnt, as well as the parameters of transition
from one state to another, between two resolutions levels:

f=5 _j=5 f=s f=s
€s=5 E€s=L €s=5 1- Es=5 =a
= where e _," rep-
I=L f=L 1o f=L  f=L =
s=S “s=L s=L s=L

resents the probability that the father is in state a while
the son is in state b. Details on the implementation of EM
algorithm and a proof of convergence are mentioned in
(Crouse et al., 1998).

During the phase of segmentation, the likeness between the
data of the wavelet transform of the observed image and
the HMT model of learnt images is assessed by calculating
a likelihood function :

FEIM) =TT D (TS = m, Mo) x p(Si = m [M,)
m=S,L
ortentations

where 7; is a sub-tree of root w; in one of the sub-bands,
M, represents the model parameters for a particular ori-
entation and S; is the hidden state of w;.

Each pixel is then affected, with the Mazimum of Likeli-
hood method, to the more similar texture. This yields to a
“raw” segmentation at each level.

To improve this first segmentation, the segmentations at
different resolutions are subsequently merged. This merg-

ing is achieved by maximizing the likelihood of a pixel to
belong to a class, taking into account both its value in
the raw segmentation and a context vector. This context
vector can correspond to the value of the father and of the
neighbors of the father (Choi and Baraniuk, 2001), of the
neighbors of the son, or a combination of several context
vectors (Fan and Xia, 2001) [Fig.5].

3.3. Design of classifiers

The HMT parameters are calculated through a learn-
ing set of pure class images, for each combination of the
method hyper-parameters. Indeed, the HMT model itself
can be parameterized : one has to choose the wavelet base
(and possibly its order), the color image component on
which the WT is applied and the number of resolution
levels on which the analysis is focused. These four hyper-
parameters can greatly affect the HMT model results.
Each set of hyper-parameters allows us to generate a dif-
ferent segmentation.

Each set of hyper-parameters corresponds to a classifier,
and the best of them have to be selected thanks to an
evaluation of their performances.

Rather than comparing them for all classes together,
we transformed the multiclass problem into a set of bi-
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Figure 5. Drawing from (Fan and Xia, 2001). The context vectors V used: a) neighbors of the son (b) neighbors of the father and the fathers

value (c) neighbors of the father, sons and fathers value.

nary ones by decomposing it in one-against-one problems
(Hastie and Tibshirani, 1998).

To evaluate the classifiers, each one is trained to become
a discriminative specialist (a dichotomizer) in two classes.
For this purpose, we employed a learning base containing
images with two classes solely on each image.
HMT segmentation is then performed by suggesting exclu-
sively these two classes as a possible result of segmentation.
The classifier which has been kept to distinguish the two
classes is the one that maximizes the proportion of well
segmented pixels on the two classes compared to the man-
ual drawn ”ground truth”. This procedure is performed
for each pair of classes.
The proportion of well segmented pixels, for each class, rep-
resents the confidence attached to the classifier thereafter.

There is so N = n* (n — 1)/2 binary classifiers (where
n is the number of classes). Each classifier uses parameters
learnt by the HMT model for one set of hyper-parameters.

3.4. Merging of each classifier segmentation

To merge the outputs of the N classifiers, many com-
bination rules can be applied to couple the estimates of
each binary classifier in order to obtain class membership
estimates for the multi-class problem.

The most commonly used combination rule is probably
the Majority Vote (Friedman, 1996). Class membership
estimates are computed according to the formula:

p(w = wi\x = N Z w, wj|l' X Cf(wul:[/u“w7)
J=0,j#i

where W, .. |z is the probability of segmentation re-
sult (class w; or w;) with classifier W, ., at pixel
. I(Wy, . lz)=1 if ¥, . lr = w; and 0 otherwise.
Cf (wi, Wu, w;) is the confidence in W, ., for class w;. The
resulting label is computed as argmaz(p(w|z)).

One can also use combination rule based on Error Correct-
ing Output Codes (ECOC') (Dietterich and Bakiri, 1995).
Each class is represented by its own output code in the
output vector space. The chosen class is the one that is
the closest to the 0/1 prediction vector obtained from the
classifiers.

The Loss Based Decoding (LBD) (Allwein et al., 2000) is
an improvement of FCOC because it allows us to use di-
rectly the outputs of the binary classifiers instead of their
hard 0/1 predictions.

The comparison of segmentation results with these combi-
nation rules is presented below.

To summarize, the method involves two phases. First,
large areas of background are discarded at low resolution.
Then, the remaining parts of the image are processed as
follows (cf. figure 6):

— Parameters and hyperparameters of the HMT method
have been learnt for each pair of the K classes, forming

a classifier for the classes w; and wj.

— For each pair of the K classes, the image is segmented,
with the HMT method.

— The resulting segmentations are then merged, taking into
account the neighborhood of each pixel and the confi-
dence in each one of the classifier.

4. Experimentation and Results

The tests have been conducted with several wavelet
bases having various regularity, vanishing moments, sup-
port, and symmetry (Haar, Battle Lemarie, Daubechies
and bi-orthogonal Splines wavelets were used). Two or-
ders of wavelets (a low one and a high one) are used when
possible and one to five levels of HMT subsampling are
computed (resulting in four levels of segmentation).

WT is computed on the components of several color spaces
([RGB], normalized [RGB], Excess [RGB] — it is twice red
minus green and blue for red component and the same
applies for green and blue component—, [HSI], [AC;Cs]
~Garbay’s space— [wyrgb,] ~Ballard’s space—-, [YCh;Chy]
—Caron’s space— [I[115I5] —Ohta’s space- and PCA com-
ponents computed from original [RGB]). Scheunders rep-
resentation is also used. Scheunders (Scheunders, 2003)
proposed a method to construct a wavelet representation
combining the color plans by computing a coefficient, based
on the three values, reflecting their relative importance.
These parameters constitute a total of 576 different seg-
mentations.
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Figure 6. Global schema of the HMT based segmentation method.

HMT training set consists of five 512x512 images of each
class. Classifiers are selected on another training set of four
1024x1024 images per pair of classes (i.e. 40 images).

The training set has been improved several times, to take
into account some variability within the same class, until
its images were well segmented by the process.

The resulting hyper-parameters (wavelet base and order,
colour component and number of decimation levels taken
into account) obtained after selection of the best ones for
each pair of classes are summarized in Table 1. Confidence
in each classifier for each compartment is indicated too.

To select the best combination rule, a third image set is
employed. This testing set is composed of fifteen 2048x2048
images containing all classes in various proportion.

Several combination rules have been tested to merge the
binary classifiers : Error Correcting Output Codes, Loss
Based Decoding, but we found that they don’t provide any
significant improvement over Majority Vote (cf. Table 2).

Compared to the reference manual segmentation, 60.05
to 89.67 percent of well labeled pixels are obtained to-
gether with correctly localized borders [Fig.7] over the test
set using hyper-parameters of table 1 and majority vote.
Average is 71.50%. The segmentation result has been im-
proved with further spatial regularization to ban tiny area.
The main default is that in some cases, epithelium may
be confused with cellular and inflammatory stroma (the
closest compartments regarding the texture).

Once the parameters and hyper-parameters of the



Table 1
Parameters allowing good discrimination of compartments. (Epi stands for cancer epithelial cells, CS for cellular stroma, Back for background,
LCT for loose connective tissue and IS for inflammatory stroma)

Compartment| Wavelets | Wavelets color Level of Confidence in
1 2 Base Order Component |decimation|compart. 1|compart. 2
LCT| CS Haar / hue 4 96.27 95.30
LCT| Back Battle 1 i2 (Ohta) 2 99.5 98.97
LCT IS Battle 9 normalized green 4 96.29 97.70
LCT| Epi Splines 5 hue 4 99.35 97.43
CS | Back Haar / Scheunders 1 99.57 99.80
CS IS Daubechies 2 excess Green 3 97.62 90.61
CS Epi Haar / hue 4 97.20 95.97
Back| IS |Daubechies 2 C1 (Garbay) 2 99.38 99.66
Back| Epi Haar / Scheunders 1 99.84 99.81
IS Epi Battle 1 hue 4 97.89 98.62

Table 2
Mean and variance percentage of well labeled pixels with various combination rule (ECOC stands for Error Correcting Output Codes, LBD
for Loss Based Decoding).

Combination Rule Majority Vote ECOC Weighted ECOC LBD

Mean % of well labeled pixels

71.50 (12.83) [70.94 (13.33)| 71.32 (13.33) |71.22 (13.24)
(Standard Deviation)

Figure 7. Left : images to be segmented, middle : manual segmentation, right : automated segmentation. 1 is LCT, 2 is Back, 3 is CS, 4 is
IS, and 5 is Epi.



method were fixed, tests have then been conducted over 21
images of the whole histological slide [Fig.8]. The size of
these images ranges from 38, 000x40, 000 to 78, 000x48, 000
pixels. Since drawing manually a ground truth over the
whole histological slide is intractable, we chose an other
method to validate our results: the stereology (Elias and
Hyde, 1983, e.g.). Experts classify the slide exclusively be-
low points regularly spaced. The step between two points
is related to the size of structures and is calculated in
such a way that the estimated proportions are statistically
equivalent to the real proportions. Results of automatic
segmentation are compared to this ground truth. First,
overall proportions of each compartment of the ground
truth and of the calculated image are compared. Then
the class of each stereology point of the ground truth is
compared to the value of class at the same location on the
processed image. The study of results of the automatic
segmentation is still going on, but early results seem to be
well correlated to the ground truth identified by experts
thanks to the stereology test point grid. The results range
from 1.14% to 27.72% with an average difference of 8.84%
between expert stromal proportion evaluation and the au-
tomatic one. These results can currently not be compared
to other method results because it is the first time the seg-
mentation of the various types of stromal compartments
on ovarian carcinoma virtual slides is tested.

The tests were conducted on a single processor of a 3GHz
Xeon quadriprocessor PC. Processing time is from two min-
utes to one hour per 2048x2048 image, depending on the
homogeneity of the image (an image containing only back-
ground will be classified quickly while an image with many
different regions and singularities will be classified more
slowly). Mean time is ten minutes. That is about fifty hours
for the processing of a whole 65,000x40, 000 Virtual Slide,
depending on the amount of background.

Conclusion and Prospects

In the present study, we have investigated a strategy to
segment various stromal compartments on ovarian carci-
noma virtual slides. No work had ever been published on
this topic. The method we proposed is general and could
apply to other types of images showing different textures.
We suggested to use a wavelet-domain hidden Markov tree
model to get classifiers. Selection among these classifiers is
done with a one against one approach. Classifiers outputs
combination is performed thanks to a Majority Vote rule.
Promising results are obtained on some selected test im-
ages and should be confirmed on a larger test set. The ratio
of well classified pixels obtained must be appraised taking
into account the fact that the transitions between regions
of stroma are not clearcut and sometimes difficult to iden-
tify even by an expert. Some mislabeling of the epithelium
may happen, and the processing time (about fifty hours for
a 65,000x40, 000 image) due to Fzpectation Maximization
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algorithm’s convergence (from less than 10 to 2000 itera-
tions until convergence, depending on the homogeneity of
the processed image) is prohibitive for any clinical use.

To answer the problem of cancer cells foci detection, we
plan to use, first, previously described methods (Elie et al.,
2003) to locate epithelium at a low resolution and to elim-
inate it from the higher resolution analysis. We could also
employ this low resolution segmentation as an a priori for
the higher resolution segmentation.

To cope with the processing time, we have to optimize our
code and consider replacing EM part with a faster converg-
ing method. We plan also to study other segmentation ap-
proaches including image patch exemplar based methods.

Finally, our algorithm (or parts of it) could be implemented
in specific hardware for parallelisation.
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