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An Ontology-Based Model for Representing

Image Processing Application Objectives

Régis CLOUARD, Arnaud RENOUF, Marinette REVENU

Abstract

This paper investigates what kinds of information are necessary
and sufficient to design and evaluate image processing software pro-
grams and proposes a representation of these information elements
using a computational language performable by vision systems and
understandable by experts. The language is built upon a formulation
model which distinguishes the specification of a goal and the definition
of an input image class. Goals are stated in terms of tasks together
with result samples. Image classes are defined by both linguistic and
iconic descriptions. The model is implemented as an OWL domain
ontology which provides the primitives for the formulation language.

Index Terms–Ontology Design, Knowledge Acquisition, Image

Processing and Computer Vision.

1 Introduction

Explicit representation of objectives is of paramount importance when de-
veloping image processing applications. An image processing application is a
software program tailored to a given image transformation goal and a given
input image class. Under a restricted definition of image processing, goals
refer only to image-to-image transformations without interpretation of the
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image content. Six categories of goals are thus considered: image restora-
tion, image enhancement, image compression, image reconstruction, image
segmentation, and object detection. An image class is a set of images that
share many features, on condition that these features are meaningful for the
application.

The work described hereafter does not address the design of image pro-
cessing algorithm, but the use of existing algorithms for developing image
processing applications. The representation of image processing objectives
contains essential pieces of information that are required at each level of the
application development process. Since each image processing algorithm has
its own domain of applicability, the solution design should find in the repre-
sentation of the objective rationales to choose relevant algorithms and tune
their parameters. Furthermore, since evaluation has meaning only in refer-
ence to a goal [49], the objective is necessary to define appropriate evaluation
metrics for each application.

An image processing application is one component of the low level part
of a more global image analysis and computer vision system. Its role is com-
pletely determined by the high-level part which uses its results to perform
interpretation, visualization, storage, or transmission of the image data. But,
even if an image processing application is only one element of an imagery sys-
tem, it is often one of its bottlenecks. Consider an image analysis application
which addresses the automation of a diachronic analysis of long-term agri-
cultural landscape changes. A same landscape sector is compared year by
year, always at the same season, in order to quantify evolution of cultivated
surface areas. The image class is composed of color satellite images of land-
scape with the same resolution (see example Fig. 1). The objective of the
image processing part is to segment the input images in order to isolate each
potential vegetation area into a unique region. The resulting regions will
then be fed into a classifier which is trained to identify various categories
of geographic objects: field, forest, hedge, city, etc. The performance of the
classifier clearly depends on the accuracy of the image segmentation process.

The development of such an image processing application cannot be done
without an explicit representation of the objective because the problem data
are not entirely included in the input image data. Two reasons can account
for that. First, image data are intrinsically incomplete, degraded and cor-
rupted. The image acquisition process is responsible for creating images that
are underconstrained representations of the scene1 because it causes loss of
information (e.g., third dimension, motion), mixture of several factors in the

1The term “scene” refers to the observed or calculated phenomenon, whether it is
natural or artificial.
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value of a pixel (e.g., texture, lighting, geometry), introduction of false values
(e.g., noise, chromatic aberration), and alteration of the original information
(e.g., geometric distortion, blurring) [14]. Second, image content does not
make sense by itself. An image is inherently ambiguous and does not provide
information about its content. Without a subject matter, an image does
not allow to make a distinction between relevant and irrelevant information.
What is relevant for one application may be irrelevant for another. Further-
more, there exists no intrinsic relevant information. For example, apparently
simple information such as object edges is difficult to accurately extract with-
out knowledge about the scene. Edges are usually modeled as sharp changes
in image intensity, but this is also the case for noise, shadows, and texture
elements. Accordingly, the problem to be solved is held by sources external
to the input images and must be formulated.

Figure 1: The image processing objective of the aerial imagery application
is to segment each vegetation area into a region.

In this paper, we propose a computational language for explicitly repre-
senting image processing objectives. We argue that it is possible to define
such a language that is independent from the application domains, but that
allows the representation of knowledge about the application domains. The
study is restricted to the case of still image processing; however, the model
is readily extensible to support image sequence processing. The paper is or-
ganized as follows: after a review of various approaches to image processing
objective formulation in Section 2, a model that is the support of our formu-
lation language is proposed in Section 3. An implementation of this model
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in the form of a domain ontology is detailed in Section 4, and two examples
of the use of the language are discussed in Section 5. Finally, findings and
future prospects of this work are presented in Section 6.

2 Objective Formulation in Image Processing

Three categories of a priori information need to be considered for an explicit
formulation of an image processing objective:

• The expression of the aim of the application in order to give a subject
matter;

• The description of the image acquisition process in order to recover the
lost, altered, and hidden information about the scene;

• The definition of the application domain concepts in order to assign
a semantics to the scene by identifying information to be considered
relevant.

The first category of information corresponds to the definition of the goal,
and the last two categories compose the definition of the image class. The
specification of these pieces of information is regarded as a particularly com-
plex activity since it is of qualitative nature. This implies that no exhaustive
or exact specification of the application objective can be reached and one has
to resort to only an approximate description [40]. This is the consequence
of the so-called sensory and the semantic gaps [45] (see Fig. 2). The sensory
gap is the difference between real objects and their representation in images,
whereas the semantic gap is the difference between the interpretation of the
object that one can make from an image content and from a description of
the object in terms of low-level image features. Hence, formulating means
bridging the sensory and the semantic gaps in order to represent a real-world
objective with measurable symbolic features used to process images.

2.1 Related Work

In this section, the analysis of various image processing systems that address
the formulation of user objectives is done along the two axes: the image class
representation and the goal representation. It shows how the different types
of information representation affect the expressive power of the formulation.
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Figure 2: The sensory gap is the gap between the scene in the world and
its representation in an image and the semantic gap is the gap between an
image representation and its description with low level features.

2.1.1 Image Class Definition

The image class definition can either be done by extension by means of
sample images or by intension through a linguistic description.

Definition by extension. The a priori information is represented by
sample image parts. Two types of sample image parts have been considered:
blobs and patches.

• A blob represents a region in the image which delineates one object of
interest (e.g., Fig. 3.a) or an image area. Blobs can be drawn manually
or obtained from an interactive segmentation [24, 3]. Information about
the image class is then automatically extracted from these blobs. For
example, the description of the objects of interest can be made thanks
to color, size, and shape features extracted from the blobs. In the same
way the noise features can be computed from an image area that is
supposed to be uniform in the scene.

• A patch is a thumbnail that isolates one salient part of one object of
interest. Thus, an object of interest is described by a series of patches
with their spatial relations (e.g., Fig. 3.b). Generally, patches are au-
tomatically extracted from sample images around points of interest
[25, 1], considered as the most information-dense areas.

Definition by intension. The a priori information is represented by a
linguistic description. The description language is generally built over a do-
main ontology which provides the representation primitives (e.g., [23, 3, 29,
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Figure 3: Two different ways for defining a tangram piece by extension: (a)
with a blob (b) with patches.

19]. Thus, the description of an image class is an application ontology, which
is made by choosing and reifying primitives of the domain ontology [5]. For
example, N. Maillot et al. [29] propose the “Ontology of Visual Concepts”
that defines the concepts of texture, color, geometry, and topology relation-
ship. Fig. 4 gives a textual representation of an example of the description
of a pollen grain made with concepts of this ontology. To better account
for the variability of the visual appearance of objects, linguistic variables or
fuzzy values can be used [33, 21] (e.g., “pink”, “circular”, “slightly oblong”,
“is front of”, “close to”). But quantitative values are required to build con-
crete applications. Therefore, intensional definition should also cope with
the symbol anchoring problem [11] to connect the linguistic symbol to nu-
merical image data. Symbol grounding can be carried out using dictionaries
such as the Color Naming System [2] where each terms have been assigned
to a predefined range of numerical values; this principle can also be extended
to texture concepts with the Texture Naming System dictionary [38]. But,
more often, symbol grounding is addressed as a learning problem from a base
of blobs drawn on sample images [29, 28, 21].

Figure 4: Example of the definition of a Poaceae (Gramineae) pollen grain
made with concepts of the ’Ontology of Visual Concepts’ proposed by Maillot
et al. [29].

Both approaches have their own strengths and weaknesses. The advan-
tage of the definition by extension is to minimize the amount of a priori
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information that it is necessary to supply. It reduces the cognitive load of
the users since the formulation does not require any representation language
(even if it may be tedious when the number of reference images to provide
is high). The drawback is that the actual definition of the image class is
implicitly done by the system from the sample images, generally through
the use of predefined feature extraction or patch selection algorithms. This
means that a part of the definition is assigned by the system and cannot be
adapted to suit each individual application. On the contrary, the advantage
of the definition by intension is to better reflect the user expertise about the
scene. It provides a language able to represent the semantics of the scene
and, thereby, able to capture the variability of the input images. In addi-
tion, this approach is applicable even for image sequences [12]. However, the
drawback is that the construction of a linguistic description is known to be
arduous [45].

2.1.2 Goal Specification

A goal can be formulated either as ’what to do’ by means of a task statement,
or ’what to get’ through result examples.

Specification by task. A task describes a concrete processing objective.
Constraints may be associated with the task to fine-tune its scope. For
example, a request for the MVP system is ’radiometric correction’ [8] and a
request for the LLVE system is ’find a rectangle whose area size is between
100 and 200 pixels ’ [32].

Specification by example. A goal is formulated through one or more
reference images which contain the representation of the results to be ob-
tained from sample images. Three different representations can be found in
the literature:

• Reference images as sketches drawn on test images (e.g., Fig. 5.a).
They specify the expected results as samples of contours [20] or regions
[13, 27] to be considered.

• Reference images as ground truth for representative images [31] (e.g.,
Fig.5.b). They define the exact results to be obtained.

• Reference images as rough scribbles drawn on test images (e.g., Fig. 5.c)
[26, 37]. They indicate the regions of interest as markers inside the
regions (and the complementary regions.)

The two approaches are complementary. The specification by task has the
advantage to span all image processing objectives [9]. Besides, the tasks can
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Figure 5: Three approaches for the specification by example of the tangram
piece extraction objective: (a) sketch (b) manual segmentation (c) scribble.

take into account specific user requirements through associated constraints.
However, the drawback is that the formulation is qualitative with no real link
with the image data. This fact has two important consequences: first, the
specification of a task is not explicit enough to predict the exact expected
result, and second, there is only a finite number of possible goal represen-
tations with a predefined vocabulary. The advantage of the specification by
example is that the formulation is quantitative and that it gets its values di-
rectly from the image data. Therefore, it allows for an infinite variety of goal
representations. Moreover, it reduces the cognitive load of the users because
a specialized formal vocabulary is not needed to state the problem. The
drawback of this second approach is that a reference image is not sufficient
to formulate all image processing objectives for at least three reasons. First,
only object detection, image segmentation, and image enhancement goals
can be addressed. Second, it does not cover all image classes. In particular,
it gets tedious using it for 3D image or image sequence applications (though
the sketch-based approach was extended to 3D images for a particular med-
ical application [50]). Third, it does not provide a means to express some
specific requirements. For instance, constraints such as “prefer false detec-
tion to misdetection” or “prefer no result to bad result” cannot be explicitly
specified through reference images.

2.2 Conclusion

Having investigated the advantages and drawbacks of each these approaches,
it clearly appears that a complete and generic formulation model should
integrate the whole. The specification of a processing goal should be done
by a task statement and grounded in image data by result examples. The
definition of an image class should be done by intension in order to capture
the semantics of the scene and by extension to get closer to the actual data
and their internal consistency.
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3 Objective Representation Model

In this section, the kinds of information we consider necessary and sufficient
for designing and evaluating image processing applications are exhibited. A
model is thus developed that provides a conceptualization of the objective
formulation.

3.1 Image Class Definition

3.1.1 Phenomenological Hypothesis

Among the pieces of information that can be used to define an image class,
we argue that only phenomenological information is necessary and sufficient
[42]. Phenomenological information reflects a visual manifestation of the
scene. Therefore, the purpose of formulation is not to describe the scene in
its physical reality but only in the way it is perceived through images. This
hypothesis has two strong consequences:

• The advantage is that the image class definition can be reduced to a
denotation from visual cues. Thereby, it is not necessary to represent
ontological knowledge about the application domain. For example, the
real object “bus” in the aerial image Fig. 6.a can be reduced from the
phenomenological point of view to a simple small white rectangle. This
contributes to the existence of a core of information specific to image
processing and independent from the application domain, upon which
our model is built.

• The drawback is that it may be necessary to distinguish as many de-
notations of a real object as it presents distinct appearances in images.
For example, consider the case of a bottle detection objective. Two
distinct objects in the image class definition ought to be considered
if there does not exist a common denotation between the two visual
appearances of the bottle in Fig. 6.b and in Fig. 6.c.

3.1.2 A 3-Level Definition

For a complete definition of an image class, three different levels should to be
considered: (1) the physical (2) the perceptive, (3) and the semantic levels
[42] (see Fig. 7).

1. The physical level is the level of the measured signal that encodes the
image data. The phenomenological hypothesis leads to describe this
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Figure 6: Illustrations of the phenomenological hypothesis. (a) In this aerial
image of a parking lot, the concept of bus can be reduced to a simple white
homogeneous rectangular object of interest. The difference of appearance of
a same bottle between image (b) and image (c) leads to consider them as two
distinct objects of interest. Images 6b and 6c are taken from the Columbia
Object Image Library (COIL-100).

level by a list of effects caused by the acquisition chain components on
the signal (e.g., noise, geometric distortion, illumination defect) and not
by a list of that very components (e.g., camera, lens). For example,
knowing that the sensor is a “CDD camera” is not directly usable for
processing images. Conversely, knowing that the CDD camera produces
Gaussian noisy images is directly usable. Besides, “CDD camera” is
too vague, since effects differ from camera to camera and evolve in
time. Thus, ’noise’ should be retained as an image processing concept,
whereas ’sensor type’ should not.

2. The perceptive level is concerned with the visual rendering of the image
content without any reference to objects of interest. A definition at the
perceptive level corresponds to a “syntactic” description made from a
description of visual primitives, such as region, edge, background, and
point of interest.

3. The semantic level is focused on the objects of interest. The notion of
object of interest is understood from a phenomenological standpoint,
namely based on the visual appearance. Hence, an object of interest

10



does not necessarily correspond to a scene object, but only to a part
of a scene object or, on the contrary, to an aggregate of several scene
objects. And a scene object can be represented by several objects of
interest. The semantics of the scene is expressed thanks to information
that has to be considered as relevant for discriminating one object
of interest from one another. This information refers either to the
individual visual description of the objects or to the description of
their spatial relationships. It means that objects are identifiable by
their intrinsic characteristics or by their spatial relations.

Figure 7: An image is analyzed at three levels: (1) physical, (2) perceptive,
and (3) semantic.

These three levels cover both the sensory and semantic gaps since the
physical level aims at bridging the sensory gap, and the perceptive and se-
mantic levels the semantic gap.

3.1.3 Conceptual Model of the Image Class Representation

The resulting conceptual model is shown on Fig. 8. Image classes are ana-
lyzed according to the three levels: physical, perceptive, and semantic. De-
pending on the available knowledge about the problem, the definition of the
image class at each level may be more or less important. In particular, the
perceptive level is only described in the absence of information at the se-
mantic level since a semantic description conveys more information than a
perceptive description. For example, let us consider three distinct applica-
tions:

• In the case of our aerial imagery application, a large amount of in-
formation is described at the physical and semantic levels, since the
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acquisition system and the scene are well known and the objects are
predictable and describable. Thus, description at the perceptive level
is needless.

• In case of a content-based image retrieval application, very little in-
formation about the effects of the image acquisition can be known in
advance and the objects are unpredictable. The definition of the image
class is thus limited to a description at the perceptive level, for exam-
ple in terms of region shape or texture [7], and the physical level, often
simplified to the presence of an additive white Gaussian noise.

• In case of a robotics application, engineers have a good mastery of
the image acquisition process but objects may be considered as unpre-
dictable because they usually come in large numbers and are of widely
varying appearances. Thus, this kind of application will conveniently
be formulated at the physical level and at the perceptive level in terms
of points of interest and edge-segments.

Figure 8: UML diagram of the conceptual model for defining image classes.

3.1.4 Descriptor Values

The descriptors should account for the fact that some elements of the for-
mulation can advantageously be described by means of a linguistic vocabu-
lary (symbolic descriptors with numerical and symbolic values) and other by
means of an iconic vocabulary (iconic descriptors with image values). Among
numerical values, one can choose between single values, interval of values, set
of values, vector, and matrix of values (e.g., a geometrical distortion matrix).
Symbolic values are conventional symbolic values (e.g., color space: {RGB,
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HSL, YUV}), qualitative terms (e.g., forest has a low brightness), and su-
perlative terms (e.g., hedge has the smallest size). Since only discriminative
descriptions are considered, comparative terms (e.g., has a larger size than)
need not be included.

Iconic values are represented by entire images or blobs. Patches are not
considered in our formulation model, because they are difficult to use man-
ually to formulate an objective.

3.1.5 Image Variability: Notion of Context

Whatever the definition mode of the image class is, by intension or by ex-
tension, the variability of the input images sometimes makes the formulation
impossible to complete. For example, let us consider the case of a daily use of
the aerial imagery application. The vegetation is changing significantly dur-
ing the year and therefore images acquired in spring do not have the same
characteristics as images acquired in winter. To reduce such kind of vari-
ability, V. Martin et al. [30] propose to divide automatically the image class
into several consistent contexts. For still images, contexts are automatically
obtained by an unsupervised clustering algorithm of type “Density-Based
Spatial clustering” [16], based on color histograms. Consequently, one has
to consider as many applications as image class contexts. Applied to our
aerial application, this algorithm separates the images into four contexts,
which correspond to the four seasons, since landscape main colors change
significantly from one season to another.

3.2 Goal Specification

Real-world image processing objectives often involve more than one single
goal. To reduce the complexity of formulation, the scope of an application
objective is narrowed down to a unique task. This avoids dealing with the
frame problem. The frame problem arises when the system has to describe the
effects of operations on the initial image class definition. A sequence of several
tasks forces the system to propagate the effects of one task to the image class
definition of the following tasks. Unfortunately, the determination of the
effects of image processing operations on images is known to be an extremely
difficult task. To avoid the frame problem, each task will be considered
separately.

3.2.1 A Specification Combining Task and Examples

The goal is specified by a task with a related network of constraints and
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optional reference images. The task is used for its ability to account for
precise requirements and reference images are used for their ability to anchor
the task in the data. Four types of constraints can be associated to a task:

• The criteria to be optimized identify the elements on which the task
should focus. Examples of criteria are “maximize boundary location”
and “maximize detection hits”.

• The levels of detail determine upper and lower bounds of the task in
order to refine its scope. Examples of detail levels are “separate just-
touching objects” and “do not affect region shape”.

• The performance criteria specify processing speed limits.

• The quality criteria express requirements on the ability of the appli-
cation to perform the task within specified and unspecified conditions.
Available ability values are ’reliability’ or ’robustness’.

In order to reach compromise in case of doubt about compliance with a
constraint, each criterion to be optimized and level of detail allow acceptable
errors. For example, if there is a doubt whether two objects are overlapping
or just-touching, an acceptable error may give a preference to the separation
of the objects.

The reference images are used to supplement the specification of the task
by providing examples of expected results. A reference image can either be
a representation of the complete result (segmented image) or a sample of the
result (contour or region sample).

3.2.2 Conceptual Model for the Goal Representation

The resulting conceptual model for the goal specification is shown on Fig. 9.

4 Ontology for Image Processing Objective

Formulation

Ontologies have been widely used for designing and implementing high level
scene interpretation [35, 46, 33], but seldom for low level processing. In
this section, we describe an ontology that provides the primitives and their
meaning for defining a language able to represent image processing objectives
[41]. The ontology is a lattice of computational concepts organized upon the
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Figure 9: UML diagram of the conceptual model for specifying image pro-
cessing goals.

above conceptual model. It has been operationalized with OWL DL 2 and
contains 279 concepts, 42 roles, and 192 restrictions.

4.1 Physical Level Concepts

The concepts at the physical level correspond to the effects of the acquisition
components on the digital image representation. Therefore, the analysis of
the various components of a standard acquisition system—lighting, environ-
ment, optical system, sensor, analog-to-digital converter and storage—gives
the list of their possible effects (cf. Fig. 10). For example, sensor optical
system can generate illumination, geometry, and blur defects on images.

Figure 10: The analysis of the effects generated on image representation by
the various components of a standard image acquisition system provides the
concepts at the physical level of the ontology.

As a result, we identify nine categories of concepts (see Fig. 11): blur,
noise, colorimetry, illumination, geometry, photometry, sampling, quantiza-
tion, and storage. Each concept is described by a list of symbolic or iconic

2http://www.greyc.ensicaen.fr/˜regis/Pantheon/resources/ImageProcessingOntology.owl
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descriptors with the two roles hasSymbolicDescriptor and hasIconicDescrip-
tor as detailed in Table 1. For a particular formulation, only primitives that
have a genuine manifestation in the input images should be provided. Sev-
eral instances of a same category can be defined, for example when different
types of noise are present in the input images.

Figure 11: The concepts at the physical level correspond to the acquisition
effects on input images.

4.2 Perceptive Level Concepts

The concepts at the perceptive level are the six visual primitives (see Fig. 12):
region, edge, background, point of interest, image area, and cloud of points.
Visual primitives are described by a list of symbolic and iconic descriptors
with the two roles hasSymbolicdescriptor and hasIconicdescriptor as detailed
in Table 2 and Table 3.

Figure 12: The concepts at the perceptive level correspond to the visual
primitives.

One can notice that our representation of some concepts is quite sim-
ple. This is because we only keep descriptors that are deemed useful for
choosing and evaluating image processing algorithms and not for designing
them. For instance, texture features, such as wavelet or Haralick descriptors,
are needless for choosing a texture-based segmentation algorithm. Only the
scale (micro or macro), the type (e.g., periodic, complex, dot) and orienta-
tion features are required. Other texture features will be computed directly
inside the selected algorithms if need be. The same reasoning can be ap-
plied to color features since several color spaces exist. Only the HSL color
space is considered for specifying the color features because it is meaningful
for human beings. Other color space features may be computed inside the
algorithms.
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Table 1: List of the physical concepts and the descriptors linked with the
two roles hasSymbolicDescriptor and hasIconicDescriptor.

Acquisition Effect Descriptor
Blur Model: Blob, Image

Direction: Numeric [degree]
Length: Numeric [pixel]

Strength: Level*

Colorimetry Model: Blob, Image

Defect: {Bayer effect, chromatic aberration}

Hue dynamics: Numeric, Level*

Saturation: Numeric, Level*

Colorspace: {RGB, HSL, LUV, YUV, gray, binary}
Illumination Model: Blob, Image

Illumination spatial: {heterogeneous, homogeneous}
Illumination temporal: {stable, varying}
Illumination defect: {saturation, lag, shift, blooming, smearing, flicker}

Photometry Model: Blob, Image

Global contrast: Numeric, Level*

Dynamics: Numeric, Level*

Brightness: Numeric, Level*

Quantization Bit per pixel: Numeric

Function: {linear, logarithmic}
Geometry Model: File

Defect: {astigmatism, coma, geometric distortion, spherical aberration}
Sampling Defect: {aliasing, moiré, partial volume effect}

Spatial resolution: Dimension [pixel
Storage Defect: {block effect}

Number of bands: Numeric

Number of looks: Numeric

Noise Model: Blob, Image

Composition: {additive, multiplicative, mixed}
Distribution: {exponential, Gaussian, uniform, Poisson, Rayleigh, impulse}
Power Spectral Density: {white, pink, colored, ...}

Signal Noise Ratio: Numeric, Level*

Stationarity: {yes, no}

First order: Numeric, Level*

Second order: Numeric, Level*

Third order: Numeric, Level*

Fourth order: Numeric, Level*

*Level: {null, very low, low, medium, high, very high}

4.3 Semantic Level Concepts

At the semantic level, concepts describe objects of interest individually and
specify spatial relationships between the objects. The set of objects is orga-
nized into a tree according to the meronymic relation “part-of”. Abstract
objects can be defined to factor out common description elements of objects
of interest thanks to the hyperonymic relation “kind-of”.

An object definition is made of the six visual primitives already identified
at the perceptive level (see Table 2 and Table 3). Among the existing formal
spatial relations [43], only the topological (e.g., RCC-8 model [10] for 2D
images) and extrinsic spatial relations (e.g., on the left, on the right, above,
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Table 2: List of the perceptive concepts and the descriptor categories linked
with the two roles hasSymbolicDescriptor and hasIconicDescriptor.

Visual Primitive Descriptor Category
Region Model, Boundary, Photometry, Colorimetry, Texture, Region-

Morphology, Orientation, Position, Region-Size, Topology
Edge Model, Photometry, Colorimetry, Edge-Morphology, Orienta-

tion, Position, Edge-Size
Background Model, Photometry, Colorimetry, Texture
Point of Interest Model, InterestPoint-Morphology, Position, Photometry, Col-

orimetry
Image Area Model, Photometry, Colorimetry, Texture, Region-

Morphology, Orientation, Position, Region-Size
Cloud of Points Model, Photometry, Colorimetry, Region-Morphology, Orien-

tation, Position, Region-Size

in front of, at a distance of—where the reference frame is the image) are
represented. To our knowledge, these are the only ones actually used in
image processing algorithms.

4.4 Task Concepts

Tasks are specified by a verb and one optional argument. Available verbs are
listed in Table 4 and cover the six categories of image processing objectives.
The argument specifies the element on which the verb acts. It can be an
object of interest identified at the semantic level (e.g., Extract <object>),
or a visual primitive defined at the perceptive level (e.g., Detect <edge>) or
a general image property altered by the acquisition system and characterized
at the physical level (e.g., Correct <noise> or Enhance <colorimetry>).
Notice that Detect <object> is just the detection of the presence of the
object whereas Extract <object> includes the localization of the object.

4.5 Constraint Concepts

The constraints and their related acceptable errors are represented as pre-
defined phrases. They are listed in Table 5, Table 6, and Table 7. More
particularly, there exist two possible values for the quality criterion of the
control constraints:

• “Reliability” limits the system applicability to the conditions specified
in the objective. It means that the quality of the result is the most
important constraint, and thus it is better to do nothing than to yield
poor results when processing unexpected input images. For example,
this is a critical criterion when dealing with digitization of cultural
heritage materials.
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Table 3: List of the perceptive descriptor category concepts with their sub-
concepts.
Descriptor Category Descriptor
Model Model: Blob

Edge-Morphology Contrast: Numeric, Level*

Shape: {curve, straight line}
Status: {open, close, loop}
Profile: {roof, peak, step}

Straightness: Numeric, Level*

Boundary Nature: {edge, limit of texture, limit of homogeneous regions, no boundary}
Reference: cf. the visual primitive description: edge

Photometry Brightness:Level*, Numeric, Image

Contrast: Level*, Numeric, Image

Model: Patch, Image

Colorimetry Hue: Numeric, Level*

Saturation: Numeric, Level*

Lightness: Numeric, Level*

Texture Direction: Numeric [deg], {horizontal, vertical, oblique}
Scale: {macro, micro}
Type: {no-texture, contour, dot, complex, periodic}

Topology Number of holes: Numeric

Orientation Orientation: Numeric, {vertical, horizontal}
Position Center of mass: Coordinate

Edge-Size Length: Numeric [pixel],Level*

Thickness: Numeric [pixel],Level*

Region-Size Area: Numeric[pixel2],Level*

Volume: Numeric[pixel3],Level*

Bounding Box: Numeric [pixel2|pixel3], Level*

Diameter: Numeric [pixel], Level*

Thickness: Numeric [pixel], Level*

Net perimeter: Numeric [pixel], Level*

Convex perimeter: Numeric [pixel], Level*

Region-Morphology Shape: {square, rectangular, circle, ellipsoid, parallelepiped, cubic, sphere}

Compactness: Numeric,Level*

Convexity: Numeric, Level*

Elongation: Numeric,Level*

Number of angles: Numeric

Rectangularity: Numeric,Level*

Roundness: Numeric,Level*

InterestPoint-Morphology Junction type: {L, T, X, Y}
*Level: {null, very low, low, medium, high, very high}

• “Robustness” extends the system applicability to unspecified condi-
tions. It means that the production of a result is the most important
constraint, and thus it is better to produce partial and even poor re-
sults than no result at all. For example, this is an important criterion
for robotic vision systems.
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Table 4: List of the image processing task concepts of the ontology.
Objective Task
Compression Compress
Detection Extract <object>

Detect <object>
Detect <point of interest>
Detect <edge>

Enhancement Enhance <photometry>
Enhance <colorimetry>
Enhance <blur>

Segmentation Partition
Restoration Correct <noise>

Correct <photometry>
Correct <colorimetry>
Correct <geometry>
Correct <storage>
Inpaint

Reconstruction Reconstruct-shape
Reconstruct-depth
Reconstruct-motion

Table 5: List of the criteria to be optimized linked to the tasks by the role
hasOptimizationCriterion, with their related acceptable errors.
Task Criterion to be optimized Acceptable Error
Compress Maximize compression rate

Maximize image quality
Detect Maximize hits {Prefer miss to false alarm, Prefer false alarm to miss}
Enhance Maximize fine detail visualization
Extract Maximize hits {Prefer miss to false alarm, Prefer false alarm to miss}

Maximize boundary localization {Prefer boundary inside, Prefer boundary outside}
Partition Maximize segmentation precision {Prefer sub-segmentation, Prefer over-segmentation}

5 Experimentations

Defining quantitative measures to evaluate the formulation language is a dif-
ficult task since experimental results widely depend upon the performances of
the system used to automatically develop application programs from queries
formulated with this language. As a validation protocol, we propose to inves-
tigate a more qualitative assessment: the expressive power of the formulation
language. First, this expressive power is assessed by the ability of language to
represent various formulations of a same application obtained by reverse en-
gineering of solutions proposed in the literature. We want to show that each
representation sticks to one point of view about the application and that it
contains necessary information that justifies the use and the parametrization
of the related solution.

Experimentations have been conducted from reverse engineering of a
dozen of application domains (e.g., license plate recognition, text detection,
film restoration, etc.). In order to conduct experimentations, a first prototype
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Table 6: List of the levels of detail linked to the tasks by the role hasDe-
tailLevel, with their related acceptable errors.

Task Level of detail Acceptable Error
Detect Need all pixels {Prefer more to less, Prefer less to more}

Need at least one pixel
Exclude borders touching

Enhance Do not affect colors rank
Do not affect colors ratio
Do not add new pixel values
Do not affect region shape
Do not affect edge profile

Correct Do not affect colors rank
Do not add new pixel values
Do not affect edge profile
Do not affect colors ratio
Do not affect region shape

Extract Put boundary inside / outside
Do not separate aggregate
Separate all {Prefer separation, Prefer no separation}
Separate just-touching {Prefer separation, Prefer no separation}
Regularize contours
Exclude borders touching
Reach sub-pixel precision localization

Table 7: List of the control constraints linked to the tasks by the role has-
ControlConstraint.

Constraint Category Qualifier
Performance criterion Optimization {runtime-limit, real-time}
Quality criterion Ability {reliability, robustness, best compromise}

of a system oriented towards the production of customized programs has been
implemented [41]. The program generator is Borg [9], a knowledge-based sys-
tem based on a blackboard architecture that accepts requests complying with
our ontology and that generates executable image processing programs. The
ontology is used by the system through the OWL-API. For each application
domain, the system is first configured with various suitable algorithms found
in the literature. Then, the system is used with a given application ontology
built by a user for a particular application from which the system selects and
tunes the best algorithm.

In this section, we describe the case of the aerial imagery application
presented in the introduction. We study four different solutions that have
been proposed by different authors [34, 6, 15, 47]) and proposed suitable
related formulations that motivate the selection and the parametrization of
each solution. Second, the expressive power is assessed by the ability of
the language to account for precise requirements. We demonstrate that a
same task can lead to a variety of objectives simply by varying arguments,
constraints and reference images.
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5.1 Representation of Aerial Imagery Objectives

5.1.1 Goal Specification

The objective of localization of each potential vegetation area is divided into
three sequential image processing tasks:

1. Correct storage defects: it aims at correcting compression defects;

2. Extract urban areas: it aims at removing urban areas from the image
because we consider they hinder the full achievement of the next task;

3. Extract agricultural fields.

Table 8 details the specification of the extract agricultural field task. The
related constraints are motivated by the fact that the post-processing of this
task is a region classification that uses photometry, morphology, location,
and size measurements. The first criterion to be optimized is the detection
rate and the related acceptable error gives preference to false detections over
misdetections. False detections can be eliminated during the classification
step. The localization of the agricultural field boundaries is the second cri-
terion to be optimized. In case of doubt about the location of a boundary,
the related acceptable error gives preference to processing techniques that
put boundary inside the region, in order to avoid photometry measurement
errors with pixels outside of the field. The level of detail indicates that it is
necessary to separate just-touching fields. In cases where it is difficult to de-
cide whether a region corresponds to one or more fields, the acceptable error
indicates a preference to separation, which means that over-segmentation is
preferred over under-segmentation. For internal consistency reasons, it is a
better solution to have several regions for a same field rather than several
fields in a same region.

finally, because reproducibility is the key point of this application, ro-
bustness is preferred to reliability.

Table 8: The representation of the goal ’extract agricultural field’.
Criterion to be optimized Maximize hits (prefer false alarm to miss)
(acceptable error) Maximize boundary localization (prefer boundary in-

side the region)
Level of detail Separate just-touching (prefer separation)
(acceptable error)
Performance criterion Optimization = runtime-limit < 30s
Quality criterion Ability = robustness
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5.1.2 Physical Definition for the Correct Storage Goal

The physical level definition of the image class for the correct storage goal
is presented in Table 9. In this definition, it is noticeable that the image
storage produces a block effect due to the JPEG compression. The transfer
function is defined as linear. The noise is described as white Gaussian with
a zero mean and a low standard deviation. This definition leads to choose
a smoothing algorithm that reduces the block effect. So, the two next goals
use the same physical definition but without the storage defect.

Table 9: Description of the aerial imagery application at the physical level
for the correct storage task.

Acquisition effect hasDescriptor
Colorimetry Color space = RGB
Quantization Function = linear
Noise Composition = additive

Distribution = Gaussian
Power Spectral Density = white noise
Mean = 0
Standard-deviation = low

Storage Defect = block effect

5.1.3 Semantic Definition for the Extract Field Task

Since all objects of interest are predictable and describable, the definition of
the image class is done at the semantic level. The tree of interest objects is
given in Fig 13. In this tree, a landscape scene is considered as composed of
juxtaposed objects, specified by the ’externally connected’ topological rela-
tion between the geographic objects.

Figure 13: A landscape scene is composed of juxtaposed body of water, vege-
tation, urban area, and road objects. The juxtaposition of the geographic ob-
jects is represented by the topological relation “externally connected” (EC).
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Three different solutions proposed in the literature [34, 6, 15, 47] are
studied for performing the extract field task. Each one is motivated by a
point of view about the semantic definition of the agricultural field object.

(1) The first approach is based on a region growing method controlled by
edges. For example, M. Butenuth et al. [4] propose to use a watershed seg-
mentation controlled by the gradient image, where markers are imposed as
minima of the gradient image. They justify the use of this algorithm by the
fact that the field areas are homogeneous regions (Texture.Type: no texture)
and the field boundaries are highly contrasted (Edge-Morphology.Contrast:
high). M. Mueller et al. [34] propose to control the region growing process
with the edges extracted from a prior edge detection algorithm. They con-
sider that field boundaries are well defined, with high brightness contrast to
neighboring regions (Edge-Morphology.Contrast: high) and a typically long
and straight shape (Edge-Morphology.Shape: straight line; Edge-Size.length
> low). In both solutions, a second step is then carried out to merge neigh-
boring regions with low gray level difference (Texture.Type: no texture) and
small regions into larger ones (Region-Size.Area: level >= low). A final step
is performed in order to fulfill the ’maximize boundary location’ constraint.
M. Butenuth et al. use the snake algorithm. The snakes are initialized as
the smallest bounding rectangle of each extracted field since fields are par-
allelepiped regions (Region-Morphology.shape: parallelepiped). The exter-
nal energy is the absolute value of the gradient (Edge-Morphology.Contrast:
high) and the internal energy is set so as to favor rigidity because the field
boundaries are described as straight and long edges (Edge-Morphology.Shape:
straight line; Edge-Size.Length > low).

Table 10 represents an excerpt of a semantic definition that leads the
system to select and parametrize algorithms implementing the region growing
approach.

Table 10: A semantic definition that supports the region growing approach.
Object of Interest hasDefinitionElement hasDescriptor
Field Region (field area) Texture.Type = no texture

Texture.Scale = micro
Texture.Direction = 0 degree
Colorimetry.Hue = [π/6,π/2] ∪ [2π/3,4π/5]
Region-Morphology.Shape = parallelepiped
Region-Size.Area >= low
Boundary.Nature = edge

Edge (Field Boundary) Edge-Morphology.Contrast = high
Edge-Morphology.Shape = straight line
Edge-Size.Length > low

(2) The second approach is based on variational methods. G. Cao et
al. [6] use active curve evolution via a level set algorithm to partition the
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input images. The level sets are parametrized with texture features (mod-
eled by a 3-level wavelet decomposition). The authors assume that region
classes can be discriminated by a complex rotation invariant micro texture
(Texture.Type: complex; Texture.Scale: micro; Texture.Direction: 0 ). The
algorithm uses samples of each class of agricultural field to automatically
compute texture features (Model: blobs).

Therefore, the image class definition given in Table 11 can be used to
select and control level set algorithms.

Table 11: A semantic definition that supports the variational approach.
Object of Interest hasDefinitionElement hasDescriptor
Field Region (field area) Texture.Type = complex

Texture.Direction = 0 degree
Texture.Scale = micro

Model = . . .

(3) The third approach is based on supervised pixel classification. This
approach needs a training step from sample images. M-P. Dubuisson-Jolly
et al. [15] use a maximum likelihood classification that combines texture
and color information. The RGB color and micro-texture features are com-
puted with a simultaneous autoregressive (SAR) model, from the blobs (Tex-
ture.Type: complex; Texture.Scale: micro; Colorimetry.Hue: [π/6,π/2] ∪
[2π/3,4π/5]; Model: blobs). F. Xu et al. [47] propose to use SVM for pixel
classification. The SVM is based on seventeen micro texture features whose
values are extracted from the blobs (Texture.Type: complex; Texture.Scale:
micro; Model: blobs).

The selection of these two statistical approaches is motivated by the se-
mantic definition given in Table 12, where fields are supposed to be discrim-
inated from other regions by texture only, or by conjoint use of texture and
color.

Table 12: A semantic definition that supports the statistical approach.
Object of Interest hasDefinitionElement hasDescriptor
Field Region (field area) Texture.Type = complex

Texture.Scale = micro
Texture.Direction = 0 degree
Colorimetry.Hue = [π/6,π/2] ∪ [2π/3,4π/5]

Model = . . .
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5.2 Specification of Precise Objectives

The second example illustrates that combining the specification by task and
by example enables a wide variety of nuances as well as a precision in the
specification of objectives. The same basis image enhancement task can be
derived into several different objectives:

1. The task ’enhance <photometry>’ covers over-exposed, under-exposed
or low contrasted image enhancement. The task ’enhance <colorime-
try>’ aims at enhancing too washed out or too saturated images and
the task ’enhance <blur>’ corresponds to image sharpening.

2. The associated constraint can then be used to refine the task scope.
For example, the task ’<enhance photometry>’ with the level of detail
’do not affect color rank’ restricts enhancement to global contrast and
brightness modifications by lut transforms, whereas with ’maximize fine
detail visualization’ as criterion to be optimized the task allows more
radical modifications such as histogram equalization or homomorphic
filtering.

3. Finally, adding reference images to the task ’enhance <photometry>’
means that the photometry enhancement should be based on the model
specified by the reference images. This can be achieved by histogram
matching.

6 Conclusion

In this paper, a computational model and a corresponding domain ontology
for the representation of image processing application objectives have been
proposed. Compared to other work that uses ontologies to capture a priori
information about image analysis applications (e.g., [33, 22, 46, 35, 29]),
our contribution is original in the sense that only information at the image
processing level is considered and all image processing objectives are covered.
We bet on the existence of an image processing domain with its own concepts
and vocabulary, which is independent from application domains and from
which it is possible to represent the objective of any application. This is
achieved by building the model and the ontology upon the three following
assumptions:

1. An application is defined for one goal and one context in one image
class. The intent is to limit the input image variability.
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2. The goal is stated from a task with constraints and optional reference
images. The specification by task enables precise identification of the
goal and the taking into account of the user requirements. The reference
images link the task to the image reality.

3. The definition of the image class relies on the phenomenological hypoth-
esis and is based on a three-level denotation of relevant information:
physical, perceptive, and semantic denotations. Depending on whether
pieces of information are more accurately provided by examples or by
a linguistic description, an extensional or an intensional denotation of
the relevant information is used.

Several experiments have been carried out by reverse engineering of exist-
ing applications (such as the aerial imagery application) and by engineering
of new applications to assess the expressive power of the formulation lan-
guage. These experiments allow us to conclude that, although expressing
the semantics by means of purely syntactic representation is not sufficient to
capture the actual meaning of an image [44], it is nonetheless sufficient to
design image processing programs. In the context defined by the syntactic
semantics, semantic understanding is considered as the process of under-
standing an application domain in terms of the image processing domain
[39]. The meaning of an application of a given domain is represented as a set
of relationships between purely syntactic or iconic structures of the image
processing domain.

The benefit of such formulation language is obviously to help image pro-
cessing developers make the production of applications more robust and more
reliable. An objective representation is considered as a contractual document,
which reflects a consensus between the application domain specialist who sets
the problem and the developer who produces the application. The explicit
representation of objectives is also a means for the reuse and even the mere
reproduction of existing solutions. Because of the lack of such formalization,
solution reuse is too seldom exploited in image processing [48].

This work opens new perspectives for the design of automatic software
generation systems. We are currently developing a human-computer inter-
action system which collaborates with users to compose programs by co-
construction between what the users expect and what the system is able to
produce. Since extensional definitions of the image class are easy to provide
for users and the system uses intensional definitions for problem solving, the
system performs several formulation cycles to gradually build an intensional
definition from an initial extensional definition, by using interactive feature
extraction and feature selection with the generation of intermediate results
from test images.
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We also propose to reconsider our software generator Borg, so as to avoid
the pitfall of the knowledge acquisition process. This new version of the
software generator will be based on the case-based reasoning paradigm. This
paradigm has already been used in image processing [36, 18] and in particular
by our team [17]. A case is an image processing solution in terms of a chain
of algorithms. We propose to store the case with the formulation for which
it has been developed. Then, the generation of a new application consists in
retrieving and revising a ’similar’ case, from the analysis of the formulation
contents.

Finally, we also plan to use this ontology to automatically generate evalua-
tion rules. The formulation provides an explicit representation of the purpose
and the semantics of the application from which it is possible to draw up cus-
tomized discrepancy metrics between a result and a reference. Such metrics
can then be used by systems that use learning techniques to select the best
algorithm [30]. The system is trained on test images to choose the algorithms
and their parameter values yielding the results closest to the references.
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