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We propose an Euclidean medial axis filtering method which generates subsets of Euclidean medial axis were filtering rate is controlled by one parameter. The method is inspired by Miklos', Giesen's and Pauly's scale axis method which preserves important features of an input object from shape understanding point of view even if they are at different scales. Our method overcomes the most important drawback of scale axis: scale axis is not, in general, a subset of Euclidean medial axis. It is even not necessarily a subset of the original shape. The method and its properties are presented in 2D space but it can be easily extended to any dimension. Experimental verification and comparison with a few previously introduced methods are also included.

Introduction

The notion of medial axis has been introduced by Blum in the 60s [START_REF] Blum | A transformation for extracting new descriptors of shape[END_REF]. The medial axis of an object X is composed by the centers of the balls which are included in X but which are not fully included in any other ball included in X. This set of points is, by nature, centered in the object with respect to the distance which is used to define the notion of ball.

In the literature, different methods have been proposed to compute the medial axis approximately or exactly, for instance methods relying on discrete geometry [START_REF] Borgefors | The euclidean distance transform: finding the local maxima and reconstructing the shape[END_REF][START_REF] Hesselink | Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform[END_REF][START_REF] Hulin | Axe Médian Discret : Propriétés Arithmétiques et Algorithmes[END_REF][START_REF] Chaussard | Robust skeletonization using the discrete lambda-medial axis[END_REF], digital topology [START_REF] Davies | Thinning algorithms: A critique and a new methodology[END_REF][START_REF] Talbot | Euclidean skeletons and conditional bisectors[END_REF], mathematical morphology [START_REF] Serra | Image analysis and mathematical morphology[END_REF], computational geometry [START_REF] Attali | Delaunay conforming iso-surface, skeleton extraction and noise removal[END_REF][START_REF] Ogniewicz | Hierarchic voronoi skeletons[END_REF], partial differential equations [START_REF] Siddiqi | The hamilton-jacobi skeleton[END_REF], or level-sets [START_REF] Kimmel | Skeletonization via distance maps and level sets[END_REF].

In this work we focus on the discrete medial axis based on the Euclidean metric.

The medial axis is a very useful representation of the object and plays a major role in shape analysis in numerous applications, for example object recognition, registration or compression. From the medial axis points and associated ball radii, one can exactly reconstruct the original shape. However it can be hard or even impossible to use this tool effectively without first dealing with some problems, especially in discrete spaces and with noisy objects.

Firstly, the medial axis in discrete spaces has not, in general, the same topology as the original object. Solutions to this problem have been proposed by several authors, for instance [START_REF] Davies | Thinning algorithms: A critique and a new methodology[END_REF][START_REF] Talbot | Euclidean skeletons and conditional bisectors[END_REF][START_REF] Couprie | Discrete topological transformations for image processing[END_REF]. They use discrete homotopic transformations guided and constrained by the medial axis, to obtain homotopic skeleton which contains the medial axis (see, Fig. 1). We do not consider these topological problems in the rest of the paper, and rely on this solution.

The second problem is sensitivity of the Euclidean medial axis to small contour perturbations (see, for example, Fig. 1). In other words, the medial axis is not stable under small perturbations of a shape: modifying a shape slightly (for example in terms of Hausdorff distance) can result in substantially different medial axes. This is a major difficulty when the medial axis is used in practical applications (e.g. shape recognition). A recent survey which summarises selected relevant studies dealing with this topic is presented in [START_REF] Attali | Stability and computation of the medial axis -a state-of-the-art report[END_REF]. This fact, among others, explains why it is usually necessary to add a filtering step (or pruning step) to any method that aims at computing the medial axis and when a nonreversible but simplified description of binary objects is of interest. The simplest strategy to filter the medial axis is to keep only points which are centers of maximal balls of at least a given diameter. Different criteria can be used to locally threshold and discard spurious medial axis points or branches: see [START_REF] Attali | Pruning discrete and semicontinuous skeletons[END_REF][START_REF] Couprie | Discrete bisector function and euclidean skeleton in 2d and 3d[END_REF], for methods based on the angle formed by the vectors to the closest points on the shape boundary, or the circumradius of these closest points [START_REF] Chazal | The λ-medial axis[END_REF][START_REF] Hesselink | Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform[END_REF].

In these methods, a local information (that is, geometric information extracted from a single medial ball) is compared to a global parameter value to determine the importance of the corresponding medial axis point. However, it is well known that this local filtering can lead to remove small branches which might be important for the shape understanding (see Fig. 2) especially for shapes with features at different scales [START_REF] Attali | Stability and computation of the medial axis -a state-of-the-art report[END_REF]. The filtered medial axis of X (in black) calculated by using algorithm [START_REF] Chaussard | Robust skeletonization using the discrete lambda-medial axis[END_REF]. The medial axis is not sufficiently filtered in the middle of the shape. However, we already start to loose the tail; (c) A more filtered medial axis of X. Now, the middle of the shape is well filtered. However, we lost all information about the tail.

A more complex criterion was proposed by [START_REF] Coeurjolly | Optimal separable algorithms to compute the reverse euclidean distance transformation and discrete medial axis in arbitrary dimension[END_REF]: they utilize information about ball importance in the shape with respect to all other balls by counting the number of object points inside a ball which are not covered by other balls. The medial axis point will be removed if the uncovered area of corresponding ball is too small.

In [START_REF] Miklos | Discrete scale axis representations for 3d geometry[END_REF], the authors address this issue and propose an approach that put in relation local information and regional information, that is, the status of a ball is only influenced by the one of neighboring balls. Their method is based on the theory of the scale axis transform [START_REF] Giesen | The scale axis transform[END_REF], and defines a whole family of medial representations at different levels of abstraction, called scale axis representations (see Fig. 3). For objects or scenes that include parts showing different scales, this method gives good results in many cases. However, the scale axis representation is not free of drawbacks. The most important one is that the scale axis is not necessarily a subset of the Euclidean medial axis (see Fig. 4), it is even not necessarily a subset of the original shape.

In this paper we propose a new method for the Euclidean medial axis filtering (see section 4). Our proposition is inspired by the scale axis method (see section 3). However, as result we obtain a filtered Euclidean medial axis instead of a set of points that is not necessarily a subset of the latter. Furthermore, our method produces axes that preserve important features for shape understanding, even if they are at different scales. Therefore, our algorithm overcomes the most important drawbacks noticed in previously presented methods following a similar approach. Moreover, the new method works in arbitrary dimensions. We evaluate experimentally its properties, and compare it with the previously introduced methods [9, 12] (see section 5).

Basic notions

In this section, we recall some basic geometrical and topological notions for binary images [START_REF] Chassery | Géometrie discrète[END_REF][START_REF] Kong | Digital topology: Introduction and survey[END_REF].

We denote by Z the set of integers, by N the set of nonnegative integers, and by N + the set of strictly positive integers. We denote by E the discrete space

Z d . A point x in E is defined by (x 1 , . . . , x d ) with x i in Z. Let x, y ∈ E, we denote by d(x, y) the Euclidean distance between x and y, that is, d(x, y) = ((x 1 -y 1 ) 2 + . . . + (x d -y d ) 2 ) 1/2 .
In practice, the squared Euclidean distance is used in order to avoid floating numbers. Let Y ⊂ E, we denote by d(x, Y ) the Euclidean distance between x and the set Y , that is, d(x, Y ) = min y∈Y {d(x, y)}. Let X ⊂ E (the "object"), we denote by D X the map from E to R + ∪ {0} which associates, to each point x of E, the value D X (x) = d(x, X), where X denotes the complementary of X (the "background"). The map D X is called the (Euclidean) distance map of X. Let x ∈ E, r ∈ R + , we denote by B r (x) the ball of radius r centered on x, defined by B r (x) = {y ∈ E, d(x, y) < r}. Notice that, for any point x in X, the value D X (x) is precisely the radius of a ball centered on x and included in X, which is not included in any other ball centered on x and included in X. Now, let us recall the notion of medial axis (see also [START_REF] Rosenfeld | Digital image processing[END_REF][START_REF] Talbot | Euclidean skeletons and conditional bisectors[END_REF]). Let X ⊆ E. A ball B r (x) ⊆ X, with x ∈ X and r ∈ N + , is maximal for X if it is not strictly included in any other ball included in X. The medial axis of X, denoted by MA(X), is the set of the all couples (x, r) such that B r (x) is a maximal ball for X.

Let X ⊂ E, Y ⊂ X, we denote by REDT X (Y ) the reverse Euclidean distance transform [START_REF] Coeurjolly | Optimal separable algorithms to compute the reverse euclidean distance transformation and discrete medial axis in arbitrary dimension[END_REF], defined by

REDT X (Y ) = y∈Y B D X (y) (y).
For exact and unfiltered MA(X) we have X = REDT X (M A(X)).

Discrete scale axis

In this section, we adapt the notion of scale axis (see [START_REF] Miklos | Discrete scale axis representations for 3d geometry[END_REF][START_REF] Giesen | The scale axis transform[END_REF]), originally introduced in the continuous space and implemented in a framework of unions of balls, to the case of discrete grids. We denote by R + the set of strictly positive reals. Let X ⊆ E, x ∈ X, r ∈ N + and s ∈ R + . The parameter s is called the scale factor. We denote by X s the multiplicatively s-scaled shape, defined by X s = (x,r)∈M A(X) B rs (x). For s 1, we denote by SAT s (X) the s-scale axis transform of X, defined by

SAT s (X) = {(x, r/s) | (x, r) ∈ M A(X s )}.
The original algorithm to compute discrete scale axis, given by [START_REF] Miklos | Discrete scale axis representations for 3d geometry[END_REF] in the framework of union of balls (UoBs), can be straightforwardly adapted to the case of Z d as follows. First, calculate the Euclidean medial axis of X. To do so, we use an efficient algorithm presented in [START_REF] Coeurjolly | Optimal separable algorithms to compute the reverse euclidean distance transformation and discrete medial axis in arbitrary dimension[END_REF]. Then multiply radius of each medial ball by the chosen scaling factor s.

In consequence small medial balls are covered completely by larger nearby balls since they are not important. On the other hand, small balls without larger balls in their neighborhood are not covered and will be preserved.

Next step is to reconstruct object X s based on scaled radius values. Reconstruction can be made efficiently by reverse Euclidean distance transform (see section 2). Computing the medial axis of X s achieves the simplification and M A(X s ) will be free of all covered balls, since these do not touch the boundary anymore and are thus no longer maximal. For s = 1, the scale axis is identical to unfiltered Euclidean medial axis. With increasing s, the scale axis gradually ignores less important features of X leading to successive simplifications of X s and the scale axis structure.

The final step of the algorithm consists of rescaling the medial balls of MA(X s ) by a factor 1/s to obtain the scale axis of X. Finally, discrete scale axis algorithm can be presented in the following pseudocode: Algorithm 1 DiscreteScaleAxis(Input X,s Output SAT s (X))

01.

Compute M A(X) 02.

Reconstruct Xs 03.

Compute M A(Xs) 04.

Compute SATs(X)

All four steps of DiscreteScaleAxis algorithm can be calculated in linear time in relation to #X, #X s , #X s and #M A(X s ) respectively, where #X stands for cardinality of X. Therefore, computational complexity of the algorithm is O(#X s ).

The scale filtered medial axis

The crucial part of the method presented in the previous section, which is a source of problems (MA(X s ) MA(X)), is the reconstruction part after medial balls scaling and the need for generating a new medial axis from the scaled object (see Fig. 4). On the other hand, at first sight, this is the most important part of the algorithm since the medial axis simplification occurs in this part. the multiplicatively 1.1-scaled shape of X and its 1.1-scaled axis; (c): the multiplicatively 1.3-scaled shape of X and its 1.3-scaled axis. In (b, c) we can see that scale axes are not subsets of M A(X). In both cases, an additional branch even appears.

To filter MA(X) by removing centers of unimportant medial balls one must avoid reconstruction part and hold simplification property at the same time. Therefore, to solve this problem we assume that to make efficient filtration we just need to decide which MA(X) points are not important and should be removed. Therefore, we do not generate a new object X s and its MA(X s ). In this way we obtain filtered Euclidean medial axis of X which is a subset of MA(X).

This informal discussion motivates the following definition of the Scale Filtered Euclidean Medial Axis (SFEMA).

Let x ∈ X, r ∈ N + . We denote by B X r (x) the intersection of B r (x) with X, that is, B X r (x) = {y ∈ X | d(x, y) < r}.

Definition 1. Let X ⊆ E, and s ∈ R, s 1. We denote by SF EM A s (X) the Scale Filtered Euclidean Medial Axis of X defined by

SF EM A s (X) = {(x, r) ∈ M A(X) | B X rs (x) (y,t)∈M A(X),t>r B X ts (y)}.
Below, we give an algorithm to compute SF EM A s (X) of a given object X ⊆ E.

The algorithm in line 02 performs sorting of medial axis elements, linearly in time using a counting sort [START_REF] Cormen | Introduction to algorithms[END_REF]. In the following lines the algorithm performs two loops. The first one starts in line 04 and does #X iterations. The next, nested loop, starts in line 06 and in worst case performs #M A(X) iterations. Summarizing, computational complexity of SFEMA is O(#X#M A(X)).

Examples of SF EM A s (X) for different scale factors s i , are shown in Fig. 5.

Let us analyze properties and the major differences between the Miklos's [START_REF] Miklos | Discrete scale axis representations for 3d geometry[END_REF] s-scale axis and our s-scale filtered Euclidean medial axis. The most important property is that SF EM A s (X) consists of M A(X) points only, that is, for all s 1: SF EM A s (X) ⊆ M A(X). This property (inclusion property, for short) is essential in many applications of the medial axis. In Fig. 4 we have shown an example of the Miklos's scale axis where an additional branch even appears after filtering. Fig. 6 shows another problem. The scale axis is too much simplified, looses important features of the object and is not included in the object. However, Algorithm 2 SFEMA(Input X,s Output H)

01.

H ← ∅ 02.

M A(X) ← EuclideanMedialAxis(X) 03.

Let (x1, r1), . . . , (xn, rn) denote the elements of M A(X) sorted in decreasing order of radii, that is, r1 . . . rn 04.

foreach p ∈ X do 05.

i ← 1 06.

while i n and d(xi, p) > sri do i ← i + 1 end 07.

If i n then 08.

H ← H ∪ {(xi, ri)} 09. end 10. end 11.

return

H (a) (b) (c) (d)
Fig. 5. (a): a shape X (in gray) and its Euclidean medial axis (in black); (b, c, d): the same shape and its SF EM A1.1(X), SF EM A1.4(X), SF EM A1.6(X), respectively. In all cases the elephant's tail, trunk, tusks and legs were considered as important and were not removed.

s-scale filtered medial axis holds inclusion property and permits to reconstruct the most of the original object.

The second interesting property relies on the notion of s-scale ball. If we want to simplify the object, using Miklos's scale axis, for example, by removing a medial ball B r (x), x ∈ X, the scale factor should be big enough that ball B rs (x) is included in one of other medial balls, that is, B rs (x) ⊂ B rs (y), y ∈ X (see Fig. 7c), or in a union of such balls. In our algorithm, since we use notion of s-scaled ball, we only test inclusion inside X (see Fig. 7b). This allows us to use smaller scale factor. Therefore, we have better ability to control resulting s-scale filtered Euclidean medial axis. In scale axis representation both balls will be preserved. However, the bigger ball includes the smaller one inside set X. Therefore, the smaller ball will not exist in SF EM As(X); (c): multiplicatively scaled medial balls. The smaller ball is included in the bigger one. Therefore, it is neither in the scale axis nor in SF EM As(X) .

Experiment methodology and results

In this section, we compare qualitatively and quantitatively properties of three medial axis filtering algorithms: discrete λ-medial axis (DLMA) [START_REF] Chaussard | Robust skeletonization using the discrete lambda-medial axis[END_REF], Euclidean medial axis filtered with the use of bisector function (BisEMA) [START_REF] Couprie | Discrete bisector function and euclidean skeleton in 2d and 3d[END_REF] and SFEMA.

In our experiments we use shapes from Kimia's database [START_REF] Sharvit | Symmetry-based indexing of image databases[END_REF]. We first introduce some notions which help us to compare the algorithms. As it was stated in sec. 2, considering the exact and unfiltered MA(X), the reverse Euclidean distance transform of M A(X) is equal to X. However, this property is no longer true if we consider filtered medial axes e.g. DLMA, BisEMA, SFEMA. Therefore, it is interesting to measure how much information about the original object is lost when we perform filtering. Considering a subset Y of M A(X), we define:

R X (Y ) = |X \ REDT X (Y )| |X| .
We call R X (Y ) the (normalised) residuals of Y . Residuals give us a numerical evaluation of reconstruction error. Now we can set Y to different filtered medial axes, e.g. by using different methods or filtering parameters, and then evaluate which filtration is better in respect of ability to reconstruct the original object. The result R X (Y ) is a real value between 0 (perfect reconstruction) and 1 (bad reconstruction).

The normalised residuals factor is not enough to assess the quality of a filtered medial axis. It is difficult to compare different algorithms because filtering parameters of the algorithms have different meanings, therefore we introduce the normalised medial axis size N S.

Let denote by N S X (Y ) normalised medial axis size defined as a ratio of the number of the medial axis points to the number of object points: N S X (Y ) = #Y /#X. Now we can compare normalised residuals obtained using different methods for the same N S. In other words, we replace the parameters of the different medial axis filtering algorithms by only one parameter (N S), which ensures a fair comparison.

Figure 8 presents DLMA, BisMA and SFEMA of an exemplary shape, extracted for several values of normalised residuals. The figure shows that SFEMA of smaller size than DLMA results in the same value of R. Moreover, in contrast to DLMA, SFEMA represents the most important fragments of an input object in different scales (see the tail in the last column of Fig. 8). SFEMA algorithm filters better than BisEMA some unimportant points close to the border of the sea devil main body.

The next important property of SFEMA can be concluded from Fig. 9 which shows accuracy of the object representation by filtered medial axis for different N Ss. One can see that SFEMA obtains the smallest residuals value for most N Ss. In other words SFEMA results with filtered medial axes which the most accurately represent the input object in different scales. Moreover Fig. 9 shows that SFEMA algorithm generates many more different filtered medial axes than DLMA algorithm does. This property is important when we are interested in multiscale representation of an input object. In this case, the number of different filtered medial axes generated with DLMA algorithm might be not enough. The above conclusions confirm results presented in Table 1. SFEMA has obtained the lowest mean normalised residuals for all N Ss. Fig. 9. Residuals as a function of normalised medial axis size for DLMA(curve with circles), BisEMA(curve with triangles) and SFEMA(curve with squares). Results generated for sea devil image (see Fig 8). Each marker (triangle, circle and square) represents parameters of one filtered medial axis. Lines has been added only to emphasise the trend of measurements generates subsets of Euclidean medial axis, filtering is based on only one parameter, generates filtered medial axes which preserve important parts of an input object in different scales, obtains smaller normalised residuals than other compared medial axis filtering algorithms, computation complexity of the algorithm is O(#X#M A(X)).

Future works will include the design of a more formalised framework for quantitative comparison of filtered medial axes at different scales. Using this framework the authors plan to perform more tests for 2D and 3D objects.

Fig. 1 .

 1 Fig. 1. (a): a shape (in gray) and its Euclidean medial axis (in black); (b) the homotopic skeleton of the shape constrained by its Euclidean medial axis; (c) the same shape, but with small amount of noise added on the contour. The medial axis of the shape (c) is much more complicated than the medial axis of the shape (a).

Fig. 2 .

 2 Fig. 2. (a): a shape X (in gray); (b):The filtered medial axis of X (in black) calculated by using algorithm[START_REF] Chaussard | Robust skeletonization using the discrete lambda-medial axis[END_REF]. The medial axis is not sufficiently filtered in the middle of the shape. However, we already start to loose the tail; (c) A more filtered medial axis of X. Now, the middle of the shape is well filtered. However, we lost all information about the tail.

Fig. 3 .

 3 Fig. 3. Different scale axes of the same object (contoured), using different values of the scale parameter. In pink, the part of the object reconstructed from the filtered axis.

Fig. 4 .

 4 Fig. 4. (a): a shape X (in gray) and its Euclidean medial axis M A(X) (in black); (b):the multiplicatively 1.1-scaled shape of X and its 1.1-scaled axis; (c): the multiplicatively 1.3-scaled shape of X and its 1.3-scaled axis. In (b, c) we can see that scale axes are not subsets of M A(X). In both cases, an additional branch even appears.

Fig. 6 .

 6 Fig. 6. (a): a set X (in green) and its M A(X) (in black); (b): the 1.3-scale axis of X; (c): the 1.3-scale filtered medial axis of X.

Fig. 7 .

 7 Fig. 7.(a): a set X (in green) and its M A(X) (red dots); (b): multiplicatively scaled medial balls. The smaller ball is not fully covered by the bigger one after scaling. In scale axis representation both balls will be preserved. However, the bigger ball includes the smaller one inside set X. Therefore, the smaller ball will not exist in SF EM As(X); (c): multiplicatively scaled medial balls. The smaller ball is included in the bigger one. Therefore, it is neither in the scale axis nor in SF EM As(X) .

Fig. 8 .

 8 Fig. 8. Medial axes in black superimpose to input object in grey color. Consecutive rows (from left to the right) contain results for DLMA, BisEMA and SFEMA respectively. Columns contain results for different values of normalised residuals: 0.01, 0.03, 0.05, 0.1 respectively.

Table 1 .

 1 Average normalised residuals calculated for 18 representative shapes from Kimia's database[START_REF] Sharvit | Symmetry-based indexing of image databases[END_REF]. Lowest values are highlighted in gray

				2D
		NS	2%	3%	5%
	.	DLMA 0.2566 0.1717 0.0996
		BisEMA 0.3268 0.1183 0.0775
		SFEMA 0.0991 0.0562 0.0112
	6 Conclusions			
	The article presents a new method for Euclidean medial axis filtering which
	possesses the following properties:		
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