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Abstract

In this paper, we focus on statistical region-based active contour models where image features
(e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. ex-
ponential) rather than confining ourselves to the special Gaussian case. In the framework developed
in this paper, we consider the general case of region-based terms involving functions of parametric
probability densities, for which the anti-log-likelihood function is a special case. Using shape deriva-
tive tools, our effort focuses on constructing a general expression for the derivative of the energy
(with respect to a domain), and on deriving the corresponding evolution speed. More precisely, we
first show by a counterexample that the estimator of the distribution parameters is crucial for the
derived speed expression. On the one hand, when using the maximum likelihood (ML) estimator
for these parameters, the evolution speed has a closed-form expression that depends simply on the
probability density function. On the other hand, complicating additive terms appear when using
other estimators, e.g. method of moments. We then proceed by stating a general result within the
framework of multi-parameter exponential family. This result is specialized to the case of the anti-
log-likelihood score with the ML estimator and to the case of the relative entropy. Experimental
results on simulated data confirm our expectations that using the appropriate noise model leads to
the best segmentation performance. We also report preliminary experiments on real life Synthetic
Aperture Radar (SAR) images to demonstrate the potential applicability of our approach.

keywords Segmentation, Region-based active contours, Exponential family, Shape derivation, Maxi-
mum likelihood, Relative Entropy.
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1 Introduction

State of affairs

In image segmentation, the main issue is to extract one or several regions according to a given criterion.
Since the seminal work of [1, 2], active contours have proven their efficiency for such a task. The general
idea behind active contours model is to apply partial differential equations (PDEs) to deform a curve
towards the boundaries of the objects of interest. Snakes [1], balloons [3] and geodesic active contours
[2] were pioneering works on active contour model. In these methods, the contour is driven towards
image edges. More recently, region-based active contours (i.e. RBAC) were proposed [4, 5, 6, 7, 8]. In
these approaches, region-based terms can be advantageously combined with boundary-based ones. The
evolution equation is generally deduced from a general criterion to minimize that includes both region
integrals and boundary integrals. The combination of those two terms in the energy functional allows
the use of photometric image properties, such as texture [9, 10, 11, 12] and noise [13, 14, 15], as well as
geometric properties such as the prior shape of the object to be segmented [16, 17, 18, 19, 20, 21], see also
the review in [22]. RBACs have proven their efficiency for a wide range of applications such as medical
image segmentation [23, 24], video object segmentation or tracking [25]. The main issues when dealing
with RBACs models are the definition of an appropriate criterion for the given segmentation problem
and the derivation of the PDEs from this criterion.

Concerning the latter issue, we first point out that the PDE derivation is not trivial when the energy
criterion involves region functions. This is mostly due to the fact that the set of image regions does
not have the structure of a vector space, preventing us from using in a straightforward way gradient
descent methods. To circumvent this problem, we propose to take benefit of the framework proposed in
[26, 27, 28], based on shape derivation principles developed in [29, 30]. This framework is particularly well-
adapted when dealing with global information of the region such as statistical image features (e.g. mean,
variance, entropy, histogram) viewed as empirical probability density function (pdf)-based estimates. In
this case, one must pay attention to the fact that these features are globally attached to the region and
must then be taken into account in the shape derivation framework [26, 27, 28].

As far as the definition of the criterion is concerned, we focus on region-based terms that allow
to take benefit of statistical image properties. And we pay a particular attention to the random part
that contaminates the image coming during its acquisition process, i.e. the noise model. In many
papers [13, 14, 15], the authors proposed region-based terms that involve functions of the pdf of some
image attributes within the region. The minimization of the anti-log-likelihood is classically used for the
segmentation of homogeneous regions [6, 7, 31, 32, 33]. However, many works implicitly consider that the
intensity inside homogeneous regions follows a Gaussian law. This is the case in [34] when minimizing
the mean squared error between the pixel intensity and the mean of the region, or in [7, 11] where they
use the two parameters of Gaussian distributions (µ, σ2). However such an assumption is not always
justified. For example, it is well known that under appropriate conditions (large number of randomly
located scatters), the Rayleigh distribution is well suited to model the noise in echographic data [35].
Some recent papers consider a more general case where the pdf belongs to other families [36, 33, 37, 38].
The pdf is then characterized by one or more parameters describing the underlying statistical model.
These parameters depend on the region and must be estimated at each evolution step of the active
contour. This necessitates to estimate these region-dependent parameters, which can be achieved using
various estimators, typically method of moments, maximum likelihood (ML). Nonetheless, to the best of
our knowledge, the influence of the estimation method on the computation of the evolution equation has
never been investigated.

Contributions

In the framework developed hereafter, we consider the general case of region-based terms involving
functions of parametric pdfs without restricting ourselves solely to the anti-log-likelihood function. Using
shape derivative tools [30, 26, 27, 28], our effort focuses on constructing a general expression for the
derivative of the energy (with respect to a domain) and on deriving the corresponding evolution speed
term. Shape derivation tools lead us to obtain very general results and to rigorously take into account the
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way the distribution parameters were estimated. As far as the derivation is concerned, we particularly
pay attention to the fact that distribution parameters depend on the region. More precisely, we show
by a counterexample that the estimator of the distribution parameters is crucial for the derived speed
expression. On the one hand, when using ML estimators for the parameters, the evolution speed has a
closed-form expression that depends simply on the pdf. On the other hand, complicating additive terms
appear when using other estimators such as the method of moments. We then provide a general result
for the evolution equation within the framework of multi-parameter exponential family. The rationale
behind using the exponential family is that it includes, among others, Gaussian, Rayleigh, Poisson and
Bernoulli distributions that have proven to be useful to model the noise structure in many real image
acquisition devices (e.g. Poisson for photon counting devices such as X-ray or CCD cameras, Rayleigh
for ultrasound images, etc). Our general framework is also specialized to some particular cases, such
as the anti-log-likelihood score or the relative entropy. These particular cases are chosen because they
allow to formulate a wide range of region criteria in image segmentation, e.g. anti-log-likelihood as
region homogeneity measure, relative entropy for region competition. Interestingly, when particularizing
our general expression to the anti-log-likelihood associated to the ML estimator for the parameters, we
recover the same expressions as those previously published in the literature, e.g. [6, 13]. The evolution
using relative entropy for the whole exponential family has, to the best of our knowledge, never been
investigated. Some works propose to use the relative entropy for medical image segmentation [] but they
restric their study to the Gaussian model. Beside theoretical arguments, we also provide experimental
results to support our claims and show the influence of the noise model on the final segmentation.

This paper is organized as follows. In Section 2 we briefly remind some key concepts on shape
derivation tools. Then, in Section 3 we present the statistical framework for our noise model, we review
some properties of the exponential family and we state a first result within this framework. In Section 4,
we put all previous ingredients together and give our main theoretical results on the whole exponential
family. In Section 5 we detail our segmentation algorithm and our experimental results. In Section 6 we
conclude and present some perspectives. Proofs are deferred to the appendix awaiting inspection by the
interested reader.

Notations

Notation Signification

ΩI The image domain
Ω A region of the image
∂Ω The boundary of the region Ω
|Ω| Region size

∫
Ω
dx

I(x) The intensity of the pixel at the location x

k(x,Ω) The region descriptor of Ω
kb(x) The boundary descriptor of ∂Ω
Ωin Inside region
Ωout Outside region

< J ′(Ω),V > The Eulerian derivative of domain energy criterion J(Ω)
p(y,η) Probability density function (pdf) of the random variable Y

η Hyper-parameter vector of the pdf
E[Y ] Expectation of the random variable Y

k′(x,Ω,V) The domain derivative of the function k
speed(x,Ω) Evolution speed of the active contour

2 Shape derivation theory

In this part we introduce the general criterion to minimize and we briefly remind some necessary details
on shape derivative tools and on the associated evolution equation.
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2.1 Introduction of a general criterion

Let U be a class of domains (open, regular bounded sets, i.e. C2) of Rd (d = 2 in two-dimensions),
and Ω an element of U . The boundary ∂Ω of Ω is sometimes denoted by Γ. The segmentation problem
consists in extracting one or more regions Ω from the complete image ΩI . We search for the domain
or the partition of the image that minimizes a general functional which is composed of a combination
of region-based terms and boundary based terms. The minimization is performed using active contours
that are driven by an evolution equation directly deduced from the functional.

On the one hand, the region-based term corresponds to a global information on the region of interest.
It can for example describe the homogeneity of a region. The region-based term is usually expressed as
a domain integral of a function k called descriptor of the region or by abuse of terminology, homogeneity
criterion:

Jr(Ω) =

∫

Ω

k(x,Ω)dx . (1)

In the general case the function k may depend on the domain. For example when minimizing the difference
between the intensity and the mean value inside the region, we take k equal to (I(x)− µ(Ω))2 and µ(Ω)
obviously depends on the domain Ω.

On the other hand, the boundary-based term corresponds to a local information on the boundary of
the region of interest. It can be used as a regularization term. The boundary-based term is expressed as
a boundary integral of a function kb coined boundary descriptor of the region or by abuse of terminology,
regularity criterion:

Jb(δΩ) =

∫

δΩ

kb(x)da(x) , (2)

where da(x) is the area element. An example of boundary-based term can be the curve length Jb(∂Ω) =∫
s
ds = L(∂Ω).

For the sake of clarity, and without loss of generality, we consider in the rest of our paper the
segmentation into two regions Ωin and Ωout, Γ represents the interface between the two domains. We
then look for the partition {Ωin,Ωout,Γ} of the image that minimizes the following functional:

J(Ωin,Ωout,Γ) =

∫

Ωin

kin(x,Ωin)dx+

∫

Ωout

kout(x,Ωout)dx+

∫

Γ

kb(x)da . (3)

Once the functional has been expressed, the problem now is to deduce the evolution equation that
will drive the RBAC towards a minimum of the functional. This is achieved in our case through the
derivation of the criterion using shape derivative tools.

2.2 Shape derivation tools

In order to be comprehensive, we here give a brief summary of the shape derivation theory. The interested
reader may refer to [30, 28] for further details.

As stated in the introduction, the set of image regions does not have the structure of a vector space.
Consequently, the derivation of the region-term is performed using domain derivation tools. We remind
some definitions [30] that we state in full for the reader convenience. We can consider that Ω evolves in
a velocity vector field, V and calculate the variations of J(Ω(t)) in the direction V:

Definition 1 The Eulerian derivative of Jr(Ω) in the direction V is defined as follows:

< J ′
r(Ω),V >= lim

τ→0

Jr(Ω(τ))− Jr(Ω)

τ
. (4)
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Definition 2 The domain derivative of k in the direction V denoted k′(x,Ω,V) is defined as follows:

k′(x,Ω,V) = lim
τ→0

k(x,Ω(τ))− k(x,Ω)

τ
. (5)

Theorem 1 There is a relation between the Eulerian derivative of Jr(Ω) in the direction V, and the
domain derivative of k denoted k′(x,Ω,V):

< J ′
r(Ω),V >=

∫

Ω

k′(x,Ω,V)dx−
∫

∂Ω

k(x,Ω) (V ·N)da(x) , (6)

where N is the unit inward normal to ∂Ω.

A proof can be found in [29, 30] and an elementary one in [28]. The first integral comes from the
dependence of the descriptor k(x,Ω) with the region, while the second term comes from the evolution of
the region itself.

2.3 Evolution equation

From the shape derivative, we can derive the evolution equation that will drive the active contour towards
a (local) minimum of the criterion.

Let us suppose that the shape derivative of the region Ω may be written as follows:

< J ′
r(Ω),V >= −

∫

∂Ω

speed(x,Ω)(V(x) ·N(x))da(x) . (7)

We can then deduce [28] the following evolution equation:

∂Γ

∂τ
= speed(x,Ω)N(x) , (8)

with Γ(τ = 0) = Γ0.

Let us consider the classical homogeneity descriptor proposed by [34], i.e. k(x,Ω) = (I(x) − µ(Ω))2,
where µ(Ω) is the mean over region Ω. Using Theorem 1, the shape derivative becomes [28]:

< J ′
r(Ω),V >= −

∫

∂Ω

(I − µ(Ω))2(V(x) ·N(x))da(x) , (9)

because the term
∫
Ω
k′(x,Ω,V)dx vanishes in this case. It is immediate to see that the evolution speed

is:
speed(x,Ω) = (I(x)− µ(Ω))2 , (10)

which is precisely the classical result found by [34]. Note however, that in the case of a derivation using
shape derivation tools, we get rid of the regularizing Dirac distribution δǫ that appears when minimizing
the criterion with the method described by [34].

3 Statistical Framework for variational segmentation

Statistical decision and estimation theory are theoretical tools that allow to handle rigorously the problem
of information extraction from an image under random fluctuations. In this paper, we focus on the
segmentation of a region of interest in images. We want to take benefit of a more complete modeling
of the noise formation process in images so as to incorporate this feature in a variational segmentation
framework. We begin by giving arguments supporting the validity of the exponential family in real image
segmentation problems.
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3.1 Statistical Image Modeling and Segmentation

When observing an image, one does not observe the true gray level of pixels, but rather random fluctua-
tions of those levels. The statistical framework appears as a rigorous and flexible candidate to describe
this randomness. In statistical image modeling, an image is generally considered either as the observation
of a random variable at different locations, or as a random field. We here adopt the former model. The
source of random fluctuations will be imputed to noise, which is introduced by the imaging system and
has its own pdf that might be known or not. Fortunately, in many cases of interest, the noise pdf can
be modeled from a known parametric family. For example, The assumptions of the classical Synthetic
Aperture Radar (SAR) image generation model lead to a Rayleigh noise model. Ultrasound noise in
images is also approximately Rayleigh-distributed. Modulus of Magnetic Resonance Images (MRI) is
known to follow a Rician distribution, etc. In fact, it turns out that the classical Gaussian model is an
exception rather than a rule.

In our work we want to incorporate a noise model in RBACs. The exponential family is here chosen
because it includes a wide range of models such as Bernoulli, Binomial, Poisson, Gamma, Beta, Rayleigh,
etc. One may have noticed that the few imaging modalities just cited involve noise models whose pdfs
are special instances of this general and comprehensive family.

The introduction of the noise model in RBACs goes through the definition of an appropriate region
descriptor k. Let us consider p(y(x), η) the parametric pdf of the observations y(x). Here, we consider
y(x) as an image feature (e.g. the intensity) at location x. The pdf often depends on some parameters
denoted η. In this paper, we focus on the fact that these parameters evolve with the domain Ω.

Let us now introduce some useful definitions that will allow to bridge the gap between the statistical
framework and the minimization of a criterion as involved in RBACs.

Definition 3 The likelihood function or score L for a given observed data y is:

Ly(η) = p(y,η), η ∈ E ⊆ R
κ. (11)

Thus, when we think of Ly(η) as a function of η, it gives, for some observed y the “likelihood” or
“plausibility” of various η. More clearly, we can think of Ly(η) as a measure of how likely η is to have
produced the observation y. If the domain of the image characteristic y(x) were discrete (e.g. gray level),
then for each η, Ly(η) would correspond to the probability of observing y(x). We can easily extend this
definition to the RBACs. Hence, the likelihood function becomes:

Ly(η,Ω) = p(y(x) : x ∈ Ω,η),η ∈ E . (12)

In general, we use the log-likelihood score:

ly(η,Ω) = log(Ly(η,Ω)) = log(p(y(x) : x ∈ Ω,η)) . (13)

log(p) turns to be the best monotone function of p to be considered for many reasons [39]. A typical
one is that if the y(xi) are independent and identically distributed (iid) with a density or frequency
function p(y(xi),η) for i = 1, ..., n, then, with y = (y(x1), ..., y(xn))

ly(η,Ω) = log(p(y,η,Ω)) = log

n∏

i=1

p(y(xi) : xi ∈ Ω,η) =

n∑

i=1

log p(y(xi) : xi ∈ Ω,η) . (14)

This justifies the anti-log-likelihood criterion that is classically used:

Jr(Ω) = −
∫

Ω

log(p(y(x),η) dx . (15)
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This criterion was proposed in active contours by [6]. In this paper, we consider a more general setting
replacing the − log by any proper function Φ, see in Section 4.

3.2 Exponential family

As argued in Section 3.1, the exponential family covers most noise models commonly encountered in
image acquisition systems. This section provides the necessary material on the exponential family.

3.2.1 Definition

The multi-parameter exponential family is naturally indexed by a κ-dimensional real parameter vector
and a κ-dimensional natural statistic vector T(Y ). A simple example is the normal family when both the
location and the scale parameters are unknown (κ = 2). The normal, Poisson and Rayleigh distributions
exhibit the interesting feature that there is a natural sufficient statistic whose dimension as random vector
is independent of the sample size. The class of families of distributions that we introduce in this section
was first discovered in statistics by [40] through investigations of this property. Subsequently, many other
properties of these families were discovered and they have became an important class of the modern
theory of statistics.

Definition 4 The family of distributions of a Random Variable (RV) Y {Pη : η ∈ E ⊆ R
κ}, is said a

κ-parameter canonical exponential family, if there exist real-valued functions η1, . . . , ηκ : Θ 7→ R and
A(η) on E, and real-valued functions h, T1, . . . , Tκ : Rκ 7→ R, such the pdf p(y,η) of the Pη may be
written:

p(y,η) = h(y) exp[〈η,T(y)〉 −A(η)], y ∈ χ ⊂ R . (16)

where T = (T1, . . . , Tκ)
T is the natural sufficient statistic, η = (η1, . . . , ηκ)

T and E are the natural
parameter vector and space, 〈η,T〉 denotes the scalar product, the natural parameter space is defined as
E = {η ∈ R

κ;−∞ < A(η) < +∞}.

We draw the reader’s attention to the fact than η is a function of θ ∈ Θ which is the parameter of interest
in most applications.

Table 1 provides a synthetic description of some common distributions of the exponential family, with
the associated parameters, functions (see Definition 4) and sufficient statistics.

Distribution θT η(θ)T T(y)T A(η) E
Normal (µ, σ2) ( µ

σ2 ,
−1
2σ2 ) (y, y2) 1

2

(
− η21

2η2
− log −η2

π

)
R× R

−∗

Gamma (λ, p) (−λ, p− 1) (y, log y) −(η2 + 1) log−η1 + log Γ(η2 + 1) R
−∗×]− 1,+∞[

Beta (r, s) (r − 1, s− 1) (log y, log(1− y)) − logB(η1 + 1, η2 + 1) R
+ × R

+

Poisson µ log µ y eη R

Exponential λ −λ y − log−η R
−∗

Rayleigh θ2 −1/2θ2 y2 − log−2η R
−∗

Table 1: Some common canonical exponential families. B(α, β) is the Euler Beta function.

In order to illustrate this table, let us develop the form of the natural parameters for the Normal law:

p(y(x);µ, σ) =
1

σ
√
2π

e−
(y(x)−µ)2

2σ2 = exp (−1

2
log(2πσ2)− y2

2σ2
+
µy

σ2
− µ2

2σ2
)

= exp (〈η,T(y)〉 − 1

2
log(2πσ2)− µ2

2σ2
) .

It follows that

h(y) = 1, T(y) =

[
y
y2

]
, η =

[
µ
σ2

− 1
2σ2

]
, A(η) =

1

2

(
log(2πσ2) +

µ2

2σ2

)
= −1

2

(
η21
2η2

+ log(−η2
π
)

)
.
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3.2.2 Properties

The following results will be useful for our RBAC scheme based on the exponential family. Their proofs
may be found in [39].

Theorem 2 Let P a κ-parameter canonical exponential family with natural sufficient statistic T(Y ) and
open natural parameter space E then :

(i) E is convex.

(ii) A : E 7→ S ⊆ R is convex where S = A(E).

(iii) E[T(Y )] = ∇A(η).

(iv) Cov[T (Y )] = Ä(η).

where ∇A = ( ∂A
∂η1

, ∂A
∂η2

, .., ∂A
∂ηκ

)T represents the gradient of A, and Ä is the Hessian matrix of A with

Äij =
∂2A
∂ηi∂ηj

.

The following theorem establishes the conditions of strict convexity of A, and then those for Ȧ to be
1-1 on E . This is a very useful result for optimization (derivation) purposes:

Theorem 3 Let P a full rank (i.e. Cov[T (Y )] is a positive-definite matrix) κ-parameter canonical ex-
ponential family with natural sufficient statistic T(Y ) and open natural parameter space E [39].

(i) ∇A : E 7→ S is 1-1.

(ii) The family may be uniquely parameterized by µ(η) ≡ E[T(Y )] = ∇A(η).

(iii) The anti-log-likelihood function is a strictly convex function of η on E.

These results establish a 1-1 correspondence between η and E[T(Y )] such that:

S ∋ µ = ∇A(η) = E[(T(Y )] ⇔ E ∋ η = ψ (E[T(Y )]) (17)

holds uniquely with ∇A and ψ continuous. At this stage, it is interesting to mention that an alternative
solution to establish this bijection, is to use the Legendre conjugate (convex analysis) in the same vein
as in the work of [41] which used it to prove the bijection between exponential families and Bregman
divergences.

It is also interesting to point out that in (17), when the expectation E[T(Y )] is replaced with the
empirical estimate of the mean T(Y ), the obtained estimate coincides with the ML estimator (MLE) of
η. For example, when dealing with the Rayleigh distribution, we have:

η =
−1

2θ2
, A(η) = − log(−2η) and T (y) = y2 . (18)

By computing A′(η) = T(Y ), we find that:

−1

η
=

1

|Ω|

∫

Ω

y(x)2dx , (19)

which corresponds to the MLE of the parameter θ2 given by:

θ̂2ML =
1

2|Ω|

∫

Ω

y(x)2dx Â0. (20)
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3.3 A primer case for the statistical region-based active contours

This section is devoted to illustrate the influence of the parameters estimator on the expression of the
RBAC evolution speed. We consider here the minimization of the anti-log-likelihood function when the
image feature is Rayleigh-distributed, and we compute the shape derivative of this region-based term.
For such a computation, we need to evaluate the parameter of the law using some estimation method.
The MLE, which is an alternative to the minimum variance unbiased estimator (MVUE), can then be
computed. The MLE, in contrast to the MVUE, does not necessarily satisfy any optimality criterion, but
it can almost always be computed, either through exact formulas or numerical techniques. For this reason,
the MLE is one of the most common estimation procedure used in practice. There is another classical
estimation method, namely the method of moments. This alternative is a technique for constructing
estimators of the parameters that is based on matching the sample moments with the corresponding
distribution moments. We propose here to compare the evolution equation of the active contour obtained
using the MLE and the method of moments when minimizing the anti-log-likelihood criterion for the
Rayleigh law.

3.3.1 Prologue

The functional to minimize is then:

Jr(Ω) = −
∫

Ω

log(p(y(x), θ) dx . (21)

with p the Rayleigh pdf of scalar parameter θ, i.e p(y(x), θ) = y(x)
θ2

exp
(

−y(x)2)
2θ2

)
.

Classically, one can compute an estimate of the parameter θ using the method of moments. In this case
the estimator is given by the sample mean :

θ̂MO =

√
2

π

1

|Ω|

∫

Ω

y(x)dx =

√
2

π
y(x) , (22)

where y(x) = 1
|Ω|

∫
Ω
y(x)dx denotes the sample mean inside the region Ω.

Alternatively, one can also compute an estimate through the MLE as given by:

θ̂ML =

√
1

2|Ω|

∫

Ω

y(x)2dx . (23)

Shape derivative with the moment estimator

Theorem 4 The Gâteaux derivative, in the direction of V, of the functional Jr(Ω) = −
∫
Ω
log(p(y(x), θ̂MO)dx

with p a Rayleigh pdf, is the following:

< J ′
r(Ω),V > =

∫

∂Ω

(
log
(
p(y(x), θ̂MO)

)
+Add(y(x),Ω)

)
(V ·N)da(x) , (24)

Add(y(x),Ω) =
(
2− π

4

y2(x)

y(x)
2

)(
1− y(x)

y(x)

)
.

The proof can be found in Appendix A.

In this case, it follows that the evolution equation is :

∂Γ(p, τ)

∂τ
= −

[
log
(
p(y(x), θ̂MO)

)
+Add(y(x),Ω)

]
N(x) . (25)
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(a) (b) (c) (d) (e)

Figure 1: (a) Original square image, (b) Image corrupted by Rayleigh noise, (c) Final boundary segmentation
using MLE, (d) Final boundary segmentation using moment estimator and additive term, (e) Final boundary
segmentation using moment estimator with no additive term.

Shape derivative with the MLE

Theorem 5 The Gâteaux derivative, in the direction of V, of the functional Jr(Ω) = −
∫
Ω
log(p(y(x), θ̂ML)dx

with p a Rayleigh pdf, is the following:

< J ′
r(Ω),V >=

∫

∂Ω

log
(
p(y(x), θ̂ML)

)
(V ·N)da(x) . (26)

This theorem is a particular case of Corollary 1, see Section 4.2.

The evolution equation becomes here :

∂Γ(p, τ)

∂τ
= − log

(
p(y(x), θ̂ML)

)
N(x) . (27)

3.3.2 Epilogue

One can see that the parameter estimator has a clear impact on the evolution speed expression, as the
additive term Add(y(x),Ω) appears in the shape derivative when the moment estimator is used. These
theoretical results are confirmed by experimental tests on a synthetic image as depicted in Fig. 1. These
tests were carried out using MLE and moments-based theoretical evolution speeds given in (27) and (25),
and also using the moments-based speed where the additive term was deliberately dropped.

The segmentation results on this test image are visually similar using either ML or moment estimators.
However when the moment additive term is neglected, the contour does not converge to the desired
minimum. This confirms the importance of the estimation of the pdf parameters. Of course, in the
exponential family, the MLE always exists (except in some pathological cases such as the segmentation
of a one pixel region). But, unfortunately, closed-form analytical expressions of the MLE are not always
accessible, and one may have to resort to alternative estimators such as the method of moments or
cumulants.

4 General Segmentation Setting

We now turn to the general case and consider the following functional.:

Jr(Ω) =

∫

Ω

Φ(p(y(x),η(Ω))) dx Â0, (28)

where Φ is a continuously differentiable and integrable function, p(.) belongs to the multi-parameter
exponential family and is expressed by (16) and η the natural parameter vector.
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4.1 A general result for the exponential family

In the sequel, for the sake of simplicity, we will invariably denote η for the natural parameter and its
finite sample estimate over the domain (without a slight abuse of notation, this should be η̂). We are
now ready to state our main result:

Theorem 6 The Gâteaux derivative, in the direction of V, of the functional (28), is:

< J ′
r(Ω),V >= −

∫

∂Ω

Φ(p(y(x),η(Ω)))(V ·N)da(x)

+

∫

Ω

p(y(x),η(Ω))Φ′(p(y(x),η(Ω)))〈∇Vη,T(y(x))−∇A(η)〉dx , (29)

with ∇Vη =< η′(Ω),V > the Gâteaux derivative of η in the direction of V, and 〈., .〉 is the usual scalar
product of two vectors.

The proof is detailed in Appendix B.

This result can be divided into two parts. On the one hand, the term of the evolution of the region,
on the other hand, an additive term coming from the dependence of the parameters η to the region.

4.2 Specializing to ML

In a finite sample setting, when using the MLE, we can replace ∇A(η) by T(y), the 1st order sample
moment of T(y). This is a consequence of Theorem 2. Thus, when using the anti-log-likelihood function,
the second term becomes equal to

∫
Ω
〈∇Vη,T (y(x)) − T(y))〉dx, and hence vanishes. The following

corollary is straightforward:

Corollary 1 The Gâteaux derivative, in the direction of V, of the functional Jr(Ω) = −
∫
Ω
log(p(y(x), η̂ML(Ω))dx

where η̂ML is the ML estimate, is the following:

< J ′
r(Ω),V >=

∫

∂Ω

(log (p(y(x), η̂ML(Ω)))(V ·N)da(x) . (30)

This provides an alternative and elegant proof to the result of [6, 13]. Nonetheless, we here point out
that, in the work of [13], the role of the parameters estimator was not elucidated. Indeed, the evolution
speed expression of Corollary 1 is only valid when the MLE is used for η, otherwise complicated additive
terms may appear with others estimators.

A straightforward exercise is to apply (30) to some common members of the exponential family. This
is the goal of Table 2 which summarizes the computed speed expressions of some common distributions,
when minimizing the anti-log-likelihood and using the MLE for the parameters.

Law Parameter η Speed Expression

Normal (µ, σ) log(σin) +
(I−µin)

2

2σ2
in

− log(σout)− (I−µout)
2

2σ2
out

Exponential λ − log(λin) + λinI + log(λout)− λoutI
Poisson µ −I log(µin) + µin + I log(µout)− µout

Rayleigh θ2 I2

2θ2
in

− log( I
θ2
in

)− I2

2θ2out

+ log( I
θ2out

)

Gamma (λ, p) log(Γ(pin)λ
pin
in ) + I

λin
− pin log(I)− log(Γ(pout)λ

pout

out )− I
λout

+ pout log(I)

Table 2: Speed expressions of some common members of the exponential family, when minimizing the
anti-log-likelihood associated to the MLE for the parameters.

11



4.3 Beyond ML : Relative Entropy

As far as the segmentation of homogeneous regions is concerned, we may also focus our attention on
energy criteria based on information measures [42] such as the relative entropy. The latter is also known
as the Kullback-Leibler divergence (KLD). Note that in this case the integrals are over the real line and
no more over the domain. In this section, we first give a general result concerning the derivation of the
expectation of a function of a pdf. This general result is then applied to obtain the derivative of the
KLD.

4.3.1 Derivation of the Expectation of a function of a pdf

Let us introduce the following quantity which designs the expectation over a pdf pin(y,η(Ωin)) of a
function of the pdf pout(y,η(Ωout)):

HY (ηin,ηout) = Ein[Φ(pout(Y,ηout))] =

∫

χ

pin(y,ηin)Φ(pout(y,ηout))dy , (31)

where χ is the domain of the random variable Y and Φ is a continuously differentiable and integrable
function When we consider the pdf of a feature y within a region Ω, the pdf parameters vectors are again
region-dependent, that is HY (ηin,ηout) = HY (ηin(Ωin),ηout(Ωout)). Such a quantity appears in many
interesting information measures such as the cross entropy (with Φ(p) = −log(p)), the differential entropy
(with in = out and Φ(p) = −log(p)), or the KLD which is detailed thereafter. It is then interesting to
compute the Gâteaux derivative with respect to the domain of this quantity:

Theorem 7 The Gâteaux derivative, in the direction V, of the functional HY (ηin,ηout) defined in equa-
tion (31) with pin(y,ηin) and pout(y,ηout) two members of the exponential family that belong to the same
parametric law, is as follows:

< HY (ηin,ηout),V > = < ∇Vηout,Ein [pout Φ
′(pout)(T(Y )−∇A(ηout))] >

+ < ∇Vηin,Ein [Φ(pout)(T(Y )−∇A(ηin))] >

The proof can be found in Appendix C.

4.3.2 Region competition using the KLD

When considering the segmentation of an image into two regions Ωin and Ωout, we propose here to
consider the maximization of the relative entropy or KLD defined as follows:

Definition 5 The relative entropy between the pdf pin(y,ηin) of the feature y within the region Ωin and
the pdf pout(y,ηout) of the feature y within the region Ωout is defined as follows:

D(pin‖pout) =
∫

χ

pin(y,ηin) log
pin(y,ηin)

pout(y,ηout)
dy . (32)

This quantity is always positive, convex but non-symmetric. It can be expressed using the expectation
under the pdf pin, denoted by Ein, as follows:

D(pin‖pout) = Ein[log(pin(Y,ηin))]− Ein[log(pout(Y,ηout))] (33)

To get the gist of using KLD as a criterion in an RBAC functional, consider the data yi = {y(x)|x ∈ Ωi}
as an iid sequence from the statistical model pi(y,ηi). Maximizing the KLD between the two pdfs pin
and pout can be seen as equivalent to minimizing the log-likelihood score [42]:

1

|Ωin|

∫

Ωin

log(p(y(x),ηout) dx ,
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which tends to Ein[log(pout(y,ηout))] using the weak law of large number for a very large domain Ωin.
In other words, the KLD-maximization based segmentation criterion will look for the configuration that
maximizes the log-likelihood of the data yi under their actual model pin, while minimizing the plausibility
of the same data under pout. Thus, translating this into a segmentation setting, the KLD acts as a region
competition criterion.

When the two pdfs belong to the exponential family, we can compute the Gâteaux derivative of
D(pin‖pout).

Theorem 8 Suppose that pin(y,ηin) and pout(y,ηout) are two members of the exponential family that
follow the same distribution with distinct parameters. The Gâteaux derivative, in the direction V, of the
functional D(pin‖pout) is:

< D′(pin‖pout),V >= 〈∇Vηin, Ä(ηin)(ηin − ηout)〉+ 〈∇Vηout,∇A(ηout)−∇A(ηin)〉 . (34)

The proof is given in Appendix D.
We can specialize this result when the parameter η is estimated using the ML method for the full rank
exponential family and using two complementary domains Ωin and Ωout. The two domains then share
the same boundary with normals pointing to opposite direction.

Corollary 2 The Gâteaux derivative, in the direction V, of the functional D(pin‖pout) with pin(y,ηin)
and pout(y,ηout) two members of the exponential family with ηin and ηout the parameters estimated using
the MLE, is as follows:

< D′(pin‖pout),V >= − 〈∇VT(y)in,ηin − ηout〉 (35)

+ 〈∇VT(y)out, [Ä(ηout)]
−1[∇A(ηout)−∇A(ηin)])〉 ,

where

∇VT(y)in =
1

|Ωin|

∫

∂Ωin

(
T(y)in −T(y(x))

)
(V ·N)da(x) , (36)

and

∇VT(y)out = − 1

|Ωout|

∫

∂Ωout

(
T(y)out −T(y(x))

)
(V ·N)da(x) . (37)

The proof is given in Appendix E.

Again, for the reader’s convenience, let us take the example of the Rayleigh pdf where:

T (y) = y2, ηi =
−1

T (y)
=

−1

2θ2i
, A′(ηi) =

−1

ηi
, A′′(ηi) =

1

η2i
, A′′(ηi)

−1 = η2i , (38)

where i = in or out. After appropriate substitutions in (35) and some rearrangements, we obtain:

< D′(pin‖pout),V > =

(
1− θ2in

θ2out

)(
1

|Ωin|

∫

∂Ωin

(
1− y2(x)

2θ2in

)
(V ·N)da(x)

)
(39)

+

(
1− θ2in

θ2out

)(
1

|Ωout|

∫

∂Ωout

(
1− y2(x)

2θ2out

)
(V ·N)da(x)

)

In order to maximize the relative entropy between the two pdfs, we can make an active contour evolve
using the following velocity:

speed(x,Ω) =

(
1− θ2in

θ2out

)(
1

|Ωin|

(
1− y2(x)

2θ2in

)
+

1

|Ωout|

(
1− y2(x)

2θ2out

))
(40)

Table 3 summarizes the evolution speed expressions of some common distributions belonging to the
exponential family, when maximizing the relative entropy and using the MLE for the parameters.
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Law η Speed Expression

Normal (µ, σ)
− 1

|Ωin|

((
1

2σ2
in

− 1
2σ2

out

)(
µ2
in

2σ2
in

− σ2
in − y2

)
−
(
µin

σ2
in

− µout

σ2
out

)
(y + µin)

)

+ µin−µout

2|Ωout|σ4
out

(
σ2
in − σ2

out + µout − 2µin
) ( µ2

out

2σ2
out

− σ2
out − y2

)

− µin−µout

|Ωout|σ4
out

(
µ2
out − σ2

out

) (
σ2
in + σ2

out + µout − µin
)
(y + µout)

Exponential λ − 1
|Ωin|

(
( 1
λin

− y(x))(λout − λin)
)
+ 1

|Ωout|

(
( 1
λout

− y(x))(λout − λin

λout
)
)

Poisson µ − 1
|Ωin|

(
(µin − y(x))(log(µout

µin
))
)
+ 1

|Ωout|

(
(µout − y(x))(1− µin

µout
)
)

Rayleigh θ2
(
1− θ2in

θ2out

)(
1

|Ωin|

(
1− y2(x)

2θ2
in

)
+ 1

|Ωout|

(
1− y2(x)

2θ2out

))

Gamma (λ, p)

− 1
|Ωin|

((
pin
λin

− y
)
(λin − λout)− (ψ0(pin)− log(λiny)) (pin − pout)

)

+A
(
pin
λin

− pout

λout

)(
λ2outψ1(pout)(

pout

λout
− y)− λout(ψ0(pout)− log(λouty))

)

+A
(
ψ0(pin)− ψ0(pout) + log( λin

λout
)
)(

pout(ψ0(pout)− log(λouty))− λout(
pout

λout
− y)

)

where A = 1
|Ωout|(poutψ1(pout)−1)

Table 3: Speed expressions of some common distributions of the exponential family when maximizing
the relative entropy and using the MLE for the parameters.

4.4 Summary

So far, we have introduced mainly three general region descriptors taking into account the statistical
properties of the noise, and we have given expressions of the associated evolution speeds. Let us now
summarize how these descriptors will be incorporated in our RBAC-based segmentation algorithm. Here-
after, the feature y of the image is chosen to be the intensity I(x) at pixel x.

• The first type of RBAC functional to be minimized can be finally written as:

J(Ω1, ..,Ωn,Γ) =
m∑

i=1

∫

Ωi

Φ(pi(I(x),ηi)) dx+ βEb(Γ) , (41)

where Γ =
⋃m
i=1 ∂Ωi, and as in (2), Eb is a regularization term (e.g. curve length) balanced with

a positive real parameter β. Here the RBAC segmentation problem aims at finding a partition
of the image into m ≥ 2 regions {Ω1, ..,Ωm}. This functional is typically chosen with the anti-
log-likelihood descriptor where one can assign a specific noise model to each region Ωi all possibly
different. The evolution speed associated to this energy is directly obtained from the results of
Section 4.1 or 4.2.

• As explained in 4.3.2, the KLD acts as a region competition criterion, and makes sense only when
segmenting in two regions. The criterion to maximize becomes:

J(Ωin,Ωout,Γ) = Ein[log(pin(I,ηin))]− Ein[log(pout(I,ηout))] + β Eb(Γ), (42)

and the associated evolution speed is obtained from the results given Section 4.3.2.

5 Experimental results

5.1 Synthetic data

This section presents some experimental results on noisy images. The synthetic noise-free test image is
shown in Fig.2.

The first experiment that we report here sheds the light on the role of the noise model on the
actual performance of the RBAC segmentation algorithm. For four different Battacharya distances (BD),
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Figure 2: Synthetic noise-free test image.

we have systematically corrupted the test image with two types of noise: Poisson and Rayleigh. The
Battacharya distance is used as a measure of ”contrast” between the objects and the background. It is
defined as :

D(pb(y), po(y)) = − log

∫

X

√
pb(y)po(y)dy . (43)

with pb and po are respectively the background and the object pdfs.

For each combination of BD value and noise type, 50 noisy images were generated. Each noisy image
was then segmented using five different energy functions, namely Chan-Vese [34], and our functional
(41) with the anti-log-likelihood score and MLE with four assumed noise models: Gaussian, Rayleigh,
Exponential and Poisson. The evolution speeds associated to our noise models were picked up from
Table 2. For each segmented image with each method at each BD value, the average false positive
fraction (FPF) and true positive fraction (TPF), over the 50 simulations were computed. The bottom-
line of the experiment is to show that using the appropriate noise model will lead to the best performance
in terms of compromise between specificity (over-segmentation as revealed by the FPF) and sensitivity
(under-segmentation as revealed by the TPF).

Fig.4 depicts the average TPF (left) and FPF (right) as a function of the BD for Rayleigh ((a)-(b)) and
Poisson ((c)-(d)) noises. As expected, the FPF exhibits a decreasing tendency as the BD increases, while
the TPF increases with BD, which is intuitively acceptable. More interestingly, the best performance
in terms of compromise between FPF and TPF is reached when the contaminating noise and the noise
model in the functional (Table 2) are the same. This behavior is more salient at low BD values, i.e. high
noise levels. These quantitative results are confirmed by visual results as portrayed in Fig.3(e)-(h).

We also compared the two RBAC functionals (41) and (42). In this experiment, the noise-free image
was corrupted with a Rayleigh noise and 50 noisy images were generated. Each noisy image was segmented
using each of the three energy functionals, where pin,out are Rayleigh pdfs and MLE was used for their
parameters. The associated speeds are respectively obtained from Table 2 and 3.

The results are reported in Fig.3 and Fig.5. In Fig.3(b), the noisy image looks badly contrasted
because of noise predominance. For the reader’s convenience and for better visual rendering, the contrast
was artificially enhanced as shown in Fig.3(c). The segmentation results are also superimposed over the
contrast-enhanced image. By visual inspection of Fig.3(h)-(i), the segmentation results provided by the
two functionals are quite comparable. This visual impression was more deeply investigated by a careful
quantitative study of the fractions FPF and TPF depicted in Fig.5. Again, TPF and FPF respect the
intuitive monotonic tendencies (FPF decreases while TPF increases). The anti-log-likelihood functional
seems to be the best followed by the KLD.

5.2 SAR imaging data

Our RBAC segmentation algorithm was applied to a real SAR image shown on Fig.6 (a).

The segmentation results of the original image are depicted in Fig.7. The initial contour (Fig.6 (b))
is composed of many bubbles uniformly spead over the image. We see clearly that the five assumed noise
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Figure 3: (a) Histogram of the noisy image, (b) Rayleigh-noisy image with original contrast (Battacharya distance
is 1.0), (c) Noisy image after contrast enhancement, (d) Initial contour, (e) Final contour with Chan-Vese criterion,
(f) Final contour with Poisson criterion and anti-log-likelihood score,(g) Final contour with Exponential criterion
and anti-log-likelihood score, (h) Final contour with Rayleigh criterion and anti-log-likelihood score, (i) Final
contour with KLD and Rayleigh pdf.

0.5 1 1.5 2 2.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Battacharya distance

T
P

F
 (

%
)

Rayleigh

0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Battacharya distance

F
P

F
 (

%
)

Rayleigh

(a) (b)

0.5 1 1.5 2 2.5
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Battacharya distance

T
P

F
 (

%
)

Poisson

0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Battacharya distance

F
P

F
 (

%
)

Poisson

(c) (d)

Figure 4: TPF and FPF as a function of BD for the anti-log-likelihood function using five models: Chan-
Vese (dotted line with crosses), Gaussian (dashed line with squares), Poisson (solid line with circles),
Rayleigh (dash-dot line with diamonds), Exponential (solid line with stars). (a) TPF for Rayleigh noise,
(b) FPF for Rayleigh noise, (c) TPF for Poisson noise, (d) FPF for Poisson noise.
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Figure 5: Comparison of FPF and TPF as a function of BD for the anti-log-likelihood (dash-dot line with
diamonds) and KLD (dotted line with cross). The noise is Rayleigh-distributed. (a) TPF, (b) FPF.
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Figure 6: SAR Images. (a) Original image, (b) Initial contour on original image, (c) Noisy image
corrupted by a Gaussian noise, (d) Histogram of the Gaussian noisy image, (e) Noisy image corrupted
by a Rayleigh noise (f) Histogram of the Rayleigh noisy image
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Figure 7: Segmentation results of the original image (a) Chan-Vese model, (b) Gaussian model, (c)
Poisson model, (d) Rayleigh model, (e) Exponential model. Initialization Fig.6 (b).

(a) (b) (c) (d) (e)

Figure 8: Segmentation results of the noisy image corrupted by a Gaussian noise (a) Chan-Vese model,
(b) Gaussian model, (c) Poisson model, (d) Rayleigh model, (e) Exponential model. Initialization as in
Fig.6 (b).

models (Chan-Vese, Gaussian, Poisson, Exponential and Rayleigh) provide rather good segmentation
results of the image. This shows the applicability of our method to noise-free images and the stability
results of all the different models presented before. Moreover, we see clearly that the segmentation of
noise-free images, or equivalently images with a large Battacharya distance, is virtually the same whatever
the assumed noise model. This confirms the findings of the synthetic image in the previous section when
we quantified the performance using FPF and TPF measures. When the Battacharya distance became
high, the segmentation errors were negligible. Of course, here we consider a real image where no ground-
truth is available. But, visually, the results look satisfactory.

We performed the same tests the SAR image corrupted by a Gaussian noise with 2.5 as Battacharya
distance, see Fig.6 (c). The histogram of this Gaussian noisy image is given in Fig.6 (d). Visually, the
image seems to be relatively simple to segment. However, at this noise level, the two Gaussians have a
large overlap, and a simple thresholding would be definitely awkward. The results on Fig.8 show the final
segmentation using the five models cited just before. Differences are now visible: on the one hand, the two
models based on a Gaussian noise (i.e. Chan-Vese Fig.8 (a) and Gaussian (b)) give good and comparable
results. On the other hand, the other noise models perform badly except perhaps the Exponential model.
For the Gaussian model, this was predictable, because it is precisely the type of noise that contaminates
the image. The Chan-Vese model is implicitely a Gaussian noise model where the standard deviation is
assumed to be known and constant over the image. As far as the Poisson model is concerned Fig.8 (c),
the darkest (i.e. left) part of the image is rather properly segmented while the initial contour (bubbles)
did not evolve that much on the brightest (i.e. right) part. One may think that this is an initialization
issue. We carried out other tests using many other (random) initializations, and the segmentation was
always poor on the brightest part. Our interpretation of this behaviour is that a Poisson random variable
tends to be Gaussian when its mean gets very large (i.e. very bright image). But the mean and variance
at this asymptotic regime are the same. That is, on the brightest part of the image, the noise would be
almost Gaussian but with a highly signal-dependent variance. Finally, using a Rayleigh model Fig.8 (d),
the contour does not even converge whatever the initialization is.

We also carried out the same experiment when a Rayleigh noise with Battacharya distance of 2
contaminates the SAR image Fig.6 (e). In this case, manual segmentation is challenging and difficult.
The histogram of this Rayleigh noisy image is portrayed in Fig.6 (f). Now, the four models converge
(Fig.9) but the Rayleigh model (Fig.9 (d)) is the only one to provide a segmentation result that is
consistent with visual expectations.
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Figure 9: Segmentation results of the noisy image corrupted by a Rayleigh noise (a) Chan-Vese model,
(b) Gaussian model, (c) Poisson model, (d) Rayleigh model, (e) Exponential model. Initialization as in
Fig.6 (b).

6 Conclusion

In this work, we proposed a novel statistical region-based active contours method, where the region
descriptor is written as a function Φ of some pdf belonging to the exponential family. The particular case
of anti-log-likelihood score is developed and obtained as a special case of our general setting. We also shed
light on the influence of parameters’ estimation. That is to say, while using likelihood score and MLE (i.e.
the more classical case) our results are strictly the same as the literature. But, using another estimation
method, (i.e. Moments method), complicating additive terms appear. We also presented other functions
Φ that may be interesting candidates in segmentation problems as for example the relative entropy for
region competition.

Some experimental results prove the applicability of our method. First, we have illustrated the
influence of additive terms using the moments-based estimator and the necessity to take care of the
dependence of the pdf parameters to the domain. Secondly, the Monte-Carlo simulations demonstrated
that using the appropriate noise model that matches the noise corrupting the images leads to the best
segmentation. prove that our model is flexible enough to incorporate other photometric or geometric
priors [].

Our ongoing work is directed towards extending the implementation of our approach to m > 2 regions
by adapting the multiphase method [34]. We also want to add to our noise model a texture model to
segment textured images.
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A Appendix A : Proof of Theorem 4

Proof : In the case of Rayleigh law, the pdf is:

p(y(x), θ) =
y(x)

θ2
exp

(−y(x)2)
2θ2

)
, (44)

and the region criterion becomes:

Jr(Ω) = −
∫

Ω

log y(x)dx+
1

2θ̂2MO

∫

Ω

y(x)2dx+ |Ω| log(θ̂2MO(Ω)) . (45)

We first compute the Gâteaux derivative in the direction of V, of the moment estimator θ̂MO. We obtain:

< θ̂′MO(Ω),V >=

√
2

π

1

|Ω|

∫

∂Ω

(y − y(x))(V ·N)da(x) . (46)

Using Theorem 1, the Gâteaux derivative of Jr(Ω) is:

< J ′
r(Ω),V > =

∫

∂Ω

log y(x)(V ·N)da(x)− < θ̂MO(Ω),V >

θ̂3MO

∫

Ω

y(x)2dx

− 1

2θ̂2MO

∫

∂Ω

y(x)2(V ·N)da(x)− log(θ̂2MO)

∫

∂Ω

(V ·N)da(x)

+ 2|Ω|< θ̂′MO(Ω),V >

θ̂MO

,

which gives:

< J ′
r(Ω),V > =

∫

∂Ω

(
log (p(y(x, θ̂MO))

)
(V ·N)da(x) (47)

+
< θ̂MO(Ω),V >

θ̂3MO

|Ω|(2θ̂2MO − y2) ,

where y2 = 1
|Ω|

∫
Ω
y2(x)dx. We replace θ̂MO and its derivative by their expressions which leads to:

< J ′
r(Ω),V > =

∫

∂Ω

(
log (p(y(x), θ̂MO))

)
(V ·N)da(x) (48)

+
π

2

((4/π)y2 − y2)

y3

∫

∂Ω

(y − y(x))(V ·N)da(x) .

Thus,

< J ′
r(Ω),V > =

∫

∂Ω

(
log (p(y(x), θ̂MO))

)
(V ·N)da(x) (49)

2

(
1− π

4

y2

y2

)∫

∂Ω

(
1− y(x)

y

)
(V ·N)da(x) ,

and the result follows.

�

B Appendix B : Proof of Theorem 6

Proof : To compute < J ′
r(Ω),V >, we must first get the derivative of p(y(x),η) with respect to the

domain, and apply the chain rule to Φ(p(y(x),η)). To simplify the notation we write the Eulerian
derivative of η as < η′(Ω),V >= ∇Vη.
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Using the definition of p(y,η) given in (16) and the chain rule applied to A (η(Ω)), we obtain:

< p′(y,η),V > = h(y) (〈∇Vη,T(y)〉 − 〈∇Vη,∇A(η)〉) e〈η(Ω),T(y)〉−A(η(Ω))

= p(y,η)〈∇Vη,T(y)−∇A(η)〉 . (50)

By the chain rule applied to Φ(p(y(x),η)), we get:

< Φ′(p(y,η)),V >=< p′(y,η),V > Φ′(p) , (51)

where Φ′(r) is the derivative of the function Φ(r) according to r, which completes the proof.

�

C Appendix C : Proof of Theorem 7

Proof : Using the derivative of the pdf p(y,η) in the direction V given in (50), we find :

< HY (ηin,ηout),V > = Ein [pout Φ
′(pout) < ∇Vηout,Tout(Y )−∇Aout(ηout) >]

+ Ein [Φ(pout) < 〈∇Vηin,Tin(Y )−∇Ain(ηin) >] ,
If the two pdfs belong to the same parametric law, we haveTin(y) = Tout(y) = T(y), Ain(η) = Aout(η) =
A(η) and hin(y) = hout(y)) = h(y). The derivative then reduces to:

< HY (ηin,ηout),V > = < ∇Vηout,Ein [pout Φ
′(pout)(T(Y )−∇A(ηout))] >

+ < ∇Vηin,Ein [Φ(pout)(T(Y )−∇A(ηin))] >

�

D Appendix D : Proof of Theorem 8

Proof : We can develop the relative entropy as follows:

D(pin(y,ηin)‖pout(y,ηout)) = Ein[log(pin(y,ηin)]− Ein[log(pout(y,ηout)] = HY (ηin,ηin)−HY (ηin,ηout) .

If the two pdfs belong to the same parametric law, we haveTin(y) = Tout(y) = T(y), Ain(η) = Aout(η) =
A(η) and hin(y) = hout(y)) = h(y). Using Theorem 7, we can deduce the following derivative for KLD :

< D′(pin‖pout),V > = < ∇Vηin,Ein [(T(Y )−∇A(ηin))] >
+ < ∇Vηin,Ein [log(pin)(T(Y )−∇A(ηin))] >
− < ∇Vηout,Ein [(T(Y )−∇A(ηout))] >
− < ∇Vηin,Ein [log(pout)(T(Y )−∇A(ηin))] >

Using Theorem 2, we can replace Ein[T(y)] by ∇A(ηin), which yields:

< D′(pin‖pout),V > = < ∇Vηin,Ein [(log(pin)− log(pout))(T(Y )−∇A(ηin))] >
+ < ∇Vηout,∇A(ηout)−∇A(ηin)) >

Since pin and pout belong to the same parametric law within the exponential family, we can replace
log(pin)− log(pout) by < ηin − ηout,T(y) > −A(ηin) +A(ηout) and then rearranging the terms we find:

< D′(pin‖pout),V > = < ∇Vηin,Ein [< ηin − ηout,T(Y ) > (T(Y )− Ein[T(y)])] >

+ < ∇Vηout,∇A(ηout)−∇A(ηin)) >
Using the fact that Ä(η) = Cov[T(Y )] and then that Ä(η)ij = E[Ti(Y )Tj(Y )] − E[Ti(Y )]E[Tj(Y )], we
find:

< D′(pin‖pout),V >= 〈∇Vηin, Ä(ηin)(ηin − ηout)〉+ 〈∇Vηout,∇A(ηout)−∇A(ηin)〉 , (52)

which is the desired result.

�
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E Appendix E : Proof of Corollary 2

Proof : As discussed after Theorem 3, the parameter η for the exponential family can be uniquely
parameterized as a function of ψ (E[T(Y )]). When using the MLE, the term E[T(Y )] can be empirically
estimated with T(y) and so derived easily with respect to the domain Ω. We propose to directly derive
the expression ∇A(η) = T(y). This expression can be written as:

∂A

∂ηi
(η) = Ti(y) ∀i ∈ [1, κ] . (53)

We can then compute the shape derivative of this expression, which gives:

κ∑

j=1

〈η′j ,V〉 ∂2A

∂ηi∂ηj
(η) = 〈Ti(y)

′
,V〉 ∀i ∈ [1, κ] , (54)

which can be written in the compact form:

∇V(T) = Ä(η)∇Vη , (55)

where ∇VT(y) =
(
< T1(y)

′
,V >,< T2(y)

′
,V >, .. < Tκ(y)

′
,V >

)T
.

Restricting our study to the full rank exponential family, where Ä(η) is a symmetric positive-definite,
hence invertible, matrix (Theorem 3), the domain derivative of the parameters η is uniquely determined
by:

Ä(η)−1∇V(T) = ∇Vη . (56)

This equation holds for ηin and ηout and thus, the domain derivative of D(pin‖pout) can be expressed
as:

< D′(pin‖pout),V > = 〈Ä(ηin)−1∇V(Tin), Ä(ηin)(ηin − ηout)〉 (57)

+ 〈Ä(ηout)−1∇V(Tout),∇A(ηout)−∇A(ηin)〉 .

The corollary follows after simplification using the fact that the matrix Ä(ηi)
−1 is symmetric.

The domain derivative ∇V(Tin) is computed using Theorem 1 and is given by

∇V(Tin) =
1

|Ωin|

∫

∂Ω

(
T(y)in −T(y(a))

)
(V ·N)da(x) , (58)

The domain Ωout is the complement of the domain Ωin. They share the same boundary with normals
pointing to opposite direction. Similar results can then be found when considering the domain derivative
of Tout:

∇V(Tout) = − 1

|Ωout|

∫

∂Ωout

(
T(y)out −T(y(a))

)
(V ·N)da(x) . (59)

�
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