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Abstract—This paper presents a method for fault prognostic
of bearings based on Principal Component Analysis (PCA) and
Support Vector Data Description (SVDD). The purpose of the
paper is to transform the monitoring vibration signals into
features that can be used to track the health condition of bearings
and to estimate their remaining useful life. PCA is used to reduce
the dimensionality of original vibration features by removing the
redundant ones. SVDD is a pattern recognition method based
on structural risk minimization principles. In this contribution,
the SVDD is used to fit the trained data to a hypersphere such
that its radius can be used as a health indicator. The proposed
method is then applied on real bearing degradation performed
on an accelerated life test. The experimental results show that
the health indicator reflects the bearing’s degradation.

Index Terms—Diagnostic, Prognostic, Remaining Useful Life,
Support Vector Data Description, Feature extraction and reduc-
tion, Condition-Based Maintenance.

I. INTRODUCTION

The ability to estimate and predict a machine’s failure is

primordial as this allows anticipating the failure and leads to

increase the availability, reliability and security while reducing

the maintenance costs. Traditional maintenance of bearings

is either “run-to-failure” or scheduled replacement based on

bearings’ statistical life. This approach is unreliable because

of the greatly variant bearing’s life as well as of the variable

operating conditions in real applications. Therefore, traditional

corrective maintenance tends to be replaced by Condition-

Based Maintenance (CBM) and Predictive Maintenance (PM).

In a CBM, the machine is continuously monitored in order to

evaluate its health state and predict its future one and thus

estimate its Remaining Useful Life (RUL) before it fails.

A general CBM architecture is proposed in [1], where seven

layers are needed: sensors and data acquisition, signal pro-

cessing and feature extraction, health assessment and fault de-

tection, fault diagnostic, fault prognostic, decision support and

finally, results’ presentation on a human-machine interface.

Fault diagnostic can be seen as a problem of pattern recogni-

tion, whereas failure prognostic aims at assessing the current

health condition of a machine and predicting its future one

leading to an estimation of its RUL [5], [6].

The present paper deals with a Support Vector Data De-

scription (SVDD) based failure prognostic method. The main

contribution dwells in the utilization of the SVDD classifier

and on Principal Component Analysis (PCA) features reduc-

tion in order to continuously assess the health condition of

critical physical components (particularly bearings). SVDD

[8] is a technique of mono-class classification, which tries

to solve the problem of outliers’ detection by distinguishing

between a target class and an outliers class. The target class

is obtained from learning data that represent the whole life

cycle of the physical component. The outliers class results

from the following decision rule: the test data are classified

as target class only if their distance to the corresponding

hypersphere’s center is less or equal to the radius of the

hypersphere; otherwise they are classified as outliers.

Several research works dealing with the utilization of SVDD

have been reported in the recent literature. Examples of

applications are face recognition [9], speaker recognition [10]

and medical imaging [11]. However, only few of these works

deal with health assessment of physical components [8], [12].

The contribution of the present paper consists in a one-

class classification method based on support vector machine

[26]. Indeed, the objective is to construct a boundary around

the target data by enclosing this latter within a minimum

hypersphere. This technique, which aims at enhancing bearing

fault diagnostic and prognostic, is developed by fusion of

multiple health indicators through SVDD. Firstly, a selection

of best features from experimental data is done at the clas-

sifier training stage, and then different strategies for features

reduction that can maximize the performance of the classifier

are studied. The reduction process is realized based on PCA

technique. Then, a search for a hypersphere with minimal vol-

ume containing most of the mapped training data is performed,

where several key variables such as the radius and the center

of the hypersphere are used. In this contribution, the radius

of the hypersphere is used as a health indicator to reflect the

bearings’ degradation.

The present paper is organized as follows: section 2 presents

the SVDD formalization tool and section 3 describes the steps

of the method proposed for failure prognostic of bearings.

Section 4 deals with the application of the SVDD method on



experimental data related to bearings’ accelerated degradations

and results are presented and discussed. Finally, a conclusion

is given in section 5.

II. SUPPORT VECTOR DATA DESCRIPTION

Support Vector Data Description (SVDD) [8], [13] is in-

spired by the idea of the support vector classifier proposed by

Vapnik [14]. SVDD is a method of data domain description,

also called one-class classification and has been used for the

outlier detection or classification by Tax and Duin [13]. In

the SVDD technique, a geometry is made with less number

of constraints to describe the data by mapping them to a

high-dimensional space where the classification is performed.

This leads to a methodology known as kernel in statistics

and machine learning and where the purpose is not to find

an optimal separating hyperplane, but a spherically shaped

boundary around the dataset with minimal volume containing

all data. The computing tasks of the SVDD model concern the

calculation of the radius and the center of the hypersphere by

using the given data samples.

A boundary method for outlier detection based on support

vector domain description was presented in [15]. This method

attracted many researchers from various applications such as

pump failure detection [8], face recognition [9], speaker recog-

nition [10] and medical imaging [11]. Furthermore, SVDD

was used for outlier detection to detect uncharacteristic objects

from a data set. The boundary of a dataset can be used to detect

novel data or outliers. The method can be made flexible by

using other kernel functions. In addition, the method is robust

against outliers in the training set and is capable of tightening

the description by using negative examples.

Let {xi, i = 1, 2 . . . N} be the given training dataset with

the data space, where N is the number of samples. Let α

and R denote the center and the radius of the hypersphere,

respectively. The main work in SVDD is then to describe

the dataset by using a hypersphere with minimized radius

in the feature space. In other words, all the samples should

be located in the hypersphere. This main purpose can be

formulated as a constrained convex optimization problem

by minimizing the function with the constraint condition
∥

∥xi − a2
∥

∥ ≤ R2 (∀i = 1, 2, . . . ., N). Thus, if outliers appear

in the dataset, their corresponding distances to the center of

the hypersphere will not be strictly smaller that R. To increase

the classification’s performance, the outliers which have large

distances from the center are penalized. To deal with the

influence of outliers, slack variable ξi ≥ 0, (i = 1, 2, . . . ., N)
is introduced in the objective function.

The problem of minimizing the radius of the hypersphere can

be described by the following quadratic programming with

inequality constraints:

minF (R, a, ξi) = R2 + C

N
∑

i=1

ξi (1)

s.t.

{

xi − a2 ≤ R2 + ξi, i = 1, 2, . . . , N.

ξi ≥ 0, i = 1, 2, . . . , N.
(2)

Where C is a positive constant called penalty factor. This

parameter controls the trade-off between the radius of the

hypersphere and the testing error. By using the Lagrange

multiplier algorithm for Eq.(1), the corresponding Lagrange

function becomes:

L (R, a, αi, βi, ξi) = R2 + C
N
∑

i=1

ξi

−
N
∑

i=1

αi

(

R2 + ξi − xi − a2
)

−
N
∑

i=1

βiξi

(3)

Where αi ≥ 0 and βi ≥ 0 are Lagrange multipliers. The

Lagrange function L should be minimized with respect to

R, ai, ξ, and maximized with respect to αi and βi. The

limit conditions of Lagrange function L when setting partial

derivatives of R, ai and xi and equaling them to zero yields

the following constraints:

∂L

∂R
= 0,

∂L

∂a
= 0,

∂L

∂ξi
= 0 (4)

such that
N
∑

i=1

αi = 1, (5)

a =
N
∑

i=1

αixi (6)

C − αi − βi = 0 (7)

Note that one can get 0 ≤ αi ≤ C from Eq.(7) because αi ≥ 0
and βi ≥ 0. Furthermore, when Eqs.(5) to (7) are substituted

into the Lagrange function of Eq.(3), the dual form of the

Lagrange optimization problem turns into:

maxL =

N
∑

i=1

αi (xi.xi)−

N
∑

i=1

N
∑

j=1

αiαj (xi.xj) (8)

⎧

⎨

⎩

N
∑

i=1

αi = 1

0 ≤ αi ≤ C, i = 1, 2, . . . , N.

(9)

Where xi.xj stands for the inner product of xi and xj . Usually,

the dataset is not ideally distributed in the hypersphere. So, the

inner product can be substituted by some kernel function in

high-dimensional feature space.

After solving the quadratic programming problem containing

the inequality constraints denoted by Eqs.(8) and (9), the

parameters of the SVDD model {αi, i = 1, 2 . . .N} can be

estimated. The parameters satisfy the previous conditions

given in Eqs.(5) to (7).

Solving the problem of Eq.(10) gives the set αi. A training data

xi and its corresponding αi satisfy one of the three conditions

given in Eqs.(5) to (7).
⎧

⎨

⎩

xi − a2 < R2 → αi = 0
xi − a2 = R2 → 0 ≤ αi ≤ C

xi − a2 > 0 → αi = C

(10)

The data with the coefficients αi > 0 are called the Support

Vectors (SV ). From the above relations one can see that only



the SVs are needed in the description of the hypersphere. The

hypersphere’s center could be calculated by using Eq.(10).

The radius R of the hypersphere can be obtained by calcu-

lating the distance from its center to any support vector with

0 ≤ αi ≤ C, which provides the sparse representation of the

domain description.

To determine whether a test data z is within the hypersphere,

its distance to the center of the hypersphere has to be calcu-

lated. A test data z is accepted when this distance is smaller

than the radius, i.e.:

z − a2 = (z.z)− 2

N
∑

i=1

αi (z.xi) +

N
∑

i=1

N
∑

j=1

αiαj (xi.xj) ≤ R2

(11)

By definition, R2 is the distance from the center of the hyper-

sphere α to any of the support vectors on the boundary. Thus,

support vectors which fall outside the description (αi = C)
are excluded. Therefore:

R2 = (xk.xk)− 2

N
∑

i=1

αi (xi.xk) +

N
∑

i=1

N
∑

j=1

αiαj (xi.xj) ,

(12)

for any xk ∈ SV < C, the set of support vectors which have

αk < C. So,

N
∑

i=1

N
∑

j=1

αiαj (xi.xj) = const (13)

Then,

R =
√

f(xs), (14)

where xs can be an arbitrary support data. For a test data z, its

distance to the center α is given by the following expression:

∆ =
√

f (z)−R (15)

So, the state of z (for which the distance to the center is less

or greater than R) can be decided according to the following

criterion:
{

∆ ≤ 0 is target

∆ > 0 is outlier
(16)

The SVDD method can be made more flexible by using

kernel functions [8]. An ideal kernel function would map the

target data onto a bounded spherically shaped area in the

feature space and outlier objects outside this area. Many kernel

functions have been proposed for the support vector classifier.

However, not all of them are equally useful for the SVDD.

Indeed, it has been shown in [15] that the Gaussian kernel:

k (x, y) = exp

(

x− y

σ2

)2

(17)

where σ is a width parameter (also called extension con-

stant) is more efficient than other kernel functions, such as

polynomial function, sigmoid function, etc. This kernel is

independent of the position of the data set with respect to the

original data and utilizes only the distances between data. By

selecting a Gaussian kernel, one gets the following equation:

f(z) = 1− 2

N
∑

i=1

αiK (z.xi) +

N
∑

i=1

N
∑

j=1

αiαj (xi.xj) (18)

Figure 1 shows a sketch map of a hypersphere boundary
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Fig. 1. Sketch map of SVDD of machine life.

defined by a support vector data description. The plus (+)

samples inside the sphere are targets, those (+) outside the

sphere are outliers and the samples on the boundary are

support vectors. Both target and outlier samples on the wrong

side of the boundary are associated with slack variables in

order to deal with testing errors.

III. SVDD FOR BEARINGS’ FAILURE PROGNOSTIC

The present section deals with the proposed method for

bearing’s health assessment and prognostic based on the use

of SVDD. The steps of the method are shown in Fig. 2.

The main idea of the proposed contribution relies on the

transformation of the raw monitoring data, about the bearing’s

degradation, to relevant models that can be used to represent

the behavior of the degradation, continuously estimate the

heath state of the bearing, predict its future one and finally

calculate its RUL value.

For the sake of clarity and simplicity, the two following steps

of Fig. 2 are explained: feature extraction and reduction and

health estimation and RUL estimation method. The SVVD

approach being presented in section II.

A. Features extraction and reduction

In the current contribution, the raw monitoring vibration

signals are first preprocessed (filtering, removing of outliers,

etc.) before extracting original features. The features can be

of three types: temporal, frequency and time-frequency. The

number of generated features is then reduced to a small

number, which is finally used for bearing’s health assessment

and RUL estimation. Indeed, the concept of feature extraction

used to accurately assess the bearing degradation is a critical

step in the learning phase of the health assessment model

as well as in the on-line phase for RUL estimation. In this

paper, PCA technique is used to select and reduce the features
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Fig. 2. Main steps of the SVDD failure diagnostic and prognostic.

extracted from raw signals by considering 97% of selection to

keep most variance information. PCA is a statistical technique

widely used in the pattern recognition community as a method

of feature reduction [16]. This technique is based on an

orthogonal decomposition of the covariance matrix of the

process variables along directions that explain the maximum

variation of the data. This is carried out by performing a

rotation of the data in the feature space, and creating a new

set of axes (dimensions), which maximizes the variance in

each dimension as much as possible. After the transformation

phase, the data is ordered with maximum variance and this

yields to the first few dimensions.

In this work, 17 features were initially extracted (root mean

square, kurtosis, etc.), then this number is reduced to only 3.

B. Bearing’s health assessment and RUL estimation

The diagram of the proposed SVDD method for bearing’s

health assessment and failure prognostic is given in Fig. 3.

The bearing’s health assessment and RUL estimation is done

in two phases: a first phase to build the SVDD model (learn

the radius and the center of the hypersphere), and a second

phase to continuously assess the bearing’s condition and to

calculate its RUL. During the first phase, the set of reduced

features is used (the values of the features at each time are

fed to the learning algorithm). In the second phase, the learned

model is used on a test bearing with new reduced features to

determine its current condition and to calculate its RUL.

The RUL calculation is based on the evolution of the severity

Signal processing

Features extraction

Modeling: SVDD

Signal processing

Feature extraction & PCA reduction

SVDD

RUL

estimation

On-line: Health assessment & predictionOff-line: Modeling

Acceleration  signals

Reduction: PCA

Health

assessment

Fig. 3. System framework for bearing performance degradation assessment.

of the degradation. Figure 4 illustrates how this is done.

The right part of figure 4 corresponds to the time evolution

of the SVDD hypersphere’s radius, which is related to the

evolution of the degradation. Thus, by observing the trend

curve of the severity (right side of figure 4) and by knowing the

accepted threshold of the bearing’s failure, one can determine

the value of the RUL. Mathematically speaking, let R(t) be

the corresponding analytical function of the severity evolution

and ǫ be the predefined threshold from which the bearing is

out of service. Then, the estimated value of RUL at time t0 can

be obtained by using the following expression (the uncertainty

of RUL prediction is not taken into account in this formula):

RUL = R−1 (ε)− t0 (19)

IV. APPLICATION ON PRONOSTIA

A. Description of the experimental setup

An accelerated bearing life test platform called PRONOS-

TIA (Fig. 5) is used in this section to verify the prognostic

SVDD method proposed in section III. PRONOSTIA is a

laboratory experimental platform dedicated to test, verify

and validate developed methods related to bearing health

assessment, diagnostic and prognostic. In the following of

the paper, a set of three experiments consisting of three

degraded bearings has been utilized. The three data sets have

the following time durations: 6 hours and 50 minutes, 6 hours

and 48 minutes and finally 6 hours and 16 minutes.

PRONOSTIA is composed of two main parts: a first part

related to the speed variation and a second part dedicated to

load profiles generation. The speed variation part is composed

of a synchronous motor, a shaft, a set of bearings and a speed

controller. The second part is composed of a hydraulic jack

connected to a lever arm used to create different loads on the

tested bearing mounted on the platform. A pair of ball bearings

is mounted on one end of the shaft to serve as the guide

bearings and a NSK6307DU roller ball bearing is mounted on

the other end to serve as the test bearing. Two high frequency

accelerometers are mounted horizontally and vertically on the

housing of the tested roller bearing to pick up the horizontal

and the vertical accelerations. The sampling frequency of the

data acquisition card is set to 25600 Hz and the vibration

data provided by the two accelerometers are recorded every 1

second. In the following experiments the rotation speed of the

motor’s shaft is kept constant at 1800 rpm. A radial load of

400 kN is applied on the shaft and the bearing by a hydraulic

jack pressure mechanism.

B. Experimental results

1) Extracted features: figure 6 shows the kurtosis of the

vibration signal. From this figure, one can observe two dif-
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ferent regions. The first region is flat representing the normal

bearing operation. The second region is characterized by a

fluctuating signal with an increasing trend. Generally, vibration

signals of healthy bearings are Gaussian in distribution, in any

value of speed and load. Therefore the value of the kurtosis

is close to three for the vibration signals of healthy bearings.

The appearance of a fatigue crack or a spall on the bearing

surfaces results in kurtosis values that are greater than three.

However, if the damage increases the kurtosis values come

back to three.

2) SVDD based health assessment and RUL estimation: in

this study, healthy bearings are run until they are completely

failed. Then, the data from the whole life of the bearings

are collected. From each tested degradation, 50% of the

monitoring data are used for training and the remaining 50%

are used to test the models and to estimate the health condition

of the bearing.

The experimental results presented in this section are con-

ducted in two categories and the SVDD model is trained by

using the SVDD toolbox described in [17]. The first set of



Fig. 7. Recognition results.

Fig. 8. Radius evolution of minimum enclosing ball using 2 and 3 features.

Fig. 9. Curve fitting data for RUL estimation.

results is devoted for the fault detection of bearing faults and

for evaluating the performance of different kernel functions

for the training dataset. In the second set, the severity of the

bearing’s defect is tracked by using a minimum enclosing ball

to predict its health state and estimate its RUL value. For this

purpose, the radius of the hypersphere generated by the SVDD

is used as a health indicator. Furthermore, an appropriate

degradation threshold indicating the failure of the bearing is

defined.

The kernel function used in this work is Gaussian, where the

parameter σ is set between 0.01 and 0.1 [15]. The results of the

Gaussian kernel function are compared to those obtained by

using polynomial and sigmoid kernels. Figure 7 compares the

classification error and the test time for various classifications

of different kernel functions.

After the extraction of features from the raw signals which

have the potential to be correlated with the bearing’s degrada-

tion, a feature selection step is conducted. Then, the selected

features are used as inputs of the SVDD method to estimate

the health condition of the bearing. Note that the accuracy of

the algorithm is dependent on the quality of features being

used for training. Firstly, 17 original features are generated

from the training data and then PCA is implemented on the

features to reduce their number.

In the following tests, a Gaussian kernel is used to assess

the health condition of the bearings and to estimate their

RUL. Thus, a search for an optimal combination of kernel

width σ and number of principal components is performed.

To speed up the search, any eigenvector whose corresponding

eigenvalue is smaller than 10−4 is discarded. Moreover, in



Fig. 10. Radius regression functions.

order to improve the robustness of the proposed SVDD method

for health assessment and RUL estimation, several simulations

have been carried out by modifying the number of features

based on PCA. Figure 8 shows the radius evolution of the

hypersphere for 2 and 3 features.

In the table given in Fig. 10, which represents the radius of

minimum enclosing ball, one can observe that the health indi-

cator evolution is more better than the kurtosis shown in figure

(6). Furthermore, this fitting is better if only three features

selected with maximum variance are used after reduction by

PCA. This dimension space of features reflects the effect of

power regression error to follow-up the severity of the defect

and estimate the RUL. The regression equations are shown in

the table of Fig. 10 where a power regression model is used in

order to estimate the RUL. The objective is to apply the best

power fit of the radius on the degradation signal. Thus, the

RUL can be easily calculated by using the regression curve

shown in Fig. 9.

The validation of the experimental results are shown in the

table of Fig. 10. The sum square error (SSE), the R square

and the root mean square error (RMSE) are calculated. One

can see that these errors decrease when the number of features

selected after reduction increases. However, this increases the

runtime of training data.

V. CONCLUSION

A method based on PCA and SVDD for health assessment

and life prediction of bearings is proposed in this paper. This

study investigates the efficiency of SVDD for estimating the

remaining useful life by analyzing complex and nonlinear

data of bearings’ life cycle. The study also explores the

advantages of the SVDD model for the health assessment

of bearings. The model’s output was obtained and compared

to the experimentally measured data by using a regression

function.

The developed method can be considered within the frame-

work of condition based maintenance and predictive mainte-

nance. This new approach aimed to make the SVDD boundary

closely fit the contour of the target data. The simulations

have shown that using PCA for features reduction gives better

results. Moreover, a combination of PCA and SVDD has

been used for intelligent fault prognostic. The experimental

results of bearings’ degradations have shown that the proposed

method can reduce the effect of outliers and yield higher

classification rate. The proposed SVDD method can be seen as

a way of automatically performing health assessment, failure

prediction and RUL estimation for bearings. Finally, this

method can be applied on other physical components, other

than bearings, provided that monitoring data which reflect the

behavior of the component’s degradation are available.
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