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Abstract

This article aims at showing an architecture of neu-
ral networks designed for the classification of data dis-
tributed among a high number of classes. A significant
gain in the global classification rate can be obtained
using our architecture. This latter is based on a set
of several little neural networks, each one discrimi-
nating only two classes. The specialization of each
neural network simplifies their structure and improves
the classification. Moreover, the learning determines
automatically the number of hidden neurons. The dis-
cussion is illustrated by tests on data bases from the
UCI machine learning database repository. The exper-
imental results show that this architecture can achieve
a faster learning, simpler neural networks and an im-
proved performance in classification.

1. Introduction

The majority of the tasks of classification require a
phase of training generating a model which associates
with an input (represented by a vector of attributes)
a class. In this article, we are interested in super-
vised classification of data. There is a great number
of algorithms of classification of data. Mainly one can
quote the decision trees [2, 11], the methods based on
the theory of Bayes [3], the statistical methods [3]
(dynamic clouds, K nearest neighbors) and the neural
networks [6]. we are interested with this last type of
method of classification. We propose an architecture
based on neural networks in order to simplify on the
structure of the networks used by an automatic and
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dynamic determination of the number of hidden neu-
rons. The training is also simplified by limiting the
task of the classifior while giving him to learn only
the data relating to two classes. Our study is within
a general framework, without a priori on the problem
being treated. We will show that when the number of
classes of objects to be distinguished in a base is high,
our architecture tends to give better results (correctly
classified data rate) than a single large multi-layer neu-
ral network (MLP).

2. MONNA : a neural network architec-
ture

We propose to use an architecture MONNA (Mul-
tiple Ordinate Neural Network Architecture) made of
several small neural networks to solve a problem of
classification. The neural networks used are multi-
layer networks with retropropagation of the gradient
error (MLP : Multi-Layer Perceptrons). Typically, a
neural network consists of an input layer (parameters
characterizing an object), of one or two hidden lay-
ers and of an output layer providing the class of the
object. We choose to use an architecture of multiple
neural networks in order to obtain better performance
of classification compared to only one large MLP (in
particular when the number of classes becomes high).

The architecture MONNA construction is done in
three steps :

e The construction of the neural network architec-
ture according to the number of classes of objects
to be separated,



e The training of each neural network according to
a method dynamically finding the optimal num-
ber of neurons of the hidden layer,

e The construction of a hierarchy of neural net-
works bringing to the classification of the objects.

2.1. Principle of construction

The construction of the architecture is supervised.
It builds a set of neural networks (a forest of neural
networks). The classification of data by only one large
network can be difficult when the number of classes of
objects to be separated is high : this neural network
presents difficulties of generalization. What we pro-
pose consists in using only small neural networks : by
small, we understand simple structure. Indeed, if the
capacity of generalization of a network is weakened by
the number of classes to discriminate, a simplification
of the problem can be a reduction of the number of
classes having to be recognized by this network. This
obviously involves an increase in the number of net-
works having to discriminate several classes. Our ar-
chitecture arises in the following way. For a problem of
classification having to separate n classes, MONNA is
composed of a set of unconnected networks, each one
being intended to separate the elements from two dis-
tinct classes. If the problem has n classes, that leads
us to have (n * (n — 1)) /2 neural networks being used
for classification. The difficulty in separating n classes
is simplified by the specialization of each network, be-
cause a network is interested only in separation of two
classes. Consequently, at the time of its training, each
network learns to recognize only examples of these two
classes. The structure of the neural networks used
is the following one : a layer of inputs containing as
many neurons as the number of attributes associated
with the object to be classified, a hidden layer con-
taining a variable number of neurons and one output
neuron. The value of the output neuron is in the in-
terval | — 1,1[. According to the sign of the result
associated with this single neuron, an object is classi-
fied in one of the two classes that the network sepa-
rates. This has several advantages. The simplicity of
the task associated to each neural network simplifies
the convergence of the training as well as the search
for a simple structure as we will see further.

2.2. Training

As the neural networks used by our architecture are
very simple (only one hidden layer, only one neuron
of output), the generalization of their structure can
be made in a dynamic way very easily. Some research

studies were already undertaken in order to build neu-
ral networks dynamically. Those include the dynamic
creation of the nodes [1], the "cascades correlation"
algorithm [4], the "tilling" algorithm [8], the algo-
rithm "self-organizing" [13] and the "upstart" algo-
rithm [5]. These algorithms are used to eliminate
the need to determine in advance (before the training
of a network) the number of neurons of the hidden
layer. This is very useful because a simpler network
having less hidden neurons reduces the complexity of
calculations. However, the fact of fixing this number
of neurons of the hidden layer can be penalizing if not
suitable. We thus propose to modify the structure of a
neural network during the training while thus allowing
to build dynamically a neural network. At the time of
its training a neural network starts with a very simple
structure : only one neuron on the hidden layer. Neu-
rons are then added one by one in the hidden layer
in order to improve the rate of classification of the
network on a validation set. Each time a new neuron
is added, the network proceeds to a new training by
the method of retropropagation of the gradient. The
initial weights are obtained in a random way at each
addition of a new neuron to the hidden layer (figure
1). The initial training data (St) are splitted in two
subsets : a learning set (Sr) and a validation set (Sy).
This latter consists in 20% of Sy and the learning set
in 80% of Sy. The learning of a neural network is
performed on S and the validation set Sy is used to
evaluate the classification rate of the network. The
validation set is not learned by the neural networks.

Output layer

Hidden layer

Input layer

|£|£|—_L| Aftributes of an object

Figure 1. An example of neural network with
an adaptive structure : when a neuron is
added to the hidden layer (in gray), the links
are updated and the weights all initialized in
a random way.

The training ends either when the network reaches
a satisfying rate of classification on the validation set,
or when the maximum number of hidden neurons is
reached. It is noted here that during the training one
always stores the structure of the network which gave



the best rate of classification, because this latter can
increase and decrease with the addition of neurons (fig-
ure 2). The training algorithm can be described in the
following way for only one neural network. Let us de-
note h as the number of hidden neurons, A.,,.; the
maximum number of hidden neurons, Q,,,, the satis-
fying rate of classification, R(h) the network having h
hidden neurons, Q(h) the rate of classification of net-
work R(h) on the validation data, Rpes: the network
which the structure gives the best rate of classification
and Qpest the rate of classification of network Rpest.

1. h=1, Rpest = R(1) and Q.naz = 100%
2. Randomly initialize the weights of the network
R(h).
3. Find the weights which minimize the function of
error by retropropagation of the gradient.
4. If Q(h) >= Qmmqe then end the training and go to
step 7.
5. If Q(h) > Qpest then Qpest = Q(h) and
Ryest = R(h)
6. Add a neuron to the hidden layer :
h=h+1. If h <= hpaz O to step 2.
7. The final structure of the network is that of Rpegt-

The algorithm allows to obtain in a reliable way, the
neural network which best learns with less neurons in
the hidden layer. Figure 2 gives an illustration of
the influence of the number of hidden neurons on the
training of a network (Qmaz = 95% and hpes = 50)
on the “Glass” database. Only the networks which
did not quickly reach the Q,,,, quality are presented.
One generally reaches an optimal configuration with a
small number of hidden neurons.
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Figure 2. Variation of the rate of classification
according to the number of neurons of the
hidden layer on the validation database of
the "Glass" database (see results).

We thus have an algorithm allowing to dynamically

build a neural network at the time of the training. Our
architecture MONNA uses this algorithm to carry out
the training of each neural network constituting it.
However, when one of them learns how to differenti-
ate two classes, only the objects belonging to these two
classes are presented to the neural network. This im-
plies, on the one hand to simplify the training once
again and on the other hand to facilitate discrimi-
nation between these two classes since the network
learned how to recognize only those.

The error function that we used is quadratic error
E = (8-Y)?2/2 in a synchronous version (the weights
are modified with each presentation of an object of the
learning base). Y belongs to {—1,1} and indicates
the desired value of the output neuron (the class of
the object to be learned), S indicates the value of the
output neuron S = f(W;0;) where W; indicates the
weights between the output neuron and neurons of
the hidden layer (¢). O; is the value of the neuron 4
of the hidden layer. The transfer transfer function is
fy) = 2/(1+e 7o) - 1.

It will be noted that thereafter if a neural network
separates two classes C; and Cy an object is regarded
asclass C; if S; <0and Cy if S; >=0

2.3. Hierarchy of neural networks

We now have a set of neural networks separating
each one two classes, as well as a training algorithm
allowing to dynamically find the optimal number of
neurons of the hidden layer. We must now specify
how to use the results coming from each network in
order to classify an object. With this intention we
build a hierarchy of neural networks. The fact of us-
ing several neural networks separating each one only
two classes allows to have a hierarchical vision not
only of the data, but also of the decision of classifi-
cation which will be refined gradually at the time of
successive interrogations to the networks. The hierar-
chy of neural networks defined by our architecture is
articulated around three points :

e One has (n * (n — 1))/2 networks discriminating
each one two classes,

o The networks are ordered according to their qual-
ity of classification,

e The decision of classification is made by elimina-
tion.

The first point is the base of architecture MONNA,
each network is used only to separate two classes. We
specify here that an object belonging to none of the



classes discriminated by a network will be classified
without significance in one or the other class.

The second point rests on the quality of classifica-
tion of the neural networks. By quality of classifica-
tion, we understand the rate of classification obtained
by the network at the end of the training. This qual-
ity of classification is evaluated on a validation set and
measures the capacity of a network to correctly clas-
sify an object between two classes (and only between
these two classes since the network learned how to
recognize only those). One thus can, at the end of
the training, arrange the networks according to their
quality of classification, the first network being that
which best learned i.e. that for which the decision of
classification is most reliable.

The third point defines the decision of classifica-
tion. We have a hierarchy of neural networks classi-
fied according to their quality of classification. How-
ever, each network discriminating only two classes,
the problem of the choice of the final class of an ob-
ject to be classified arises. We set up with this in-
tention a selection by elimination. Two criteria were
defined, the Sequential-Elimination criterion and the
QualityOutput-Elimination criterion. Some notations
first of all. Let us denote E = {Cy,C5...,Cn} as the
set of the classes of the objects in the training base, C;
indicates the class of an object and n the number of
classes. Ry, indicates the k** neural network in the hi-
erarchy, R} indicates the class p discriminated by the
network, R} € E and p € {1,2} since a network dis-
criminates only two classes. Finally one defines S(Ry)
as the value of the neuron of output of network Ry
, T = {R1,...; Rin«(n—1))/2} as the set of neural net-
works and Q(Ry) as the rate of classification of the
kt* neural network.

Sequential-Elimination Criterion :

k=0

While Card(E) # 1
If S(R;) <0then E=FE — R}
else E = E — R;
k=k+1

EndWhile

This criterion uses one by one the networks accord-
ing to the hierarchy and eliminates progressively the
classes according to the output of the neural networks.

The second criterion used is the product of the out-
put of a network by the quality of this one. Indeed,
the decision related to the classification made by a
network depends on two things : its potential of clas-
sification and its decision. Thanks to this criterion,
a network for which the output is close to 0, which
characterizes a dubious decision, but which belongs to
the first in the hierarchy, will not be inevitably used

in first.
QualityOutput-Elimination Criterion :

While Card(E) # 1

max = —1

Forl=1to (n*x(n—1))/2 do

If R, € T then

If S(R;) < 0 then Tmp = R}

Else Tmp = R?

If |S(R)) * Q(Ry)| > maz and Tmp € E
maz = |S(R;) * Q(R)|

class = T'mp

used = [

EndFor

T=T- Rused

E =F —class
EndWhile

At this stage, we did not specify which elimination
criterion to use. It appears obvious that the criterion
to use is that which gives the best classification rate.
However, after having carried out various tests on sev-
eral bases, it did not prove to have of great difference
(on the level of the rate of classification) between the
two criteria, the QualityOutput-Elimination criterion
being slightly higher.

The only difference between the two criteria lies in
the choice of the network used to eliminate a class.
The Sequential-Elimination criterion uses one by one
networks according to the hierarchy whereas the
QualityOutput-Elimination criterion chooses among
all the networks that which maximizes |S(R;) *Q(R;)|.
This implies to use all of them because one must know
the output of each one of them and must propagate
the data for each network. However, it is noted that
the sequence of the networks leading to the decision
of classification is made in a more hierarchical way
for this last criterion. We will see thereafter on var-
ious bases that this is always checked and that the
criterion to be retained is rather the QualityOutput-
Elimination criterion to have a more hierarchical point
of view of the decision of classification.

3. Experimental results

The data bases for which results will be given here
are real data bases coming from “The Machine Learn-
ing Data Repository of the University of California At
Irvine (UCI)” [9] and also from our own works (Serous
base) [7]. These data bases are used in various arti-
cles on classification. This will enable us to compare
the performances of our architecture with other neu-
ral networks approaches which use traditional or im-
proved methods.



3.1. Description of the data bases

Table 1summarizes the characteristics of each data
base. Their source is varied and corresponds to very
different problems (medical, segmentation of images,
character recognition, wines, cars, etc.). Each data
base is characterized by the number of classes to dis-
criminate, the number of attributes describing an ob-
ject and the number of instances in the base (table
1).

We used 10 data bases coming from the base of the
UCI. Our data base relating to classification of the
cells was retained because it uses a great number of
classes (18) and illustrates well the utility of our neu-
ral network architecture MONNA. This base comes
from our research studies [7] on the automation of
the sorting of cells from serous cytology (cavities of
the human body such as the peritoneum). It was ob-
tained by a tagging of objects (the cells) carried out
by three different experts. This enabled us to have a
reliable base in the sense that it is representative of
the data to classify (even if the problem to be solved
is difficult).

Database Number | Number Number
of of of
classes attributes | instances

Liver Bupa 2 6 345

Pima, 2 8 768

Tonosphere 2 34 350

Cancer 2 9 683

Wine 3 13 178

Vehicle 4 18 846

PageBlocks 5 10 5473

Glass 7 9 214

Segmentation | 7 19 210

OptDigits 9 64 3823

Serous 18 46 4837

Table 1. Data bases used for the tests.

3.2. Resaultsanalysis

For each base, 20% of the data are used as a test
base and 80% as training base (St) further splitted
in a learning base (Sr) and in a validation base (Sy ).
The rate of classification used for comparison is mea-
sured on the test base (S7). We first of all compared in
term of rate of classification our architecture MONNA
with a traditional MLP neural network. It will be
noted that we used our algorithm of dynamic deter-
mination of the number of neurons of the layer hidden

for the training of the MLP. For the bases where the
number of classes is equal to two, the performances are
identical, (it is normal since only one neural network
is used). For the bases presenting a number of classes
to be distinguished higher than two, our architecture
proved to be better in all the cases, even simple (few
classes) or more difficult (many classes). MONNA is,
on the basis of table 1, between 3% and 15% better
than a traditional MLP (table 2).

Base MLP MONNA
Liver Bupa 71 71
Pima 76.6 76.6
Tonosphere 90.1 90.1
Cancer 97.8 97.8
Wine 97.3 100
Vehicle 71.9 78.4
PageBlocks 85.4 90.1
Glass 66.7 82.2
Segmentation 82.4 87.8
OptDigits 78.1 81.6
Serous 55.9 65.8

Table 2. Comparison between the rate of clas-
sification of a MLP and MONNA on the data
base of Table 1.

Architecture MONNA thus proves to be useful for
the bases presenting a number of classes higher than
2. But one of the strength of our architecture is also
to use networks having simple structures, because if
the discrimination between two classes is simple, the
best structure of the network is quickly found and the
neural network generalizes well.

If one compares the number of hidden neurons of
a MLP and of the architecture MONNA, overall the
networks used by MONNA are simpler. Table 3 sum-
marizes these results : for the MLP the number of hid-
den neurons is presented and for MONNA the minimal
and maximum number, the average and the standard
deviation of the number of hidden neurons and this for
all the networks used. The structure of the networks
used by MONNA is simpler, but only when each net-
work can generalize sufficiently easily. If it is not the
case, that can involve the creation of large networks :
for the data base " Serous ", a network has 46 neurons
on its hidden layer, 11 more than one MLP.

However, even if this network used by MONNA is
complex, its training is faster because it takes place
only on two classes and not on the totality of the
classes. On the data base " vehicle ", one notices
(table 3) that a neural network has 28 neurons on
its hidden layer, which can appear high. This net-



Base MLP MONNA
Nb. | Min| Max| Avg.| St. Dev.

Liver Bupa 3 3 3 3 0
Pima 23 23 123 |23 |0
Tonosphere 7 7 7 7 0
Cancer 1 1 1 1 0
Wine 2 1 1 1 0
Vehicle 47 1 28 | 6.6 | 9.9
PageBlocks 31 1 17 | 2.8 | 4.7
Glass 25 1 11 | 1.8 | 2.3
Segmentation | 18 1 1 1 0
OptDigits 47 1 1 1 0
Serous 35 1 46 | 4.5 | 10.3

Table 3. Comparison between the number of
neurons of the hidden layer between a MLP
and MONNA.

work is dedicated to the separation of classes 0 and
1 (table 4), but these classes are difficult to sepa-
rate so that involves a more complex network. Indeed,
if the classes are difficult to separate, that induces a
weak rate of classification (lower than 60%) and thus
a longer training since Q4. quality is never reached
and the algorithm determining the optimal structure
of the network will continue until the maximum num-
ber of neurons is reached before stopping.

In general, certain networks require a longer train-
ing because they have covered the whole possible set
of the networks (h =1 to 50) so that in certain cases,
small networks are stored and in other cases larger.
This training uses, for a neural network, only the ob-
jects relating to the classes which it separates, which
accelerates convergence being given the simplicity of
the task allotted to the network.

Number of Quality Network Classes
hidden neurons i<->j

1 96.4 2<->3

1 96.4 1<->3

5 96.5 0<->2

4 94.3 1<->2

1 93.9 0<->3

28 58.6 0<->1

Table 4. Quality and a number of neurons of
the layer hidden of the networks of architec-
ture MONNA on the "vehicle" base.

If one is interested in the influence of the criterion
used to choose by elimination the final class, one notes

that the criterion Sequential-Elimination is as good
as the QualityOutput-Elimination criterion in term
of rate of classification (even if the last criterion is
slightly better than the first : table 5). However,
from the point of view of the grading of the decision
of classification, the QualityOutput-Elimination cri-
terion makes easier interpretation because it chooses
more judiciously the networks bringing to the elimi-
nation of a class. Table 6 presents for each base, the
number of networks used to take a decision of clas-
sification. It is noted that for each of the two crite-
ria, the number networks used grows as the number of
classes increases. But the QualityOutput-Elimination
criterion reduces this increase to a significant degree
(Table 6).

Base Rate for | Rate for Quality
Sequential | Output

Wine 100 100

Vehicle 78.4 78.4

PageBlocks 90.1 90.1

Glass 82.2 82.2
Segmentation | 87.8 87.8

OptDigits 81.6 83.2

Serous 65.8 66.3

Table 5. Comparison of the rates of classi-
fication for the two criteria of selection per
elimination.

To finish these comparisons, we will compare the re-
sults obtained by our architecture with those of other
works and more precisely those of Richeldi [12] and
Yang [15, 14]. These works are based on neural net-
works. ADHOC [12] is a traditional neural network
using a selection of characteristics. DistAI [15] uses
genetic algorithms for the training, and GA-DistAl
[14] is an improved version of DistAl [15] using a
selection of characteristics, this selection also based
upon genetic algorithms. On the bases common to
our study, our architecture is better on all the bases
presenting more than 2 classes (table 7). This fact
is accentuated when the number of classes increases.
For a number of classes equal to two our architecture
does not differ from the structure of a traditional MLP,
which explains lower results compared to using MLP
with improvement techniques (genetic algorithms and
selection of characteristics).

4. Conclusion

We showed the interest of the neural network archi-
tecture MONNA for the problems of classification pre-



Base Number | Sequential | Quality
of Output
classes

Wine 3 2 2

Vehicle 4 5 3

PageBlocks 5 8 4

Glass 7 19 6

Segmentation | 7 13 6

OptDigits 9 31 9

Serous 18 130 17

Average 7 30 7

Table 6. The average number of neural net-
works associated with the classification de-
cision according to the criterion used.

Base Monna| Monna| Adhoc | Distai| Gadistai

SFFS
Pima, 76.6 77.9 73.2 76.3 79.5
TIonos | 90.1 95.8 - 94.3 | 98.6
Cancer | 97.8 98.5 - 97.8 | 99.3

Wine 100 100 97.1 | 994

Vehicle | 78.4 85.5 69.6 654 | 68.8

Glass | 82.2 84.4 70.5 70.5 80.8
Serous | 65.8 77.1 - - -

Table 7. Comparison between various neural
approaches.

senting a great number of classes. This architecture is
based on three steps : its construction, establishment
of a hierarchy among the neural networks according to
their quality of classification and the use of a selection
by elimination to obtain the decision of classification.
We also proposed a method of dynamic determination
of the number of hidden neurons of each network dur-
ing the learning. The superiority of our architecture
MONNA was shown compared to different neuronal
approaches, in the case of more than two classes. We
also saw that in addition to its strength of classifica-
tion, the neural networks used in MONNA have a very
simple structure allowing a fast and powerful training
to separate two classes.

It can be interesting to select the relevant attributes
for the separation of two classes. It is noted that some
networks have only one neuron on the hidden layer,
which suppose a very simple task of classification. One
could then still simplify the structure of a network by
selecting its input attributes. This is all the more in-
teresting since one can select the relevant attributes for
each one of the networks used in MONNA. We have

tried different algorithms for the selection of relevant
attributes and the wrapper SFFS [10] algorithm was
retained. This enables to increase once again the clas-
sification rate of our architecture MONNA with SFFS
(Table 7).
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