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Abstract

We show that any compact quantum group having the same fusion rules as the ones of
SO(3) is the quantum automorphism group of a pair (A, ), where A is a finite dimensional
C*-algebra endowed with a homogeneous faithful state. We also study the representation
category of the quantum automorphism group of (4, ¢) when ¢ is not necessarily positive,
generalizing some known results, and we discuss the possibility of classifying the cosemisimple

(not necessarily compact) Hopf algebras whose corepresentation semi-ring is isomorphic to
that of SO(3).

1 Introduction and main results

The quantum automorphism group of a measured finite dimensional C*-algebra (A, ) (i.e. a
finite-dimensional C*-algebra A endowed with a faithful state ) has been defined by Wang in
[24] as the universal object in the category of compact quantum groups acting on (A, ). The
corresponding compact Hopf algebra is denoted by Aaut(A, ).

The structure of Aaut(A4,¢) depends on the choice of the measure ¢, and the representation
theory of this quantum group is now well understood |2, 3|, provided a good choice of ¢ has been
done, namely that ¢ is a d-form (we shall say here that ¢ is homogeneous, and that (A, ) is a
homogeneous measured C*-algebra). Banica’s main result in [2, 3] is that if ¢ is homogeneous and
dim(A) > 4, then Aaut(A, ) has the same corepresentation semi-ring as SO(3). See also [12].
The result can be further extended to show that the corepresentation category of Aaut(A4, ) is
monoidally equivalent to the representation category of a quantum SO(3)-group at a well chosen
parameter, see [13].

Then a natural question, going back to [2, 3] and formally asked in [4], is whether any compact
quantum group with the same fusion rules as SO(3) is the quantum automorphism group of an
appropriate measured finite-dimensional C*-algebra. The main result in this paper is a positive
answer to this question.

Theorem 1.1. Let H be a compact Hopf algebra with corepresentation semi-ring isomorphic to
that of SO(3). Then there exists a finite dimensional homogeneous measured C*-algebra (A, o)
with dim(A) > 4 such that H ~ Agui(A, p).

Recall that if G is a reductive algebraic group, a G-deformation is a cosemisimple Hopf
algebra H such that RT(H) ~ R*(O(G)), where RT denotes the corepresentation semi-ring.
The problem of the classification of G-deformations has been already studied for several algebraic
groups: see |25, 1, 20, 7| for SL(2), |19, 17| for GL(2), and [18] for SL(3). Thus Theorem 1.1
provides the full description of the compact SO(3)-deformations.

The next natural step is then to study the non-compact SO(3)-deformations. For this pur-
pose we study the comodule category of Aaut(A4,¢) with ¢ non necessarily positive and give a
generalization of the results from [2, 3, 8, 13] (together with independent proof of these results),
as follows (see Section 2 for the relevant definitions).



Theorem 1.2. Let (A, p) be a finite dimensional, semisimple algebra endowed with a normaliz-
able measure @, with dim A > 4. Then there exists a C-linear equivalence of monoidal categories

Comod(Agut(4, ¢)) ~® Comod(O(S0,(3)))

between the comodule categories of Agqut(A, ) and O(SOy(3)) respectively, for some well-chosen
q e C*.

We have not been able to show that all SO(3)-deformations arise as quantum automorphism
groups as in the previous theorem. However see Section 5 for partial results in this direction.
Note that the monoidal reconstruction theorem of Tuba-Wenzl [23], which discuss the related
but non equivalent problem of determining the braided semisimple tensor categories of type B,
cannot be used in our setting, where the existence of a braiding is not assumed.

This paper is organized as follows: in Sec. 2, we fix some notations and definitions, state
some basic facts about compact Hopf algebras, finite dimensional algebras and we recall the
construction of the quantum automorphism group of a finite dimensional, semisimple, measured
algebra. Theorem 1.1 is proved in Sec. 3, thanks to a careful study of the fusion rules of
SO(3). In Sec. 4, we prove Theorem 1.2 by building a cogroupoid linking these Hopf algebras
and studying its connectedness and in Sec. 5, we prove some classification results about Hopf
algebras having a corepresentation semi-ring isomorphic to that of SO(3).

2 Preliminaries

2.1 Compact Hopf algebras

Let us recall the definition of a compact Hopf algebra (see [15]):

Definition 2.1. 1. A Hopf *-algebra is a Hopf algebra H which is also a %-algebra and such
that the comultiplication is a *-homomorphism.

2. If x = (wij)1<ij<n € My(H) is a matrix with coefficient in H, the matrix (mz})lgi,jgn is
denoted by @, while T, the transpose matrix of T, is denoted by z*. The matrix z is said
to be unitary if z*z = I, = zz*.

3. A Hopf #-algebra is said to be a compact Hopf algebra if for every finite-dimensional H-
comodule with associated multiplicative matrix of coefficients x € M, (H), there exists
K € GL,(C) such that the matrix Kz K ! is unitary.

Compact Hopf algebras correspond to Hopf algebras of representative functions on compact
quantum groups. In this paper, we only consider compact quantum groups at the level of compact
Hopf algebras.

2.2 Finite dimensional semisimple algebras

In this subsection, we collect some facts about finite dimensional algebras and introduce some
convenient notations and definitions.

Definition 2.2. Let A be an algebra. A measure on A is a linear form ¢ : A — C such that the
induced bilinear form pom : A® A — C is non degenerate. A measured algebra is a pair (A, )
where A is an algebra and ¢ is a measure on A.

The following definition will be useful:

Definition 2.3. Let (A, ) be a finite dimensional semisimple measured algebra. Let 6:C—
A ® A be the dual map of the bilinear form ¢ o m. We define the application

Q= (gpom)o(m@idA)o(idA@S):A—>C.
Then



e We say that (A, ) is homogeneous if there exists A4 € C* such that ¢ = As.
e We say that (A, p) is normalized if ¢ = p(14)ep.
o We say that (A, p) is normalizable if (A, ¢) is homogeneous and ¢(14) # 0.

We say that a measured C*-algebra (A, ¢) is homogeneous (resp. normalized) if ¢ is homogeneous
(resp. normalized) and positive.

Remark 2.4. Tt is a consequence of Cauchy-Schwarz inequality that a homogeneous and positive
measure on a C*-algebra is always normalizable.

Example 2.5. The canonical trace used by Banica in [2] is homogeneous, as well as the J-forms
from |[3].

Finite dimensional semisimple measured algebras can be described in term of a more concret
object.

Definition 2.6. Let 0 < d; < --- < d,, be some nonzero positive integers. We call a multimatrix

n
an element £ = (E1,...,E,) € @ GLq, (C). If tr(—) is the usual trace, we denote:
A=1

Tr(E) := Ztr(E)\), trp := dtr(Ey ')
A=1

E~t=(EY...,EY), E':=(E! .. . E)
and we say that F is positive if each E) is positive.
Let us recall some well known results.

Lemma 2.7. Let A be a finite dimensional C*-algebra. Then there exist some monzero positive
integers 0 < dp < --- < d,, such that

A~ M, (C)
A=1

n

If o : A — C is a measure, then there exists a multimatric E = (E,...,E,) € @ GLg, (C)
A=1

such that ¢ = trg, and ¢ is positive and faithful if and only if Ey is positive for all 1 < X < mn.

n n

Notation 2.8. For a multimatrix £ € @ GLg, (C), we denote by Ag the algebra € My, (C),
A=1 =1

and we denote by (eg; x)x,» its canonical basis.

The following lemma translates the definition 2.3 in term of multimatrices.

n
Lemma 2.9. Let E = (Ey,...,E,) € P GLdf((C) be a multimatriz. Then:
A=1

1. (Ag,trg) is homogeneous if and only if tr(Ey) = tr(£,) # 0, for all \,p=1,...,n
2. (Ag,trg) is normalized if and only if Tr(E~Y) = tr(E)), for all A\ =1,...,n
)

3. (Ag,trg) is normalizable if and only if there exists & € C* such that Tr((EE)™1) =
tr(EEN) #0, forall A =1,...,n



Proof. The linear map 6 : C — A ® A is given by

no d¥
:E E Eppzerin @ erg oz

A=1k,lr=1

Then ¢ is is given by
Glertn) = tr(EX)Eyly = tr(Ex)e(er,)

Hence, ¢ coincides with trg up to a nonzero scalar if and only if £ is homogeneous, which proves
the first claim. The second claim follows from

trp(14) = Tr(E7H).
The last claim is now immediate. O

From now, we say that a multimatrix £, as well as the induced measure trg, is homoge-
neous (resp. normalized, normalizable) if the measured algebra (Ag,trg) is homogeneous (resp.
normalized, normalizable).

2.3 The Quantum automorphism group A.u:(4, )

We can now recall the construction of the quantum automorphism group Aaut(A, ) for a finite
dimensional, semisimple, measured algebra (A, ¢) from [24].

Proposition 2.10. Let (A, ¢) = (Ag,trg) be a finite dimensional, semisimple, measured algebra
and let (i 1) (ij,n) be its canonical basis. The quantum automorphism group Aqut(A, ) is defined

as follows. As an algebra, Aqut(A, ) is the universal algebra with generators X,Z’f; (1< A\ p<n,
1<i,j <dx, 1<k, 1<dy,) submitted to the relations

dy
rq,V v qS,V rs,v PN

Z Xijd Xty = Onu0ih Xy Z Zka,u Oijs

=1 p=1k=1

n

klu 1 kp,u y-ql,v ki,

Z Z Ekl,uXZJ A Ez] A0 Z ET’S )\er)\ ng AT 6 qu HXZJ A
pu=1kl=1 r,s=1

It has a natural Hopf algebra structure given by

kl,ﬂ klp Pq,V klpy _ §:i1.8:98 S kl,ﬂ E~ E 7’2 A
A( ij, )\ Z Z qu v ® Xz] A (Xij,)\ ) — QikO510Ap, ( ij, )\ Z Z i\ ls,u sk,,u
v=1p,q=1 r=1s=1

and the algebra map cy : A — A ® Agut(A, ) defined by

PGt
aa(eijn) E: E:epqu@’Xz]A

p=1p,q=1
s a coaction on A such that ¢ is equivariant.
If (H,«) is a Hopf algebra coacting on (A, ) with an algebra morphism « : (A, ) — (A, 9)®
H, then there exists a Hopf algebra morphism f : Agqui(A, @) — H such that (f ®idag) oas = .
If moreover E is positive, Agqut(A, @) is a compact Hopf algebra for the x-structure

e i
(Xi)™ = X

Then aa 18 a *-morphism and if H is a compact Hopf algebra, f is also a x-morphism.



Erample 2.11. 1. If X, is the set consisting of n distinct points and ) is the uniform proba-
bility measure on X,,, then Ayut(C(X,,), ) is the quantum permutation group on n points,
see [24].

2. Let (A, @) = (M3(C),tr). Then Aaut(A4, ) ~ O(PSLy(C)) =~ O(SO3(C)). See [2, 11].

—1
(70
Fy e ( ) ! )
Denote trq := trg,. Then we have Aaut(M2(C), trg) ~ O(SO1/2(3)).

Remark 2.12. 1. Let (Ag,trg) be a finite dimensional, semisimple, measured algebra, where
E = (Ey,...,E\,...,E,). Then we have a Hopf algebra surjection

3. Let ¢ € C* and

Aaut (AEa trE') — Aaut (AEAO 5 trE’AO )
given by -
yMH{éwm when A = A

kil Oxudikdj;  otherwise

2. In view of the relations defining Aaut(AE,trg), we have Aqut(Ap, tre) = Aaut(A¢E, trep)
n

n

for all £ € C*. Then if F € @GLdf((C) is normalizable, there exists F € @GLdf ©)
A=1 A=1
normalized such that Ap = Ap and Aaut (A, trg) = Aaut(AE, trp).

According to the properties of the trace, we have the following result:

n
Proposition 2.13. Let E, P € @ GLq4, (C) be some multimatrices. Then Ap = Apgp-1 and
A=1
we have a Hopf algebra isomorphism
Aaut(AEa trE) = Aa’u«t(AEa trPEP_I)

Proof. The first assertion is obvious, and the rest follows from the universal property of the
quantum automorphism group, with respect to the base change induced by the linear map
M +— P'M P71 and the fact that trg(P!MP~) = trppp-1(M). O

3 S50O(3)-deformation: the compact case

This section is devoted to the proof of Theorem 1.1 which classifies compact SO(3)-deformations.

Let us describe the fusion semi-ring RT(O(SO(3))): there exists a family of non-isomorphic
simple comodules (W,,),en such that:

WO = C, Wn b2y Wl = Wl & Wn = anl ® Wn @ WnJrla dlm(Wn) =2n+ 1a Vn € N*
We aim to prove the following proposition:

Proposition 3.1. Let H be a compact SO(3)-deformation with simple comodules (W, )nen as
above. Put A =C ® Wy. Then there exist H-colinear maps

AR A— A, C— A, p:A—=C

making (A, ) into a measured H-comodule algebra.
Moreover, there exists an antilinear map * : A — A making A into a *-algebra and such that

1. @ is positive, so that A is a C*-algebra,



2. (A, ) is a normalizable measured C*-algebra,
3. (A, ¢) is a measured H-comodule x-algebra

After this paper was written, T. Banica informed us that Grossman and Snyder proved a
related result (Theorem 3.4) in [14], working in arbitrary tensor C*-categories with duals. More
precisely, the first part of Proposition 3.1 is a special case of Theorem 3.4 in [14]. It is proba-
bly possible, although not immediate, to recover the full structure described in Proposition 3.1
(x-involution and positivity of ¢) from Theorem 3.4 in [14|. Our independant proof is more
concrete, and also has the merit that it brings some information in the non-compact case, see
section 5. We thank T. Banica for informing us about the paper [14].

Here, the proof of Proposition 3.1 is the consequence of two lemmas. The different proofs
being slightly technical, it seems useful to describe the example of O(SO(3)) ~ Aaut(M2(C), tr),
following Proposition 3.2 in [11], which motivate the Lemmas 3.4 and 3.5 below.

At first, the reader can skip the proofs of Lemmas 3.4 and 3.5 and go to the end of this
section to see the construction leading to Proposition 3.1 and the proof of Theorem 1.1.

Ezxample 3.2. Consider (A, ) = (M2(C),tr) and the linear basis of A consisting of the unit

quaternions
(10 (=i 0 (0 -1 (0
=\ 1) \o )27 \1 0 )27\ o)

These satisfy the following multiplication rules:
e =—ep, L<k<3, eea=e3 ese3=e1, eze;=ea.

We introduce some notations: for 1 < k # 1 < 3, (kl) € {1,2,3} is such that {k,[} U{(kl)} =
{1,2,3}, and let ey € {1} be such that epe; = ey In particular, ey = —eg.

{e1,e2,e3} is a basis of ker(tr) which can be identified with the simple comodule W = W in
RT(O(SO(3))), and we have the decomposition

MQ((C) =CegdW
Define the following colinear maps:

e:WeW —=C, elex®e)=—-20
e C>WeW, e(1)=-= er Q e

C:-WeW =W, C(ek & el) = (1 — 5kl)5kle<kl>

D:W—WeW, Diex)= crpuy) ®ep
p#k

This maps satisfy some (compatibility) relations which are described in the following Lemma
3.4, with 7 = 3 and R = 1, and the multiplication in Ms(C) = C.eq & W decomposes into

1
m(A®B):§e(A®B)eo€BC(A®B) VA BeW

The rigidity provided by Schur’s lemma and the fusion rules of W @ W will allow us to see
that this situation essentially holds in the general case.
We begin by a lemma:

Lemma 3.3. Let F € M,(C), n >3, be such that FF = +1I,,. Then tr(FF*) > 2.



Proof. First assume that F'F = I,,. Then according to [10] p.724, there exists a unitary matrix
U € M,(C) and some real numbers 0 < A\; < --- < A\p < 1 such that

0 D(A1,..., ) O
U'FU = | DO\, ., M)t 0 0
0 0 In—2k

where D (A1, ..., \x) denotes the diagonal matrix with the \; along the diagonal. In that case,

k
tr(FF*) =Y (A + A7) +n—2k > 2

i=1

Now assume that F'F' = —1I,,. Then according to [10] p.724, 4 < n is even and there exists a
unitary matrix u € U, (C) and some real numbers 0 < A\; < -+ < Anj2 < 1 such that

trr 0 D(A1,- .5 Any2)
UFU = <—D()\1,...,)\n/2)_1 0

In that case,
n/2

tr(F*F) =Y A2+ A7 >2
i=1
O

Lemma 3.4. Let H be a compact SO(3)-deformation, with fundamental comodule (W, «) en-
dowed with an H-invariant inner product. Then there exist morphisms of H-comodules

e WeW —=C C-WeW =W (1)

and some scalars T > 2, R € {1} such that the following compatibility relations hold (where
e*:C— W W is the adjoint of e and D := (idy @ C)(e* @idw ) : W - W @ W ):

(e @ idw)(idw ® €*) = Ridw (idw ® e)(e* @ idw) = Ridw (2a)
CD =idw ee’ = Tidc (2b)

Ce*=0 eD =0 (2¢)

e(C ®@idw) = e(idw @ C) (idw @ O)(e* @ idw) = (C @ idw)(idw @ €*)  (2d)

(idw ® D)e* = (D ®@idw)e*  (idw ®e)(D ®idw) = (e ® idw ) (idw ® D) (2e)

(idw ® O)(D ® idw) = (C @ idw)(idw ® D) = R(R — 1) tidye2 + (1 — R)"te*e + DC (2f)
(idw ® D)D = R(R — 1)~} (e* @ idw) + R(t — R) ' (idw ® €*) + (D @ idw)D  (2g)
Clidw ® C) = (R—7)"'(idw ®e) + (r — R) e @ idw) + C(C @ idw) (2h)

Proof. Let (w;)1<i<n be an orthonormal basis of W and let (x;;)1<;i j<n be the associated unitary
multiplicative matrix. Recall that we write ¥ = (x;k]) From the fusion rules, we get dim W > 3.

We have W ~ W by the fusion rules, hence there exist F' € GL,(C) and R € R* such that
= F'2F and FF = RI,. Up to a nonzero real number, we can assume that R € {£1}. The
map e defined by

e(w; © wj) = Fji
is H-colinear and we have
e*(1) = Fjiw; ® w;

and e, e* satisfy (2ab) for 7 = tr(F*F) > 2 according to Lemma 3.3.



The fusion rules of SO(3) give:
WeoWwW~CawWaewil (FR)

and there exists a nonzero (hence surjective) H-colinear map C' : W @ W — W. By Frobenius
reciprocity, there exist isomorphisms

Uy : Homy(W®3 C) — Hompy (W2, W) U Hompy (W22, W) — Hompy (W3, C)

f o= (dw ® f)(e* @idye2) g — Re(idy ® g)
Uy : Homy(W®3 C) — Hompy (W2, W) Uyt Hompy (W22 W) — Hompy (W3, C)

f — (f X idw)(idw®2 (29 6*) g Re(g ® idw)
@1 : Hompg (W2 W) — Homg (W, W®?) O Homp (W2, W) — Homp (W, W®?)

[ (feidw)(idw ®e) g — R(idw ®e)(g ® idw)
®y : Hompy (W2, W)  — Homy (W, W®?) @51 Hompy (W®2, W)  — Homp (W, W®?)

f o= (idw @ f)(e* @ idw) g + Re®idw)(idw @ g)

Put
D 1= ®5(C) = (idw ® O)(e* ® idw) (3)

By Schur’s lemma, we can rescale C such that CD = idy. Again by Schur’s lemma, we have
Ce* =0 et eD = 0. This gives relations (2bc).
Let us show that there exists w € C* such that the following relations hold:
e(C®idy) = we(idy @ C)
D= (idW & C)(e* (= idw) = w(C & idw)(idw & e*)
According to Schur’s lemma and the isomorphism (F'R), there exist wy and we such that
e(C & idw) = wle(idw, C) = wlR\Ill_l(C)
and
(idW ® C)(e* ® idw) = WQ(C ® idw)(idw ® 6*) = WQ‘I)l(C)
Hence on the first hand we have
w1C = R\I/l(e(C ® ldw))
= R(idw (= 6)(idw ®RC® idw)(e* ®idw ® idw)
and on the other hand we have

weC' = ‘P;l((idw (= C)(e* X ldw))
= R(idw (= 6)(idw ®RC® idw)(e* ®idw ® idw)

S0 Wi = wy := w. Since C' = w®; ' ((C @ idy)(idw ® e*)), we have w # 0.
Let us show that

(idw ® e)(D @ idw) = w(e ® idw ) (idw @ D) = wRC
(idy ® D)e* = w(D ® idyy )e*



(idw (4 6)(D (9 idw) = (idW (024 6)(idw RC® idw)(e* X idW X idw)

4 . . . .
= w(idy ® e)(idw ®@ idw @ C)(e* ® idy @ idw)

(22(1) wRC

—
N

and
(e @ idw)(idw © D) 2 (e @ idw ) (idw @ idw @ O)(idw @ e* @ idw) %2 RC

Hence (idy ® €)(D ® idy ) = w(e @ idw ) (idw @ D). Moreover
(idw ® D)e* = w(idw ® C @ idw ) (idy @ idy @ e*)e”
= w(idW RC® idw)(e* ® idW ® idw)e*
@ w(D ®idy )e*
Let us show that
(idw ® O)(D ® idy) = w(C @ idy ) (idw ® D) (6)
Using relations (5) and (2a), we compute w?(e®idyye2)(idy @ D@idy ) (idy @ D) in two different
ways:
w?(e ®idyye:)(idw @ D ® idy ) (idy @ D)
® w(idw ® e ® idw)(D ® idw ® idw ) (idw ® D)
= w(idw XeR idw)(idw %) idW X D)(D (039 idw)
= (idW®2 X 6)(idw XD ldw)(D [} idw)

—~
w
=

(idW®2 X 6) (idW®2 RC® idw)(idW (9 e* X idW®2)(D (4 idw)
= w(idw®2 X 6)(idW®3 X C)(ldw X e* X idW®2)(D X idw)
=w(idy @idy @ e)(idy ® e* ® idw ) (idw ® C)(D ® idw)

% Ru(idw © C)(D ® idw)

w?(e ®idyye:)(idw ® D @ idy ) (idy @ D)
W 2(e @ idyez)(idye: @ C ® idw)(idw © ¢* ® idyer)(idw © D)
=W} (C ®@idy)(e ®@idwy @ idye:)(idy ® e @ idyye2)(idy @ D)
2 Rw?(C ® idw)(idw ® D)

and hence (idw ® C)(D ® idy) = w(C @ idw)(idw ® D).
Let us show that w?® = 1. Denote A := w?e(C ® idy)(idy ® D)e*. On the first hand, we
have:

A = w?e(C ®idw)(idw ® D)e*
© velidy ® C)(D @ idy )e*

—
N

= 6(0 & ldw)(D & idw)e*
= ee
On the second hand, we have:
A = w?e(C @idy)(idy ® D)e*
® Be(C @ idw) (D @ id)e*

= wiee*



Hence w? = 1.
By Frobenius reciprocity, we have isomorphisms

® : Endg (W®?) — Homy (W, W®3), f i (idw ® f)(e* @ idy)
U : Endy (W®?) = Hompy (W, W®3), f— (f @idy)(idw ® e*)

Using relations (5) and (2ab) we can compute the following:

®((idw ® C)(D @ idwy)) = w(D ® idy ) D ¥U((idy ® C)(D @ idw)) = w?(idw ® D)D
®(DC) = (idw ® D)D U(DC) = w*(D @ idw)D
P(e*e) = R(idwy @ e*) U(e*e) = R(e* ®@idwy)
D(idpye2) = (" @ idw) U(idye2) = (idw @ €")

It is clear by (FR) and Schur’s lemma that {idy e2,e*e, DC'} is a basis of Endy(W @ W).
Let o, 8 and v € C be such that

B = (idw ® C)(D ®idw) = w(C @ idw)(idw ® D) = aidy«2 + pe’e +vDC (7)
First, using relations (4) and (2b), we have eB = w?e = (a+78)e so a+ 78 = w?. We also have

wW?®(B) = (D @ idw)D = w?a(e* @ idw) + w?RA(Idw @ €*) + w?y(idyw @ D)D (8)

and
U(B) = wQ(idW ® D)D = a(idy ® e*) + Rp(e* @ idw) + ’wa(D ® idw ) D (9)

which lead to the following relations between the coefficients:

a+ 718 =w?
a+wRys =0
R+ wya=0
Y =w

In particular, o # 0 # 3. Consider now w?C(C ® idy )®(B) € Endy(W). On the first hand we
have:

(1) (20

Cidw ® C)(D ®idw)D = CBD = C(aidye2 + Be*e+~vDC)D 2 (a+y)idw

On the other hand, we have:

Clidw ® C)(w*a(e* @ idw) + w?RA(idw ® €*) + w?y(idw ® D)D)
=w?aC(1® C)(e* @idw) + w?RBC(1 ® C)(idw ® e*) + w?yC(1 ® C)(idw @ D)D
D2acD + wyidy 2 w?(a 4 7)idyy.

Hence
a+vy=w(a+7)

By relation (6), we have the identity
(idw ® B)(D ® idw)D = w(B ® idw ) (idw ® D)D,

of which we develop the two sides:

10



(idw @ B)(D @ idy)D
(7, 2a4

a(D ®idw)D + wRB(idw ® ) + v (idw @ D)(idw ® C)(D ® idw )D
la(p ®idw)D + wRA(idw @ ¢*) + y(idw ® D)(aidye: + Be*e +vDC)D
290(D ® idw)D + wRA(idw ® ¢*) + (o +7°)(idw © D)D
(:)a(D ® idw)D + wRB(idw @ €*) + (a7 + w)(walidy © )

+wRA(e* @ idw) + (D @ idw)D)
=(a+ aw + wy)(D @idw)D + w(RB + &y + wa)(idy @ e*)
+ wRB(ay + w)(e* ®idw)

w(B @ idw)(idyw ® D)D

"2 a(idw ® D)D + wRA(e* ® idw) + wy(D ® idw)(C @ idw ) (idw @ D)D

) C )
©alidw ® D)D + wRA(e* @ idw) + (D @ idw ) (idw ® C)(D @ idw)D
) (e" )
) )

@wa(idw ® D)D + wRpB(e* @ idw
=wa(idy ® D)D +wRp(e* @ idw

@wa(wa(idw ®e")+wRp(e* @idw) + (D ® idw)D)

+wRB(e" @idw) + (ay +7°)(D @ idw)D
=w?a?(idwy @ e*) + wRB(wa + 1)(e* @ idw) + (way + ay +v*) (D @ idy ) D

_l’_
+ (D ® idw ) (aidye2 + Be*e +yDC)D
+ (ay +*)(D @ idw ) D

This leads to several relations between the coefficients. In particular, we collect:

a+ty=uwa+7)
a—|—wa—|—w7:wa7—|—a7—|—72
ay+w=wa+1

PV =w
Assume that w? # 1, then:
a=—y
—a®+1=0
vV =w
To summarize, we have
a+718=w? ?4+1=0
a+wRyB=0 a+78=uw?
o= =7 = 4§ a=—v
a®+1=0 a+ RB=0
2= w=~""

In particular, we have

a+18=w*=>a—-TRa=—-a=a(2—Rr)=0

11



Thus 7 = 2R, which contradicts Lemma 3.3. Hence w? = 1 = w? and w = 1. Moreover, we can
consider once more the equality

a’y—i—w:wa—i-lw;la*y—i—l:a—i—l

and we have v = 1.

Hence, we have
y=w=1, 7#R

a=-RB=RR—-7)""

and, in view of 7, we have
B =R(R—7) tidye: — (R— 1) te*e + DC

which gives relations (2f), and from relations (9), we get relation (2g). Finally, we have an
isomorphism

Q:Endg(W®?) — Hompy(W®3, W)
[ — R(idw ® e)(f ® idw)

In particular, using relations (2abc) and (4), we can compute the following:

Q((idw ® C)(D ® idw)) = C(idw @ C)
Q(DC) =C(C®idw)
Qe*e) = (e ®idwy)
Q(idye2) = R(idw ® e)
This isomorphism applied to the relation (2f) gives the relation (2h). O

The next lemma will allow us to define the *-structure on the algebra (A, ¢) in Theorem 1.1.

Lemma 3.5. Let H be a compact SO(3)-deformation, with fundamental comodule (W, «). Then
R =1 and there exist an antilinear map * : W — W such that:

w* = w, Vv e W, (10a)
e(v* @ w*) = e(w @ v), Yo, we W, (10b)
e(w®w*) >0, Yw € W\(0), (10c)
Cv*@w")=Cwev), Yo, w e W. (10d)

Proof. Let (w;)1<i<n be an orthonormal basis of W and let (x;;)1<i j<n be the associated unitary
multiplicative matrix of coefficients. According to the beginning of the previous proof, the
generators z;; and z7; are linked by the relations T = F~'2F, F € GL,(C) satisfying FF = RI,,
R € {£1}. Let x : W — W be the antilinear map defined by w} = >, wyF}y;. Note that we
have
n n
(1) =Y Fjiwi®wj =) wi©uj. (11)
ij=1 i=1
For v € C*, denote C., = vC'. We begin to show that, with v € {1,i} if R =1 and v € {1£i}

if R = —1 (where i> = —1), the following relations occur:
w** = Rw, YveW, (12a)
e(v* @ w*) = Re(w ®v), Yo, w e W, (12b)
e(w®@w*) >0, Yw € W\(0), (12¢)
C,(v* @w") = Cy(w ), Yo, w € W. (12d)
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We have

Z Wy F;)* Z wiFri = Z w Fi Fri = Rw;

k.l

and relation (12a) follows.
Let us check the second relation. On the first hand, we have e(w; ® w;) = Fji by definition,
and on the other hand, we get

e(wj @ w;) = ZFkiFlijl = RFj; = Re(w; ® w;)
Kl

and relation (12b) follows.
Relation (12c) can be seen as follows. Let w = >"" | hyw; € W, w # 0, we compute

e(w®@w*) = Z Aidje(w; ® w;) = Z )\'TFMFM
1,5,k

SR () = S AT >0
koo i
To show relation (12d), remark that we have, for all 1 <i <n,

a(w;‘k) = Z (wk Fi; = Z Wy @ xkakz

k k,p
= & P = Ty o (P )
= pr ® Fprwy; = Zwk ® Ths»

k,p k

Define the antilinear map
#WRW WeaW,vowr (vew)? =w @
According to (12a), it is an involution and we have, for all 1 <i,j <n
awew (w; @ w)®) = (wp @ w)* @ (wgwy)".
k.l

Hence the map B
C:WeW — W,w— Cw")*

is H-colinear, and by Schur’s lemma, there exists A € C such that C = M\C. In the same way,

define the colinear map 3

D:W = WaW,w— D(w*)".
Using relations (2b) and (12a), it is clear that CD = Ridy,. Moreover, we have D = (C ®
idy ) (idy ® €*). Indeed, for all 1 <i <mn,

D Y ((dw © O)(e* @ idw)(w))* L ( Zw,,@C w))*

:Z (wh @ w}) ;:Z (w; ® wy) ® wy

(C ® idw) (idw ® €*)(w;).

Hence, according to relation (2b), CD = )\Qi_dw, and A2 = R. Choose v € C*, with v € {1,i} if
R=1,~ve{l+i}if R= -1, such that yRX =7, we have the claimed relation (12d)

(11)

C,(v* @ w*) = yRA(C(w @ v))* =F(C(w ®@v))* = Cy(w @v)*, Vv,weW.
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Let us show that R = 1. We assume that R = —1 and we use relation (12d) with v € {1+i}.
On the first hand, we have, for v,w € W,

12a
Co(w s vy "2 (w @ v)
and on the other hand, we have

Cy(w ® 1))** (lid) (C’y(’l}* ® U)*))* (lid) Cy(w** ® ’U**) (lia) C,Y(U) ® ’U).

Since C # 0, this is a contradiction, and R = 1.

So far, we have the relations (10abc). Let us show the remaining relation (10d). For all
v,w € W, we have C(v ® w)* = A\C(w* ® v*) with A € {£1}, and we need to show that A = 1.
For all 1 <i <mn and all v € W, using (10c), we have

e(Clv®@w;) @ Clv@w;)*) > 0.

Hence, for all v € W\(0), we have

0<Z Clv®w;) ® C(ve®w)*) Z Clv®w;) ® C(w] ®v"))

() )\Z C(C@idw)(v®w; ® wy) ® v*) :Ae(C(C@idW)(v@)i(wi@wf))®v*)

1=1
(L1) Ae(C(C @ idw)(idw @ e*)(v) ® v*) 5 Ae(CD(v) @ v*)
2 e(v ® v*)
Since e(v ® v*) > 0, we have A > 0 hence A = 1, and we have the claimed relation (10d). O

We are now able to prove Proposition 3.1.

Proof of Proposition 3.1. Let H be a compact Hopf algebra whose corepresentation semi-ring is
isomorphic to that of SO(3). We write (W), cy its family of simple comodules and we denote
by W := W its fundamental comodule, with aj;, the associated coaction. We use the notations
introduced in the previous lemmas.

The first thing to do is to define a finite-dimensional measured C*-algebra (A, ) together
with an H-coaction. Let A be the H-comodule C& W, dim(A) > 4. Endow A with the following

maps: let m: A®A— A, u:C— Aand ¢: A— C be the H-colinear maps defined by

mA® p) = A, VA, u e C,

mA®@v) =m(v®\) = v, VAeC, veW,

mvew) = ((r-1)"e(v®@w),Clvew)), Vo, w € W,
u(l) = (1,0) := 14,

(A v) = A, vaeC,vel,

and let x : A — A be the antilinear map defined by:
(A, U)* = (Xv U*)

where x : W — W is the antilinear map defined in Lemma 3.5.
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e m is associative: The only non-trivial part is to check the associativity on W. This is done
as follows:

m(m @ idw)jwewew = (1 — 1) 'e(C ®idw), C(C@idw) + (1 — 1) (e ® idw))

CL) (7 = 1) elidw © €), Clidw @ C) + (r — 1) (idw @ ¢)):

= m(dw @ m)|jwewew
Now we simplify the notations by writing the product m((A,v) ® (1, w)) := (A, v)(p, w).
e ¢ is a unit: This is clear.

e Ais a x-algebra: x: A — A is indeed an antilinear involution by Lemma 3.5, and we have

(()\,v)(,u,w))* = ((A\w+ (- D7 te(v @ w), Aw+ po+Clv@w))”
= A+ (=D te(v®@w), Aw* +m* + C(vew)*)

(120) (EXA+ (1 =17 le(w* ®v%), Aw* + " + C(w* @ v*))

= (p,w)* (A, 0)"

e o is a faithful state on A: we have ¢(14) =1 by definition, and

(A, w)(\,w)*) = (AN + (1 — D7 te(w @ w*), Aw* +dw + Clw @ w*))
= N2+ (1= 1) te(w @ w")

Hence according to Lemmas 3.3 and 3.5, we have, for all (A\,w) € A
(A, w)(A,w)*) =0
with equality if and only if (A, w) = 0.

Thus A is a finite dimensional *-algebra having a faithful state, and is a C*-algebra. By Lemma
3.5 and by construction of the structure maps, A is a H-comodule x-algebra and ¢ is equivariant,
thus by universality, there exists a Hopf x-algebra morphism f : Aaut(A, ) — H such that
(idw ® f) o s = /4. Finally, W = ker(y) is a Aaut(4, ¢)-subcomodule of A, and by definition
of the coactions on A, we have (idw ® f) o aw = oy .
Let us show that ¢ is normalizable. The map
1A A A A S Ag A AL C

is a H-colinear map. Using Schur’s lemma, we have dim(Hompg(A,C)) = 1, hence there exists
¢ € C such that ¢ = cp. Let us compute @(14). A basis of A is given by a1 = 14, a; = w;— for
1=2,...,n+ 1. Then we have

1 ifi=5j=1
Bij == p(a;aj) = 0 ifi=1#jori#l=j
1) Fi 1, in the other cases
-] b}

where F' € GL,(C) is given by e(w; ® w;) = Fj;. Hence § is given by

n+1
6(1) = Z Biglai ®a; =14 @14+ (1 —1)e*(1).
i.j=1

Hence, using relation (2b), we have ¢(14) = 7+1 > 3, s0 ¢ = (7+1)p. Hence ¢ is homogeneous.
Moreover, we have ¢(14) = 1, hence ¢ is normalizable. O
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We are now able to prove Theorem 1.1, that is, to show that any compact SO(3)-deformation
is isomorphic to the quantum automorphism group of a finite-dimensional measured C*-algebra.

Proof of Theorem 1.1. According to Proposition 3.1 and its proof, there exist a normalizable
measured C*-algebra (A, ) and a *-Hopf algebra morphism f : Aaut(A4,9) — H such that
W C Ais a Aaut(4, p)-subcomodule and (idw ® f) o agy = ayy,, where ayy is the coaction on
W of Aaut(A, ). According to [2, 3|, Aaut(A, p) is a compact SO(3)-deformation and we write
(W) en its family of simple comodules. Then we have f,(W{') ~ W and by induction, we
have f,(WA) ~ WH for all n € N, hence, by a standard semi-ring argument, f is an isomorphism

of x-Hopf algebras and H ~ Aaut(A, ¢). O

4 Representation theory of quantum automorphism groups

We now investigate the case where ¢ is not necessarily positive, and the aim of this section is to
prove Theorem 1.2.

We will construct equivalences of monoidal categories by using appropriate Hopf bi-Galois
objects (see [21]). We will work in the convenient framework of cogroupoids (see [9]).

Definition 4.1. A C-cogroupoid C consists of:
e A set of objects ob(C).
e For any X,Y € ob(C), a C-algebra C'(X,Y).
e For any X,Y, Z € 0b(C), algebra morphisms
A%y C(X,)Y) = C(X,Z)®C(Z,Y) and ex : C(X,X) = C

and linear maps
SX,Y : C(X, Y) — C(Y,X)
satisfying several compatibility diagrams: see [9], the axioms are dual to the axioms defining

a groupoid.

A cogroupoid C is said to be connected if C'(X,Y) is a nonzero algebra for any X,Y € ob(C).

ng ng
Let £ € 6 GLdf((C) and F' € GLgr (C) be two multimatrices. We denote dp := d¥_ and
A=1 p=1

dp = df . The algebra A(E,F) is the universal algebra with generators X,Z’f; (1 < X< ng,
1<4,5< df, 1<pu<np, 1<kI< di) submitted to the relations

b ng di

rq,V yqS,V . rs,v A s
E :Xij,)\ Xkl,,u - 5)‘H5]]<3Xil“u ) E , E :ka,u - 51]7
q=1 p=1k=1
ng df dr

i i

1 vklyp -1 P\ y Qi _ i,

E : E : Ekl,,uXij,A - Fz’j,)\’ E , FTSvHXkr“qul,,u - 5>\Vqu,>\sz,u-
p=1k,l=1 r,s=1

It is clear that A(F,E) = Aaut(Ag,trg) as an algebra.
We have the following lemma:

ng ng ng
Lemma 4.2. e For any multimatrices E € @GLdf((C), Fe® GLgr (C) and G € P GL4g(C),
A=1 p=1 v=1
there exist algebra maps

A% AE,F) = A(E,G) ® A(G, F)
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g ng dg -
defined by AG o(X}17) = 21 ZIXf%:ﬁ @ Xy A<A<np, 1<i,j<dy, 1<p<np,
v=I1r,s=
1§k:,l§d§) and
ep t AE) = C

defined by aE(X;]lf;) = 000y (1 <A\ p<ng, 1<i,j< df, 1<k 1< df) such that,

na
for any multimatriz M € P GLd{YVI (C), the following diagrams commute:
n=1
G

A% p
A(E, F) A(E,G) ® A(G, F)
A%{Fl lA%{G@)id

A(B, M) © A(M, F) —= A(E, M) @ A(M,G) © A(G, F)
M,F

A(E,F) A(E,F)

i e

A(E, F) ® A(F) == A(E,F)  A(E) & A(E, F) —= A(E, F)

ng ng
e For any multimatrices E € @GLdf (C), F e @GLdf (C), there exists an algebra mor-

A=1 p=1
phism
SEJT : .A(E, F) — .A(F, E)Op
i, df dﬁ 1 sk
defined by SE,F(Xkau) = 2 > EpaFg X, P A<A<ng, 1<i,j<dl, 1<p<np,
’ r=1s=1 ’ ’

1<k 1< df;) such that the following diagrams commute:

A(E) —= c—= A(E, F)

AE’E\L mT

A(E,F)® A(F,E) A(E,F)® A(E, F)

id®Sr E

A(E) —== c—= A(F,E)

Ag’El mT

A(E,F) ® A(F,E) A(F,E)® A(F,E)

S, reid

Proof. The existence of the algebra morphisms is a consequence of the universal property of
A(E, F), and the commutativity of the diagrams can easily be checked on the generators. O

The previous lemma allows us to define a cogroupoid in the following way:

Definition 4.3. The cogroupoid A is defined as follows:
1. Ob(.A) = {E S @GLdf((c)v dg > 1},
A=1
2. For E, F € ob(A), the algebra A(E, F) is the algebra defined above,

3. The structural maps A:,,, €e, and S, o are defined in the previous lemma.
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Remark 4.4. 1. The condition dg > 1 rules out the case of Aaut(C(X,,), ). This is discussed
in the Appendix and a solution is provided by Theorem 4.8.

2. The present construction is related to the bialgebras constructed by Tambara in [22].

We now need to study the connectedness of this cogroupoid. We begin by the following
technical lemma (we refer to the Appendix for its proof):

Lemma 4.5. Let E, F € ob(A). Assume that Tr(E~') = Te(F~!) and tr(Ey) = tr(F),) for all
A, p. Then the algebra A(E, F) is nonzero.

In particular, we have the following corollary.

Corollary 4.6. Let 7,0 € C. Let A™? be the full subcogroupoid of A with objects

1 <dg,
ob(A™%) ={ E€ @10Ld§(@) Tr(E~Y) =7,
tr(E)\) =6, VA

Then A™Y is connected.

Using [9], Proposition 2.8 and Schauenburg’s Theorem 5.5 [21], we have the following result.

ng ng
Corollary 4.7. Let E € @GLdE(C), F e @GLr(C) be two multimatrices such that 1 <
A=1 p=1

dp,dp, Te(E™Y) = Tr(F~) and tr(Ey) = tr(F),) for all \, . Then we have a C-linear equiva-
lence of monoidal categories

Comod(Agus(Ag, tre)) ~® Comod(Agqut(Ar, trr))
between the comodule categories of Agut(Ap,trr) and Agui(Ar,trp) respectively.

Moreover, we have the following twisting result, inspired by [5].

Theorem 4.8. Letn € N. Then the Hopf algebras Aqus(C*®C*) and Aqyui(C" @ (M (C), tr)) are
2-cocycle twists of each other. In particular, they have monoidal equivalent comodule categories.

We only sketch the proof of this result by giving the principal ideas but without performing
the computations. One may also invoke [13|, Theorem 4.7.

Proof. The first step is to give a new presentation of these Hopf algebras by using a different
basis for the associated measured algebras. In the case of A = C" @ C*, we use the linear basis
given by the canonical basis on C" and the particular basis given in [5] Theorem 3.1. on C*, and
when A = C" & (M2(C), tr), we use the canonical basis on C" and the quaternionic basis used
in [11] Proposition 3.2. on (My(C), tr).

The cocycle o is given by the composition of the non trivial 2-cocycle of the Klein group V'
(linearly extended to C[V]) and the Hopf algebra surjection (see [5] Theorem 5.1)

Aaut(C" & (M2(C),tr)) = Aaut(M2(C), tr) — C[V]

The computations show the existence of a Hopf algebra morphism from Aaus(C" & C*) to
Aaut (C" & (M2(C), tr))? which is an isomorphism by Tannaka Krein reconstruction techniques.
O

This result enables us to optimize the following result by including the quantum permutation
group.
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Corollary 4.9. Let (Ag,trg) be a finite dimensional, semisimple, measured algebra of dimension

n

dim Ag > 4, where E € @GLdf((C) is a normalizable multimatriz. Then there exist g € C*
A=1

and a C-linear equivalence of monoidal categories

Comod(Agus(Ap, trg)) ~% Comod(O(S0,1/2(3)))

between the comodule categories of Aqut(Ap,trg) and O(SO,1/2(3)) respectively. If E is normal-
ized, g € C* satisfies ¢> — Tr(E~Y)g+1=0.

Proof. First assume that 1 < dg. According to Remark 2.12; there exists a normalized multi-

matrix I € @GLdE((C) such that Aaut(Ap,trg) = Aaut(Ap,trp) as Hopf algebras. Choose
A=1

q € C* such that Tr(F~1) = ¢+ ¢! = tr(F\) for A = 1,...,n. According to the previous
corollary, we have a C-linear equivalence of monoidal categories

Comod(Aaut(Ap, trr)) ~% Comod(Aaut(Ma2(C), try)).
Hence according to Example 2.11 (3) we have a C-linear equivalence of monoidal categories
Comod(Aaut(Ag, trg)) ~% Comod(O(SO,1/2(3))).

If E=(e,...,e) € (C*)™, then Ap = C™ = C" @ C* with n € N by assumption. Using
Theorem 4.8, we have a monoidal equivalence

Comod(Aaut(Ag, tre)) ~% Comod(Aaus(C" & (Ms(C),tr)))
and we can apply the previous reasoning. O

In particular, Theorem 1.2 is a consequence of Corollary 4.9.

5 SO(3)-deformations: the general case

We would like to say a word about the SO(3)-deformations in the general case. Unlike in the
compact case, we have not been able in general to associate a measured algebra (A4, ) to an
arbitrary SO(3)-deformation. This situation occurs because of the lack of analog of Lemma 3.3
in the general case. However, it is possible to give some partial results and directions concerning
the general classification problem.

5.1 The representation theory of SO /(3)

Recalling that O(50,1/2(3)) is a Hopf subalgebra of O(SL,(2)), it is possible to describe its
corepresentation semi-ring, as follows:

Theorem 5.1. Let g € C*. We say that q is generic if q is not a root of unity or if ¢ € {+1}.
If q is not generic, let N > 3 be the order of q, and put

N if N is odd,
Ny =
N/2 if N is even.

e First assume that q is generic. Then O(SO,1/2(3)) is cosemisimple and has a family of
non-isomorphic simple comodules (Wy)nen such that:

WO :C, Wn®W1 ’:Wl@Wn:anl@Wn@WnJrla dlm(Wn) :2’1’L—|—1, Vn € N*.
Furthermore, any simple O(SO,1/2(3))-comodule is isomorphic to one of the comodule W,.
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e Now assume that q is not generic and that No = 2Ny, Ny € N*. Then O(S01/2(3)) is
not cosemisimple. There exist families {V,, n € N}, {W,,, n =0,...,N; — 1} of non-
isomorphic simple comodules (except for n =0 where Vo = Wy = C), such that

VooV =2Vi@V, >V, 1® V11, dimV,=n+1, VneN".
WooWi Wi @W,~W,_1eW,®W,y, dimW,=2n+1 Yn=1,... ,N; —1.
The comodule Wy, —1 @ W1 is not semisimple. It has a simple filtration
0)CWn 2@ WNn, 1 CY CWy 1 @W

with Wy, -1 @ W1 /Y >~ Wn,—1 and Y/(Wpny—2 @ W, —1) >~ V1.

The comodules W,, @ Vi, ~ Vi, @ Wy, (m € N and n = 0,...,N1 — 1) are simple and any
simple O(S0,1/2(3))-comodule is isomorphic with one of these comodules.

e Finally assume that q is not generic and that No = 2Ny —1, N1 € N*. Then O(SO,1/2(3))
is not cosemisimple. There exist families {V,,, n € N}, {U,, n=0,..., Ny — 1} of vector
spaces (with dimension dimV,, = dimU, = n + 1) such that the families {Va,, n € N}
{Usp, n = 0,...,Ny — 1} and {Vapy1 @ Ugppy1, n € N, m = 0,...,Ny — 1} are non-
isomorphic simple O(SO,,1/2(3))-comodules (except for n = 0 where Vo = Uy = C). They
satisfy the fusion rules induced by

Vi@V Vi@V, 2 V1 @ Vg, Vne N*
U, U1 ~2U1 U, ~Up-1®Ups1 Vn=1,...,Ng— 1.
The comodule Ua(n, 1) @ Uz is not simple. It has a simple filtration
(0) CUpny—2) CY C Uy, —1) @ U2

where Uy, —1) @ Us/Y =~ Uy, gy and Y/Uyn,—9) =~ U1 @ V1. The comodules V;, @
Un =~ Un®V, (withn =m(mod2)) are simple, and any simple O(SO 1/2(3))-comodule is
isomorphic with one of these comodules.

Proof. We first collect some facts about SLy(2), SO,1/2(3) and Hopf subalgebras. See [15] for
the relations between SLy(2) and SO,1/2(3) and [16] for the corepresentation theory of SL4(2).

e Let a, b, c,d be the matrix coefficients of the fundamental 2-dimensional O(SLg(2))-comodule.
Then O(SO,1/2(3)) is isomorphic to the Hopf subalgebra of O(SL4(2)) generated by
the even degree monomials in a,b,c,d. Moreover, we have a Hopf algebra isomorphism
O(SL,(2))CoCM%2] ~ O(50,1/2(3)).

e When ¢ is not generic, the matrix v = (vij)1§¢7j§4 with vy = aNO, V19 = bNO, Vg1 = Vo

and vgy = d™0 is multiplicative, associated to the O(SL,(2))-comodule V;.

e Let A C B be a Hopf algebra inclusion. Then an A-comodule is semisimple if and only if
it is semisimple as a B-comodule. In particular, if B is cosemisimple, so is A.

From those facts, we deduce that the O(SO,1/2(3))-comodules are exactly the O(SLy(2))-
comodules with matrix coefficients of even degree in a, b, c,d. The end of the proof comes from
combining this with the results and proof from [16]. O

20



5.2 The general case
The study of the fusion rules of SO(3) gives the following:

Lemma 5.2. Let H be a SO(3)-deformation, with fundamental comodule (W,«). Then there
exist morphisms of H-comodules

e:WeW —C 0 C—WeW

14
C:-WeW —-W D:W—-WgW, (14)

a third root of unity w € C and a unique nonzero scalar T € C* satisfying the following compati-
bility relations:

(e @idw)(idw ® 6) = idw (idw ® €)(6 @ idw ) = idw (15a)

D = (idw ® C)(d ® idw) (15Db)

CD =idw ed = Tid¢ (15¢)

C5=0 eD =0 (15d)

(idyw ® C)(d @ idw) = w(C @ idw)(idw @ 9) e(C ®idw) = we(idwy @ C)  (15e)
(idw ® e)(D @ idy) = w(e @ idw ) (idw @ D) (idw ® D)6 = w(D ®idw)d  (15f)

Moreover, if w # 1, we have T = 2, and if w =1, we have 7 # 1 and
(idw ® C)(D @ idw) = (C @ idw)(idw ® D) = (1 — 7) " Hdyye2 + (1 — 1) tde + DC (15g)
(idw ® D)D = (1 —7) (0 @idw) + (1 — 1) (idw @ 6) + (D ® idw) D (15h)
Clidw ®C)=(1—-7) " idw ®e) + (1t — 1) He®idy) + C(C @idw) (15i)
Proof. The fusion rules for SO(3) give:
WeoW~CaoWwaoWws

Then there exist H-colinear maps e,d and C satisfying (15a), and a scalar 7 € C such that
ed = 7idc. By cosemisimplicity, there exists ¢’ such that ed’ = id¢ and by Schur’s lemma, there
exists a € C* such that &' = ad. Hence 7 # 0. Moreover, any rescaling of e and ¢ that leaves
(15a) intact also leaves 7 invariant, hence 7 only depends on H.

The rest of the proof follows the one of Lemma 3.4 but without Lemma 3.3. O

In the rest of this paper, it seems convenient to distinguish the SO(3)-deformations by
whether or not w = 1.

Notation 5.3. Let H be a SO(3)-deformation. We say that H is of type I, if w = 1, where
7 € C* is determined by H according to Lemma 5.2. Otherwise, we say that H is of type II (in
that case, we always have 7 = 2).

SO(3)-deformations of type I, are close to the compact case:

Proposition 5.4. Let H be a SO(3)-deformation of type 1. Then there exist a finite dimen-
sional, semisimple, measured algebra (A,p) with dim A > 4, and o Hopf algebra morphism
[ Aqu(A, @) = H such that W C A is a Aqut(A, p)-subcomodule and (idw @ f) o aw = ayy,
where oy et ay, are the coactions on W of Aqui(A, p) and H respectively. Moreover, if T # —1,
we can assume (A, p) normalized.

Proof. The construction is essentially the same as in the proof of Theorem 1.1. The only differ-
ence is about the semisimplicity of the algebra.

Let A be the H-comodule C & W with dim A > 4. Endow A with the following H-colinear
maps: define a product and a unit by

M\ v)(,w) = A+ (1= D7 le(v@w), \w + pv + C(v @ w)), 14 = (1,0)
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and a measure ¢ : A — C by p(A,v) = A. As in the proof of Theorem 1.1 and using relations
(15€i), (A, m,u,p) is a finite dimensional measured algebra.

Consider 6 : C — A® A defined by §(1) =14 ® 14 4 (r —1)6(1). Let w € W C A. Then in
A® A, we have

wi(1) =w® 1+ 1® (e ®idw)(idw ® 8)(w) + (r — 1)(C @ idw ) (idw ® 8)(w)

B o1+ 10w+ (T - 1)(Coidy)idy @ 6)(w)

(lie) l@w+wel+ (r—1)(1dy ® C)(0 @ idw ) (w)

91 2w+ (idw @ €)(6 © idw)(w) @ 1+ (r — 1)(idw ® C)(3 @ idw) (w) = 5(1)w.

Hence for all a € A, we have ad(1) = 6(1)a € A® A. Put r:= (7 +1)"16(1) so that m(r) = 1,
and
s:A—-ARA, a— ar

In view of the previous facts, s is a A-A-bimodule morphism, and mos = id 4, then A is separable
and is semisimple.

Then (A, ) is a finite dimensional, semisimple, measured algebra. By construction of the
structure maps, A is a H-comodule algebra and ¢ is equivariant, thus by universality, there
exists a Hopf algebra morphism f : Aau¢(A4, p) — H such that (idw ® f) o aq = /4. Finally,
W = ker(p) is a Aaut(A, p)-subcomodule of A, and by definition of the coactions on A, we have
(idw @ f) o aw = oy

Assume that 7 # —1. Then ¢ is normalizable.

e The map
: AN A A A" E A a8 A% C
is a H-colinear map. Using Schur’s lemma, we have dim(Homg(A,C)) = 1, hence there

exists ¢ € C such that ¢ = cp. Let us compute ¢(14) = 7+ 1 as in the proof of Theorem
1.1, 80 ¢ = (7 + 1)y, and ¢ is homogeneous.

e We have ¢(14) = 1, so ¢ is normalizable.

To summarize, there exists a finite dimensional, semisimple, measured, normalizable algebra
(A, ). According to Remark 2.12, we can assume that (A, ) is normalized. O

A consequence of this proposition is the partial classification result:

Theorem 5.5. Let H be a SO(3)-deformation of type LI, such that T # —1. Then there exist
a finite dimensional, semisimple, measured algebra (A, @) with dim A > 4, and a Hopf algebra
isomorphism Agui(A, p) ~ H

Proof. Let us denote by (W), cy the family of simple H-comodules, W{! := W. According to
Proposition 5.4, there exist a normalized algebra (A, ), with dimension > 4, and a Hopf algebra
morphism

fiAaut(Ap) > H

such that f,(W4) ~ WH. According to Theorem 1.2, there exist ¢ € C* and a monoidal
equivalence

Comod(Aaut (A4, p)) ~% Comod(O(S0,1/2(3)))

Let us denote by WA, VA and U the Aaut(A, p)-comodules from Theorem 5.1. If ¢ is generic,
then we have f,(W2) ~ WH V¥n €N, so f induces a semi-ring isomorphism R (Aaut (4, ) ~
R*T(H), and then by a standard semi-ring argument f : Aaut(A,¢) — H is a Hopf algebra
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isomorphism. In the first case where ¢ is not generic, we have f,(W,2) ~ WH, vl <n < Ny —1.
So we get:
F Wi, Wi = W oWt = W, e Wi _y o WY,

but on the other hand, using the simple filtration, we have:
OV @ W) =~ W, 1@ f(V2) @ Wiy -2 @ W, 1.

This contradicts the uniqueness of the decomposition of a semisimple comodule into a direct sum
of simple comodules. In the last case, we have f*(UQ‘j‘l) ~WH V1 <n<N;—1. Then we get:

f*(UéA(lel) ® UQA) ~ W]{[ﬂ,l & W{{ ~ W]I\?I,Q D W]ﬁ,l D W]I\—/{,
but on the other hand we have:
FUsln, 1y @ Us) = Wy @ f(Uf @ Vi @ Wi .

This also contradicts the uniqueness of the decomposition of a semisimple comodule into a
direct sum of simple comodules. Then Aaut(A, ) is cosemisimple, ¢ is generic and f is an
isomorphism. ]

Appendix: Proof of lemma 4.5

We begin by a particular case.

Lemma 1. Let E, F' € ob(A). Assume that Ey is a diagonal matriz for all X =1,... ,ng, that F),
is a lower-triangular matriz for all p = 1,...,np, that Te(E™1) = Tr(F~1) and tr(E)) = tr(F),)
for all A, . Then the algebra A(E, F) is nonzero.

Proof. We want to apply the diamond Lemma [6], for which we freely use the definitions and
notations of [15] (although there are a few misprints there). We have to order the monomials
X,?li We order the set of generators with the following order (1 < \,v < ng, 1 <i,j < d¥,
1<rs<dl,1<pn<np, 1<kl<di 1<pq<d])

. (A, 1) < (vym)
Xli]l:,u < Xpom if (A p) = (v,n) and (i,k) < (r,p)
(A p) = (v,n), (i, k) = (r,p) and (j,1) > (s,q)

Then order the set of monomials according to their length, and two monomials of the same length
are ordered lexicographically.

Now we can write a nice presentation for A(E, F) (dp := dk . dp :=dE_):

dy
rl,vy1ls,v ) TS,V rt,v yts,v
X\ Xiry = Ol Xy ) ZXij,A Xt (1)
t=2
np—1 di
i, — 5. j,A i,
XdFdFJLF - 5” o Z Zka,M o Z kavnF (2)
(DL) s s hedr
np—1 df
dpdp,ng __ -1 —1 vtt,u -1 ttng
XGNP = Bagapns (Fh = Y D BupXih = Y Eany Xih®) (3)
p=1 t=1 t<dp
ka,qul,V — 1 ( E Xkl,u _ Z F ka,qul,V ) (4)
LA 10 T P\ Epg, g ) nm A in X “mj A
(n,m)#(1,1)
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Then we have the following inclusion ambiguities:

rl,v y1s,v, yvrly y1s,v rl,v y-1s,v . yvlsy rl,v rl,v 1s,v
(Xil)\ le,)\’Xil,)\ le,)\) (Xij,)\ XdFdF,nF’XdFdF,nF) (Xdpdp,nF’XdFdF,nFXij,)\ )

dpdg.ng ., yvdede,ng yql,v kp,u y-dedpng. ydede,ng dpdpng. ydede,ng
(XiL)\ ’ X’il,)\ le,)\) (XiL)\ le)\ ’ le)\ ) (XdFdF,nF ' dpdpnp )

rlv11v, 11v - 1sv kp,p v-ql,v | vqlv yuv,T
( 17, Xkl,u ) Xkl,u qu,’r) (Xil)\ Xll,)x’ XlL)\Xlr,)\)

and the following overlap ambiguities:

rl,v y-1s,v, v 1s,v vDq,m klp 11y, yyrly v 1s,v
(Xij)\ XkL;H Xkl,quhu ) (Xil,)\ le)\ ) le,)\ qu,n)

Let us show that all this ambiguities are resolvable (recall that "—” means we perform a
reduction):

Let us begin by the ambiguity (X:jl’)\"X;ll;f; X;}:X;g?) On the first hand, we have:
df

) rlLvylsy rt,v v y1s,v
5AM5]sz‘l,u XPCLT ZXij«\ XklvuXquT
t=2

d 7
1 rS,V TUV N US,V rt,v yts,v rt,v v tu,V yus, v
‘25Au5x\T5jk51pXiq,u — Oudjk E :Xil,u Xp‘LT — OprOip E :Xij,)\ qu,ﬂ + E :Xij,)\ Xkl,uquJ
u=2 t=2 t,u

and on the other hand, we have:

ay
rl,v y-1s,v rlv v 1lu,v yus,v
5ﬂT5lPXij,)\ qu“u - Z X@'j,)\ Xkl,u Xp‘LT
u=2

dy dy
1 TS,V TUV US,V rt, v yts,v rt, v ytu,V yus,v
_25/\u5/\75jk51pXiq,u - 5/\u5jk Z Xil,u XP(LT - 5M5lp E :Xz‘j,)\ qu,u + E :Xij,)\ Xkl,u XP(LT
u=2 t=2 tu

The ambiguity (X Z.klp ’)\“ qui";\; X fi’l;\Xf: ) ) is resolvable by the same kind of computations.
Let us show that the ambiguity (X{ll’;Xllj’K; XM X1 is resolvable. On the first hand, we

i 150
have:
—1 rl,v y-1s,v s,V
Frs(= Z Frmn X X + B, X5

(n,m)#(1,1)

d®
BN (= S Funn( = S0 XX 46, XI%) + By XI5Y)
(n,m)#(1,1) t=2

df
-1 t,V yts,v v 4
:Fn,A( Z Z Frm 2 X XX i = ( Z Spm Frm, 2) X5 ) + B, X35 )
(n,m)#(1,1) t=2 (n,m)#(1,1)

dy
— t,v yts,v v
:Fll,l)\( Z Z an7AX;n7>\erj7)\ + (Fll,)\ + Ell,l/ - tI‘(F)\))X;S’)\ )

(n,m)#(1,1) t=2

and on the second hand, we have:
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7
rt,v yts,v rS,V
o E :Xil,)\le,)\ + Xij,)\
t=2

dE

(4) t,V yts,v WV v
SEASC S Funa X[SXE + Buo X5) + FiaXpy)
=2 (n,m)#(1,1)

S,V

d;
- tv yts,
:Fn,l)\( Z Z anvAXirn,I)/\anjl,j)\ + (Fiia + By — tT(Eu))Xij«\ )
t=2 (n,m)#(1,1)

d?
=FiNO0 D). B XXX A+ (Fuua + Euy — tr(F) X))
t=2 (n,m)#(1,1)

because tr(E,) = tr(F)) by assumption.
Let us show that the ambiguity (XTLVX;S’Z{ ;X;s’dy ) is resolvable. On the first hand
Fap,np Fap,np

g,
we have:
np—1 df;
rl,vy-1s,v rl,v y-1s,v rl,v
SDIDIR U5 C RSP 5 (TS LR st
p=1 k=1 k<dp
( ngp—1 dE df duE
1 rt,v yts,v TS,V rt,v yts,v rs,v rlv
g Z Z(E :Xz'j,)\ Xy — 0k Xy \) + Z (E :Xz'j,)\ Xirnp = Onp0in Xy, ) +01sX,3
pn=1 k=1 t=2 k<dp t=2

v nF_l dﬁ

dy
o rt,v yts,v rt,v yts,v ) rs,v ) rS,V
SDID IR Gre RSB PP UL S B POVLIS S Sl RIS e

np—1 di d¥

p=1 k=1 1t=2 k<dp t=2 p=1 k=1 k<dp
rl,v
+ 613X2‘j7)\
np—1 d;}j df df ng d;}j
o rt,v yts,v rt,v yts,v ) rS,v
= DD D XAt D D XX — D> Xy
pu=1 k=11t=2 k<dp t=2 p=1k=1
TS,V rl,v
+ Ornp0jdp Xigp np T 015X 3

ng—1 dE df ar df
o rt,v yts,v rt,v yts,v rt,v ) TS,V
=D D D XXX D D XXX, = D XN+ e Gian X,
p=1 k=11t=2 k<dp t=2 t=2

On the other hand, we have:

ij,A\“"dpdp,np

dE
rt,v yts,v . TS,y
_E X 'X +5>\nF5JdFXidF,nF
t=2

@ df ngp—1 dE
rt,v ts,v ts,v ) rs,v
_ZE :Xz'j,)\( E : E :ka,u+ E : ka,np - 5ts) +5>\”F5]dFXidF,nF
t=2 pn=1 k=1 k<dp

df pp—1 df de dE
o rt,v yts,v rt,v yts,v rt,v ) TS,V
=D D0 D XGRXEL D  D XGN Kk, = D XX+ e diar Xig

t=2 pu=1 k=1 t=2 k<dp =2
The ambiguit (Xrl’y Xty Xls’y) is resolvable by the same kind of computations

WY (R dpdpnpr Fdpdp,nertij) Y P '

Let us show that the ambiguity (Xﬁ?fE’nE;Xﬁ?fE’"EquJl.:';) is resolvable. On the first hand

we have:
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-1 dpdg,ng ql dgl,y
Fll,)\( - Z an AXm A X 5nEuEqu I/XZJ Y )
(n,m)#(1,1)
ng—1 dE
dpl,w
_2 11 )\EdE‘dE‘ ng (5nEV5quij A + Z an A Z Z tt M
(n,m)#(1,1) p=1 t=1
tt,nE -1 ql,v
Z i nE m,)\ B F1in,)\) mj,)\)
t<dp
ng—1 dE
_ 1 dgl,v tt,p
—Fn,)\EdEdEmE (5nEv5qu g\ + Z Z Z Fom Ey uXm A

(n,m)#(1,1) p=1 t=1

ttng
in,\

_l’_

Z ZanA ttnEX

(n,m)#(1,1) t<dg

and on the other hand:

>

(n,m)#(1,1)

ql,v
an AF;n )\ij )\)

ng—1 dE
— qll/ tt,u y-ql,v tt,ng vql,v
EdEdE,nE(qu ITP Z ZEttqul ,\X1]A Z ttnEXll)\ Xl_] ,\)
p=1 t=1 t<dp
ng—1 dE
qlu tt, ql tl,v
‘ZEdEdE npF1y ,\(Fll AF X JA + Z Z Ett,u( Z Fum X, ,\X 5WEkq,vX¢j,>\)
il =L (nm)A(LD)
tt,ng x-ql,v tlng
Z tt nE( Z an)\in)\ X j)\+5nEVth ”EXz]A )
t<dgp (n,m)#(1,1)

-1 df
ql,v
=FEipdpneti )\(Fll A )\XIJ,A -

p=1 t=1
ng—1 i

tt,u yql,v
Z EttuF Xm)\X JsA

L (n,m)#(1,1)

ng
Z Z 6V)\E1;Lth v

tl v tlng
g Z OnpvEy nEEt(L Xij,)\
t<dg
+ Z E— Ja Xtt nEqu v
§ : ttnpt M AR i ) mj,A\

t<dg (n,m)#(1,1)

ng— ldE

dpl,w
Fll )\EdEdE ng (5nEV5quij A +

Z Z ZanA ttqut:LK

(nm)A(1,1) p=1 t=1

_l’_

E § tt,p
an At nEXin,nE -

(n,m)#(1,1) t<dg

D

(n,m)#(1,1)

1 ql,v
an )\F;n )\Xm] )\)

The ambiguity (X Z-klp VX dpdp,ne X dpdp ™) is resolvable by the same kind of computations.

17,2 17,A
Let us show that the ambiguity (
have:

F
-1 d

nr
dpdgp.ng dpdge,ng
R ID IR A DR A
pn=1 k=1 k<dp
np—1 dE np—1 dE
(E;E E- Xtt)x
TPRED S5 DED B ereri)
pn=1 k=1 A=1 t=1
ng—1 dE
Y Y EAN, - Y
tt)\ k‘k; nE
k<dp A=1 t=1 t<dg

dpdg.ng,
XdFdF,nF )

tt nE k:k‘ NEF

dpdg.ng
drdp,nF

) is resolvable. On the first hand we

ttnE
E : ttnEkau Fkk u)
t<dp
tt NE

- —1
+ Fy! e) T g ns)
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neg— 1 dE ng— 1 dE neg— 1 dF nF—l
B tt,A xttne -1
=Edpdpng( Z Z E :Ett A X T E , E , Z ns Xk — E : tr(F, ")
,u:l k=1 \=1 p=1 k=1t<dp n=1
ng—1
tt,)\ } : tt,NE
+ Z tt)\ k‘kﬁ7np - Z tt nE k‘k;7np + dFdF ng tr (F ) + dEdEynE)
k<drp X=1 t=1 k<dp t<dp
np— di np—1 dE np—1 dF np—1 dE
o A xttne A
=Bupans( Z IDID IASALEE DB PP PICAIS I D DB P e
p=1 k=1 A\=1 t=1 p=1 k=1t<dg k<dp A=1 t=1
-1 tt NE — — —1
- Z Z tng kk N FdFdF ng EdEdE ng TI‘(F ))
k<dp t<dg

and on the other hand:

—1 df
A xitne -1
EdEdEv"E Z Z t)\XdFdFvnF Z i ”E dFdFJLF +FdFdF,nF)
t=1

A=1 t<dp
o 1 df np—1 df
A A
A s (~ Z Do Ean= D0 D X D X 1)
A=1 t=1 p=1 k=1 k<dp
np—1 di
tt,ng tt,ng
- Z B E , E :ka,u - E : X F D)+ Fyy )
t<dg pw=1 k=1 k<dp
np—1 d# df np—1 dF ngp—1 dE
- A ttng A
*EdEdE,nE E E : Z ZEttAka,u+ E , Z E ttnEka,u + E : E : ZEtt)\kanF
p=1 k=1 A=1 t=1 p=1 k=1t<dp k<dp =1 t=1
—1 yttng 1 -1
- Z Z ttng kk N +FdFdF ng +EdEdE,nE —TI‘(E ))
k<dp t<dg
np—1 45 np—1 df np—1 df ng—1 df
- A xttne A
=Eapdp.ng ( > ZEtt Kk T D Z D Bunp Xl + > > ZEtt Ak
p=1 k=1 A=1 t=1 p=1 k=1t<dg k<dp =1 t=1
—1 ttng 1 1 —1
- Z Z Ett" Xk‘k ME FdFdF ng EdEdE ng —TI‘(F ))
k<dp t<dg

because Tr(E~') = Tr(F~!) by assumption.

Now, let us show that the ambiguity (X ;]1 VX ;f;, X ;f X1/ is resolvable. On the first hand
we have:

—1 1,v y1s,v 1,v~-1q,v
Fr (- Z Fom, XZ]AkaLuX%Z+5V77ESPVXZ]>\X19;17M)
(mm)2(1,1)

(1) 1 t t, ,
SEL Y anuZX;: XY — r 0 X)X
(nm#u 1)

rt,v ytq,v ) rq,v
V77 5p7 E :XZ_] )\Xk:l N 5>\ﬂ5]kXil,u ))
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d

_ -1 ) rq,v rt,v ytq,v
—Fn,u (5vn5>\u‘sjkEsp,vXu,p — OupEspy E :Xij,)\ Xkl,u
t=2

az
. }: T8,V xPq51 E: }: TtV s,V xpg,n
- 5>\l’«5]k anyMXin,,uXml,u + anvMXij,)\ an,uXml,u
(n,m)#(1,1) (n,m)#(1,1) t=2

And on the other hand, we have:
dE
. TS,V yPg riv x-ts,v xpg,m
OnuBir X0 XT0 = Y XX X
t=2

(4 - g ? v
_25>\u51kF11,1u( Z an,MX;;,AX%,Z + 5VnE5p7VX7;L,1;L )
(n,m)#(1,1)

d;
-1 rt,Vv s,V yPq,m rt,v v tq,v
FELQ- D B XGRX X0+ o B XX Xil)
t=2 (n,m)#(1,1)

df
_ -1 ) rq,v rt,v ytq,v
—Fn,u (5Vn5hu‘sjkEsp,vXu,p — OuyEspy E :Xij,)\ Xkl,u
t=2

dy

) }: TS,V 3 PY1) }: }: LY xS,V 3y Dgsn

- 5>\ﬂ5]k anyMXin,,uXml,u + anvMXij,A an,uXml,u
(n,m)#(1,1) (n,m)#(1,1) t=2

The last ambiguity (X fll’ﬁf Xﬁ’: ; Xﬁ’: X;{;:Z ) is resolvable by the same kind of computations.
Then all the ambiguities are resolvable. According to the diamond lemma, the set of reduced
monomials forms a linear basis of A(E, F'). In particular, the algebra A(E, F') is nonzero. O

We have the following isomorphism:

ng ng

Lemma 2. Let E,P € @GLdE((C), F,Q € @GLdf(C), Then the algebras A(E, F) and
A=1 A=1

A(PEP~Y QFQ~1) are isomorphic.

Proof. Let us denote by Yzl;f}\“ the generators of A(PEP~!,QFQ™!). They satisfy the relations:

df np dy

D YIRYE = oYy > D Vi =i,

q=1 pn=1k=1

np 4 a5

YD PEPL YN = (QFQTY D (QFQT)r aYBIYAY = 6, (PEP ™) Y1
pn=1k=1 r,s=1

This ensures the existence of an algebra morphism f : A(E, F) — A(PEP~Y, QFQ~1) by setting

E dF
Klpy —1 v uv, e y—1 )
F(X L Py PLY Q
g AN T uk,p lo,u™ rs,A “Cir\ SJ,A:

r,s=1wu,v=1
The inverse map is given by

I E
ar dr

—1 klpy -1 UV, [ -1
f Gfij,A ) - Z Z Puk:,,u]DlUMer,)\ Q"v)\Qsj,)\'

r,s=1u,v=1
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We can now prove Lemma 4.5.

ng ng
Proof. Let E € @GLdE((C), F e @GLdﬁ(C) € ob(A) be such that Tr(E~!) = Tr(F~!) and
A=1 p=1
ng
tr(Ey) = tr(#),) for all A\, u. According to the previous lemma, let P € @GLdf(C) and @ €
A=1
ng ng
GLdf((C) be such that PEP~! and QFQ~! are lower-triangular and let M € GLdf (C) be
p=1 A=1
diagonal such that Tr(E~!) = Tr(M ') and tr(E)y) = tr(M,,) for all \, u. According to Lemma 1,
the algebra A(M,QFQ~1) is nonzero, and so is A(M, F). According to [9], Proposition 2.15,

A(E, F) is nonzero. O

~ ~ ng
Remark 5.6. We could have defined a bigger cogroupoid A such that ob(A) = {E € @ GLgp (©)}.
A=1

In that case, F' = (Fi,...,F,) € (C*)" is normalized if and only if F} = --- = F,, = f, and
Aaut(Ap, trr) = Aaut(C(X,,), ¥) where X,, = {x1,...,2,}. The previous proof no longer works
because the relations lead to more ambiguities, which are no longer resolvable.

Acknowledgments

The author is very grateful to J. Bichon for his advice and his careful proofreading. We also
thank T. Banica for pointing the paper [14].

References

[1] T. Banica. Théorie des représentations du groupe quantique compact libre O(n). C. R.
Acad. Sci. Paris Sér. I Math., 322(3):241-244, 1996.

[2] T. Banica. Symmetries of a generic coaction. Math. Ann., 314(4):763-780, 1999.

[3] T. Banica. Quantum groups and Fuss-Catalan algebras. Comm. Math. Phys., 226(1):221—
232, 2002.

[4] T. Banica. Quantum permutations, Hadamard matrices, and the search for matrix models.
Banach Center Publ., 98:11-42, 2012.

[5] T. Banica and J. Bichon. Quantum groups acting on 4 points. J. Reine Angew. Math.,
626:75-114, 2009.

[6] G. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178-218, 1978.

[7] J. Bichon. The representation category of the quantum group of a non-degenerate bilinear
form. Comm. Algebra, 31(10):4831-4851, 2003.

[8] J. Bichon. Co-representation theory of universal co-sovereign Hopf algebras. J. Lond. Math.
Soc. (2), 75(1):83-98, 2007.

[9] J. Bichon. Hopf-galois objects and cogroupoids. Arziv preprint arXiv:1006.3014, 2010.

[10] J. Bichon, A. De Rijdt, and S. Vaes. Ergodic coactions with large multiplicity and monoidal
equivalence of quantum groups. Comm. Math. Phys., 262(3):703-728, 2006.

[11] J. Bichon and S. Natale. Hopf algebra deformations of binary polyhedral groups. Transform.
Groups, 16(2):339-374, 2011.

29



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Brannan. Reduced operator algebras of trace-preserving quantum automorphism groups.
Arxiv preprint arXiv:1202.502003, 2012.

A. De Rijdt and N. Vander Vennet. Actions of monoidally equivalent compact quan-
tum groups and applications to probabilistic boundaries. Ann. Inst. Fourier (Grenoble),
60(1):169-216, 2010.

P. Grossman and N. Snyder. The Brauer-Picard group of the Asaeda-Haagerup fusion
categories. Arwiv preprint arXiv:1202.4396, 2012.

A. Klimyk and K. Schmiidgen. Quantum groups and their representations. Texts and
Monographs in Physics. Springer-Verlag, Berlin, 1997.

P. Kondratowicz and P. Podles. On representation theory of quantum SL,(2) groups at roots
of unity. In Quantum groups and quantum spaces (Warsaw, 1995), volume 40 of Banach
Center Publ., pages 223-248. Polish Acad. Sci., Warsaw, 1997.

C. Mrozinski. Quantum groups of GL(2) representation type. Arziv  preprint
arXiw:1201.3494v1, 2011.

C. Ohn. Quantum SL(3, C)’s with classical representation theory. J. Algebra, 213(2):721-
756, 1999.

C. Ohn. A classification of quantum GL(2, C)’s. Czechoslovak J. Phys., 50(11):1323-1328,
2000. Quantum groups and integrable systems (Prague, 2000).

P. Podles and E. Miiller. Introduction to quantum groups. Rev. Math. Phys., 10(4):511-551,
1998.

P. Schauenburg. Hopf bi-Galois extensions. Comm. Algebra, 24(12):3797-3825, 1996.

D. Tambara. The coendomorphism bialgebra of an algebra. J. Fac. Sci. Univ. Tokyo Sect.
IA Math., 37(2):425-456, 1990.

I. Tuba and H. Wenzl. On braided tensor categories of type BC'D. J. Reine Angew. Math.,
581:31-69, 2005.

S. Wang. Quantum symmetry groups of finite spaces. Comm. Math. Phys., 195(1):195-211,
1998.

S. L. Woronowicz. New quantum deformation of SL(2, C). Hopf algebra level. Rep. Math.
Phys., 30(2):259-269 (1992), 1991.

30



