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CONSISTENT SEMI-IMPLICIT STAGGERED SCHEMES

FOR COMPRESSIBLE FLOWS

PART I: THE BAROTROPIC EULER EQUATIONS.

R. Herbin1, W. Kheriji2 and J.-C. Latché3

Abstract. In this paper, we analyze the stability and consistency of a time-implicit scheme and a

pressure correction scheme, based on staggered space discretizations, for the compressible barotropic

Euler equations. We first show that the solutions to these schemes satisfy a discrete kinetic energy

and a discrete elastic potential balance equations. Integrating these equations over the domain readily

yields discrete counterparts of the stability estimates known for the continuous problem. Then, in one

space dimension, we prove that if the solutions to these schemes converge to some limit, then this limit

is an entropy weak solution of the continuous problem.

2010 AMS Subject Classification. 35Q31,65N12,76M10,76M12.

September 2012.

1. Introduction

The objective pursued in this work is to develop and analyze a class of efficient numerical schemes for the
simulation of compressible flows at all Mach number regimes. To this purpose, our basic choice is to extend
algorithms that are classical in the incompressible framework, namely pressure correction schemes based on
(inf-sup stable) staggered discretizations.

The possibility to build, thanks to a fractional step strategy involving an elliptic pressure correction step,
algorithms which are not limited by stringent stability conditions (such as CFL conditions based on the celerity
of the fastest waves) has been recognized since the first attempts to build ”all flow velocity” schemes in the
late sixties [17] or in the early seventies [18]; these algorithms may be seen as an extension to the compressible
case of the celebrated MAC scheme, introduced some years before [19]. These seminal papers have been the
starting point for the development of numerous schemes, using staggered finite volume space discretizations
[4,5,25,26,29,32,35,47–52,54], collocated finite volumes [2,9,23,24,27,28,31,33,36–39,41,42,44,46,53] or finite
elements [3,34,40,55]. Algorithms proposed in these works may be essentially implicit-in-time, and the pressure
correction step is then an ingredient of a SIMPLE-like iterative procedure, or only semi-implicit, with a single
(or a limited number of) prediction and correction step(s), as in projection methods for incompressible flows
(see [6, 45] for seminal works and [14] for a review of most of the variants).

For practical applications, the schemes that we develop and study here are of non-iterative pressure correction
type; however, we also deal with the fully implicit scheme for its (relative) simplicity of analysis. The exposition
is split in two companion papers: in a first step (the present part), we deal with the barotropic Euler equations;
we further extend the study in [20] to the Euler equations. This splitting is however somewhat artificial, since,
in particular, the entropy balance inequality for barotropic flows coincides with the total energy equation of the
non-barotropic model; hence, proving the consistency in both cases is more or less the same task. Consequently,
we proceed as follows: results concerning the entropy balance are stated here with a brief sketch of proof, and
we refer to [20] for complete proofs. Note also that an extension of the proposed algorithms to the compressible
Navier-Stokes equations is described in [21].

Keywords and phrases: finite volumes, finite elements, staggered, pressure correction, Euler equations, compressible flows,

analysis.
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We address in this paper the following system (the so-called barotropic Euler equations):

∂t ρ+ div(ρu) = 0, (1a)

∂t (ρu) + div(ρu⊗ u) +∇p = 0, (1b)

p = ℘(ρ) = ργ . (1c)

This problem is posed over an open bounded connected subset Ω of Rd, 1 ≤ d ≤ 3, with boundary ∂Ω, and a
finite time interval (0, T ). The variable t stands for the time, ρ, u = (u1, . . . , ud) and p are the density, velocity
and pressure in the flow. The three above equations are respectively the mass balance, the momentum balance
and the equation of state of the fluid, which is supposed to take the form ℘(s) = sγ , where γ ≥ 1 is a coefficient
which is specific to the considered fluid. This system must be supplemented by initial conditions ρ0 and u0,
and we assume ρ0 > 0. It must also be supplemented by a suitable boundary condition, which we suppose to
be:

u · n = 0,

at any time and a.e. on ∂Ω, where n stands for the normal vector to the boundary.

We study two schemes for the numerical solution of System (1) which differ by the time discretization: the
first one is implicit, and the second one is a non-iterative pressure-correction scheme introduced in [11]. This
latter algorithm (and, by an easy extension, also the first one) was shown in [11] to have at least one solution,
to provide solutions satisfying ρ > 0 (and therefore also p > 0) and to be unconditionally stable, in the sense
that its (their) solution(s) satisfies an inequality corresponding to the control in L∞(0, T ) of the integral of the
discrete entropy over the domain. In this paper, we complement this work in several directions. For the implicit
scheme, we obtain the following results.

- First we pass from a (discrete) global (i.e. integrated over Ω) entropy balance to (discrete) local balance
equations. Precisely speaking, a discrete kinetic energy balance is established on dual cells, while a
discrete potential elastic balance is established on primal cells.
These equations yield the stability of the scheme (i.e. the same global entropy conservation as in [11]) by
a simple integration in space (i.e. summation over the primal and dual control volumes).

- Second, in one space dimension, the limit of any convergent sequence of solutions to the scheme is shown
to be a weak solution to the continuous problem, and thus to satisfy the Rankine-Hugoniot conditions.

- Finally, passing to the limit in the discrete kinetic energy and elastic potential balances, such a limit is
also shown to satisfy the usual entropy inequality.

The numerical study of this scheme (which is the only one implemented in practice) is performed in [30].
It conforts the present theoretical study: in particular, the scheme is observed to converge to weak entropy
solutions of Riemann problems, with an approximately first order rate; in addition, it yields qualitatively
correct solutions for CFL numbers much larger than one.

This paper is organized as follows. We first introduce the considered space discretizations (Section 2). We
then study the implicit and pressure correction schemes (Sections 3 and 4 respectively). In several theoretical
developments, we are lead to use a derived form of a discrete finite volume convection operator (for instance,
typically, a convection operator for the kinetic energy, possibly with residual terms, obtained from the finite
volume discretization of the convection of the velocity components); the proofs of various related discrete
identities are given in the Appendix.

2. Meshes and unknowns

Let M be a decomposition of the domain Ω, supposed to be regular in the usual sense of the finite element
literature (e.g. [7]). The cells may be:

- for a general domain Ω, either convex quadrilaterals (d = 2) or hexahedra (d = 3) or simplices, both
types of cells being possibly combined in a same mesh,

- for a domain with boundaries that are normal hyperplanes to a coordinate axis, rectangles (d = 2) or
rectangular parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily normal to a
coordinate axis).

By E and E(K) we denote the set of all (d−1)-faces σ of the mesh and of the element K ∈ M respectively. The
set of faces included in Ω (resp. in the boundary ∂Ω is denoted by Eint (resp. Eext), so that (i.e. Eint = E \ Eext)
is denoted by Eint; a face σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The outward normal
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vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measure of K and

by |σ| the (d− 1)-measure of the face σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E
(i)
ext ⊂ Eext the subset of the

faces of E and Eext respectively which are perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [18, 19], or non-
conforming low-order finite element approximations, namely the Rannacher and Turek element (RT) [43] for
quadrilateral or hexahedric meshes, or the lowest degree Crouzeix-Raviart (CR) element [8] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure and the density (i.e. the discrete
pressure and density unknowns) are associated to the cells of the mesh M, and are denoted by:

{
pK , ρK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – The degrees of freedom for the velocity
components are located at the center of the faces of the mesh, and we choose the version of the element
where they represent the average of the velocity through a face. The set of degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the ith component of the velocity are defined at the
centre of the faces σ ∈ E(i), so that the whole set of discrete velocity unknowns reads:

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

We now introduce a dual mesh, which is used for the finite volume approximation of the time derivative and
convection terms in the momentum balance equation.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR discretizations, the dual
mesh is the same for all the velocity components. When K ∈ M is a simplex, a rectangle or a cuboid,
for σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass center of K (see Figure
1). We thus obtain a partition of K in m sub-volumes, where m is the number of faces of the mesh, each
sub-volume having the same measure |DK,σ| = |K|/m. We extend this definition to general quadrangles
and hexahedra, by supposing that we have built a partition still of equal-volume sub-cells, and with the
same connectivities; note that this is of course always possible, but that such a volume DK,σ may be no
longer a cone; indeed, if K is far from a parallelogram, it may not be possible to build a cone having σ
as basis, the opposite vertex lying in K and a volume equal to |K|/m. The volume DK,σ is referred to
as the half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ; for an
external face σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the component of the velocity.
For each component, the MAC dual mesh only differs from the RT or CR dual mesh by the choice of the
half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now the rectangle or rectangular parallelepiped
of basis σ and of measure |DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ǫ = Dσ|Dσ′ the face separating two diamond
cells Dσ and Dσ′ .

Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary condition. Since the velocity
unknowns lie on the boundary (and not inside the cells), these conditions are taken into account in the definition
of the discrete spaces. To avoid technicalities in the expression of the schemes, we suppose throughout this paper
that the boundary is a.e. normal to a coordinate axis, (even in the case of the RT or CR discretizations), which
allows to simply set to zero the corresponding velocity unknowns:

for i = 1, . . . , d, ∀σ ∈ E
(i)
ext, uσ,i = 0. (2)

Therefore, there are no degrees of freedom for the velocity on the boundary for the MAC scheme, and there are
only d− 1 degrees of freedom on each boundary face for the CR and RT discretizations, which depend on the
orientation of the face. In order to be able to write a unique expression of the discrete equations for both MAC
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Figure 1. Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

and CR/RT schemes, we introduce the set of faces E
(i)
S associated to the degrees of freedom of each component

of the velocity (S stands for “scheme”):

E
(i)
S =

∣
∣
∣
∣
∣

E(i) \ E
(i)
ext for the MAC scheme,

E \ E
(i)
ext for the CR or RT schemes.

Similarly, we unify the notation for the set of dual faces for both schemes by defining:

Ẽ
(i)
S =

∣
∣
∣
∣
∣

Ẽ(i) \ Ẽ
(i)
ext for the MAC scheme,

Ẽ \ Ẽ
(i)
ext for the CR or RT schemes,

where the symbol ˜ refers to the dual mesh; for instance, Ẽ(i) is thus the set of faces of the dual mesh associated

to the ith component of the velocity, and Ẽ
(i)
ext stands for the subset of these dual faces included in the boundary.

Note that, for the MAC scheme, the faces of Ẽ(i) are perpendicular to a unit vector of the canonical basis of
Rd, but not necessarily to the ith one.

Note that general domains can easily be addressed (of course, with the CR or RT discretizations) by redefining,
through linear combinations, the degrees of freedom at the external faces, so as to introduce the normal velocity
as a new degree of freedom.

3. An implicit scheme

3.1. The scheme

Let us consider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. We consider an implicit-in-time scheme, which
reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn+1
K,σ = 0, (3a)

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

Fn+1
σ,ǫ un+1

ǫ,i − |Dσ| (∆
M
u)n+1

σ,i + |Dσ| (∇p)n+1
σ,i = 0, (3b)
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∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (3c)

where the terms introduced for each discrete equation are defined herafter.

Equation (3a) is obtained by discretization of the mass balance over the primal mesh, and Fn+1
K,σ stands for

the mass flux across σ outward K, which, because of the impermeability condition, vanishes on external faces
and is given on the internal faces by:

∀σ = K|L ∈ Eint, Fn+1
K,σ = |σ| ρn+1

σ un+1
K,σ ,

where un+1
K,σ is an approximation of the normal velocity to the face σ outward K. This latter quantity is defined

by:

un+1
K,σ =

∣
∣
∣
∣
∣

un+1
σ,i e

(i) · nK,σ for σ ∈ E(i) in the MAC case,

u
n+1
σ · nK,σ in the CR and RT cases,

(4)

where e
(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the face σ = K|L is approxi-

mated by the upwind technique:

ρn+1
σ =

∣
∣
∣
∣
∣

ρn+1
K if un+1

K,σ ≥ 0,

ρn+1
L otherwise.

(5)

We now turn to the discrete momentum balance (3b). For the discretization of the time derivative, we must
provide a definition for the values ρn+1

Dσ
and ρnDσ

, which approximate the density on the face σ at time tn+1 and
tn respectively. They are given by the following weighted average:

for σ = K|L ∈ Eint, for k = n and k = n+ 1, |Dσ| ρ
k
Dσ

= |DK,σ| ρ
k
K + |DL,σ| ρ

k
L. (6)

Let us then detail the discretization of the convection term. The first task is to define the discrete mass flux
through the dual face ǫ outward Dσ, denoted by Fn+1

σ,ǫ ; the guideline for its construction is that a finite volume
discretization of the mass balance equation over the diamond cells, of the form

∀σ ∈ E ,
|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ǫ∈E(Dσ)

Fn+1
σ,ǫ = 0 (7)

must hold in order to be able to derive a discrete kinetic energy balance (see Section 3.1 below). For the MAC
scheme, the flux on a dual face which is located on two primal faces is the mean value of the sum of fluxes on
the two primal faces, and the flux of a dual face located between two primal faces is again the mean value of the
sum of fluxes on the two primal faces [22]. In the case of the CR and RT schemes, for a dual face ǫ included in
the primal cell K, this flux is computed as a linear combination (with constant coefficients, i.e. independent of
the cell) of the mass fluxes through the faces of K, i.e. the quantities (Fn+1

K,σ )σ∈E(K) appearing in the discrete

mass balance (3a). We refer to [1, 12] for a detailed construction of this approximation. Let us remark that a
dual face lying on the boundary is then also a primal face, and the flux across that face is zero. Therefore, the
values un+1

ǫ,i are only needed at the internal dual faces; we choose them to be centered:

for ǫ = Dσ|D
′
σ, un+1

ǫ,i =
1

2
(un+1

σ,i + un+1
σ′,i ). (8)

The quantity (∆M
u)n+1

σ,i stands for a possible stabilizing diffusion term which may be written under a finite

volume form over any diamond cell Dσ associated to the ith component of the velocity:

−|Dσ| (∆
M
u)n+1

σ,i =
∑

ǫ=Dσ|Dσ′

ν hd−2
ǫ (un+1

σ,i − un+1
σ′,i ), (9)

where hǫ is a characteristic dimension of the face ǫ, and ν stands for a non-negative coefficient, possibly depending
on a power of hǫ. Note that this term is usually (i.e. for general meshes) not consistent with a Laplace operator.
The usual upwind scheme (i.e. an upwind choice of the quantity un+1

ǫ,i with respect to the flux Fn+1
σ,ǫ ) leads to

the discrete equation (3b), with the velocity at the face defined by (8) and the numerical diffusion term defined
by (9), with:

ν hd−2
ǫ =

1

2
|Fn+1

σ,ǫ |, (10)
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and ν behaves as hǫ in this case. Writing the numerical diffusion of the scheme as the separate term (9) presents
two advantages. First, with such a diffusion term, assuming that the coefficient ν behaves as hαǫ with 0 < α < 2,
we obtain a weak L2(H1) control of the velocity which is sufficient, at least in one space dimension, to pass
to the limit in the scheme (see Section 3.3). Unfortunately, this assumption is not satisfied by the upwind
discretization of the nonlinear convection term (10); note however that the convergence analysis of Section
3.3 would still hold in this case under the additional assumption that the approximate solution satisfies a BV
estimate. Second, this formalism may prepare for a stabilization strategy which could be less diffusive than
the upwind choice, for instance choosing ν on the basis of an a posteriori analysis of the local regularity of the
solution [15, 16].

The last term (∇p)n+1
σ,i stands for the i-th component of the discrete pressure gradient at the face σ. The

gradient operator is built as the transpose of the natural discrete divergence operator defined by

|K| (divu)K =
∑

σ∈E(K)

|σ| uK,σ. (11)

In the CR and RT case, the duality between the divergence and gradient operators simply reads:

∑

K∈M

|K| pK (divu)K +
∑

σ∈E

|Dσ| uσ · (∇p)σ = 0.

This duality relation may be rewritten so as to fit both the CR/RT scheme and the MAC scheme as follows:

∑

K∈M

|K| pK(divu)K +
d∑

i=1

∑

σ∈E
(i)
S

|Dσ| uσ,i (∇p)σ,i = 0. (12)

Therefore, on any internal face, the components of the gradients are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|

|Dσ|
(pn+1

L − pn+1
K ) nK,σ · e(i).

Note that because of the impermeability boundary conditions, the discrete gradient is not defined at the external
faces.

Finally, the initial approximations for ρ and u are given by the average of the initial conditions ρ0 and u0

on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(13)

3.2. Estimates

We begin with an estimate on the velocity which is a discrete equivalent of the kinetic energy balance. Recall
that in the continuous setting, the kinetic energy balance is formally obtained by multiplying the ith component
of the momentum balance equation (1b) by the ith component ui of u; this yields for 1 ≤ i ≤ d, using the mass
balance equation (1a) twice:

∂t(
1

2
ρu2i ) + div

(
(
1

2
ρu2i )u

)
+ (∂xi

p) ui = 0,

and thus, summing over the components:

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0, with Ek =

1

2
|u|2. (14)

In the discrete setting, this multiplication must be performed on the dual mesh, since the velocity unknowns
are defined on the faces. This is the reason why we chose the fluxes on the faces of the dual mesh in such a way
that a discrete mass balance equation holds on the dual grid cells, thus allowing us to use Lemma A.2 (which
performs the discrete equivalent of the above formal computations) on the dual mesh.
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Lemma 3.1 (Discrete kinetic energy balance, implicit scheme).

A solution to the system (3) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ=Dσ|Dσ′

Fn+1
σ,ǫ un+1

σ,i un+1
σ′,i + |Dσ| (∇p)n+1

σ,i un+1
σ,i = −Rn+1

σ,i , (15)

where

Rn+1
σ,i =

1

2

|Dσ|

δt
ρnDσ

(
un+1
σ,i − unσ,i

)2
+
[ ∑

ǫ=Dσ|Dσ′

ν hd−2
ǫ (un+1

σ,i − un+1
σ′,i )

]

un+1
σ,i . (16)

Proof. Let us multiply equation (3b) by the corresponding velocity unknown un+1
σ,i ; this yields T conv

σ,i +T∆
σ,i+T

∇
σ,i =

0, with:

T conv
σ,i =

[ |Dσ|

δt

(
ρn+1
Dσ

un+1
σ,i − ρnDσ

unσ,i
)
+

∑

ǫ=Dσ |Dσ′

1

2
Fn+1
σ,ǫ (un+1

σ,i + un+1
σ′,i )

]

un+1
σ,i ,

T∆
σ,i =

[ ∑

ǫ=Dσ|Dσ′

ν hd−2
ǫ (un+1

σ,i − un+1
σ′,i )

]

un+1
σ,i ,

T∇
σ,i = |Dσ| (∇p)n+1

σ,i un+1
σ,i .

Applying Lemma A.2 with P = Dσ, we get from the identity (56) that

T conv
σ,i =

1

2

|Dσ|

δt

[

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ=Dσ|Dσ′

Fn+1
σ,ǫ un+1

σ,i un+1
σ′,i +

|Dσ|

2 δt
ρnDσ

(
un+1
σ,i − unσ,i

)2
.

Noting that Rn+1
σ,i defined by (16) is the sum of T∆

σ,i and of the last term of T conv
σ,i , this concludes the proof of

(15). �

Let us now define the elastic potential P :

P(z) =

∫ z

0

℘(s)

s2
ds i.e. P(z) =







zγ−1

γ − 1
if γ > 1,

ln(z) if γ = 1,

(17)

and let H be the function defined over (0,+∞) by

H(z) = z P(z) =







zγ

γ − 1
if γ > 1,

z ln(z) if γ = 1.

. (18)

It may easily be checked that sH′(s)−H(s) = ℘(s); therefore, by a formal computation detailed in the appendix
(see 51), multiplying (1a) by H′(ρ) yields:

∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (19)

We now derive a discrete analogue of this relation.

Lemma 3.2 (Discrete potential balance). Let H be defined by (18). A solution to the system (3) satisfies the
following equality, for K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt

[

H(ρn+1
K )−H(ρnK)

]

+
∑

σ∈E(K)

|σ| H(ρn+1
σ ) un+1

K,σ + |K| pn+1
K (divun+1)K = −Rn+1

K , (20)

with:

Rn+1
K =

1

2

|K|

δt
H′′(ρn+1

K ) (ρn+1
K − ρnK)2 +

1

2

∑

σ=K|L

|σ| (un+1
K,σ )

− H′′(ρn+1
σ ) (ρn+1

L − ρn+1
K )2, (21)
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where ρn+1
K ∈ [min(ρn+1

K , ρnK),max(ρn+1
K , ρnK)], ρn+1

σ ∈ [min(ρn+1
σ , ρn+1

K ),max(ρn+1
σ , ρn+1

K )] for all σ ∈ E(K),

and, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). Note that, since the function H is convex, Rn+1
K is

non-negative.

Proof. Let us multiply the discrete mass balance (3a) by H′(ρn+1
K ). The result is then a consequence of Lemma

A.1, using the fact that zH′(z) − H(z) = ℘(z) and that ρn+1
σ is the upwind choice between ρK and ρL in the

remainder term RK,δt. �

Summing (14) and (19) yields:

∂tS + div
(
(S + p)u

)
= 0,

with S = ρEk +H(ρ) the entropy of the system. This relation is only valid for regular solutions, and should
be replaced by an inequality to take into account the presence of shocks (see Relations (34)-(35)). Integrating
over Ω and using the boundary conditions yields:

d

dt

∫

Ω

S(x, t) dx ≤ 0 (for regular solutions,
d

dt

∫

Ω

S(x, t) dx = 0),

and, for t ∈ (0, T ),
∫

Ω

S(x, t) dx ≤

∫

Ω

S(x, 0) dx.

The following proposition states a discrete analogue to this relation.

Proposition 3.3 (Global discrete entropy inequality, existence of a solution).
Assume that the initial density ρ0 is positive. Then there exists a solution (un) 0≤n≤N and (ρn) 0≤n≤N to the
scheme, and, for 1 ≤ n ≤ N , ρn > 0 and the following inequality holds:

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ
n
Dσ

(unσ,i)
2 +

∑

K∈M

|K| H(ρnK) +Rn ≤ C, (22)

where the real number C ∈ R+ only depends on the initial conditions, and Rn is the following non-negative
remainder which depends on the space and time translates of the unknowns:

Rn =

d∑

i=1

n∑

k=1

[1

2

∑

σ∈Ẽ
(i)
S

|Dσ| ρ
k
Dσ

(ukσ,i − uk−1
σ,i )2 + δt

∑

ǫ=Dσ|Dσ′∈Ẽ
(i)
S

ν hd−2
σ (ukσ,i − ukσ′,i)

2
]

+
γ

2

n∑

k=1

δt
∑

σ=K|L∈Eint

|σ| (ρkσ,γ)
γ−2 |uK,σ| (ρ

k
K − ρkL)

2,

(23)

with ρkσ,γ equal to either ρkK or ρkL and such that (ρkσ,γ)
γ−2 = min

(
(ρkK)γ−2, (ρkL)

γ−2
)
.

Remark 3.4. For γ > 1, the function H is positive and increasing over (0,+∞). The inequality (22) thus
readily provides an estimate on the unknowns.

This is still true also for γ = 1, since in this case H(s) = s ln s and therefore H(s) ≥ −1/e, ∀s ∈ (0,+∞), and
H is increasing over (1/e,+∞). In fact, in order to get the usual formulation of an estimate, we may rephrase
the inequality (22) by changing the expression of H to H(s) = max(s log(s), 0) and adding |Ω|/e to the constant
C at the right-hand side.

Proof. Let us give the proof of Proposition 3.3. The positivity of the density is a consequence of the properties
of the upwind choice (5) for ρ [13, Lemma 2.1]; note that it may also be proved applying Lemma A.1 with
ψ(s) = 1

2 (s
−)2 and P = K.

Let us then sum Equation (15) over the components i and the faces σ ∈ E
(i)
S , Equation (20) over K ∈ M,

and, finally, the two obtained relations.
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Since the discrete gradient and divergence operators are dual with respect to the L2 inner product (see (12)),
noting that the conservative fluxes vanish in the summation, we get, for 1 ≤ k ≤ N :

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ|

δt

[

ρkDσ
(ukσ,i)

2 − ρk−1
Dσ

(uk−1
σ,i )2

]

+
∑

K∈M

|K|

δt
(H(ρkK)−H(ρk−1

K ))

= −
d∑

i=1

∑

σ∈E
(i)
S

Rk
σ,i −

∑

K∈M

Rk
K . (24)

Summing (24) for k = 1 to n, and using the fact that H′′(s) = γsγ−2 for any γ ≥ 1 yields (22), with Rn

given by (23) and

C =
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ
0
σ |u0σ,i|

2 +
∑

K∈M

|K| H(ρ0K).

Finally, the existence of a solution may be inferred by the Brouwer fixed point theorem, by an easy adaptation
of the proof of [10, Proposition 5.2]. This proof relies on the following set of mesh-dependent estimates: the
conservativity of the mass balance discretization, together with the fact that the density is positive, yields an
estimate for ρ in the L1-norm, and so, by a norm equivalence argument, of the pressure in any norm; the discrete
momentum balance equation then provides a control on the velocity. Therefore, computing

(i) ρ from the mass balance for fixed u,
(ii) p from ρ by the equation of state,
(iii) and finally u from the momentum balance equation with fixed ρ and p,

yields an iteration in a bounded convex subset of a finite dimensional space. �

3.3. Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of solutions is controlled
in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak formulation of
the continuous problem.

The 1D version of the scheme which is studied in this section may be obtained from Scheme (3) by taking
the MAC variant, only one horizontal stripe of grid cells, supposing that the vertical component of the velocity
(the degrees of freedom of which are located on the top and bottom boundaries) vanishes, and that the measure
of the vertical faces is equal to 1. For the sake of readability, however, we completely rewrite this 1D scheme,
and, to this purpose, we first introduce some adaptations of the notations to the one dimensional case. For
any K ∈ M, we denote by hK its length (so hK = |K|); when we write K = [σσ′], this means that either
K = (xσ , xσ′) or K = (xσ′ , xσ); if we need to specify the order, i.e. K = (xσ, xσ′ ) with xσ < xσ′ , then we write

K = [
−→
σσ′]. For an interface σ = K|L between two cells K and L, we define hσ = (hK + hL)/2, so, by definition

of the dual mesh, hσ = |Dσ|. If we need to specify the order of the cells K and L, say K is left of L, then we

write σ =
−−→
K|L. With these notations, the implicit scheme (3) may be written as follows in the one dimensional

setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,
(25a)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn+1
σ′ − Fn+1

σ = 0, (25b)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn+1
L un+1

L − Fn+1
K un+1

K

−|Dσ|(∆Mu)n+1
σ + pn+1

L − pn+1
K = 0,

(25c)
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∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (25d)

The mass flux in the discrete mass balance equation is given, for σ ∈ Eint, by:

Fn+1
σ = ρn+1

σ un+1
σ , (26)

where the upwind approximation for the density at the face, ρn+1
σ , is defined by (5). In the momentum balance

equation, the application of the procedure described in Section 3.1 yields for the density associated to the dual
cell Dσ with σ = K|L and for the mass fluxes at the dual face located at the center of the cell K = [σσ′]:

ρn+1
Dσ

=
1

2 |Dσ|
(|K| ρn+1

K + |L| ρn+1
L ), Fn+1

K =
1

2
(Fn+1

σ + Fn+1
σ′ ), (27)

and the approximation of the velocity at this face is centered: un+1
K = (un+1

σ + un+1
σ′ )/2. Finally, for a face

σ =
−−→
K|L with K = [

−→
σ′σ] and K = [

−−→
σσ′′], the stabilization diffusion term reads:

−|Dσ| (∆Mu)n+1
σ = ν

[ 1

hK
(un+1

σ − un+1
σ′ ) +

1

hL
(un+1

σ − un+1
σ′′ )

]

. (28)

Definition 3.5 (Regular sequence of discretizations, implicit case).
We define a regular sequence of discretizations (M(m), δt(m), ν(m))m∈N as a sequence of meshes, time steps
and numerical diffusion coefficients satisfying:

(i) both the time step δt(m) and the size h(m) of the mesh M(m), defined by h(m) = supK∈M(m) hK ,
tend to zero as m→ ∞,

(ii) there exists θ > 0 such that:

θ ≤
hK
hL

≤
1

θ
, ∀m ∈ N and K, L ∈ M(m) sharing a face,

(iii) the sequence of numerical diffusion coefficients (ν(m))m∈N satisfies:

lim
m→+∞

ν(m) = 0, lim
m→+∞

(h(m))2

ν(m)
= 0.

Let such a regular sequence of discretizations be given, and ρ(m), p(m) and u(m) be the solution given by
the scheme (25) with the mesh M(m), the time step δt(m) and the numerical diffusion coefficient ν(m). To the
discrete unknowns, we associate piecewise constant functions on time intervals and on primal or dual meshes,
so that the density ρ(m), the pressure p(m) and the velocity u(m) are defined almost everywhere on Ω× (0, T )
by:

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))n+1
K XK(x) X(n,n+1](t), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))n+1
K XK(x) X(n,n+1](t),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))n+1
σ XDσ

(x) X(n,n+1](t),

where XK , XDσ
and X(n,n+1] stand for the characteristic functions of the intervals K, Dσ and (tn, tn+1] respec-

tively.

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−

∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (29a)

−

∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (29b)

p = ργ . (29c)
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Note that these relations are not sufficient to define a weak solution to the problem, since they do not imply
anything about the boundary conditions. However, they allow to derive the Rankine-Hugoniot conditions; hence
if we show that they are satisfied by the limit of a sequence of solutions to the discrete problem, this implies,
loosely speaking, that the scheme computes correct shocks (i.e. shocks where the jumps of the unknowns and
of the fluxes are linked to the shock speed by Rankine-Hugoniot conditions). This is the result we are seeking
and which we state in Theorem 3.7. In order to prove this theorem, we need some definitions of interpolates of
regular test functions on the primal and dual mesh.

Definition 3.6 (Interpolates on one-dimensional meshes). Let Ω be an open bounded interval of R, let ϕ ∈
C∞

c (Ω× [0, T )), and let M be a mesh over Ω. The interpolate ϕM of ϕ on the primal mesh M is defined by:

ϕM =

N−1∑

n=0

∑

K∈M

ϕn
K XK X[tn,tn+1),

where, for 0 ≤ n ≤ N and K ∈ M, we set ϕn
K = ϕ(xK , t

n), with xK the mass center of K. The time and space
discrete derivatives of the discrete function ϕM are defined by:

ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X[tn,tn+1), and ðxϕM =

N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn
L − ϕn

K

hσ
XDσ

X[tn,tn+1).

Let ϕE be an interpolate of ϕ on the dual mesh, defined by:

ϕE =
N−1∑

n=0

∑

σ∈E

ϕn
σ XDσ

X[tn,tn+1),

where, for 1 ≤ n ≤ N and σ ∈ E , we set ϕn
σ = ϕ(xσ , t

n), with xσ the abscissa of the interface σ. We also define
the time and space discrete derivatives of this discrete function by:

ðtϕE =
N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X[tn,tn+1), and ðxϕE =
N−1∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn
σ′ − ϕn

σ

hK
XK X[tn,tn+1).

Theorem 3.7 (Consistency of the one-dimensional implicit scheme).
Let Ω be an open bounded interval of R. We suppose that the initial data satisfies ρ0 ∈ L∞(Ω) and u0 ∈
L∞(Ω). Let (M(m), δt(m), ν(m))m∈N be a regular sequence of discretizations in the sense of Definition 3.5, and
(ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose that this sequence converges in
Lp(Ω × (0, T ))3, for 1 ≤ p < ∞, to (ρ̄, p̄, ū) ∈ L∞(Ω × (0, T ))3. We suppose in addition that both sequences
(ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω× (0, T )).

Then the limit (ρ̄, p̄, ū) satisfies the system (29).

Proof. With the assumed convergence for the sequence of solutions, the limit clearly satisfies the equation of
state. The proof of this theorem is thus obtained by passing to the limit in the scheme, first for the mass balance
equation and then for the momentum balance equation. Thanks to the assumption on the initial condition,
the stability estimate of Proposition 3.3 is uniform with respect to m, and thus provides uniform bounds for
some space translates of the solution (see the expression (23) of the remainder term), which are used all along
the proof. In particular, using in addition the assumption that both sequences (ρ(m))m∈N and (1/ρ(m))m∈N are
uniformly bounded in L∞(Ω× (0, T )), exploiting the last part of the remainder term, we get the following weak
BV estimate for ρ:

∀m ∈ N,

N−1∑

n=0

δt
∑

σ=K|L

|(u(m))n+1
σ |

[

(ρ(m))n+1
K − (ρ(m))n+1

L

]2

≤ C, (30)

where C stands for a real number which is independent of m.

Mass balance equation – Let ϕ ∈ C∞
c (Ω× [0, T )). Let m ∈ N, M(m), δt(m) and ν(m) be given. Dropping

for short the superscript (m), let ϕM be an interpolate of ϕ on the primal mesh and let ðtϕM and ðxϕM be its
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time and space discrete derivatives in the sense of Definition 3.6. Thanks to the regularity of ϕ, these functions
respectively converge in Lr(Ω × (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively. In
addition, ϕM(·, 0) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1. Since the support of ϕ is compact in Ω × [0, T ),
for m large enough, the interpolate of ϕ vanishes at the boundary cells and at the final time; hereafter, we
systematically assume that we are in this case.

Let us multiply the discrete mass balance equation (25b) by δt ϕn
K , and sum the result on n ∈ {0, ..., N − 1}

and K ∈ M, to obtain T
(m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

K∈M

|K| (ρn+1
K − ρnK) ϕn

K , T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

Fn+1
σ′ − Fn+1

σ

]

ϕn
K .

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρn+1
K

ϕn+1
K − ϕn

K

δt
−

∑

K∈M

|K| ρ0K ϕ0
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðt ϕM dxdt−

∫

Ω

(ρ0)(m)(x) ϕM(x, 0) dx.

Since, by assumption, the sequence of discrete solutions converges in Lr(Ω× (0, T )) for r ≥ 1, and by definition
of the discrete initial conditions (25a), the sequence

(
(ρ(m))0

)

m∈N
converges to ρ0 in Lr(Ω) for r ≥ 1, we get:

lim
m−→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕdxdt−

∫

Ω

ρ0(x) ϕ(x, 0) dx.

Reordering the sums in T
(m)
2 , we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|Dσ| ρ
n+1
σ un+1

σ

ϕn
L − ϕn

K

hσ
,

where hσ (which is equal to |Dσ|) is by definition equal to |xL − xK | and we recall that ρn+1
σ is the upwind

approximation of ρn+1 at the face σ. Using the fact that |Dσ| = (|K|+|L|)/2, we may write T
(m)
2 = T

(m)
2 +R

(m)
2

with:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[ |K|

2
ρn+1
K +

|L|

2
ρn+1
L

]

un+1
σ

ϕn
L − ϕn

K

hσ
,

R
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[ |K|

2
(ρn+1

K − ρn+1
L )(un+1

σ )− +
|L|

2
(ρn+1

K − ρn+1
L )(un+1

σ )+
]ϕn

L − ϕn
K

hσ
.

Therefore we get

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðxϕM dxdt, and lim

m−→+∞
T

(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū ∂xϕdxdt,

and the remainder term R
(m)
2 is bounded as follows:

|R
(m)
2 | ≤ ‖ϕ′‖∞

N−1∑

n=0

δt
∑

σ=K|L∈Eint

|Dσ| |ρ
n+1
K − ρn+1

L | |un+1
σ |

≤ ‖ϕ′‖∞ h1/2
N−1∑

n=0

δt
[ ∑

σ=K|L∈Eint

|un+1
σ | |ρn+1

K − ρn+1
L |2

]1/2 [ ∑

σ=K|L∈Eint

|Dσ| |u
n+1
σ |

]1/2

.
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Thanks to the stability estimate (30), this term tends to zero when m tends to +∞.

Momentum balance equation – Let ϕE , ðtϕE and ðxϕE be the interpolate of ϕ on the dual mesh and its
discrete time and space derivatives, in the sense of Definition 3.6, which converge in Lr(Ω × (0, T )), for r ≥ 1
(including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively.

Let us multiply the discrete momentum balance equation (25c) by δt ϕn
σ, and sum the result over n ∈

{0, ..., N − 1} and σ ∈ Eint. We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 = 0 with:

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
(
ρn+1
Dσ

un+1
σ − ρnDσ

unσ
)
ϕn
σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

Fn+1
L un+1

L − Fn+1
K un+1

K

]

ϕn
σ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) ϕn
σ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=[σσ′]

ν

hK
(un+1

σ − un+1
σ′ )

]

ϕn
σ.

Thanks to the definition (27) of the density on the dual mesh ρDσ
, reordering the sums, we get for T

(m)
1 :

T
(m)
1 = −

N−1∑

n=0

δt
∑

σ=K|L∈Eint

[ |K|

2
ρn+1
K +

|L|

2
ρn+1
L

]

un+1
σ

ϕn+1
σ − ϕn

σ

δt
−

∑

σ=K|L∈Eint

[ |K|

2
ρ0K +

|L|

2
ρ0L

]

u0σ ϕ
0
σ.

Therefore:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðt ϕM dxdt−

∫

Ω

(ρ0)(m)(x) (u0)(m)(x) ϕM(x, 0) dx.

Since, from the definition (25a) of the initial conditions, the sequences
(
(ρ(m))0

)
and

(
u(m))0

)
converge in Lr(Ω),

for r ≥ 1, to ρ0 and u0 respectively, thanks to the convergence assumption of the sequence of discrete solutions,
we get:

lim
m−→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxdt−

∫

Ω

ρ0(x) u0(x) ϕ(x, 0) dx.

Let us now turn to T
(m)
2 . From the expression (27) of the fluxes FK and the values uK , reordering the sums,

we get:

T
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρn+1
σ un+1

σ + ρn+1
σ′ un+1

σ′ ) (un+1
σ + un+1

σ′ ) (ϕn
σ′ − ϕn

σ),

which we write T
(m)
2 = T

(m)
2 +R

(m)
2 with:

T
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn+1
K

[

(un+1
σ )2 + (un+1

σ′ )2
]

(ϕn
σ′ − ϕn

σ).

This term reads:

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðxϕE dxdt, and so lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxdt.
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The remainder term R
(m)
2 reads:

R
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρn+1
σ un+1

σ + ρn+1
σ′ un+1

σ′ )(un+1
σ + un+1

σ′ )

− 2ρn+1
K

(

(un+1
σ )2 + (un+1

σ′ )2
)]

(ϕn
σ′ − ϕn

σ).

Expanding the quantity 2 ρn+1
K ((un+1

σ )2 + (un+1
σ′ )2) thanks to the identity 2(a2 + b2) = (a + b)2 + (a − b)2, we

get R
(m)
2 = R

(m)
2,1 +R

(m)
2,2 :

R
(m)
2,1 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[(

(ρn+1
σ − ρn+1

K ) un+1
σ + (ρn+1

σ′ − ρn+1
K ) un+1

σ′

)

(un+1
σ + un+1

σ′ )
]

(ϕn
σ′ − ϕn

σ),

R
(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′∈M]

ρn+1
K (un+1

σ − un+1
σ′ )2 (ϕn

σ′ − ϕn
σ).

First we study R
(m)
2,1 . Thanks to the definition (5) of the upwind value ρn+1

σ , reordering the sum by faces, we
get that:

|R
(m)
2,1 | =

1

4

∣
∣

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K,K=[σσ′]

(ρn+1
L − ρn+1

K ) un+1
σ (un+1

σ + un+1
σ′ ) (ϕn

σ − ϕn
σ′)

∣
∣,

where the notation L→ K means that the flow is going from L to K, or, in other words, that if un+1
σ ≥ 0 (resp.

un+1
σ ≤ 0), the cells K and L are chosen such that σ =

−−→
L|K (resp. σ =

−−→
K|L). Since |ϕn

σ − ϕn
σ′ | ≤ Cϕ |K| ≤

Cϕ (|Dσ|+ |Dσ′ |), we get:

|R
(m)
2,1 | ≤

Cϕ

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K,K=[σσ′]

(
|Dσ|+ |Dσ′ |

)
|ρn+1

L − ρn+1
K | |un+1

σ | |un+1
σ + un+1

σ′ |.

Therefore, by the Cauchy-Schwarz inequality, we get:

|R
(m)
2,1 | ≤

Cϕ

4
h1/2

N−1∑

n=0

δt
[ ∑

σ=K|L∈Eint

|un+1
σ | (ρn+1

L − ρn+1
K )2

]1/2

[ ∑

σ∈Eint,

σ=L→K,K=[σσ′]

(
|Dσ|+ |Dσ′ |

)
|un+1

σ |
(
un+1
σ + un+1

σ′

)2
]1/2

. (31)

Since the ratio of the size of two neighbouring meshes is bounded by the regularity assumption on the mesh
(Item (ii) of Definition 3.5), we get from the estimate (30) on the solution:

|R
(m)
2,1 | ≤ C h1/2 ‖u(m)‖

3/2

L3(Ω×(0,T )), (32)

where the real number C is independent of m and therefore R
(m)
2,1 tends to zero when m tends to +∞. For

R
(m)
2,2 , we have, thanks to the estimate (22):

|R
(m)
2,2 | ≤ Cϕ h2

N−1∑

n=0

δt
∑

K∈M

ρn+1
K

1

hK
(un+1

σ − un+1
σ′ )2 ≤ C

h2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )),

where C does not depend on m; therefore, this term also tends to zero when m tends to +∞, since, by
assumption, h2/ν(m) tends to zero.
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We turn to the term T
(m)
3 :

T
(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| pn+1
K

ϕn
σ′ − ϕn

σ

hK
= −

∫ T

0

∫

Ω

p(m)
ðxϕE dxdt,

and therefore,

lim
m−→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxdt.

Let us finally study T
(m)
4 . Reordering the sums, we get:

T
(m)
4 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ ) (ϕn

σ − ϕn
σ′ ).

The Cauchy-Schwarz inequality yields:

|T
(m)
4 | ≤

[N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ )2

]1/2[N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(ϕn

σ − ϕn
σ′ )2

]1/2

,

and thus, in view of the estimate (22), this term tends to zero when ν(m) tends to zero.

Conclusion – Gathering the limits of all the terms of the mass and momentum balance equation concludes
the proof. �

Remark 3.8 (Sharper bounds and convergence assumptions).
The convergence properties and bounds assumed for the solution have been chosen so as to match what may be
observed in practice. However, examining the proof of this theorem, we observe that what we really need is that
the sequences ρ(m)u(m), ρ(m)(u(m))2, p(m)u(m) converge in the distribution sense to ρ̄ū, ρ̄ū2 and p̄ū respectively,
that (ρ(m))γ converge a.e. to ρ̄γ , and that the sequence (u(m))m∈N be bounded in L3(Ω× (0, T )). The required
second assumption for (ν(m))m∈N is in fact:

lim
m→+∞

(h(m))2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )) = 0,

and may be verified, for instance supposing a relation between δt(m) and h(m) and invoking inverse inequalities,
with milder estimates on (ρ(m))m∈N. Finally, the bound of (1/ρ(m))m∈N in L∞(Ω × (0, T )) (which, loosely
speaking, means that the appearance of void is excluded) is needed to obtain the weak-BV estimate:

lim
m→+∞

h(m)
N∑

n=0

∑

σ=K|L∈Eint

|unσ| (ρ
n
K − ρnL)

2 = 0 (33)

from the ”weighted weak-BV estimate” (22):

lim
m→+∞

h(m)
N∑

n=0

∑

σ=K|L∈Eint

(ρnσ,γ)
γ−2 |unσ| (ρ

n
K − ρnL)

2 = 0,

where we recall that ρnσ,γ is equal to either ρnK or ρnL. This assumption is thus useless for γ ≤ 2. For γ > 2, in
the case of a non-vanishing viscosity, Equation (33) may perhaps be derived by using the density itself as test
function in the discrete mass balance equation, and invoking a control of the divergence of the velocity (from
the momentum balance diffusion term), see [10, Proposition 5.5] for such a computation in the steady case.

Remark 3.9 (Less sharp bounds and more general meshes).
The assumption that the ratio of the size of two neighbouring meshes is bounded, i.e. Assumption (ii) of
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Definition 3.5, is only used to derive (32) from (31). If we now suppose that the sequence of approximate
solutions is uniformly bounded, we may replace (32) by

|R
(m)
2,1 | ≤ C h1/2 ‖u(m)‖

3/2

L∞(Ω×(0,T )),

and Assumption (ii) is useless.

We now turn to the entropy condition. Let us first recall that S = ρEk+H(ρ) is an entropy of the continuous
problem (1), in the sense that if we sum the formal kinetic energy (14) and elastic potential balance (19), we
get:

∂tS + div
(
(S + p)u

)
= 0. (34)

In fact, in order to avoid to invoke unrealistic regularity assumption, such a computation should be done on
regularized equations (obtained by adding diffusion perturbation terms), and, when making these regularization
terms tend to zero, positive measures appear at the left-hand-side of (34), so that we get in the distribution
sense:

∂tS + div
(
(S + p)u

)
≤ 0. (35)

An entropy solution to (1) is thus required to satisfy, for any ϕ ∈ C∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0:

∫ T

0

∫

Ω

[
S∂tϕ+ (S + p)u ·∇ϕ

]
dx dt+

∫

Ω

S0(x) ϕ(x, 0) dx ≥ 0, (36)

where S0 =
1

2
ρ0 |u0|

2 +H(ρ0).

Theorem 3.10 (Entropy consistency). Under the assumptions of Theorem 3.7, (ρ̄, p̄, ū) satisfies the entropy
condition (36).

Proof. Let ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. Using the notations introduced in Definition 3.6, we multiply the

kinetic balance equation (15) by ϕn
σ, and the elastic potential balance (20) by ϕn

K , sum over the faces and cells
respectively and over the time steps, to get:

∑

E∈Eint

T n+1
σ ϕn

σ +
∑

K∈M

T n+1
K ϕn

K = −
∑

E∈Eint

Rn+1
σ ϕn

σ −
∑

K∈M

Rn+1
K ϕn

K , (37)

where, for σ =
−−→
K|L, K = [

−→
σ′σ] and L = [

−−→
σσ′′]:

T n+1
σ =

1

2

|Dσ|

δt

[

ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]

+
1

2
Fn+1
L un+1

σ un+1
σ′′ −

1

2
Fn+1
K un+1

σ un+1
σ′ + (pn+1

L − pn+1
K ) un+1

σ ,

for K = [
−→
σσ′]:

T n+1
K =

|K|

δt

[

H(ρn+1
K )−H(ρnK)

]

+ Fn+1
σ H(ρn+1

σ )− Fn+1
σ′ H(ρn+1

σ′ ) + pn+1
K (un+1

σ − un+1
σ′ ),

and the quantities Rn+1
σ and Rn+1

K are given by (the one-dimensional version of) Equation (16) and (21)
respectively.

For the passage to the limit in this equation, we essentially refer to the study performed in Part II of the
present paper [20, Proof of Theorem 3.4]. Indeed, the entropy inequality for the barotropic model is the same
as the total energy balance for non-barotropic flows (up to the change from an inequality to an equality), and
the passage to the limit in this latter equation, with the same discretization as here, is detailed in [20].

The treatment of the terms at the left-hand side of (37) follows similar arguments as in [20], and we thus
skip it here. Since we only seek an inequality, the non-negative part of the remainder terms, i.e. the first part in
Rn+1

σ and the whole term Rn+1
K , poses no problem, and we only have to study the second part of Rn+1

σ , which
reads:

(Rdiff)
n+1
σ =

[ ∑

K=[σσ′ ]

ν

hK
(un+1

σ − un+1
σ′ )

]

un+1
σ .
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For 0 ≤ n ≤ N − 1 and K ∈ M, K = [σσ′], let us define the quantity Sn+1
K by:

Sn+1
K =

ν

hK
(un+1

σ − un+1
σ′ )2.

We have SK ≥ 0, and we prove in [20, proof of Theorem 3.4] that the difference R(m) between the discrete
functions associated to

(
(Rdiff)

n+1
σ

)

σ∈Eint, 0≤n≤N−1
and (Sn+1

K )K∈M, 0≤n≤N−1 tends to zero in the distribution

sense as soon as the diffusion coefficient tends to zero, i.e.:

∣
∣
∣

N−1∑

n=0

δt
[ ∑

σ∈Eint

ϕn
σ (Rdiff)

n+1
σ −

∑

K∈M

ϕn
K Sn+1

K

]∣
∣
∣ ≤ C (ν(m))1/2, (38)

where C only depends on ϕ and on bounds on the solution either assumed or given by (22). This concludes the
proof. �

4. A pressure correction scheme

4.1. The scheme

The implicit scheme which we studied in the previous section is easy to write, but difficult to implement
in practice, because it yields at the algebraic level a large nonlinear system. Pressure correction methods are
based on the idea that one may compute the velocity and the pressure in a sequential way, thus yielding a more
practical scheme. More precisely, as shown in the algorithm given below, the velocity is predicted by solving the
momentum balance equation with a known pressure. This latter is obtained from the beginning-of-step pressure
through “renormalization” step, in order to be able to perform the stability analysis (stability of the scheme
and satisfaction of the entropy condition). Then, the velocity is corrected and the other variables are advanced
in time. As in the case of the implicit scheme, we can derive a discrete kinetic energy balance provided that
the mass balance over the dual cells (7) holds; since the mass balance is not yet solved when performing the
prediction step, this leads us to perform a time shift of the density at this stage.

The algorithm reads, for 0 ≤ n ≤ N − 1:

Renormalization step – Solve for p̃n+1:

∀K ∈ M,
∑

σ=K|L

1

ρnDσ

|σ|2

|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1

(ρnDσ
ρn−1
Dσ

)1/2
|σ|2

|Dσ|

(
pnK − pnL

)
. (39a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
(ρnDσ

ũn+1
σ,i − ρn−1

Dσ
unσ,i) +

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫũ

n+1
ǫ,i − |Dσ| (∆

M
ũ)n+1

σ,i + |Dσ| (∇p̃)n+1
σ,i = 0. (39b)

Correction step – Solve for ρn+1, pn+1 and u
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇p)n+1

σ,i − (∇p̃)n+1
σ,i

]
= 0, (39c)

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn+1
K,σ = 0 with Fn+1

K,σ = |σ| ρn+1
σ un+1

K,σ , (39d)

∀K ∈ M, pn+1
K = (ρn+1

K )γ . (39e)
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Recall that the notation ρn+1
σ in (39d) stands for the upwind choice of ρ defined by (5), while ρnDσ

in (39c) is
the convex combination of ρnK and ρnL defined by (6).

The initialization of the scheme is performed as follows. First, ρ−1 and u
0 are given by the average of the

initial conditions ρ0 and u0 on the primal and dual cells respectively:

∀K ∈ M, ρ−1
K =

1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(40)

Then, we compute ρ0 by solving the mass balance equation (39d). Finally, the initial pressure p0 is computed
from the initial density ρ0 by the equation of state: ∀K ∈ M, p0K = (ρ0K)γ . This procedure allows to perform

the first prediction step with (ρ−1
Dσ

)σ∈E , (ρ
0
Dσ
)σ∈E and the dual mass fluxes satisfying the mass balance.

4.2. Estimates

Lemma 4.1 (Discrete kinetic energy balance, pressure correction scheme).

A solution to the system (39) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[

ρnDσ
(un+1

σ,i )2 − ρn−1
Dσ

(unσ,i)
2
]

+
1

2

∑

ǫ=Dσ|Dσ′

Fn
σ,ǫ ũ

n+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i − Pn+1

σ,i , (41)

where

Rn+1
σ,i =

1

2

|Dσ|

δt
ρn−1
Dσ

(
ũn+1
σ,i − unσ,i

)2
+
[ ∑

ǫ=Dσ|Dσ′

ν hd−2
ǫ (ũn+1

σ,i − ũn+1
σ′,i )

]

ũn+1
σ,i ,

Pn+1
σ,i =

|Dσ| δt

ρnDσ

[(
(∇p)n+1

σ,i

)2
−
(
(∇p̃)n+1

σ,i

)2
]

.

(42)

Proof. Let us multiply the velocity prediction equation (39b) by the corresponding velocity unknown ũn+1
σ,i , and

use the equality (56) of Lemma A.2, on the dual mesh and with P = Dσ. We obtain:

1

2

|Dσ|

δt

[

ρnDσ
(ũn+1

σ,i )2 − ρn−1
Dσ

(unσ,i)
2
]

+
1

2

∑

ǫ=Dσ|Dσ′

Fn
σ,ǫ ũ

n+1
σ,i ũn+1

σ′,i +
1

2

|Dσ|

δt
ρn−1
Dσ

(
ũn+1
σ,i − unσ,i

)2

− |Dσ|(∆
M
ũ)n+1

σ,i ũn+1
σ,i + |Dσ| (∇p̃)n+1

σ,i ũn+1
σ,i = 0. (43)

Dividing the velocity correction equation (39c) by (
|Dσ|

δt
ρnDσ

)
1
2 , we obtain:

[ |Dσ|

δt
ρnDσ

]1/2

un+1
σ,i +

[ |Dσ| δt

ρnDσ

]1/2

(∇p)n+1
σ,i =

[ |Dσ|

δt
ρnDσ

]1/2

ũn+1
σ,i +

[ |Dσ| δt

ρnDσ

]1/2

(∇p̃)n+1
σ,i .

Squaring this relation and summing it with (43) yields the result, using the definition (9) of (∆M
ũ)n+1. �

The discrete potential balance is again valid for the pressure correction algorithm, thanks to the fact that
the mass balance (39d) is satisfied. The proof is identical to that of Lemma 3.2 given for the implicit scheme.

Lemma 4.2 (Discrete potential balance). A solution to the system (39) satisfies the discrete potential balance
(20), with Rn+1

K defined by (21).

Proposition 4.3 (Global discrete entropy inequality, existence of a solution).
There exists a solution (un) 0≤n≤N and (ρn) 0≤n≤N to the scheme, the density satisfies ρ > 0 and, for 1 ≤ n ≤ N ,
the following inequality holds:

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ
n−1
Dσ

(unσ,i)
2 +

∑

K∈M

|K| H(ρnK) +Rn ≤ C, (44)
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where C only depends on the initial conditions and on the density field ρ0 computed at the initialization of the
algorithm. The remainder term R is non-negative, and gathers some estimates of the space and time translates
of the unknowns:

Rn =

d∑

i=1

n∑

k=1

[1

2

∑

σ∈E
(i)
S

|Dσ| ρ
k−2
Dσ

(ũkσ,i − uk−1
σ,i )2 + δt

∑

ǫ=Dσ|Dσ′∈Ẽ
(i)
S

ν hd−2
σ (ũkσ,i − ũkσ′,i)

2
]

+
γ

2

n∑

k=1

δt
∑

σ=K|L∈Eint

|σ| (ρkσ,γ)
γ−2 |ukK,σ| |ρ

k
K − ρkL|

2 + δt2
∑

σ∈Eint

|Dσ|

ρn−1
Dσ

|(∇p)nσ|
2,

with ρkσ,γ equal to either ρkK or ρkL and such that (ρkσ,γ)
γ−2 = min

(
(ρkK)γ−2, (ρkL)

γ−2
)
.

Proof. The essential arguments of the proof of this proposition are given in [11, Theorem 3.8], and we only
briefly recall here how to obtain this estimate, for the sake of completeness. As in the implicit case, we sum the
kinetic energy balance equation (41) over the faces, and the elastic potential balance (20) (which is the same,
and obtained by the same computation as in the implicit case) over the cells, and finally sum the two obtained
relations. We obtain a ”local in time” version of Equation (44), which reads:

T n+1 − T n +Rn+1 + Pn+1 = 0, (45)

where:

T n+1 =
∑

K∈M

|K| H(ρn+1
K ) +

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ
n
Dσ

(un+1
σ,i )2,

and:
Rn+1 =

∑

1≤i≤d

∑

σ∈E
(i)
S

Rn+1
σ,i , Pn+1 =

∑

1≤i≤d

∑

σ∈E
(i)
S

∩Eint

Pn+1
σ,i ,

with Rn+1
σ,i and Pn+1

σ,i given by Equation (42). The term Pn+1 thus reads:

Pn+1 =
∑

σ∈Eint

|Dσ| δt
2

ρnDσ

[

|(∇p)n+1
σ |2 − |(∇p̃)n+1

σ |2
]

Before summing over the time steps, we need to transform Pn+1 to get a difference between a same expression
written at two consecutive time levels, which is possible thanks to the renormalization step. Indeed, multiplying
(39a) by p̃n+1

K and summing over the cells yields, after a discrete integration by parts and use of the identity
2(a− b) a = a2 + (a− b)2 − b2:

∑

σ∈Eint

|Dσ| δt
2

ρnDσ

|(∇p̃)n+1
σ |2 ≤

∑

σ∈Eint

|Dσ| δt
2

ρn−1
Dσ

|(∇p)nσ|
2.

Summing this relation with (45) and summing over the time steps yields the estimate (44) with:

C =
∑

K∈M

|K| H(ρ0K) +
1

2

∑

1≤i≤d

∑

σ∈E
(i)
S

|Dσ| ρ
−1
Dσ

(u0
σ,i)

2 +
∑

σ∈Eint

|Dσ| δt
2

ρ−1
Dσ

|(∇p)0σ|
2.

�

Remark 4.4 (Regularity assumptions for the initial conditions). For a given mesh, the quantity denoted above
by C is bounded whenever ρ0 is positive and belongs to L1(Ω) and u0 belongs to L1(Ω)d. When dealing
with a sequence of discretizations to pass to the limit in the scheme, we need to assume that C is controlled
independently of the mesh and time step, which necessitates (i) that the initial kinetic energy is bounded, (ii)
that H(ρ0K) is bounded in L1(Ω), and (iii) that the last term involving the discrete pressure gradient does not
blow-up.

Assumption (ii) (and, of course, (i)) may be obtained by supposing that both u0 and ρ0 belongs to L∞(Ω)
and L∞(Ω)d respectively and that δt/h is bounded (possibly by a number much larger than 1); indeed, ρ0 is then
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obtained in this case by a single time step of a (discrete) transport equation with a velocity field the divergence
of which is controlled by 1/h, and so ρ0 is controlled in L∞(Ω). Assumption (iii) may then be inferred by the
same assumption on the ratio δt/h, together with the hypothesis that the data ρ0 (and so ρ−1) is bounded away
from zero. Indeed, since ρ0 is bounded, so is p0 and we get:

∑

σ∈Eint

|Dσ| δt
2

ρ−1
Dσ

|(∇p)0σ|
2 =

∑

σ=K|L∈Eint

δt2 |σ|2

ρ−1
Dσ

|Dσ|
(p0K − p0L)

2 ≤ C ‖
1

ρ−1
‖
L∞(Ω)

‖p0‖
2

L∞(Ω)

∑

σ∈Eint

h2 |σ|2

|Dσ|

and the last sum is bounded. We shall work under these assumptions for the passage to the limit in the scheme.

4.3. Passing to the limit in the scheme

As for the implicit scheme, we show in this section, in the one dimensional case, that if a sequence of solutions
is controlled in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak
formulation of the continuous problem.

Using the notations (26)-(28) already introduced for the implicit scheme, the pressure correction scheme
reads, in one space dimension:

Initialization – Compute ρ−1, u0, solve for ρ0 and compute p0:

∀K ∈ M, ρ−1
K =

1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρ0K − ρ−1

K ) + F 0
σ′ − F 0

σ = 0,

∀K =∈ M, p0K = (ρ0K)γ .

(46a)

Pressure renormalization step – Solve for p̃n+1:

∀K ∈ M,
∑

σ=K|L

1

ρnDσ

|σ|2

|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1

(ρnDσ
ρn−1
Dσ

)1/2
|σ|2

|Dσ|

(
pnK − pnL

)
. (46b)

Prediction step – Solve for ũn+1:

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρnDσ

un+1
σ − ρn−1

Dσ
unσ) + Fn

L ũ
n+1
L − Fn

K ũn+1
K

−|Dσ| (∆Mũ)n+1
σ + p̃n+1

L − p̃n+1
K = 0,

(46c)

Correction step – Solve for ρn+1, pn+1 and un+1:

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
ρnDσ

(un+1
σ − ũn+1

σ ) + (pn+1
L − pn+1

K )− (p̃n+1
L − p̃n+1

K ) = 0, (46d)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn+1
σ′ − Fn+1

σ = 0, (46e)

∀K ∈ M, pn+1
K = (ρn+1

K )γ . (46f)

Definition 4.5 (Regular sequence of discretizations, pressure correction case).
We define a regular sequence of discretizations (M(m), δt(m), ν(m))m∈N as a sequence of meshes, time steps and
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numerical diffusion coefficients satisfying the assumptions (i)-(iii) of Definition 3.5 and the additional following
condition:

(iv) there exists C > 0 such that:

∀m ∈ N,
δt(m)

h(m)
≤ C,

where h(m) = min
σ∈E

(m)
int

|Dσ|

|σ|
.

Theorem 4.6 (Consistency of the pressure correction scheme).
Let Ω be an open bounded interval of R. We suppose that ρ0 ∈ L∞(Ω), 1/ρ0 ∈ L∞(Ω) and u0 ∈ L∞(Ω).
Let (M(m), δt(m), ν(m))m∈N be a regular sequence of discretizations in the sense of Definition 4.5, and let
(ρ(m), p(m), u(m), ũ(m))m∈N be the corresponding sequence of solutions. We suppose that this sequence converges
in Lp(Ω×(0, T ))4, for 1 ≤ p <∞, to (ρ̄, p̄, ū, ¯̃u) ∈ L∞(Ω×(0, T ))4. We suppose in addition that both sequences
(ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω× (0, T )).

Then ū = ¯̃u and the triplet (ρ̄, p̄, ū) satisfies the system (29).

Remark 4.7 (On the ”non appearance of void assumption”).
The assumption that (1/ρ(m))m∈N is bounded in L∞(Ω× (0, T )) is used twice in the proof of this theorem. We
use it for the first time to obtain ū = ¯̃u. Here, the hypothesis may be circumvented by replacing this conclusion
by ρ̄ū = ρ̄¯̃u (or, in other words, ū = ¯̃u wherever ρ̄ 6= 0), which is easily obtained from Inequality (47) below. The
second time is, as for the implicit case, to obtain an ”non–weighted” estimate of the density space translates
for γ ≥ 2, and we do not repeat here the above discussion on this issue.

Proof. Let m ∈ N be given. Dropping for short the superscript (m), the estimate of Proposition 4.3 yields:

n∑

k=1

δt
∑

σ∈Eint

|Dσ| ρ
k−1
Dσ

(ũkσ − uk−1
σ )2 ≤ C δt, (47)

where, by the assumption on the initial data, the real number C is independent of m (see Remark 4.4). We
thus get:

‖ũ(m) − u(m)(., .− δt)‖
2

L2(Ω×(0,T )) ≤ C δt(m) ‖
1

ρ(m)
‖
L∞(Ω×(0,T ))

.

Letting m tend to +∞ in this equation yields ū = ¯̃u.

The passage to the limit in the mass balance equation is the same as in the implicit case, and we only need to
address here the momentum balance equation. Let ϕ ∈ C∞

c (Ω×[0, T )), and let its interpolate ϕE and its discrete
derivatives be defined by Definition 3.6. Summing the velocity prediction and correction equations, multiplying

the result by δt ϕn
σ and then summing over the faces and time steps, we get T

(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 = 0,

with:

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[
ρnDσ

un+1
σ − ρn−1

Dσ
unσ

]
ϕn
σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

Fn
L ũ

n+1
L − Fn

K ũ
n+1
K

]

ϕn
σ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) ϕn
σ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=[σσ′]

ν

hK
(ũn+1

σ − ũn+1
σ′ )

]

ϕn
σ.

The passage to the limit in T
(m)
1 is the same as for the implicit scheme, just noting that the sequence

(
ρ(m)(·, · − δt)

)

m∈N
converges to ρ̄ as (ρ(m))m∈N.
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Let us now turn to T
(m)
2 . By a computation similar to the implicit case, we get:

T
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′ unσ′) (ũn+1

σ + ũn+1
σ′ ) (ϕn

σ′ − ϕn
σ),

which we write T
(m)
2 = T

(m)
2 +R

(m)
2 with:

T
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK

[

unσ ũ
n+1
σ + unσ′ ũn+1

σ′

]

(ϕn
σ′ − ϕn

σ).

This term reads:

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m)(·, · − δt) u(m)(·, · − δt) ũ(m)
ðxϕE dxdt,

and therefore,

lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxdt.

The remainder term R
(m)
2 reads:

R
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρnσu
n
σ + ρnσ′unσ′)(ũn+1

σ + ũn+1
σ′ )− 2ρnK (unσ ũ

n+1
σ + unσ′ ũn+1

σ′ )
]

(ϕn
σ′ − ϕn

σ).

Expanding the quantity 2ρnK (unσ ũ
n+1
σ +unσ′ ũ

n+1
σ′ ) thanks to the identity 2(ab+cd) = (a+c)(b+d)+(a−c)(b−d),

we get R
(m)
2 = R

(m)
2,1 +R

(m)
2,2 :

R
(m)
2,1 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[(

(ρnσ − ρnK) unσ + (ρnσ′ − ρnK) unσ′

)

(ũn+1
σ + ũn+1

σ′ )
]

(ϕn
σ′ − ϕn

σ),

R
(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

ρnK (unσ − unσ′) (ũn+1
σ − ũn+1

σ′ ) (ϕn
σ′ − ϕn

σ).

First we study R
(m)
2,1 . Thanks to the definition of the upwind approximation, reordering the sum by faces, we

get:

R
(m)
2,1 =

ε

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K,K=[σσ′]

(ρnL − ρnK) unσ (ũn+1
σ + ũn+1

σ′ ) (ϕn
σ − ϕn

σ′ ),

where we recall that the notation σ = L→ K means that the face σ separates K and L and the flow goes from
L to K, and where ε = ±1. Since |ϕn

σ − ϕn
σ′ | ≤ Cϕ |K| ≤ Cϕ (|Dσ|+ |Dσ′ |), we get:

|R
(m)
2,1 | ≤

Cϕ

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K,K=[σσ′ ]

(
|Dσ|+ |Dσ′ |

)
|ρnL − ρnK | |unσ| |ũ

n+1
σ + ũn+1

σ′ |.

Therefore, by the Cauchy-Schwarz inequality, we get:

|R
(m)
2,1 | ≤

Cϕ

4
(h(m))1/2

[N−1∑

n=0

δt
∑

σ=K|L∈Eint

|unσ| (ρ
n
L − ρnK)2

]1/2

[N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K,K=[σσ′]

(
|Dσ|+ |Dσ′ |

)
|unσ|

(
ũn+1
σ + ũn+1

σ′

)2
]1/2

.
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Since the ratio of the size of two neighbouring meshes is bounded by the regularity assumption on the mesh,
we get from the estimate (44) on the solution:

|R
(m)
2,1 | ≤ C (h(m))1/2

[

‖u(m)‖L2(Ω×(0,T )) + ‖ũ(m)‖
2

L4(Ω×(0,T ))

]

, (48)

where C does not depend on m, and so R
(m)
2,1 tends to zero when m tends to +∞. For R

(m)
2,2 , we have, by the

Cauchy-Schwarz inequality:

|R
(m)
2,2 | ≤ Cϕ

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| ρn+1
K |unσ + unσ′ | (ũn+1

σ − ũn+1
σ′ )

≤ Cϕ
h(m)

(ν(m))1/2
‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖L2(Ω×(0,T ))

[N−1∑

n=0

δt
∑

K=[σσ′]∈M

ν(m)

hK
(ũn+1

σ − ũn+1
σ′ )2

]1/2

,

and thus, thanks to the estimate (44):

|R
(m)
2,2 | ≤ C

h(m)

(ν(m))1/2
‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖L2(Ω×(0,T )),

where C does not depend on m. Therefore, this term also tends to zero when m tends to +∞.

Finally, the terms T
(m)
3 and T

(m)
4 are dealt with as in the implicit case. �

Remark 4.8 (Less sharp bounds and more general meshes).
As in the implicit case, the assumption that the ratio of the size of two neighbouring meshes is bounded, i.e.
Assumption (ii) of Definition 4.5, is only used for the remainder associated to the the convection term in the
momentum balance. It may be avoided if we suppose that the sequence of solution is uniformly bounded,
replacing (48) by

|R
(m)
2,1 | ≤ C (h(m))1/2 ‖u(m)‖

1/2

L∞(Ω×(0,T )) ‖ũ
(m)‖L∞(Ω×(0,T )).

For any piecewise constant function q on primal cells, we define its L1(0, T ; BV(Ω)) norm by:

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |. (49)

With this notation, we are now in position to state the following result.

Theorem 4.9 (Entropy consistency). Under the assumptions of Theorem 4.6, we furthermore assume that the
sequence (p(m))m∈N is uniformly bounded in the discrete L1(0, T ; BV(Ω)) norm defined by (49). Then the limit
(ρ̄, p̄, ū) satisfies the entropy condition (36).

Proof. Let ϕ ∈ C∞
c

(
Ω×[0, T )

)
, ϕ ≥ 0. Again using the notations of Definition3.6, we multiply the kinetic balance

equation (41) by ϕn
σ , and the elastic potential balance (20) by ϕn

K , sum over the faces and cells respectively and
over the time steps, to get:

∑

E∈Eint

T n+1
σ ϕn

σ +
∑

K∈M

T n+1
K ϕn

K = −
∑

E∈Eint

Rn+1
σ ϕn

σ −
∑

K∈M

Rn+1
K ϕn

K −
∑

E∈Eint

Pn+1
σ ϕn

σ , (50)

where, for σ =
−−→
K|L, K = [

−→
σ′σ] and L = [

−−→
σσ′′]:

T n+1
σ =

1

2

|Dσ|

δt

[

ρnDσ
(un+1

σ )2 − ρn−1
Dσ

(unσ)
2
]

+
1

2
Fn+1
L ũn+1

σ ũn+1
σ′′ −

1

2
Fn+1
K ũn+1

σ ũn+1
σ′ + (pn+1

L − pn+1
K ) un+1

σ ,

for K = [
−→
σσ′]:

T n+1
K =

|K|

δt

[

H(ρn+1
K )−H(ρnK)

]

+ Fn+1
σ H(ρn+1

σ )− Fn+1
σ′ H(ρn+1

σ′ ) + pn+1
K (un+1

σ − un+1
σ′ ),
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the quantities Rn+1
σ and Pn+1

σ are given by (the one-dimensional version of) Equation (42), and Rn+1
K is given

by (the one-dimensional version of) Equation (21).

As in the implicit case, we refer to [20, Theorem 5.3] for the passage to the limit in the terms at the left-hand
side of (50). The term associated to Rn+1

σ is dealt with as in the implicit case, and Rn+1
K is non-negative. The

last difficulty lies in the control of the additional remainder term involving the pressure gradients, i.e. the last
term of (50); we show in [20, Lemma 5.2] that this term may be written as the sum of a positive part and a
quantity tending to zero. �

Appendix A. Some results associated to finite volume convection operators

We gather in this section some results concerning the finite volume discretization of the two convection
operators which appear in the Navier–Stokes equations:

- the convection operator appearing in the mass balance, which reads, at the continuous level, ρ→ C(ρ) =
∂tρ+ div(ρu), where u stands for a given velocity field, which is not assumed to satisfy any divergence
constraint,

- the convection operator appearing in the momentum and energy balances, which reads, in the continuous
setting, z → Cρ(z) = ∂t(ρz)+div(ρzu), where ρ (resp. u) stands for a given scalar (resp. vector) field; we
wish to obtain some property of Cρ under the assumption that ρ and u satisfy a mass balance equation,
i.e. ∂tρ+ div(ρu) = 0.

Multiplying these operators by functions depending on the unknown is a often used technique to obtain con-
vection operators acting over different variables, possibly with residual terms: one may think, for instance, to
the theory of renormalized solutions or entropy solutions for the operator C, or, in mechanics, to the derivation
of the so-called kinetic energy transport identity for the operator Cρ, with z standing for a component of the
velocity. The results provided in this section are the discrete analogs of these properties.

We begin with a property of C, which, at the continuous level, may be formally obtained as follows. Let ψ
be a regular function from (0,+∞) to R; then:

ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u ·∇ρ+ ψ′(ρ) ρ divu = ∂t(ψ(ρ)) + u ·∇ψ(ρ) + ρψ′(ρ) divu,

so adding and subtracting ψ(ρ) divu yields:

ψ′(ρ) C(ρ) = ∂t
(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ)− ψ(ρ)

)
divu. (51)

This computation is of course completely formal and only valid for regular functions ρ and u. The following
lemma states a discrete analogue to (51), and its proof follows the formal computation which we just described.

Lemma A.1. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3), and let E(P ) be the set
of its edges (resp. faces). Let ψ be a continuously differentiable function defined over (0,+∞). Let ρ∗P > 0,
ρP > 0, δt > 0; consider three families (ρη)η∈E(P ) ⊂ R+ \ {0}, (Vη)η∈E(P ) ⊂ R and (Fη)η∈E(P ) ⊂ R such that

∀η ∈ E(P ), Fη = ρη Vη,

and define:

RP,δt =
[ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

Fη

]

ψ′(ρP )

−
[ |P |

δt

(
ψ(ρP )− ψ(ρ∗P )

)
+

∑

η∈E(P )

ψ(ρη) Vη +
(
ρPψ

′(ρP )− ψ(ρP )
) ∑

η∈E(P )

Vη

]

(52)

Then

(i) If ψ is convex and ρη = ρP whenever Vη > 0, then RP,δt ≥ 0.
(ii) If ψ is twice continuously differentiable then

RP,δt =
1

2

|P |

δt
ψ′′(ρP ) (ρP − ρ∗P )

2 −
1

2

∑

η∈E(P )

Vη ψ
′′(ρη) (ρη − ρP )

2,
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with ρP ∈ [min(ρP , ρ
∗
P ),max(ρP , ρ

∗
P )] and ∀η ∈ E(P ), ρη ∈ [min(ρη, ρP ),max(ρη, ρP )].

Proof. We have:

[ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

Fη

]

ψ′(ρP ) =
|P |

δt
(ρP − ρ∗P ) ψ

′(ρP ) +
∑

η∈E(P )

ψ(ρη) Vη

+
∑

η∈E(P )

[ρηψ
′(ρP )− ψ(ρη)]Vη,

so the remainder term RP,δt reads RP,δt =
|P |

δt
rP +

∑

η∈E(P ) Vη rη, with:

rP = (ρP − ρ∗P ) ψ
′(ρP )−

[
ψ(ρP )− ψ(ρ∗P )

]
, rη = ρηψ

′(ρP )− ψ(ρη)−
[
ρPψ

′(ρP )− ψ(ρP )
]
.

If the function ψ is convex, rP is non-negative while rη is non-positive (and vanishes if ρη = ρP ). If ψ is twice
continuously differentiable, a Taylor expansion gives that:

(ρP − ρ∗P )ψ
′(ρP ) = ψ(ρP )− ψ(ρ∗P ) +

1

2
ψ

′′

(ρP )(ρP − ρ∗P )
2,

ρηψ
′(ρP )− ψ(ρη) = ρPψ

′(ρP )− ψ(ρP )−
1

2
ψ′′(ρη)(ρη − ρP )

2,

with ρP ∈ [min(ρP , ρ
∗
P ),max(ρP , ρ

∗
P )] and for any η ∈ E(P ), ρη ∈ [min(ρη, ρP ),max(ρη, ρP )]; hence the result.

�

We now turn to the second operator; formally, at the continuous level, using twice the assumption ∂tρ +
div(ρu) = 0 yields:

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u ·∇z

]

= ρ
[
∂tψ(z) + u ·∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z)u

)
.

Taking for z a component of the velocity field, this relation is the central argument used to derive the kinetic
energy balance. The following lemma states a discrete counterpart of this identity.

Lemma A.2. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3) and let E(P ) be the set of
its edges (resp. faces). Let ρ∗P > 0, ρP > 0, δt > 0, and (Fη)η∈E(P ) ⊂ R be such that

|P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

Fη = 0. (53)

Let ψ be a continuously differentiable function defined over (0,+∞). For u∗P ∈ R, uP ∈ R and (uη)η∈E(P ) ⊂ R

let us define:

RP,δt =
[ |P |

δt

(
ρP uP − ρ∗P u

∗
P

)
+

∑

η∈E(P )

Fη uη

]

ψ′(uP )

−
[ |P |

δt

[
ρP ψ(uP )− ρ∗P ψ(u

∗
P )

]
+

∑

η∈E(P )

Fη ψ(uη)
]

. (54)

Then:

(i) If ψ is convex and uη = uP whenever Fη > 0, then RP,δt ≥ 0.
(ii) If ψ is twice continuously differentiable, then

RP,δt =
1

2

|P |

δt
ρ∗P ψ′′(uP )(uP − u∗P )

2 −
1

2

∑

η∈E(P )

Fη ψ
′′(uη) (uη − uP )

2, (55)

with, uP ∈ [min(uP , u
∗
P ),max(uP , u

∗
P )] and, ∀η ∈ E(P ), uη ∈ [min(uη, uP ),max(uη, uP )].
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(iii) As a consequence of (ii), for ψ defined by ψ(s) = s2/2 and ∀η ∈ E(P ), uη such that uη = (uP + uPη
)/2

(this is simply obtained by defining uPη
= 2 uη − uP ), we get the following identity:

[ |P |

δt

(
ρP uP − ρ∗P u

∗
P

)
+

∑

η∈E(P )

Fη uη

]

uP =
1

2

|P |

δt

[
ρP u

2
P − ρ∗P (u∗P )

2
]
+

∑

η∈E(P )

Fη uP uPη
+RP,δt, (56)

with RP,δt =
1

2

|P |

δt
ρ∗P (uP − u∗P )

2.

Proof. Let TP be defined by:

TP =
[ |P |

δt
(ρPuP − ρ∗Pu

∗
P ) +

∑

η∈E(P )

Fη uη

]

ψ′(uP ).

Using Equation (53), we obtain:

TP =
[ |P |

δt
ρ∗P (uP − u∗P ) +

∑

η∈E(P )

Fη(uη − uP )
]

ψ′(uP ).

We now define the remainder terms rP and (rη)η∈E(P ) by:

rP = (uP − u∗P ) ψ
′(uP )−

[
ψ(uP )− ψ(u∗P )

]
, rη = (uP − uη) ψ

′(uP )−
[
ψ(uP )− ψ(uη)

]
.

With these notations, we get:

TP =
|P |

δt
ρ∗P

[
ψ(uP )− ψ(u∗P )

]
+

∑

η∈E(P )

Fη

[
ψ(uη)− ψ(uP )

]
+

|P |

δt
ρ∗P rP −

∑

η∈E(P )

Fη rη.

Using Equation (53) once again, we have:

TP =
|P |

δt

[
ρP ψ(uP )− ρ∗P ψ(u∗P )

]
+

∑

η∈E(P )

Fη ψ(uη) +
|P |

δt
ρ∗P rP −

∑

η∈E(P )

Fη rη,

and thus:

RP,δt =
|P |

δt
ρ∗P rP −

∑

η∈E(P )

Fη rη.

If ψ is convex, the remainder terms rP and (rη)η∈E(P ) are non-negative, and if uη = uP , rη = 0; hence, if we
suppose that uη = uP when Fη ≥ 0, then RP,δt ≥ 0. If ψ is twice continuously differentiable, a Taylor expansion
yields:

rP =
1

2
ψ′′(uP ) (up − u∗p)

2, rη =
1

2
ψ′′(uη) (uη − up)

2

with uP ∈ [min(uP , u
∗
P ),max(uP , u

∗
P )] and, ∀η ∈ E(P ), uη ∈ [min(uη, uP ),max(uη, uP )]. Thus (ii) holds, and,

as a direct consequence, so does (iii). �
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Appendix B. Proofs of the entropy consistency Theorems

Proof of Theorem 3.10 – The discrete weak form of the entropy balance is obtained by integrating in time

(i.e. summing over the time steps) Equation (37). We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = R with:

T
(m)
1 =

1

2

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[

ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]

ϕn
σ ,

T
(m)
2 =

1

2

N−1∑

n=0

∑

K∈M

|K|
[

H(ρn+1
K )−H(ρnK)

]

ϕn
K ,

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint,

K=[
−−→
σ′σ], L=[

−−→
σσ′′]

[

Fn+1
L un+1

σ un+1
σ′′ − Fn+1

K un+1
σ un+1

σ′

]

ϕn
σ ,

T
(m)
4 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

Fn+1
σ H(ρn+1

σ )− Fn+1
σ′ H(ρn+1

σ′ )
]

ϕn
K ,

T
(m)
5 =

1

2

N−1∑

n=0

δt
[ ∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) un+1
σ ϕn

σ +
∑

K=[
−−→
σσ′ ]∈M

pn+1
K (un+1

σ − un+1
σ′ ) ϕn

K .

We detail here the treatment of the terms which significantly differ arist from [20, Proof of Theorem 3.4], i.e.

the terms T
(m)
3 and T

(m)
4 and the residual term.

Reordering the sums in T
(m)
3 , we get:

T
(m)
3 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn+1
K un+1

σ un+1
σ′

(
ϕn
σ − ϕn

σ′

)
.

Using now the definition of the mass fluxes at the dual edges, we have:

T
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(
ρn+1
σ un+1

σ + ρn+1
σ′ un+1

σ′ ) un+1
σ′ un+1

σ

(
ϕn
σ − ϕn

σ′

)
.

We now split T
(m)
3 = T

(m)
3 +R

(m)
3 , where

T
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn+1
K

[
(un+1

σ )3 + (un+1
σ′ )3

] (
ϕn
σ − ϕn

σ′

)
= −

1

2

∫ T

0

∫

Ω

ρ(m)(u(m))3ðxϕE dxdt,

so that

lim
m−→+∞

T
(m)
3 = −

1

2

∫ T

0

∫

Ω

ρ̄ū3∂xϕdxdt,

and

R
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρn+1
σ un+1

σ + ρn+1
σ′ un+1

σ′ ) un+1
σ un+1

σ′ − ρn+1
K

(

(un+1
σ )3 + (un+1

σ′ )3
)]

(ϕn
σ − ϕn

σ′).



28

Expanding the quantity (un+1
σ )3 + (un+1

σ′ )3 thanks to the identity a3 + b3 = (a + b)(ab + (a − b)2), and then

reordering the sums, we obtain R
(m)
3 = R

(m)
3,1 +R

(m)
3,2 with:

R
(m)
3,1 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρn+1
σ − ρn+1

K )un+1
σ + (ρn+1

σ′ − ρn+1
K )un+1

σ′

]

un+1
σ un+1

σ′ (ϕn
σ − ϕn

σ′),

R
(m)
3,2 =

1

4

N∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

ρn+1
K (un+1

σ + un+1
σ′ ) (un+1

σ − un+1
σ′ )2 (ϕn

σ − ϕn
σ′ ).

Reordering the sums, the term R
(m)
3,1 reads:

R
(m)
3,1 =

ε

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K,K=[σσ′]

(ρn+1
L − ρn+1

K ) un+1
σ un+1

σ un+1
σ′ (ϕn

σ − ϕn
σ′),

where ε = ±1 and the notation L→ K means that the flow is going from L toK. Thanks to the Cauchy-Schwarz
inequality, we get, by the regularity of ϕ:

|R
(m)
3,1 | ≤ Cϕ h1/2

[N−1∑

n=0

δt
∑

σ=K|L∈Eint

|un+1
σ | (ρn+1

L − ρn+1
K )2

]1/2 [N−1∑

n=0

δt
∑

σ=K∈M

|K| |un+1
σ | (un+1

σ un+1
σ′ )2

]1/2

,

and thus:

|R
(m)
3,1 | ≤ Cϕ h1/2 ‖u(m)‖

5/2

L5(Ω×(0,T )).

We now turn to R
(m)
3,2 . Thanks to the regularity of ϕ, we get:

|R
(m)
3,2 | ≤ Cϕ

(h(m))2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖
2

L∞(Ω×(0,T ))

∑

K=[σσ′]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ )2,

and thus R
(m)
3,2 also tends to zero when m tends to +∞ as soon as the ratio (h(m))2/ν(m) tends to zero.

Expressing the mass fluxes as a function of the unknowns in T
(m)
4 and reordering the sums, we get:

T
(m)
4 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

H(ρn+1
σ )un+1

σ (ϕn
K − ϕn

L).

Let us write T
(m)
4 = T

(m)
4 +R

(m)
4 , with:

T
(m)
4 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

|DK,σ| H(ρn+1
K ) + |DL,σ| H(ρn+1

L )
]

un+1
σ

ϕn
K − ϕn

L

hσ
,

R
(m)
4 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|DL,σ|
[

H(ρn+1
K ) +H(ρn+1

L )− 2H(ρn+1
σ )

]

un+1
σ

ϕn
K − ϕn

L

hσ
.

We have:

T
(m)
4 = −

∫ T

0

∫

Ω

H(ρ(m))u(m)
ðxϕM dxdt, so lim

m−→+∞
T

(m)
4 = −

∫ T

0

∫

Ω

H(ρ̄) ū ∂xϕdxdt.

Thanks to the definition of the upwind density at the face, we get:

|R
(m)
4 | ≤ Cϕ h(m)

N−1∑

n=0

δt
∑

σ=K|L∈Eint

∣
∣H(ρn+1

K )−H(ρn+1
L )

∣
∣ |un+1

σ |.
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Since both sequences (ρ(m))m∈N and (1/ρ(m))m∈N are supposed to be uniformly bounded, we have
∣
∣H(ρn+1

K )−

H(ρn+1
L )

∣
∣ ≤ C |ρn+1

K − ρn+1
L | with a constant real number C, and therefore R

(m)
4 tends to zero as h(m).

Finally, let us turn to the residual terms, i.e. to the proof of the relation (38). Using the expression of the
residual terms and reordering the sums, we have:

R
(m)
diff =

N−1∑

n=0

δt
[ ∑

σ∈Eint

ϕn
σ (Rdiff)n+1

σ −
∑

K∈M

ϕn
K Sn+1

K

]

=

N−1∑

n=0

δt
∑

K=[σσ′]∈M

ν

hK
(un+1

σ − un+1
σ′ )(un+1

σ ϕn
σ − un+1

σ′ ϕn
σ′)−

ν

hK
(un+1

σ − un+1
σ′ )2ϕn

K .

Hence:

R
(m)
diff =

N−1∑

n=0

δt
∑

K=[σσ′]∈M

ν

hK
(un+1

σ − un+1
σ′ )

[
un+1
σ (ϕn

σ − ϕn
K)− un+1

σ′ (ϕn
σ′ − ϕn

K)
]
.

The Cauchy-Schwarz inequality yields, using the regularity of the function ϕ:

|R
(m)
diff | ≤ Cϕ ν1/2

[N−1∑

n=0

δt
∑

K=[σσ′]∈M

ν

hK
(un+1

σ − un+1
σ′ )2

]1/2 [N−1∑

n=0

δt
∑

K=[σσ′]∈M

|K|
(
(un+1

σ )2 + (un+1
σ′ )2

)]1/2

.

Thus, thanks to the estimate (22), we get:

|R
(m)
diff | ≤ C (ν(m))1/2 ‖u(m)‖L2(Ω×(0,T )),

with C independent of m and |R
(m)
diff | tends to zero. �

Proof of Theorem 4.9 – The only term which significantly differs from its counterpart in [20, Proof of
Theorems 3.4, 4.2 and 5.3] and Theorem 3.10 is the kinetic energy convection term which reads:

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint,

K=[
−−→
σ′σ], L=[

−−→
σσ′′]

[

Fn
L ũ

n+1
σ ũn+1

σ′′ − Fn
K ũn+1

σ ũn+1
σ′

]

ϕn
σ .

Reordering the sums, we get:

T
(m)
3 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn
K ũn+1

σ ũn+1
σ′ (ϕn

σ′ − ϕn
σ)

We write Tm
3 = T

(m)
3 +R

(m)
3 , where

T
(m)
3 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K|

2
ρnK

[
unσ(ũ

n+1
σ )2 + unσ′(ũn+1

σ′ )2
] ϕn

σ − ϕn
σ′

hK

= −
1

2

∫ T

0

∫

Ω

ρ(m)(x, t− δt) u(m)(x, t− δt) (ũ(m)(x, t))2ðxϕE dxdt,

so that:

lim
m−→+∞

T
(m)
3 = −

1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxdt,

and

R
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρnσu
n
σ + ρnσ′unσ′) ũn+1

σ′ ũn+1
σ − ρnK

(

unσ (ũ
n+1
σ )2 + unσ′ (ũn+1

σ′ )2
)]

(ϕn
σ − ϕn

σ′ ).
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Reordering the terms in the sum, we get:

R
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρnσ ũ
n+1
σ′ − ρnK ũ

n+1
σ )unσ ũ

n+1
σ

︸ ︷︷ ︸

D1

+(ρnσ′ ũn+1
σ − ρnK ũ

n+1
σ′ )unσ′ ũn+1

σ′

︸ ︷︷ ︸

D2

]

(ϕn
σ − ϕn

σ′ ).

Let us consider the term involving D1, and skip the exposition of the treatment of the term with D2, which is

totally similar. Using the identity 2(ab − cd) = (a − c)(b + d) + (a + c)(b − d), we split this first part of R
(m)
3

into R
(m)
31 +R

(m)
32 , with:

R
(m)
31 = −

1

8

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ ũ
n+1
σ (ρnσ − ρnK) (ũn+1

σ′ + ũn+1
σ ) (ϕn

σ − ϕn
σ′),

R
(m)
32 = −

1

8

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ ũ
n+1
σ (ρnσ + ρnK) (ũn+1

σ′ − ũn+1
σ ) (ϕn

σ − ϕn
σ′).

Thanks to the regularity of ϕ, the Cauchy-Schwarz inequality yields:

|R
(m)
31 | ≤ Cϕ h1/2

[N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|unσ| (ρ
n
σ − ρnK)2

]1/2[N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| |unσ|
(

ũn+1
σ (ũn+1

σ′ + ũn+1
σ )

)2]1/2

,

and thus, invoking the estimate (44),

|R
(m)
31 | ≤ C (h(m))1/2

[
‖u(m)‖

1/2

L2(Ω×(0,T )) + ‖ũ(m)‖
2

L8(Ω×(0,T ))

]
.

Similarly, we get:

|R
(m)
32 | ≤ Cϕ

h2

ν

[N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν

hK
(ũn+1

σ′ − ũn+1
σ )2

]1/2 [N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K|
(

unσ ũ
n+1
σ (ρnσ + ρnK)

)2]1/2

,

and thus:

|R
(m)
32 | ≤ C

(h(m))2

ν(m)

[
‖u(m)‖

3

L6(Ω×(0,T )) + ‖ũ(m)‖
3

L6(Ω×(0,T )) +
[
‖ρ(m)‖

3

L6(Ω×(0,T ))

]
.
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