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β-COALESCENTS AND STABLE GALTON-WATSON TREES

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. Representation of coalescent process using pruning of trees has been used by
Goldschmidt and Martin for the Bolthausen-Sznitman coalescent and by Abraham and Del-
mas for the β(3/2, 1/2)-coalescent. By considering a pruning procedure on stable Galton-
Watson tree with n labeled leaves, we give a representation of the discrete β(1 + α, 1− α)-
coalescent, with α ∈ [1/2, 1) starting from the trivial partition of the n first integers. The
construction can also be made directly on the stable continuum Lévy tree, with parameter
1/α, simultaneously for all n. This representation allows to use results on the asymp-
totic number of coalescence events to get the asymptotic number of cuts in stable Galton-
Watson tree (with infinite variance for the offspring distribution) needed to isolate the root.
Using convergence of the stable Galton-Watson tree conditioned to have infinitely many
leaves, one can get the asymptotic distribution of blocks in the last coalescence event in the
β(1 + α, 1− α)-coalescent.

1. Introduction

1.1. Framework. The idea of constructing coalescent processes by pruning discrete trees
arises first in [27] where the Bolthausen-Sznitman coalescent is constructed by a uniform
pruning of the branches of a random recursive tree, see also [39] and [25] for applications of
such a representation. The same kind of ideas has been used in [3] to construct a β(3/1, 1/2)-
coalescent process using a uniform pruning of the branches of a uniform random binary tree.
This construction is also closely related to Aldous’s continuum random tree. The goal of this
paper is to extend this result by applying a pruning at nodes (introduced in [1] in a continuous
setting and in [7] in a discrete setting) to a stable Lévy tree, obtaining a β(1 + α, 1 − α)-
coalescent process, with 1/2 ≤ α < 1.

Let Λ be a finite measure on [0, 1]. A Λ-coalescent (Π(t), t ≥ 0) is a Markov process
which takes values in the set of partitions of N∗ = {1, 2, . . .} introduced in [38] for coalescent
processes with possible multiple collisions. It is defined via the transition rates of its restric-
tion Π[n] = (Π[n](t), t ≥ 0) to the n first integers: if Π[n](t) is composed of b blocks, then k
(2 ≤ k ≤ b) fixed blocks coalesce at rate:

(1) λb,k =

∫ 1

0
uk−2(1− u)b−kΛ(du).

In particular a coalescence event happens at rate:

(2) λb =
b

∑

k=2

(

b

k

)

λb,k.

We take the convention λ1 = 0. We also define the discrete process Π
[n]
dis = (Π

[n]
dis(k), k ∈ N) as

the different successive states of the process Π[n] until it reaches the absorbing state (which
is the trivial partition consisting in one block) and afterward the discrete process remains
constant.
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As examples of Λ-coalescents, let us mention:

• the Kingman’s coalescent with Λ(dx) = δ0(dx), see [33],
• the Bolthausen-Sznitman coalescent with Λ(dx) = 1(0,1)(x)dx, see [16],
• the β-coalescents where Λ(dx) is (up to a multiplicative constant) the β(a, b) distri-
bution. In the case of the β(1+α, 1−α)-coalescent, that is Λ(dx) = (x/(1−x))α dx,
see [15, 11] for −1 < α < 0. The case α = 0 corresponds to the Bolthausen-Sznitman
coalescent, while the limit case α = −1 formally corresponds to the Kingman’s coa-
lescent. For the β(1 + α,−α)-coalescent, with −1 < α < 0 see [24].

We refer to the survey [12] for further results on coalescent processes.
Let α ∈ [1/2, 1). We consider a critical Galton-Watson (GW) tree T with offspring distri-

bution characterized by its generating function for r ∈ [0, 1]:

(3) g(r) = r + α(1 − r)1/α.

This GW tree arises as the shape of the sub-tree of a stable Lévy tree with index γ = 1/α
generated by leaves chosen in a Poissonian manner, see [21], Theorem 3.2.1. We shall call
these random trees the stable GW trees with parameter γ. We denote by P the distribution
of T . If x is a node of T we denote by kx(T ) the number of offsprings of x. If kx(T ) = 0
(resp. kx(T ) > 0), then x is called a leaf (resp. an internal node) of T . We denote by L(T )
the number of leaves of the tree T . Since g′(0) = 0, we get that a.s. kx(T ) 6= 1 for all x ∈ T .
We denote by Pn the law of T conditioned to have exactly n leaves. Under Pn, we label the
leaves of T from 1 to n uniformly at random, independently of T , and then we consider the
following pruning procedure which is derived from [8], see Section 2.2. Choose an internal
node x1 (which has at least 2 children) at random with probability:

kx1(T )− 1

L(T )− 1
·

This internal node separates the tree into two subtrees: the fringe sub-tree Tx1 rooted at x1
that consists of all nodes of T that have x1 on their lineage to the root (including x1), and the
set T \ Tx1 which is still a tree. We set T(1) = (T \ Tx1)∪ {x1} which is the new tree we work
with. All the leaves of T(1) except x1 are leaves of T and they keep their label. Notice that
x1 is a new leaf of T(1) and we label it by the block (i.e. the sequence) of labels of the leaves
of Tx1 . We then iterate the procedure on the tree T(1) and so on until the root is chosen (see
Figure (1)).

This pruning procedure defines a discrete time process Π
[n]
GW = (Π

[n]
GW(k), k ∈ N) taking

values in the set of partitions of the n first integers, Π
[n]
GW(k) being the set of labels of the

leaves of the tree T(k) obtained after the k-th cut.

1.2. Main result. The process Π
[n]
GW is then a coalescent process starting from the trivial

partition consisting of singletons and blocks merge together as time goes by. Its law is given
in the next theorem.

Theorem 1.1. We set α = 1
γ ∈ [1/2, 1). The process Π

[n]
GW is distributed under Pn as Π

[n]
dis

for the β(1 + α, 1− α)-coalescent with coalescent measure:

(4) Λ(dx) =

(

x

1− x

)α

dx.
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Figure 1. The pruning at node of a given tree. The bold internal node
corresponds to the next chosen node.

Remark 1.2. Notice that the process Π
[n]
dis is discrete in time and thus characterizes the

coalescent measure up to a multiplicative constant. It is possible to construct the continuous-
time coalescent process Π[n] associated with the measure Λ given by Equation (4) from the

process Π
[n]
GW by adding exponential times between the successive states of this process. More

precisely, recall the definitions of the transitions rates λb,k of Equation (1) and of the jump
rates λb of Equation (2). Let (τk)k∈N be a sequence of independent random variables such that,

conditionally given the process Π
[n]
GW, the random variable τk is exponentially distributed with

parameter λℓk where ℓk is the number of blocks of the partition Π
[n]
GW(k), with the convention

that τk = +∞ if ℓk = 1. Then we set

Π̃[n](t) = Π
[n]
GW(k) if

k−1
∑

i=0

τi ≤ t <

k
∑

i=0

τi.

As a direct consequence of Theorem 1.1 and the definition of a Λ-coalescent, we get that the
processes Π[n] and Π̃[n] have the same distribution.

One major drawback of this construction is that we define the process for fixed n and not
simultaneously for all n. However, as in [3], we can construct directly the process (Π(θ), θ ≥ 0)
taking values in the set of partitions of the integers using the pruning of a Lévy continuum
random tree. More precisely, we consider the weighted stable Lévy tree (T , d,mT ) associated
with the branching mechanism ψ(λ) = λγ for γ ∈ (1, 2) (the case γ = 2 is studied in [3] and
requires a different pruning). We recall that T is a real tree and that mT corresponds to a
uniform measure on the leaves of T , see [21], [22] and also [9] more specifically for the space
of weighted real trees. We work under the so-called normalized excursion measure N(1) under
which mT is a probability measure. We consider given T the pruning defined in [1]: to each
branching point x of T we can associate a “mass” ∆x of this node, which intuitively represents
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the size of its progeny, and a random variable Ex which is exponentially distributed with
parameter ∆x. This random variable represents the time at which the node x is cut. When
we cut such a node, we remove the sub-tree above it. Let Tθ denote the continuum random
sub-tree obtained at time θ ≥ 0. We define a coalescent process using the usual paintbox
procedure. Let (Ui, i ∈ N

∗) be independent random variables with distribution mT under

N
(1). We define a partition of N∗ at time θ, ΠLévy(θ) by saying that two integers i and j belong

to the same block of ΠLévy(θ) if and only if the random variables Ui and Uj have a leaf of Tθ as a
common ancestor. Intuitively this means that Ui and Uj belong to the same sub-tree attached
above Tθ. This defines a coalescent process ΠLévy = (ΠLévy(θ), θ ≥ 0). We are now interested

in its discrete (in time) restriction to the n first integers. Let Π
[n]
Lévy = (Π

[n]
Lévy(k), k ∈ N) be

the discrete process associated with ΠLévy restricted to the n first integers until it reaches the
absorbing state (which is the trivial partition consisting in one block) and which afterward
remains constant.

By construction, and thanks to Theorem 3.2.1 in [21], we can deduce that under N
(1),

the discrete coalescent process Π
[n]
Lévy is distributed as Π

[n]
GW under Pn. In fact, we have the

following stronger result.

Theorem 1.3. We set α = 1
γ ∈ (1/2, 1). Under N(1), the processes (Π

[n]
Lévy, n ∈ N

∗) associated

with the Lévy tree with branching mechanism ψ(λ) = λγ are distributed as (Π
[n]
dis, n ∈ N

∗)
associated with the Lévy measure Λ(dx) = (x/1− x)α dx.

Remark 1.4. Although the process ΠLévy is a continuous-time process like ΠGW, it is not a

coalescent process under N(1) as for instance the time of the first coalescence event in Π
[n]
Lévy

is not exponentially distributed, see Corollary 4.5.
We conjecture that there exists a random time-change (R(t), t ≥ 0) such that the process

(ΠLévy(R(t)), t ≥ 0) is indeed under N(1) a β(1 + α, 1 − α)-coalescent, but we have no guess
on what this time change could be.

Remark 1.5. Let us remark that the β(1+α, 1−α)-coalescent we obtain is also a β(2−a, a)-
coalescent (with a = 1−α) as in [11] but with a different range for a. The difference between
the two cases is that in [11] α ∈ (−1, 0) and the coalescent process comes down from infinity
(i.e. for every positive time θ, the partition Π(θ) contains only a finite number of blocks)
whereas in our case α ∈ (1/2, 1) the process always contains an infinite number of singletons
(also called “dust”).

Remark 1.6. Let us remark that the pruning procedure described above is the same as in [36]
used to construct the Miermont’s self-similar fragmentation process (see also [1]). However,
the time reversal of the process ΠLévy is not Miermont’s fragmentation as once a sub-tree is cut
and discarded, it is no more considered in our construction whereas it undergoes some others
fragmentations in Miermont’s construction. There are still some strong connections. For
instance, the tree Tθ is linked with a tagged fragment in the fragmentation, see [1] Theorem
1.5 and Proposition 1.7 for the distribution of the tree Tθ and for the distribution of a tagged
fragment in Miermont’s fragmentation.

1.3. Number of cuts needed to isolate the root in a stable GW tree. Using the above
link between Galton-Watson trees and β-coalescents, known results in one field translate
immediately in the other field giving sometimes new results. In that direction, we first focus
on how known asymptotics on the number of coalescence events yield new results on the
number of cuts needed to isolate the root in a stable GW tree with n leaves.
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The original problem of cutting randomly a rooted tree arises first in Meir and Moon [35].
Given a rooted tree Tn with n edges, select an edge uniformly at random (notice that this is
not exactly our pruning procedure) and delete the subtree not containing the root attached
to this edge. On the remaining tree, iterate this procedure until only the edge attached to
the root is left. We denote by Z̃n the number of edge-removals needed to isolate the root.
The problem is then to study asymptotics of this random number Z̃n, depending on the law
of the initial tree Tn.

In the original paper [35], Meir and Moon considered Cayley trees and obtained asymptotics
for the first two moments of Xn. Limits in distribution were then obtained, see for instance
Panholzer [37] for some simply generated trees, Drmota, Iksanov, Möhle and Roesler [19] for
random recursive trees, Holmgren [30] for binary search trees, Bertoin [13] for Cayley trees.
In [31], Janson focuses on conditioned Galton-Watson trees associated with critical offspring
distributions with finite variance and proves that

Z̃n/
√
n

(d)−−−−−→
n→+∞

Z̃,

where the random variable Z̃ has Rayleigh distribution with density x e−x
2/2 1{x>0}, and can

be explicitly constructed using a pruning procedure on the Brownian continuum random tree
(which corresponds to the cases γ = 2 in our setting), see [5]. In particular Z̃ is distributed
as the height of a random leaf of the Brownian continuum random tree. See also [10, 14] for
further work on cutting randomly rooted trees.

Notice that the reproduction law for stable GW tree has an infinite variance for α ∈ (1/2, 1),
and the uniform pruning does not seem to be adapted to isolate the root. For this reason, we
consider the pruning procedure developed in Section 1.1 to tackle the infinite variance case.
So, let Zn be the number of cuts, using this procedure, needed to isolate the root of a stable
GW tree:

Zn = inf{k; Π[n]
GW(k) = {{1, . . . , n}}}.

Notice that for r-ary trees, since all the internal nodes have the same degree the cutting
procedure given in Section 1.1, corresponds to choose an internal node uniformly.

We immediately deduce from asymptotics of the number of coalescence events in β-
coalescent (see Corollary 1 [28], see also [26], Table 1 for a summary of all the results
concerning β-coalescents), the following result which extends part of the result in [31] to
GW tree with infinite variance of the reproduction law.

Corollary 1.7. Let α = 1/γ ∈ [1/2, 1). We have the following convergence in distribution:

nα−1Zn
(d)−−−−−→

n→+∞
Z,

with the distribution of Z characterized by, for n ∈ N
∗:

E [Zn] = αn
Γ(n+ 1)Γ(1 − α)

Γ((n+ 1)(1 − α))
·

Let us insist on the fact that this corollary does not need any proof as this is just a
translation of known results on β-coalescents using our links with GW trees, only the moment
computation needs some explanations and is done in Section 5,

The distribution of Z corresponds to the expected limit distribution in the Conjecture that
is stated at the end of the introduction in [4] for the number of cuts needed to isolate the root
in general GW trees. (Notice that in the conjecture, one choose an internal node x ∈ T with
probability proportional to kx(T ) whereas in Section 1.1 one choose an internal node x ∈ T
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with probability proportional to kx(T ) − 1.) In particular, Z is distributed as the height of
a random leaf of the normalized Lévy tree with branching mechanism ψ(λ) = λγ .

1.4. Number of blocks in the last coalescence event. On the other hand, we can use
results on GW trees conditioned to have an infinite number of leaves (which is very close
to Kesten’s result on GW tree conditionally on the non extinction, see [17] Theorem 3.1
or [6] Proposition 4.6) to get asymptotics on the number Bn of blocks involved is the last
coalescence event of Π[n].

The proof of the following Proposition is given in Section 6.

Proposition 1.8. Let α = 1/γ ∈ [1/2, 1). We have the following convergence in distribution:

Bn
(d)−−−−−→

n→+∞
B,

with the distribution of B given by its generating function ϕα(r) = E
[

rB
]

, with for r ∈ [0, 1]:

(5) ϕα(r) = (1− α)r

∫ 1

0

dx

1− (1− x)α

(

1

(1− rx)α
−1

)

.

See also [3] for more results in this direction when α = 1/2 including the number of
singletons involved in the last coalescence event as well as a closed form for ϕ1/2.

Remark 1.9. After we first posted this paper on arXiv, Hénard proved in [29] Theorem 3.5
that Equation (5) remains valid for all β(1 + α, 1 − α)-coalescents with α ∈ (−1, 1) (taking
the limit when α = 0).

For α = 0, the β(1 + α, 1 − α)-coalescent corresponds to the Bolthausen-Sznitman coa-
lescent, and thus ϕ0 is the generating function of the asymptotic number of blocks of the
last coalescence event in the Bolthausen-Sznitman coalescent whose distribution is given in
Theorem 3.1 and Proposition 3.2 of [27].

As α goes down to −1, we recover the Kingman’s coalescent as a limit. We also get
ϕ−1(r) = r2 and notice that ϕ−1 is trivially the generating function of the number of blocks
of the last (in fact all) coalescence event in the Kingman’s coalescent, as all the coalescence
events are binary.

1.5. Organization of the paper. Section 2 gives a representation of the pruning at node
procedure for GW tree in continuous time motivated by [8]. This procedure corresponds in
fact to the one presented in Introduction, Section 1.1. Section 3 is devoted to the proof of
Theorem 1.1. Section 4 devoted to the proof of Theorem 1.3 is more technical as it relies on
continuum random Lévy trees and the pruning of such trees as developed in [1]. Eventually
Sections 5 and 6 are devoted to the proofs of Propositions 1.7 and 1.8.

2. Pruning at node of discrete GW trees

2.1. Discrete trees. Let us recall here the formalism for ordered discrete trees. We set

U =
⋃

n≥0

(N∗)n

the set of finite sequences of positive integers with the convention (N∗)0 = {∅}. For u ∈ U
let |u| be the length or generation of u defined as the integer n such that u ∈ (N∗)n. If u and
v are two sequences of U , we denote by uv the concatenation of the two sequences, with the
convention that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors of u is the set:

(6) Au = {v ∈ U ; there exists w ∈ U such that u = vw}.
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A discrete tree t is a subset of U that satisfies:

• ∅ ∈ t,
• If u ∈ t, then Au ⊂ t.
• For every u ∈ t, there exists a non-negative integer ku(t) such that, for all positive
integer i, ui ∈ t iff 1 ≤ i ≤ ku(t).

The integer ku(t) represents the number of offsprings of the node u in the tree t. We define
L(t) the set of leaves of t and N (t) the set of internal nodes of t by:

L(t) = {u ∈ t, ku(t) = 0} and N (t) = t \ L(t).
Let L(t) = Card (L(t)) be the number of leaves of the tree t, and notice that:

(7) L(t)− 1 =
∑

u∈N (t)

(ku(t)− 1).

We denote by T the set of discrete trees and by Tn = {t ∈ T;L(t) = n} the set of discrete
trees with n leaves.

2.2. A discrete tree-valued process. We consider the pruning procedure developed in [7].
Let t ∈ T. Under some probability measure Pt, we consider a family of marks (ξu, u ∈ U) of
independent non-negative real random variables (possibly infinite) such that:

• Pt-a.s. ξu = +∞ if u 6∈ t or if u ∈ t and ku(t) ∈ {0, 1},
• Pt(ξu ≥ θ) = (1 + θ)1−ku(t) if u ∈ t and ku(t) ≥ 2.

At time θ, we define the pruned tree Pθ(t) as the sub-tree given by:

Pθ(t) = {u ∈ t; ξv > θ for all v ∈ Au, v 6= u}.
In particular, we always have ∅ ∈ Pθ(t).

For u ∈ N (t), let Du be the event that u is marked first, that is:

Du = {ξu = min
v∈N (t)

ξv}.

Lemma 2.1. We suppose that L(t) 6= 1. Let u ∈ N (t). We have:

Pt(Du) =
ku(t)− 1

L(t)− 1
·

This lemma implies that the cutting procedure given in Section 1.1, corresponds to the
successive states of the process (Pθ(t), θ ≥ 0).

Proof. We have, using (7) for the last equality:

Pt(Du) = Pt(ξu ≤ ξv ∀v 6= u, v ∈ N (T ))

= Et

[

(1 + ξu)
−

∑
v 6=u,v∈N (t)(kv(t)−1)

]

= (ku(t)− 1)

∫

[0,+∞)
(1 + θ)−

∑
v∈N (t)(kv(t)−1)−1 dθ

=
ku(t)− 1

∑

v∈N (t)(kv(t)− 1)

=
ku(t)− 1

L(t)− 1
·

�
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2.3. Construction of the partition-valued process Π
[n]
GW

. Let α ∈ [1/2, 1). Recall that
the function g defined by (3) is the generating function of a probability measure νg on N. We
denote by Gg(dT ) the distribution on T of the critical GW tree with offspring distribution
νg. We will denote by P the probability measure on T× [0,+∞]U :

P(dT, dξ) = Gg(dT )P
T (dξ).

Under P, the random tree T is a GW tree whose offspring distribution νg has generating
function g given by (3). According to Propositions 2.1 and 3.2 in [8], (Pθ(T ), θ ≥ 0) is a
Markov process and Pθ(T ) is a GW tree whose reproduction law has generating function gθ,
with:

gθ(r) = 1 + (1 + θ)

[

g

(

r

1 + θ

)

− g

(

1

1 + θ

)]

.

Notice that:

(8) gθ(r) = r + α
(1− r + θ)1/α − θ1/α

(1 + θ)(1/α)−1
·

For every positive integer n, we set:

Pn(•) = P(•
∣

∣ L(T ) = n).

Under Pn, the distribution of the tree T is given by the following formula (see [21], Theorem
3.3.3, or [34]), for t ∈ Tn:

(9) Pn(T = t) = n!





∏

v∈N (t)

pkv(t)

kv(t)!





αn−1Γ(1− α)

Γ(n− α)

where p1 = 0 and, for k ≥ 2, pk = |(1− γ)(2− γ) · · · (k − γ)|.
Let n ∈ N

∗. Let T be a random tree distributed as Pn. Conditionally on T , we de-
fine a uniform random labeling U1, . . . , Un of the leaves of T , independently of the variables
(ξu, u ∈ T ). Recall the set of ancestors defined in (6) and the pruning procedure Pθ in-

troduced in Section 2.2. We define the equivalence relation R[n]
θ on {1, 2, . . . , n} by: iR[n]

θ j
if AUi

⋂

AUj

⋂L(Pθ(T )) is non empty, that is Ui and Uj have a leaf of Pθ(T ) as common

ancestor. Then, for every θ ≥ 0, let Π̂
[n]
GW(θ) be the equivalence classes of the equivalence

relation R[n]
θ of the n first integers. Let Π

[n]
GW = (Π

[n]
GW(k), k ∈ N) be the discrete process

associated with Π̂
[n]
GW = (Π̂

[n]
GW(θ), θ ≥ 0) until it reaches the absorbing state (which is the

trivial partition consisting in one block) and afterward the discrete process remains constant.
We end this section with an elementary lemma which will be used in the proof of Theo-

rem 1.1.

Lemma 2.2. We have for n ≥ 2:

(10) En [k∅(T )− 1] =
1− α

α

Γ (1− α)

Γ (α)

Γ (n− 1 + α)

Γ (n− α)
·

Proof. We consider the generating function of (k∅(T ), L(T )) under P, that is H(s, t) =

E
[

sk∅(T )tL(T )
]

. Using the branching property of GW trees, we have:

(11) H(s, t) = E
[

sk∅(T )E[tL(T )]k∅(T )1{k∅(T )6=0}

]

+ tP(k∅(T ) = 0).
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Notice that g(s) = E
[

sk∅(T )
]

= H(s, 1). We set h(t) = H(1, t) = E
[

tL(T )
]

the generating
function of L(T ). So that (11) becomes:

(12) H(s, t) = g(s h(t)) − g(0)(1 − t).

Taking s = 1 in (12), we get:

(13) g(h(t)) − h(t) = g(0)(1 − t).

Using expression (3), we get:

h(t) = 1− (1− t)α and H(s, t) = s h(t) + α(1 − s h(t))1/α − α(1 − t).

We deduce that:

E
[

k∅(T )t
L(T )

]

=
∂H

∂s
(1, t) = h(t) − h(t)(1 − h(t))(1/α)−1

= E
[

tL(T )
]

− [1− (1− t)α] (1− t)1−α

= E
[

tL(T )
]

− (1− t)1−α + 1− t.

This gives:

E
[

(k∅(T )− 1)tL(T )
]

= −(1− t)1−α + 1− t.

For n ≥ 2, we get:

E
[

(k∅(T )− 1)1{L(T )=n}
]

=
1

n!

(

dn

dtn
E
[

(k∅(T )− 1)tL(T )
]

)

|t=0

=
1

n!
(1− α)

n−2
∏

k=0

(α+ k)

=
1

n!
(1− α)

Γ (n− 1 + α)

Γ (α)
·

We also get for n ≥ 2:

P(L(T ) = n) =
1

n!
h(n)(0) =

1

n!
α

n−1
∏

k=1

(k − α) =
1

n!
α
Γ (n− α)

Γ (1− α)
·

We deduce that:

En [k∅(T )− 1] =
E
[

(k∅(T )− 1)1{L(T )=n}
]

P(L(T ) = n)
=

1− α

α

Γ(1− α)

Γ(α)

Γ(n− 1 + α)

Γ(n− α)
·

�

3. Proof of Theorem 1.1

Let α ∈ [1/2, 1) and Λ given by (4). Notice that the probability that the first coalescence

event for Π
[n]
dis corresponds to the collision of k given blocks is λn,k/λn, with λn,k and λn given

respectively by (1) and (2).
Theorem 1.1 is a direct consequence of Lemma 3.3 which states that the probability that

the first coalescence event for Π
[n]
GW corresponds to the collision of k given blocks is λn,k/λn,

and of Lemma 3.4, which states that after the first coalescence event, the law of the pruned
tree under Pn conditionally given that it has k leaves is exactly Pk.

The proof of Lemme 3.3 (resp. 3.4) is given in Section 3.1 (resp. 3.2).
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3.1. Computation of the coalescence rates. We first give an intermediate lemma. For
α ∈ (0, 1) and λ > α− 1, we set:

(14) φ1+α,1−α(λ) =

∫ 1

0

(

1− (1− x)λ
)

xα−2(1− x)−α dx.

Lemma 3.1. For α ∈ (0, 1) and λ > α− 1, we have:

(15) φ1+α,1−α(λ) = λ
Γ(α)Γ(λ+ 1− α)

(1− α)Γ(λ + 1)
·

Notice that for λ > 0, (15) reduces to:

(16) φ1+α,1−α(λ) =
Γ(α)Γ(λ + 1− α)

(1− α)Γ(λ)
·

Proof. We set:

I =

∫ 1

0

(

(1− u)−α − 1
)

uα−2 du.

Notice that I is finite and φ1+α,1−α(α) = I. For λ > α, using an integration by part, we
have:

φ1+α,1−α(λ) =

∫ 1

0

(

1− (1− x)λ
)

xα−2(1− x)−α dx

=

∫ 1

0

(

(1− x)−α − 1
)

xα−2 dx+

∫ 1

0

(

1− (1− x)λ−α
)

xα−2dx

= I − 1

1− α
+
λ− α

1− α

∫ 1

0
(1− x)λ−α−1xα−1 dx

= I − 1

1− α
+
Γ(α)Γ(λ+ 1− α)

(1− α)Γ(λ)
·

We now compute I. For λ = 1, we also have:

φ1+α,1−α(1) =

∫ 1

0
xα−1(1− x)−α dx = Γ(α)Γ(1− α).

We deduce that:

I − 1

1− α
+
Γ(α)Γ(2 − α)

(1− α)Γ(1)
= φ1+α,1−α(1) = Γ(α)Γ(1 − α).

This readily implies that I = 1/(1 − α) and thus (15) holds for λ ≥ α. Then uses that the
right-hand sides of (14) and (15) are analytic for λ > α − 1 to get that (15) also holds for
λ > α− 1. �

Recall that λn,k and λn are given respectively by (1) and (2), for Λ given by (4).

Lemma 3.2. Let α ∈ [1/2, 1). We have for 2 ≤ k ≤ n:

(17)
λn,k
λn

=
1− α

Γ(α+ 1)

Γ(k + α− 1)Γ(n − k − α+ 1)

Γ(n− α)

1

n− 1
·
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Proof. We have

λn,k =

∫ 1

0
uk−2(1− u)n−kΛ(du)

=

∫ 1

0
uk−2+α(1− u)n−k−αdu

= β(k + α− 1, n − k − α+ 1)

=
Γ(k + α− 1)Γ(n− k − α+ 1)

Γ(n)
,

and

λn =

n
∑

k=2

(

n
k

)

λn,k =

∫ 1

0
(1− (1− u)n − nu(1− u)n−1)u−2Λ(du).

Then using notations (14) and (16), we deduce that:

λn = φ1+α,1−α(n)− n

∫ 1

0
uα−1(1− u)n−1−α du

=
Γ(α)Γ(n + 1− α)

(1− α)Γ(n)
− n

Γ(α)Γ(n − α)

Γ(n)

=

(

n− α

1− α
− n

)

Γ(α)Γ(n − α)

Γ(n)

= (n− 1)
α

1 − α

Γ(α)Γ(n − α)

Γ(n)
·

The expression obtained for λn,k then gives the result. �

If t1 and t2 are two discrete trees and u ∈ L(t1) is a leaf of t1, we shall denote by t1 ⊛u t2
the tree obtained by grafting the tree t2 on the leaf u of t1, that is:

(18) t1 ⊛u t2 = t1 ∪ {uv, v ∈ t2}.

Lemma 3.3. Let α ∈ [1/2, 1). The probability under Pn that the first coalescence event in

Π
[n]
GW is the coalescence of k given integers into one block is λn,k/λn.

Proof. Let Ak be the event that the first coalescence event corresponds to the k first integers
merging together. By exchangeability, the lemma is proved as soon as we check that Pn(Ak) =
λn,k/λn.

The event Ak is realized, if and only if:

• The initial tree T is of the form t1 ⊛u t2 for some t2 ∈ Tk and t1 ∈ Tn−k+1 and
u ∈ L(t1).

• The leaves of t2 are labeled from 1 to k (and therefore, the leaves of t1 except u are

labeled from k + 1 to n). This occurs with probability k!(n−k)!
n! .

• The first chosen node of t1 ⊛u t2 is u. This occurs according to Lemma 2.1 with

probability k∅(t2)−1
n−1 .
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Thus, using (9) for the probability of having a given tree, we have:

Pn(Ak) =
∑

t1∈Tn−k+1
t2∈Tk

u∈L(t1)

Pn(T = t1 ⊛u t2)
k!(n− k)!

n!

k∅(t2)− 1

n− 1

=
∑

t1∈Tn−k+1
t2∈Tk

u∈L(t1)

n!





∏

v∈N (t1⊛ut2)

pkv(t1⊛ut2)

kv(t1 ⊛u t2)!





αn−1Γ(1− α)

Γ(n− α)

k!(n− k)!

n!

k∅(t2)− 1

n− 1

= (n− k + 1)
∑

t1∈Tn−k+1
t2∈Tk

n!

k!(n− k + 1)!
Pn−k+1(T = t1)Pk(T = t2)

αn−1Γ(1− α)

Γ(n− α)

Γ(n− k − α+ 1)

αn−kΓ(1− α)

Γ(k − α)

αk−1Γ(1− α)

k!(n − k)!

n!

k∅(t2)− 1

n− 1

=
Γ(n− k − α+ 1)Γ(k − α)

Γ(n− α)Γ(1− α)

1

n− 1
Ek [k∅(T )− 1] .

We then use Lemma 2.2 and Lemma 3.2 to conclude. �

3.2. Law of the tree after the first coalescence event. Let S be the time of the first
coalescence event and recall that PS(T ) denote the pruned tree at the first coalescence event.

Lemma 3.4. Let t ∈ Tk. We have:

(19) Pn(PS(T ) = t
∣

∣ L(PS(T )) = k) = Pk(T = t).

Proof. Let t ∈ Tk. We obtain t just after the first coalescence event if T is of the form t⊛u s

for some s ∈ Tn−k+1, u ∈ L(t) and u is the first chosen internal node. This gives:

Pn(PS(T ) = t) =
∑

u∈L(t)

s∈Tn−k+1

Pn(T = t⊛u s)
k∅(s) − 1

n− 1

= k
∑

s∈Tn−k+1

n!





∏

v∈N (t)

pkv(t)

kv(t)!

∏

v∈N (s)

pkv(s)

kv(s)!





αn−1Γ(1− α)

Γ(n− α)

k∅(s)− 1

n− 1

= k
∑

s∈Tn−k+1

n!

k!(n− k + 1)!
Pk(T = t)Pn−k+1(T = s)

αn−1Γ(1− α)

Γ(n− α)

Γ(k − α)

αk−1Γ(1− α)

Γ(n− k + 1− α)

αn−kΓ(1− α)

k∅(s)− 1

n− 1

=
n!

(k − 1)!(n − k + 1)!

Γ(n− k + 1− α)Γ(k − α)

Γ(n− α)Γ(1− α)

1

n− 1
En−k+1[k∅(T )− 1]Pk(T = t).

As the term in front of Pk(T = t) does not depend on t, it has to be equal to Pn(L(PS(T )) =
k) and therefore (19) holds. �
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4. Pruning of rooted real trees and proof of Theorem 1.3

The aim of this section is to use the pruning procedure for Lévy trees developed in [1]

to give a consistent representation of the family of coalescent processes (Π̂
[n]
GW, n ∈ N

∗), see
Corollary 4.4 and thus deduce Theorem 1.3.

4.1. The CRT framework.

4.1.1. Real trees. Real trees have been introduced first in the field of geometric group theory
(see for instance [18]) and then used later for defining continuum random trees (the framework
first appeared in [23]). A real tree is a metric space (T , d) satisfying the following two
properties for every x, y ∈ T :

• (unique geodesic) There is a unique isometric map fx,y from [0, d(x, y)] into T such
that fx,y(0) = x and fx,y(d(x, y)) = y.

• (no loop) If ϕ is a continuous injective map from [0, 1] into T such that ϕ(0) = x and
ϕ(1) = y, then

ϕ([0, 1]) = fx,y([0, d(x, y)]).

A rooted real tree is a real tree with a distinguished vertex denoted ∅ and called the root.
For every x, y ∈ T , we denote by [[x, y]] the range of the map fx,y (i.e. the only path in the

tree that links x to y) and we set [[x, y[[= [[x, y]] \ {y}.
If T is a rooted real tree, for x ∈ T , we define the degree of x, denoted by nx, as the number

of connected components of T \ {x}. The leaves of T is L(T ) = {x ∈ T \ {∅}; nx = 1}. If
nx ≥ 3, we say that x is a branching point of T . We denote by Bbr(T ) the set of branching
points of T . The height of T is Hmax(T ) = sup{d(∅, x); x ∈ T }. Let (xi, i ∈ I) be a family
of elements of T , we define their most recent common ancestor denoted by MRCA(xi, i ∈ I)
as the element x of T such that [[∅, x]] = ⋂

i∈I [[∅, xi]].
A weighted rooted real tree (T , d,m) is a rooted real tree (T , d) endowed with a σ-finite

measure m called the mass measure.

4.1.2. Stable Lévy tree. Set ψ(λ) = λγ with γ ∈ (1, 2). We refer to [22] and [9] for the
existence of a measure N[dT ] on the set of weighted locally compact rooted real tree such
that T is under N[dT ] a Lévy tree associated with the branching mechanism ψ. For the
Lévy tree (T , d,m), N[dT ] -a.e., the mass measure has support L(T ) and has no atom.
Furthermore, N[dT ]-a.e., all the branching points of the tree are of infinite degree. Following
[22], there exists a local time process (ℓa, a ≥ 0) with values on finite measures on T , which
is càdlàg for the weak topology on finite measures on T and such that Nψ[dT ]-a.e.:

m(dx) =

∫ ∞

0
ℓa(dx) da,

ℓ0 = 0, inf{a > 0; ℓa = 0} = sup{a ≥ 0; ℓa 6= 0} = Hmax(T ) and for every fixed a ≥ 0,
N
ψ[dT ]-a.e. the measure ℓa is supported on {x ∈ T ; d(∅, x) = a} and the real valued process

(〈ℓa, 1〉, a ≥ 0) is distributed as a continuous state branching process (CSBP) with branching
mechanism ψ under its canonical measure. In particular, as the total size of a critical CSBP
is finite, we get that N-a.e. σ = m(T ) is finite.

The set {d(∅, x), x ∈ Br(T )} coincides N
ψ-a.e. with the set of discontinuity times of the

mapping a 7→ ℓa. Moreover, Nψ-a.e., for every such discontinuity time b, there is a unique
x ∈ Bbr(T ) such that d(∅, x) = b and ∆x > 0, such that:

ℓb = ℓb− +∆xδx,



14 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

where ∆x > 0 is called the mass of the node x. Intuitively ∆x represents the size of the
progeny of x.

The scaling property of the stable Lévy tree implies that there exists a well defined prob-
ability measure N

(1) defined as the measure N conditioned on {σ = 1}. The probability
measure is also referred as the normalized excursion measure for Lévy trees.

4.2. The partition-valued process. Set ψ(λ) = λγ with γ ∈ (1, 2).

4.2.1. Pruning of the stable Lévy tree. We consider the pruning procedure introduced in [1]
(this procedure is defined when there is no Brownian part in the Lévy process with index

given by the branching mechanism ψ). Under N or N(1), conditionally given T , we consider a
family (Ex, x ∈ Bbr(T )) of independent real random variables such that the random variable
Ex is exponentially distributed with parameter ∆x. This random variable represents the time
at which the branching point x is marked. For every θ > 0, we set

Tθ = {x ∈ T , ∀y ∈ [[∅, x[[, Ey ≥ θ}.
The set Tθ is still a real tree which represents the tree T pruned at time θ: we cut T at the
points that are marked before time θ and keep the connected component of the tree that
contains the root. We set T0 = T . By [1], Theorem 1.5, the tree Tθ is distributed under N as
a Lévy tree with branching mechanism ψθ defined by:

ψθ(λ) = ψ(λ+ θ)− ψ(θ).

Moreover, by [2], the process (Tθ, θ ≥ 0) is under N a Markov process.

4.2.2. Definition of the partition-valued process. Under N or N
(1), conditionally on T , let

(Fi, i ∈ N
∗) be independent random variables on T distributed according to the probability

mass measure m/m(T ), and independent of the marks (Ex, x ∈ Bbr(T )). Notice that N-a.e.

or N(1)-a.s. (Fi, i ∈ N
∗) are leaves of T . For θ ≥ 0, we define the equivalence relation RLévy

θ

on N
∗ by: iRLévy

θ j if [[∅, Fi]]
⋂

[[∅, Fj ]]
⋂L(Tθ) is non empty, that is Fi and Fj have a leaf of

Tθ as common ancestor. This is very close to the definition of the equivalence relation R[n]
θ

defined in Section 2.3. We denote by ΠLévy(θ) the partition of N∗ formed by the equivalence

classes of RLévy
θ and set ΠLévy = (ΠLévy(θ), θ ≥ 0).

4.3. Lévy sub-trees.

4.3.1. Skeleton of finite real tree. Let t̂ be a real tree with finite height and a finite number
of leaves, such that the leaves (fi, i ∈ I(t̂)) are indexed by a totally ordered set I(t̂). We
define the skeleton t̃ of the tree t̂ as the discrete tree (belonging to T) where we forget the
edge lengths. As the trees in T are ordered, we must be a bit more rigorous for the definition
of t̃.

The skeleton t̃ of the real tree with ordered leaves
(

t̂, (fi, i ∈ I(t̂))
)

is defined recursively

as follows. We define k∅(t̃) as the degree of MRCA(fi, i ∈ I(t̂)) the ancestor of all the
leaves of t̂. If k∅(t̃) = 0, then t̃ is reduced to ∅. In this case t̂ has one leaf, let f be its
label, and the discrete tree t̃ has thus one leaf to which we give the label f . If k∅(t̃) > 0,
then we consider the k∅(t̃) connected components of t̂ \ {MRCA(fi, i ∈ I(t̂))} that do not
contain the root and label them from 1 to k∅(t̃) according to the lowest label of the leaves
of t̂ which belongs to them. This gives an ordered family (t̂k, k ∈ {1, . . . , k∅(t̃)}) of real
trees, and let MRCA(fi, i ∈ I(t̂))}) be the root of each one. For k ∈ {1, . . . , k∅(t̃)}, let
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I(t̂k) = {i ∈ I(t̂); fi ∈ t̂k) be the labels of the leaves of t̂k and the discrete tree t̃k is the
skeleton of

(

t̂k, (fi, i ∈ I(t̂k))
)

.

Notice that t̃ is finite, ku(t̃) 6= 1 for all u ∈ t̃, and t̂ and t̃ have the same number of leaves.
In the previous construction to a leaf fi of t̂ with label i corresponds a unique leaf ei of t̃
with label i. For u ∈ t̃, we define t̃u the sub-tree of t̃ attached to the node u i.e.

(20) t̃u = {w ∈ U , uw ∈ t̃},
and let Iu = {i; ei ∈ t̃u}. Define t̂u as su = t̂\⋃i 6∈Iu

[[∅, fi]] to which we add the root

∅u = su\su, and I(t̂u) = {i; ei ∈ t̃u}. Notice that by construction t̃u is the skeleton of
(

t̂u, (fi; i ∈ I(t̂u))
)

. We say that u ∈ t̃ are the individuals of t̂, and define their lifetime as

the length hu of the geodesic B(u) = [[∅u,MRCA(fi, i ∈ I(t̂u))]]. We say the corresponding
node in t̂ of u ∈ t̃ is C(u) = MRCA(fi, i ∈ I(t̂u)).

Notice it is easy to reconstruct t̂ from t̃ and the family of lifetime (hu, u ∈ t̃).

4.3.2. Coalescence of Lévy tree and GW tree. Let M be, under N or N
(1) conditionally on

T , a Poisson random variable with finite mean σ = m(T ). We shall work on {M ≥ 1}. On

{M ≥ 1}, let T̂0 be the real sub-tree of T generated by the root and (Fi, 1 ≤ i ≤M):

T̂0 =
⋃

1≤i≤M

[[∅, Fi]].

Since m has support L(T ) and has no atom, we deduce that (Fi, 1 ≤ i ≤ M) are distinct

and are the leaves of T̂0.
We denote by T̃0 the skeleton of T̂0 with the labeled leaves (Fi, 1 ≤ i ≤M). According to

[21], Theorem 3.2.1, the tree T̂0 is distributed under N[ ·
∣

∣ M ≥ 1] as a continuous GW tree
(i.e. a GW tree with edge-lengths) such that

• The discrete tree T̃0 is a GW tree with offspring distribution characterized by its
generating function g defined by (3) with α = 1/γ.

• Lifetimes of individuals (hu, u ∈ T̃0) are independent random variables with exponen-
tial distribution with parameter γ.

We must first prove the following lemma which will be a key point in the sequel. Its proof
relies on the scaling property of the Lévy tree.

Lemma 4.1. The distributions of T̂0 under N[ ·
∣

∣M = n] and under N
(1)[ ·

∣

∣M = n] are the

same.

Proof. For a tree T and points x1, . . . , xn of T , let us denote by T (T , x1, . . . , xn) the tree

spanned by the points (xi) and the root of the tree and T̃ (T , x1, . . . , xn) the associated

discrete tree so that under N[ ·
∣

∣M = n] or N(1)[ ·
∣

∣M = n], we have

T̃0 = T̃ (T , F1, . . . , Fn).

Then, for every bounded measurable function φ, we have

N

[

φ
(

T̃ (T , F1, . . . , Fn)
)

1{M=n}

]

= N

[

φ
(

T̃ (T , F1, . . . , Fn)
)σn

n!
e−σ

]

.

Let ν be the distribution of σ under N i.e. the only measure ν such that for every λ > 0,
∫ +∞

0
(1− e−λu)ν(du) = λα.
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Then we have

N

[

φ
(

T̃ (T , F1, . . . , Fn)
)

1{M=n}

]

=

∫ +∞

0
N
(u)

[

φ
(

T̃ (T , F1, . . . , Fn)
)

] un

n!
e−u ν(du).

Using the scaling property of the stable Lévy tree (see [21] Section 3.3), we have that the law
of the tree T under N(u) is the same as the law of u1−αT under N(1) where the notation λT
means that we multiply the distance that defines T by the factor λ (i.e. we scale all the edge
lengths by λ). Moreover, as we only look at discrete trees, this factor does not modify the

tree T̃0. Therefore, we get:

N

[

φ
(

T̃ (T , F1, . . . , Fn)
)

1{M=n}

]

=

∫ +∞

0
N
(1)

[

φ
(

T̃ (T , F1, . . . , Fn)
)

] un

n!
e−u ν(du)

= N
(1)

[

φ
(

T̃ (T , F1, . . . , Fn)
)

]

N[M = n].

We deduce:

N[φ(T̃0)
∣

∣M = n] = N

[

φ
(

T̃ (T , F1, . . . , Fn)
) ∣

∣M = n
]

= N
(1)

[

φ
(

T̃ (T , F1, . . . , Fn)
)

]

= N
(1)[φ(T̃0)

∣

∣M = n]

since T and M are independent under N(1). �

We now consider the marks that define the pruned tree Tθ and we define on the event
{M ≥ 1} the tree T̂θ as the tree T̂0 pruned on the same marks, in other words, we set

T̂θ = T̂0 ∩ Tθ.
Let Π̂

[n]
Lévy be the restriction of ΠLévy to the n first integers. By construction, if Cθ is an

element of Π̂
[n]
Lévy(θ), then there exists a leaf x of T̂θ such that x belongs to the sub-tree

⋃

i∈Cθ
[[∅, Fi]], and x is the only leaf of T̂θ with this property. We set Cθ for the label of x, and

we consider the order of the elements of Π̃
[n]
Lévy given by the order of their smallest integer.

We set Iθ = I(T̂θ) for the labels of the leaves of T̂θ and (F θi , i ∈ Iθ) for the leaves of T̂θ.

We denote by T̃θ the skeleton of T̂θ with the labeled leaves (F θi , i ∈ Iθ). According to [8],

Proposition 4.1, the tree T̂θ is distributed under N[ ·
∣

∣M ≥ 1] as a continuous GW tree such
that

• T̃θ is a GW tree with offspring distribution characterized by its generating function
gθ given in (8) with α = 1/γ.

• The lifetimes of individuals (hu, u ∈ T̂θ) are independent random variable with expo-
nential distribution with parameter ψ′

θ(1) = γ(1 + θ)γ−1.

The following Lemma is a consequence of Theorem 6.1 of [8].

Lemma 4.2. The process (T̃θ, θ ≥ 0) is distributed under N[ ·
∣

∣ M ≥ 1] as the process

(Pθ(T ), θ ≥ 0) under P.

Proof. Let θ > 0. Theorem 6.1 of [8] describes how T̂θ is obtained from T̂0:

• A branching point x of T̂0 with kx = kx(T̂0) children is marked at time τx with
distribution given by:

N[τx ≥ θ
∣

∣ T̂0] = −
∫ +∞

θ

ψ(kx+1)(1 + z)

ψ(kx)(1)
dz =

ψ(kx)(1 + θ)

ψ(kx)(1)
=

(

1

1 + θ

)kx−γ

.
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• A branch B of length h is marked at time τB with distribution given by:

N[τB ≥ θ
∣

∣ T̂0] = exp

(

−h
∫ θ

0
ψ′′(1 + z)dz

)

= e−
(

ψ′(1+θ)−ψ′(1)
)

h .

Then the tree T̂0 is cut according to the marks present at time θ and the tree T̂θ is the
connected component that contains the root. Therefore, the tree T̃θ is obtained from the tree
T̃0 by a pruning at node. A node u ∈ T̃0 is marked if the corresponding node C(u) ∈ T̂0 is
marked at time θ in the previous procedure OR the branch B(u) with length hu is marked.

So the node u of T̃0 is marked at time ζu = τC(u) ∧ τB(u) and using that the edge lengths of

T̂0 are independent and exponentially distributed with parameter γ = ψ′(1), we have with

ku = ku(T̂0):

N[ζu ≥ θ
∣

∣ T̃0] = N[τC(u) ≥ θ
∣

∣ T̃0] N[τB(u) ≥ θ
∣

∣ T̃0]

=

(

1

1 + θ

)ku−γ ∫ +∞

0
dh γ e−γh e−

(

ψ′(1+θ)−γ
)

h

=

(

1

1 + θ

)ku−γ ( 1

1 + θ

)γ−1

=

(

1

1 + θ

)ku−1

·

Since the cutting time τC(u) and τB(u) are independent for all internal nodes u, we recover
the discrete pruning procedure that defines the process (Pθ(T ), θ ≥ 0) under P. To conclude

notice that T̃0 and T are GW tree with offspring distribution characterized by its generating
function g. �

4.4. Proof of Theorem 1.3. The next corollary states that the pruning procedure for
stable GW tree developed in [7] and the pruning procedure for Lévy trees developed in [1]
and applied in [8] to sub-trees with finite number of leaves coincide.

Corollary 4.3. Let n ∈ N. The process (T̃θ, θ ≥ 0) is distributed under N[ ·
∣

∣M = n] as the

process (Pθ(T ), θ ≥ 0) under Pn.

Proof. This is a direct consequence of Lemma 4.2 and the fact that M = L(T̃0). �

Theorem 1.3 follows directly from Theorem 1.1 and from the following corollary, which is

a direct consequence of Corollary 4.3. Recall that Π̂
[n]
Lévy is the restriction of ΠLévy defined in

Section 4.2.2 to the n first integers.

Corollary 4.4. The process Π̂
[n]
Lévy is under N

(1) distributed as Π̂
[n]
GW under Pn.

Using Lemma 4.2, we also have the following corollary which shows that the first coalescent

event in Π̂
[n]
Lévy is not exponentially distributed.

Corollary 4.5. Let τ
(n)
1 be the first coalescent event in Π̂

[n]
Lévy. Then we have for θ ≥ 0:

N
(1)[τ

(n)
1 ≥ θ] =

(

1

1 + θ

)n−1

.
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Proof. We keep the notations of the proof of Lemma 4.2. We have:

N
(1)[τ

(n)
1 ≥ θ] = N

[

N

[

inf
u∈N (T̃0)

ζu ≥ θ
∣

∣ T̃0

]

∣

∣

∣M = n

]

= N





∏

u∈N (T̃0)

(

1

1 + θ

)ku(T̃0)−1 ∣
∣

∣M = n





= N

[

(

1

1 + θ

)M−1 ∣
∣

∣
M = n

]

=

(

1

1 + θ

)n−1

,

using (7) for the third equality. �

5. Proof of Proposition 1.7

We recall results from [28], Corollary 1. Let Xn be the number of coalescence events for a
β(a, b)-coalescent. For 1 < a < 2 and b > 0, we have that:

2− a

Γ(a)
na−2Xn

converges in distribution towards

Wa,b =

∫ ∞

0
dt e−(2−a)Sa,b(t),

where Sa,b is a subordinator with Laplace exponent φa,b given by:

φa,b(λ) =

∫ 1

0

(

1− (1− x)λ
)

xa−3(1− x)b−1 dx.

Notice that this notation is consistent with (14). Since Zn is distributed as Xn with a = 1+α
and b = 1− α. We deduce that:

nα−1Zn
(d)−−−−−→

n→+∞
Z,

with Z distributed as Γ(1+α)
1−α W1+α,1−α.

Using Lemma 3.1, we compute the moments of Z:

E
[

W n
1+α,1−α

]

= n!

∫

0≤t1≤···≤tn

E

[

e−(1−α)
∑n

k=1 S1−α,1+α(tk)
]

dt1 · · · dtn

= n!

∫

0≤r1,··· ,0≤rn

n
∏

k=1

E

[

e−(1−α)kS1−α,1+α(rk)
]

dr1 · · · drn

=
n!

∏n
k=1 φ1+α,1−α(k(1− α))

=

(

1− α

Γ(α)

)n Γ(n+ 1)Γ(1− α)

Γ((n+ 1)(1 − α))
·

We deduce that:

E [Zn] = αn
Γ(n+ 1)Γ(1− α)

Γ((n+ 1)(1 − α))
·
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6. Number of blocks in the last coalescence event

We consider the number of blocks Bn involved in the last coalescence event of Π
[n]
dis. In

order to stress the dependence in n, we shall denote by Tn the GW tree T under Pn. We
also write ξu(Tn) for ξu to stress the dependence of the marks introduced in Section 2.2 as
a function of the underlying tree Tn. Notice that the time ξ∅(Tn) at which the root of Tn is
marked corresponds to the last coalescence event associated with Tn. Thanks to Theorem
1.1, Bn is distributed as the number of leaves of the pruned tree obtained from Tn just before
the last coalescence event, that is:

(21) Bn
(d)
= L(Pξ∅(Tn)−(Tn)).

6.1. Local limit. The method used in [3] when α = 1/2 relies on the Aldous’s CRT, which
is the (global) limit of Tn when the length of the branch of Tn are rescaled by 1/

√
n, see [20].

Since Lévy’s trees are more difficult to handle, we choose here to use the local limit of Tn,
which is the Kesten’s tree T ∗, according to [17] Theorem 3.1 or [6] Proposition 4.6.

Recall that νg is the distribution with generating function g given in (3) and that νg is
critical as g′(1) = 1. We recall the distribution of the Kesten’s tree T ∗ associated with the
critical reproduction law νg, see [32]. Let ν∗g be the corresponding size-biased distribution:
ν∗g (k) = kνg(k) for all k ∈ N. For h ∈ N, we consider the truncation operator rh on T defined
as:

rht = {u ∈ t; |u| ≤ h}.
The distribution of T ∗ is as follows. Almost surely, T ∗ contains a unique infinite path i.e.
a unique infinite sequence (Vk, k ∈ N

∗) of positive integers such that, for every h ∈ N,
V1 · · ·Vh ∈ T ∗, with the convention that V1 · · ·Vh = ∅ if h = 0. The joint distribution of
(Vk, k ∈ N

∗) and T ∗ is determined recursively as follows: for each h ∈ N, conditionally given
(V1, . . . , Vh) and rhT

∗, we have:

• The number of children (kv(T
∗), v ∈ T ∗, |v| = h) are independent and distributed

according to νg if v 6= V1 · · · Vh and according to ν∗g if v = V1 · · ·Vh.
• Given also the numbers of children (kv(T

∗), v ∈ T ∗, |v| = h), the vertex Vh+1 is

uniformly distributed on the set of integers
{

1, . . . ,
∑

v∈T ∗, |v|=h kv(T
∗)
}

.

We denote by P the distribution of T ∗.
Recall that the height of a discrete tree t ∈ T is Hmax(t) = sup{|u|, u ∈ t}. The local limit

convergence of critical GW trees, see [6], implies that, for all h ∈ N
∗, t ∈ T with height h:

lim
n→+∞

Pn(rhTn = t) = P(rhT
∗ = t).

Notice that Pθ(T ∗) is a.s. finite for any θ > 0. By construction of the marks, we easily
get that the local limit of (Pθ(Tn), θ ≥ 0) is given by (Pθ(T ∗), θ ≥ 0). Since k∅(Tn) converges
in distribution to k∅(T

∗) (with distribution ν∗g ), we deduce the convergence in distribution of
the mark ξ∅(Tn) to ξ

∗
∅ distributed under P as:

P(ξ∗∅ ≥ θ|T ∗) = (1 + θ)1−k∅(T
∗).

We deduce that the local limit in distribution of Pξ∅(Tn)−(Tn) is given by Pξ∗
∅
−(T

∗).

This and the definition of T ∗ gives the following Lemma. For t ∈ T, and u ∈ t, recall the
notation tu for the sub-tree attached at u, see (20).

Lemma 6.1. We have, for all t ∈ T:

lim
n→+∞

Pn(Pξ∅(Tn)−(Tn) = t) = P(T̄ = t),
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where T̄ is such that:

• k∅(T̄ ) has distribution ν∗g .

• Conditionally on k∅(T̄ ), ξ is a random variable such that P(ξ ≥ θ) = (1 + θ)1−k∅(T̄ )

for all θ ≥ 0.
• Conditionally on k∅(T̄ ) and ξ, V1 is a uniform random variable on {1, . . . , k∅(T̄ )}.
• Conditionally on k∅(T̄ ), ξ and V1, (T̄u, u ∈ {1, . . . , k∅(T̄ )}) are independent random

trees distributed such that for u 6= V1, Tu is distributed as Pξ(T ) with T a GW tree

with offspring distribution νg, and TV1 is distributed as Pξ(T ∗), with T ∗ distributed

as the Kesten’s tree associated with the reproduction law νg.

Notice that by construction, T̄ is finite.

6.2. Proof of Proposition 1.8. We deduce from (21), Lemma 6.1 and the fact that T̄ is
a.s. finite, that Bn converge in distribution to B = L(T̄ ). From Lemma 6.1, we have that B
is distributed as

L(Pξ(T ∗)) +

k∅−1
∑

k=1

L(Pξ(Tk)),

where k∅ has distribution ν∗g , ξ has density (k∅ − 1)(1 + θ)−k∅1{θ≥0}, T
∗ is independent and

distributed as the Kesten’s tree associated with νg, and (Tk, k ∈ N
∗) are independent and

distributed as a Galton-Watson tree T with offspring distribution νg. We deduce that:

E
[

rB
]

= E

[

N(N − 1)

∫ +∞

0
(1 + θ)−Ndθ E

[

rLθ
]N−1

E

[

rL
∗
θ

]

]

,

where N has distribution νg, Lθ is the number of leaves of Pθ(T ) and L∗
θ is the number of

leaves of Pθ(T ∗).
Let hθ be the generating function of Lθ and h

∗
θ be the generating function of L∗

θ. We have:

E
[

rB
]

=

∫ +∞

0

dθ

(1 + θ)2
g′′

(

hθ(r)

1 + θ

)

hθ(r)h
∗
θ(r).

Recall that Pθ(T ) is a GW tree whose reproduction law has generating function gθ given
by (8). Similar arguments as in the proof of (13), yields that:

(22) gθ(hθ(r))− hθ(r) = gθ(0)(1 − r).

We deduce from (8) that:

g′′θ (r) = g′′
(

r

1 + θ

)

1

1 + θ
·

We deduce from (22) that:

(23) (1− g′θ(hθ(r))) =
gθ(0)

h′θ(r)
and g′′θ (hθ(r)) = (1− g′θ(hθ(r)))

h′′θ(r)

(h′θ(r))
2
·

We obtain:

g′′
(

hθ(r)

1 + θ

)

1

1 + θ
= gθ(0)

h′′θ(r)

(h′θ(r))
3
·

We now compute h∗θ. According to Remark 3.7 in [8], we have for t ∈ T:

P(Pθ(T ∗) = t) = L(t)
1− g′θ(1)

g′θ(0)
P(Pθ(T ) = t).
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We deduce that:

h∗θ(r) = E
[

rL
∗
θ

]

=
∑

t∈T

rL(t)P(Pθ(T ∗) = t)

=
1− g′θ(1)

gθ(0)

∑

t∈T

L(t)rL(t)P(Pθ(T ) = t)

= r
h′θ(r)

h′θ(1)
,

where we used the first equality in (23) with r = 1 and hθ(1) = 1. We get:

(24) E
[

rB
]

= r

∫ +∞

0

dθ

1 + θ

gθ(0)

h′θ(1)

h′′θ(r)

(h′θ(r))
2
hθ(r).

We have from (8) that:

gθ(0) = α(1 + θ)

[

1−
(

θ

1 + θ

)1/α
]

.

We deduce from (22) that:

hθ(r) = (1 + θ)

[

1−
{

1− r

[

1−
(

θ

1 + θ

)1/α
]}α]

.

Then, the change of variable x = 1− (θ/(1 + θ))1/α in (24) gives that ϕα, given in (5), is
the generating function of B.
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