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OPTIMAL CONTROLLABILITY FOR SCALAR CONSERVATION
LAWS WITH CONVEX FLUX

ADIMURTHI∗, SHYAM SUNDAR GHOSHAL† , AND G. D. VEERAPPA GOWDA‡

Abstract. In this paper we derive a method to obtain a solution of an optimal control problem
for a scalar conservation laws with convex flux. By using the method of descent, this type of problem
was considered by Castro-Palacios-Zuazua in [5] for the Burgers equation. Our approach is simple
and based on the explicit formulas of Hopf and Lax-Olenik.

Key words: Hamilton-Jacobi equation, scalar conservation laws, characteristics, ex-
plicit formulas, optimal controllability.

1. Introduction. Let f : R → R be C1, strictly convex function having super
linear growth. That is

lim
|u|→∞

f(u)

|u|
= ∞. (1.1)

Let u0 ∈ L∞(R) and consider the scalar conservation law

ut + f(u)x = 0, if x ∈ R, t > 0,
u(x, 0) = u0(x).

(1.2)

In general, (1.2) does not admit classical solutions and hence we look for weak solu-
tions. This problem was well studied and showed that (1.2) admits a unique weak
solution satisfying Lax-Olenik-Kruzkov entropy conditions. In the sequel we mean u
a solution of (1.2) if it is a weak solution satisfying entropy condition.

In [5] the following optimal control problem associated to (1.2) had been con-
sidered. Let k ∈ L2

loc(R) be a target function and A ⊂ L∞(R), a set of admissible
controls. Let u be the associated solution of (1.2) with initial data u0 and T > 0.
Define the cost functional J̃ on A by

J̃(u0) =

∞
∫

−∞

|u(x, T )− k(x)|2dx. (1.3)

Then the optimal control problem is to find an u0 ∈ A such that

J̃(u0) = min
wo∈A

J̃(w0). (1.4)

Under a suitable conditions on k and A, they prove that u0 exists. In general u0 is not
unique. The basic problem related to this is “to capture a minimizer”. It is a very hard
problem because the cost functional J̃ is highly nonlinear, non differentiable and non
convex. For the Burger’s equation, in [5], [6] they have proposed a numerical scheme
called “alternating descent direction” by using the linearization technique developed
in [4],[3]. In that work, convergence analysis is completely open.

In this paper, we tackle this problem in a completely different way. In view
of the non linearity, we modify the cost function J̃ to J so that the optimal control
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problem reduces to the standard convex optimization problem via Lax-Oleinik explicit
formula. Then we use the backward algorithm introduced in [1],[2] to obtain an
optimal solution. The novelty of this method is that it is constructive and easy to
derive a numerical scheme to capture an optimal solution.

Authors would like to thank Enrique Zuazua for providing valuable references.
In the forthcoming paper, these results have been extended to conservation laws

with discontinuous flux.

2. Preliminaries. Before stating the main results, let us recall Hopf, Lax-
Oleinik explicit formulas (see [7]).

Let u0 ∈ L∞(R) and f be as in the introduction. let f∗ denote its convex dual
defined by

f∗(p) = sup
q
{pq − f∗(q)} (2.1)

then f∗ is C1, superlinear growth and satisfies

f(p) = supq {pq − f∗(q)},
f∗(f ′(p)) = pf ′(p)− f(p),
f∗′ = f ′−1.

(2.2)

Let b ∈ R and define v0 by

v0(x) =

x
∫

b

u0(y)dy, (2.3)

and the associated value function v is given by

v(x, t) = inf
y

{

v0(y) + tf∗

(

x− y

t

)}

. (2.4)

Definition 2.1 (Characteristic): Define the characteristic set ch(x, t), extreme
characteristics y±(x, t) by

ch(x, t) = {y : y is a minimizer in (2.4)} (2.5)

y−(x, t) = inf{y : y is in ch(x, t)} (2.6)

y+(x, t) = sup{y : y is in ch(x, t)}. (2.7)

Then we have the following theorem due to Hopf, Lax-Oleinik ( see [7]).
Theorem 2.2. (1). v is a uniformly Lipschitz continuous function with Lipschitz
constant depending only on ‖u0‖∞, f∗ and satisfies the Hamilton-Jacobi equation

vt + f(vx) = 0 x ∈ R, t > 0, (2.8)

v(x, 0) = v0(x) (2.9)

in the sense of viscosity.
(2). ch(x, t) 6= φ and there exists M > 0 depending only on ‖u0‖∞ and f∗ such that
for all (x, t) ∈ R× R+, y ∈ ch(x, t)

∣

∣

∣

∣

x− y

t

∣

∣

∣

∣

≤ M. (2.10)
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(3). For each time t, x 7→ y±(x, t) are non decreasing functions and for a.e. x,

y+(x, t) = y−(x, t).

(4). Let u = ∂v
∂x , then u is the solution of (1.2) such that for a.e. x, t > 0,

f ′(u(x, t)) =
x− y+(x, t)

t
=

x− y−(x, t)

t
. (2.11)

Furthermore

u(x, t) = u0(y±(x, t)) (2.12)

if x is a point of differentiability of y±(x, t) and y±(x, t) is a point of differentiability
for v0.

As an immediate consequence of this theorem, we have the following Lemma on
finite speed of propagation.
Lemma 2.3. Let A1 < A2, u−, u+ ∈ R, ū0 ∈ L∞(A1, A2). Define u0 by

u0(x) =







u− if x < A1,
ū0(x) if A1 < x < A2,
u+ if x > A2.

(2.13)

Then for t > 0, the solution u satisfies

u(x, t) =

{

u− if x < A1 −Mt,
u+ if x > A2 +Mt.

(2.14)

Proof. Let t > 0, then from (2.10), if x < A1 −Mt, then

−M ≤
x− y±(x, t)

t
<

A1 −Mt− y±(x, t)

t
.

Hence y±(x, t) < A1. Since v0 is differentiable in (−∞, A1) and hence from (2.12), at
the differentiable point x of y±(x, t), we have

u(x, t) = u0(y±(x, t)) = u−.

Similarly if x > A2 +Mt, then for a.e. x, u(x, t) = u+. This proves (2.14) and hence
the Lemma.

3. Main results. Let

f(θf ) = min
θ∈R

f(θ). (3.1)

Define
1. Admissible sets A and B :

A = {u0 ∈ L∞(R) : u0(x) = θf outside a compact set} (3.2)

B = {ρ ∈ L∞
loc(R) : (i) ρ is a non decreasing function

(ii) ρ(x) = x outside a compact set}.
(3.3)

For each N > 0, define

BN = {ρ ∈ B : ρ(x) = x for |x| > N}. (3.4)
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2. Target function k : Let I = (C1, C2) and k be a measurable function such
that

k(x) = θf if x /∈ (C1, C2), (3.5)

f ′(k(x)) ∈ L2(I). (3.6)

3. Cost function J : Let k be a target function and u0 ∈ A. Let u(x, t) be
the corresponding solution of (1.2) with initial data u0. Let T > 0 and define
the modified cost function

J(u0) =

∫

R

|f ′(u(x, T ))− f ′(k(x))|2dx. (3.7)

Then we have the following proposition.
Proposition 3.1. J is well defined.
Proof. Choose A1 < C1 < C2 < A2 such that u0(x) = θf for x /∈ (A1, A2). Then
from Lemma (2.3), there exists an M > 0 depending only on ‖u0‖∞ and f∗ such that

u(x, T ) = θf for x /∈ [A1 −MT,A2 +MT ] (3.8)

and hence f ′(u(x, T )) = f ′(θf ) = 0. Hypothesis on k implies for x /∈ [C1, C2]

f ′(k(x)) = f ′(θf ) = 0.

Hence

J(u0) =

A2+MT
∫

A1−MT

|f ′(u(x, T ))− f ′(k(x))|2dx. (3.9)

This proves the proposition.
Optimal control problem : Given A, k as above, find a ũ0 ∈ A such that

J(ũ0) = min
u0∈A

J(u0) (3.10)

and if the minimizer exist, then device a scheme to capture it.
Then we have the following main result.

Theorem 3.2. There exists a minimizer for (3.10) which can be captured by using
the standard convex optimization problem in a Hilbert space and backword algorithm.

This Theorems has been generalized to Lp cost functional (see section 4).
In order to prove this Theorem, first we reduce the problem to a standard pro-

jection Theorem in a Hilbert space and then use the backward algorithm.
Reduction to a projection on a convex set : Let y+(x, t) be the right extreme
characteristic corresponding to the solution u. Let

ρ(x) = y+(x, T ), x ∈ R,

then ρ is a non decreasing function and from (2.11) for a.e. x,

f ′(u(x, T )) =
x− ρ(x)

T
. (3.11)
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Since u(x, T ) = θf for x /∈ [A1 − MT,A2 + MT ], hence ρ(x) = x for x /∈ [A1 −
MT,A2 +MT ] and

J(u0) =

∞
∫

−∞

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

=

A2+MT
∫

A1−MT

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx.

(3.12)

Now define J̄ on B by

J̄(ρ) =

∞
∫

−∞

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx. (3.13)

Then from (3.11) to (3.13) we have

inf
ρ∈B

J̄(ρ) ≤ inf
u0∈A

J(u0). (3.14)

Lemma 3.3. Let

B̃ = {ρ ∈ B : ρ(x) = x if x /∈ [min(C1, ρ(C1)),max(C2, ρ(C2))]}.

Then

inf
ρ∈B

J̄(ρ) = inf
ρ̃∈B̃

J̄(ρ̃). (3.15)

Proof. Since B̃ ⊂ B, hence

inf
ρ̃∈B̃

J̄(ρ̃) ≥ inf
ρ∈B

J̄(ρ). (3.16)

Let ρ ∈ B and define ρ̃ by

ρ̃(x) =















x if x /∈ [min(C1, ρ(C1)),max(C2, ρ(C2))],
ρ(C1) if min(C1, ρ(C1)) ≤ x < C1

ρ(x) if x ∈ [C1, C2]
ρ(C2) if C2 < x < max(C2, ρ(C2)).

Then

J̄(ρ̃) =

max(C2,ρ(C2))
∫

min(C1,ρ(C1))

∣

∣

∣

∣

x− ρ̃(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

=

C2
∫

C1

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx+

C1
∫

min(C1,ρ(C1))

∣

∣

∣

∣

x− ρ(C1)

T

∣

∣

∣

∣

2

dx

+

max(C2,ρ(C2))
∫

C2

∣

∣

∣

∣

x− ρ(C2)

T

∣

∣

∣

∣

2

dx.
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Since ρ(x) ≤ ρ(C1) for x ∈ (min(C1, ρ(C1)), C1) and ρ(x) ≥ ρ(C2) for x ∈ (C2,
max(C2, ρ(C2))), hence

J̄(ρ̃) ≤

C2
∫

C1

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

+

C1
∫

min(C1,ρ(C1))

∣

∣

∣

∣

x− ρ(x)

T

∣

∣

∣

∣

2

dx+

max(C2,ρ(C2))
∫

C2

∣

∣

∣

∣

x− ρ(x)

T

∣

∣

∣

∣

2

dx

≤

∞
∫

−∞

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

= J̄(ρ).

Hence

inf
ρ̃∈B̃

J̄(ρ̃) ≤ inf
ρ∈B

J(ρ).

This proves the Lemma.

Lemma 3.4. Let

C̃1 = C1 −
(

3T 2
(

‖f ′(k)‖22 + 1
))1/3

C̃2 = C2 +
(

3T 2
(

‖f ′(k)‖22 + 1
))1/3

B̃0 = {ρ ∈ B̃ : ρ(x) = x for x /∈ [C̃1, C̃2]},

then there exists an unique ρ̃0 ∈ B̃0 such that

J̄(ρ̃0) = min
ρ̃∈B̃0

J̄(ρ̃) = min
ρ∈B

J̄(ρ).

Proof. Let ρ̃k ∈ B̃ be such that

lim
k→∞

J̄(ρ̃k) = inf
h̃∈B̃

J̄(ρ̃).

Let η(x) = x for all x ∈ R, then η ∈ B̃ and

‖f ′(k)‖22 = J̄(η) ≥ lim
k→∞

J̄(ρ̃k)

≥ lim
k→∞











C1
∫

min(C1,ρk(C1))

∣

∣

∣

∣

x− ρk(x)

T

∣

∣

∣

∣

2

dx+

max(C2,ρk(C2))
∫

C2

∣

∣

∣

∣

x− ρ̃k(x)

T

∣

∣

∣

∣

2

dx











.

Since

ρ̃k(x) =

{

ρ̃k(C1) if x ∈ (min(C1, ρ̃k(C1)), C1),
ρ̃k(C2) if x ∈ (C2,max(C2, ρk(C2)))
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and hence there exists k0 > 0 such that for all k ≥ k0,

3T 2
(

‖f ′(k)‖22 + 1
)

≥ 3T 2

C1
∫

min(C1,ρ̃k(C1))

(

x− ρ̃k(C1)

T

)2

dx

+ 3T 2

max(C2,ρ̃k(C2))
∫

C2

(

x− ρ̃k(C2)

T

)2

= (C1 −min(C1, ρ̃k(C1)))
3
+ (max(C2, ρ̃k(C2))− C2)

3
.

Hence

min(C1, ρ̃k(C1)) ≥ C̃1

max(C2, ρ̃k(C2)) ≤ C̃2.

This implies that ρ̃k(C1), ρ̃k(C2) ∈ [C̃1, C̃2] and hence

inf
ρ̃∈B̃

J̄(ρ̃) = inf
ρ̃∈B̃0

J̄(ρ̃).

Let

H = L2(C̃1, C̃2), K = {ρ ∈ B̃ : C̃1 ≤ min(C1, ρ(C1)) ≤ max(C2, ρ(C2)) ≤ C̃2}.

Then K is a closed convex set in H and hence from the projection Theorem in a
Hilbert space, there exists an unique ρ̃0 ∈ K such that

J̄(ρ̃0) = min
ρ̃∈K

J̄(ρ̃).

This proves the Lemma.
In order to prove the main results, we need the following backward algorithm. In

[1] we have generalized this to several other cases where it play an imprtant role in
proving the exact controllability. This construction is not unique and one can have
infinitely many datas which gives the same solution u(·, T ) (see [1]).
Lemma 3.5.(Backward algorithm): Let C̃1 < C̃2, ρ̃0 be as in Lemma 3.4. Then
there exists an ũ0 ∈ L∞(R), ũ ∈ L∞(R×R+) such that ũ is the solution of (1.1) with
initial data ũ0. Moreover ũ satisfies

f ′(ũ(x, T )) =
x− ρ̃0

T

and the construction of ũ0, ũ are algorithmimic and easy to compute.
Proof. Without loss of generality we can assume that ρ̃0 : [C̃1, C̃2] → [C̃1, C̃2] is a
non decreasing left continuous function with ρ̃0(C̃i) = C̃i for i = 1, 2.
Step 1 : Discretization of ρ̃0 : Let n ≥ 1 and C̃1 = y0 < y1 < · · · < yn = C̃2 be such
that |yi− yi+1| ≤ 1/n. From the left continuity, define C̃1 = x0 ≤ x1 ≤ · · · ≤ xn = C̃2

by ρ̃−1
0 [y0, yi] = [x0, xi] and

ρn(x) =

{

x if x /∈ [C̃1, C̃2]

y0χ[y0,y1](x) +
∑n−1

i=1 yiχ(yi,yi+1](x) if x ∈ [C̃1, C̃2].
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Then for x ∈ R,

|ρn(x)− ρ̃0(x)| ≤ 1/n.

Step 2 : Define ai,n, bi,n, si,n, ai,n(t), bi,n(t), si,n(t) (See Figure 3.1) by

f ′(ai,n) =
yi − xi

T

f ′(bi,n) =
yi − xi+1

T

f ′(si,n) =
f(bi,n)− f(ai,n)

bi,n − si,n

ai,n(t) = yi,n + f ′(ai,n)(t− T )

bi,n(t) = yi,n + f ′(bi,n)(t− T )

si,n(t) = yi,n + f ′(si,n)(t− T ).

Now f ′(ai,n) = yi−xi

T ≥ yi−xi+1

T = f ′(bi,n) and f ′(bi,n) = yi−xi+1

T ≤ yi+1−xi+1

T =
f ′(ai+1,n). Hence bi,n ≤ min{ai,n, ai+1,n} and from convexity ai,n ≥ si,n ≥ bi,n.
Therefore for all 0 ≤ t ≤ T, ai,n(t) ≤ si,n(t) ≤ bi,n(t). Let si,n(0) = αi and for
(x, t) ∈ R× [0, T ], define

f ′(un(x, t)) =







f ′(ai,n) if ai,n(t) < x < si,n(t)
f ′(bi,n) if si,n(t) < x < bi,n(t)
xi+1−y

t if bi,n(t) < x < ai+1,n(t).

Since a0,n = an,n = θf , we have

f ′(un(x, t)) = 0 if x /∈ [C̃1, C̃2], 0 ≤ t ≤ T.

Then clearly un satisfies

unt
+ f(un)x = 0 R× (0, T )

f ′(un(x, t)) =

{

x−ρn(x)
t if C̃1 < x < C̃2

0 if x /∈ [C̃1, C̃2].

Also

un(x, 0) =







ai,n if ai,n < x < si,n(0),
bi,n if si,n(0) < x < ai+1,n

θf if x /∈ [C̃1, C̃2].

Hence

|f ′(un(x, 0))| ≤ Max{|f ′(ai,n)|, |f
′(bi,n)|}

≤
|C̃2 − C̃1|

T

and

TV (f ′(un(x, 0))) ≤
∑

|f ′(ai,n)− f ′(bi,n)|+
∑

|f ′(bi,n)− f ′(ai+1,n)|

=
∑

∣

∣

∣

∣

xi − xi+1

T

∣

∣

∣

∣

+
∑

∣

∣

∣

∣

yi − yi+1

T

∣

∣

∣

∣

≤
2(C̃2 − C̃1)

T
.
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x1 xi xi+1

y1
yi

s i
(t

,P
)

a i(
t,P

)

b
i(t

,P
)

a i+
1
(t

,P
)

ai(P) bi(p)

(P)α
i

t=T

y i+1

t=0
C2C1

~ ~θ θ
ff

C
~

2C1
~

Fig. 3.1.

Hence from Helley’s theorem, there exist a subsequence still denoted {f ′(un(·, 0))}
converges to a function z pointwise. Let ũ0(x) = (f ′)−1(z(x)), hence un(x, 0) →
ũ0(x). From super linear growth, {un(·, 0)} are uniformly bounded, hence ũ0 ∈ L∞(R).
Further more by construction, un satisfies

f ′(un(x, T )) =
x− ρn(x)

T
.

Let ũ be the solution of (1.1) with ũ0 as its initial data. From the dominated con-
vergence Theorem, un(·, 0) → ũ0 in L1

loc(R), hence from L1 contractivity, un(x, T ) →
ũ(x, T ) a.e. x ∈ R. Therefore for a.e. x ∈ R,

f ′(ũ(x, T )) =
x− ρ̃0(x)

T
.

Hence the Lemma.

Proof of Theorem 3.2. From Lemma 3.5, there exists an initial data ũ0 and the
corresponding solution ũ such that

f ′(ũ(x, T )) =
x− ρ̃0(x)

T
if x ∈ [C̃1, C̃2],

ũ0(x) = θf if x /∈ [C̃1, C̃2].

Since f ′(a1) = f ′(a2) = 0. Therefore u0 ∈ A and hence from (3.14)

inf
w0∈A

J(w0) ≤ J(ũ0) = J̄(ρ̃0) = inf
ρ∈B

J̄(ρ) ≤ inf
w0∈A

J(w0).

Hence ũ0 is an optimal solution to the problem and this proves the Theorem.
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4. Generalization. We extend the optimal control problem for the case when
the target function can take arbitrary values out side a compact set and we generalized
to initial and boundary value problem. Also same method works for Lp cost functional.
Remark 4.1 In the optimal Control Problem, condition on k can be relaxed and is
as follows. We can assume that for x 6∈ (C1, C2)

f ′(k(x)) =

{

α1 if x < C1,
α2 if x > C2.

Then the class B is defined as follows. Let ρ ∈ L∞
loc(R) be such that

(i). ρ is non decreasing function
(ii). There exist A1 < A2 such that

ρ(x) =

{

x− α1T if x < A1,
x− α2T if x > A2.

Let

B = {ρ; ρ satisfying (i) and (ii) }.

Then by the similar arguments one can show that there exist a unique ρ̃ ∈ B
such that

J(ρ̃) = inf
ρ∈B

J(ρ). (4.1)

Then using the backward algorithm as earlier we get the corresponding solu-
tion for the optimal control problem which can be compute easily.

Remark 4.2 In view of the controllability of initial and boundary value problems [1],
we can extend the optimal controllability for the boundary value problem. To illustrate
this, let us consider one sided initial boundary value problem. Let 0 < T, 0 < C, and
k ∈ L2

loc(R) such that k(x) = θf for x large. Let u0 ∈ L∞, b ∈ L∞(0, T ) and u be the
solution of (1.2) in Ω = (0,∞)× (0, T ) with

u(t, 0) = b(t) 0 < t < T,

u(x, 0) = u0(x) x > 0,

J(u0, b) =

∫

R

|f ′(u(x, T )− f ′(k(x))|2dx.

In order to make integral finite assume u0(x) = θf for x large. Hence define

A = {(u0, b) ∈ L∞(R)× L∞(0, T );u0(x) = θf , for large x}.

Then optimal control problem is to find (ũ0, b̃) such that

J(ũ0, b̃) = inf
(u0,b)∈A

J(u0, b). (4.2)

From Joseph-Gowda [9] and Lax - Olienik [7] formulas for any (u0, b) ∈ A. there exist
0 ≤ C1 ≤ C and ρ1 : [0, C1] → [0, T ] a non increasing function and ρ2 : [C1, C] → R

a non decreasing function such that
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(i). ρ2(x) = x for x large and

f ′(u(x, T )) =
x− ρ2(x)

T
if x ∈ (C1, C).

(ii). f ′(u(x, t)) = x
T−ρ1(x)

, 0 < x < C1 and

∣

∣

∣

∣

x

T − ρ(x)

∣

∣

∣

∣

≤ ∧,

where ∧ is a constant depending on the Lipschitz constant of f on [−‖b‖∞, ‖b‖∞].
Therefore

J(u0, b) =

C1
∫

0

∣

∣

∣

∣

x

T − ρ1(x)
− f ′(k(x))

∣

∣

∣

∣

2

dx+

C
∫

C1

∣

∣

∣

∣

x− ρ2(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

= J1(ρ1, C1) + J2(ρ2, C1)

= J(ρ1, ρ2, C1)

m = inf
u0,b

J(u0, b) = inf
ρ1,ρ2,C1

{J1(ρ1, C1) + J2(ρ2, C1)}.

Let (ρ1,k, ρ2,k, C1,k) be a minimizing sequence. As in the previous case, it follows
that there exists A > 0, such that ρ2,k(x) = x for all k and x ≥ A. Hence {ρik} are
uniformly bounded monotone functions, therefore from Helly’s theorem there exist a
subsequence still denoted by {ρ1,k, ρ2,k, Ck} converges (ρ̃1, ρ̃2, C̃) for all x ∈ [0, C].

Hence by Fatau’s Lemma (ρ̃1, ρ̃2, C̃) is an optimal solution and from [1] we can con-
struct the solution (ũ0, b̃).

If C̃ is known, then ρ̃1 and ρ̃2 can be obtained from the L2 - projection as follows:

Let η1(x) =
x

T−ρ1(x)
then x

η1
≤ T, η1(x)

x is a non increasing right continuous function.

Let η : [0, C] → R be function such that

1. η(x)
x is non increasing right, continuous function in [0, C̃] and x

η(x) ≤ T in

[0, C̃].
2. η|(C̃,C) is non decreasing function.

Let

KN = {η; η satisfying (1) , (2) and 0 ≤ η ≤ N}.

Then KN is a closed convex set in L2((0, C)) and let η̃k ∈ KN such that

J(η̃) = inf
η∈KN

J(η) = inf{

C̃
∫

0

|η(x)− f ′(k(x))|2dx+

C
∫

C̃

|
x− η(x)

T
− f ′(k(x))|2dx}.

Then for large η, if we define

ρ̃1(x) = T −
x

η̃(x)
for x ∈ (0, C̃)

ρ̃2, (x) = η̃(x) for x ∈ (C̃1, C)

then (ρ̃1, ρ̃2, C̃) is the optimal solution.



12 ADIMURTHI, SHYAM SUNDAR GHOSHAL AND VEERAPPA GOWDA

Remark 4.3 Let 1 < p < ∞ and k be a measurable function satisfying (3.5) and
f ′(k) ∈ Lp(R). Let u0 ∈ A and define the cost functional

Jp(u0) =

∫

R

|f ′(u(x, T ))− f ′(k(x))|pdx.

Then from Lax-Oleinik formula, there exists a ρ ∈ B such that

Jp(u0) = J̄p(ρ) =

∫

R

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

p

dx

and

inf
u0∈A

Jp(u0) = inf
ρ∈B

J̄p(ρ).

Then as in Lemma 3.3

inf
ρ∈B

J̄p(ρ) = inf
ρ∈B̃0

J̄p(ρ).

and B̃0 ⊂ Lp([C̃1, C̃2]) is a closed convex set. Hence from uniform convexity of Lp

spaces. there exists a unique ρ̃0 ∈ B̃0 such that

J̄p(ρ̃0) = inf
u0∈B̃0

J̄p(ρ).
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