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 for the Burgers equation. Our approach is simple and based on the explicit formulas of Hopf and Lax-Olenik.

Let u 0 ∈ L ∞ (R) and consider the scalar conservation law

u t + f (u) x = 0, if x ∈ R, t > 0, u(x, 0) = u 0 (x). (1.2) 
In general, (1.2) does not admit classical solutions and hence we look for weak solutions. This problem was well studied and showed that (1.2) admits a unique weak solution satisfying Lax-Olenik-Kruzkov entropy conditions. In the sequel we mean u a solution of (1.2) if it is a weak solution satisfying entropy condition.

In [START_REF] Castro | Optimal control and vanishing viscosity for the Burgers equations[END_REF] the following optimal control problem associated to (1.2) had been considered. Let k ∈ L 2 loc (R) be a target function and A ⊂ L ∞ (R), a set of admissible controls. Let u be the associated solution of (1.2) with initial data u 0 and T > 0. Define the cost functional J on A by

J(u 0 ) = ∞ -∞ |u(x, T ) -k(x)| 2 dx. (1.3) 
Then the optimal control problem is to find an u 0 ∈ A such that J(u 0 ) = min wo∈A J(w 0 ). (1.4) Under a suitable conditions on k and A, they prove that u 0 exists. In general u 0 is not unique. The basic problem related to this is "to capture a minimizer". It is a very hard problem because the cost functional J is highly nonlinear, non differentiable and non convex. For the Burger's equation, in [START_REF] Castro | Optimal control and vanishing viscosity for the Burgers equations[END_REF], [START_REF] Castro | Flux identification for 1-d scalar conservation laws in the presence of shocks[END_REF] they have proposed a numerical scheme called "alternating descent direction" by using the linearization technique developed in [START_REF] Bressan | A maximum principle for optimally controlled systems of conservation laws[END_REF], [START_REF] Bardos | Derivatives and control in presence of shocks[END_REF]. In that work, convergence analysis is completely open.

In this paper, we tackle this problem in a completely different way. In view of the non linearity, we modify the cost function J to J so that the optimal control problem reduces to the standard convex optimization problem via Lax-Oleinik explicit formula. Then we use the backward algorithm introduced in [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF], [START_REF] Adimurthi | Structure of the entropy solution of a conservation law with strict convex flux[END_REF] to obtain an optimal solution. The novelty of this method is that it is constructive and easy to derive a numerical scheme to capture an optimal solution.

Authors would like to thank Enrique Zuazua for providing valuable references.

In the forthcoming paper, these results have been extended to conservation laws with discontinuous flux.

2.

Preliminaries. Before stating the main results, let us recall Hopf, Lax-Oleinik explicit formulas (see [START_REF] Evans | Partial differential equations[END_REF]).

Let u 0 ∈ L ∞ (R) and f be as in the introduction. let f * denote its convex dual defined by

f * (p) = sup q {pq -f * (q)} (2.1)
then f * is C 1 , superlinear growth and satisfies

f (p) = sup q {pq -f * (q)}, f * (f ′ (p)) = pf ′ (p) -f (p), f * ′ = f ′-1 . (2.2) Let b ∈ R and define v 0 by v 0 (x) = x b u 0 (y)dy, (2.3) 
and the associated value function v is given by

v(x, t) = inf y v 0 (y) + tf * x -y t .
(2.4) Definition 2.1 (Characteristic): Define the characteristic set ch(x, t), extreme characteristics y ± (x, t) by ch(x, t) = {y : y is a minimizer in (2.4)} (2.5)

y -(x, t) = inf{y : y is in ch(x, t)} (2.6) y + (x, t) = sup{y : y is in ch(x, t)}.
(2.7)

Then we have the following theorem due to Hopf, Lax-Oleinik ( see [START_REF] Evans | Partial differential equations[END_REF]). Theorem 2.2. (1). v is a uniformly Lipschitz continuous function with Lipschitz constant depending only on u 0 ∞ , f * and satisfies the Hamilton-Jacobi equation

v t + f (v x ) = 0 x ∈ R, t > 0, (2.8) v(x, 0) = v 0 (x) (2.9)
in the sense of viscosity.

(2). ch(x, t) = φ and there exists M > 0 depending only on u 0 ∞ and f * such that for all (x, t) ∈ R × R + , y ∈ ch(x, t)

x -y t ≤ M.

(2.10)

(3). For each time t, x → y ± (x, t) are non decreasing functions and for a.e. x, y + (x, t) = y -(x, t).

(4). Let u = ∂v ∂x , then u is the solution of (1.2) such that for a.e. x, t > 0,

f ′ (u(x, t)) = x -y + (x, t) t = x -y -(x, t) t . (2.11) Furthermore u(x, t) = u 0 (y ± (x, t)) (2.12)
if x is a point of differentiability of y ± (x, t) and y ± (x, t) is a point of differentiability for v 0 .

As an immediate consequence of this theorem, we have the following Lemma on finite speed of propagation.

Lemma 2.3. Let A 1 < A 2 , u -, u + ∈ R, ū0 ∈ L ∞ (A 1 , A 2 ). Define u 0 by u 0 (x) =    u - if x < A 1 , ū0 (x) if A 1 < x < A 2 , u + if x > A 2 .
(2.13)

Then for t > 0, the solution u satisfies

u(x, t) = u -if x < A 1 -M t, u + if x > A 2 + M t. (2.14) Proof. Let t > 0, then from (2.10), if x < A 1 -M t, then -M ≤ x -y ± (x, t) t < A 1 -M t -y ± (x, t) t .
Hence y ± (x, t) < A 1 . Since v 0 is differentiable in (-∞, A 1 ) and hence from (2.12), at the differentiable point x of y ± (x, t), we have

u(x, t) = u 0 (y ± (x, t)) = u -.
Similarly if x > A 2 + M t, then for a.e. x, u(x, t) = u + . This proves (2.14) and hence the Lemma.

Main results.

Let

f (θ f ) = min θ∈R f (θ). (3.1) Define 1.
Admissible sets A and B :

A = {u 0 ∈ L ∞ (R) : u 0 (x) = θ f outside a compact set} (3.2) B = {ρ ∈ L ∞ loc (R) : (i) ρ is a non decreasing function (ii) ρ(x) = x outside a compact set}. (3.3)
For each N > 0, define

B N = {ρ ∈ B : ρ(x) = x for |x| > N }. (3.4) 2. Target function k : Let I = (C 1 , C 2 )
and k be a measurable function such that

k(x) = θ f if x / ∈ (C 1 , C 2 ), (3.5) 
f ′ (k(x)) ∈ L 2 (I). (3.6)
3. Cost function J : Let k be a target function and u 0 ∈ A. Let u(x, t) be the corresponding solution of (1.2) with initial data u 0 . Let T > 0 and define the modified cost function

J(u 0 ) = R |f ′ (u(x, T )) -f ′ (k(x))| 2 dx. (3.7)
Then we have the following proposition. Proposition 3.1. J is well defined.

Proof. Choose A 1 < C 1 < C 2 < A 2 such that u 0 (x) = θ f for x / ∈ (A 1 , A 2 )
. Then from Lemma (2.3), there exists an M > 0 depending only on u 0 ∞ and f * such that

u(x, T ) = θ f for x / ∈ [A 1 -M T, A 2 + M T ] (3.8) and hence f ′ (u(x, T )) = f ′ (θ f ) = 0. Hypothesis on k implies for x / ∈ [C 1 , C 2 ] f ′ (k(x)) = f ′ (θ f ) = 0.
Hence

J(u 0 ) = A2+M T A1-M T |f ′ (u(x, T )) -f ′ (k(x))| 2 dx. (3.9)
This proves the proposition.

Optimal control problem : Given A, k as above, find a ũ0 ∈ A such that

J(ũ 0 ) = min u0∈A J(u 0 ) (3.10)
and if the minimizer exist, then device a scheme to capture it. Then we have the following main result. Theorem 3.2. There exists a minimizer for (3.10) which can be captured by using the standard convex optimization problem in a Hilbert space and backword algorithm.

This Theorems has been generalized to L p cost functional (see section 4).

In order to prove this Theorem, first we reduce the problem to a standard projection Theorem in a Hilbert space and then use the backward algorithm. Reduction to a projection on a convex set : Let y + (x, t) be the right extreme characteristic corresponding to the solution u. Let

ρ(x) = y + (x, T ), x ∈ R,
then ρ is a non decreasing function and from (2.11) for a.e. x,

f ′ (u(x, T )) = x -ρ(x) T . (3.11) Since u(x, T ) = θ f for x / ∈ [A 1 -M T, A 2 + M T ], hence ρ(x) = x for x / ∈ [A 1 - M T, A 2 + M T ] and J(u 0 ) = ∞ -∞ x -ρ(x) T -f ′ (k(x)) 2 dx = A2+M T A1-M T x -ρ(x) T -f ′ (k(x)) 2 dx.
(3.12)

Now define J on B by

J(ρ) = ∞ -∞ x -ρ(x) T -f ′ (k(x)) 2 dx. (3.13)
Then from (3.11) to (3.13) we have

inf ρ∈B J(ρ) ≤ inf u0∈A J(u 0 ). (3.14) Lemma 3.3. Let B = {ρ ∈ B : ρ(x) = x if x / ∈ [min(C 1 , ρ(C 1 )), max(C 2 , ρ(C 2 ))]}.
Then 

inf ρ∈B J(ρ) = inf ρ∈ B J(ρ). ( 3 
(x) =        x if x / ∈ [min(C 1 , ρ(C 1 )), max(C 2 , ρ(C 2 ))], ρ(C 1 ) if min(C 1 , ρ(C 1 )) ≤ x < C 1 ρ(x) if x ∈ [C 1 , C 2 ] ρ(C 2 ) if C 2 < x < max(C 2 , ρ(C 2 )). Then J(ρ) = max(C2,ρ(C2)) min(C1,ρ(C1)) x -ρ(x) T -f ′ (k(x)) 2 dx = C2 C1 x -ρ(x) T -f ′ (k(x)) 2 dx + C1 min(C1,ρ(C1)) x -ρ(C 1 ) T 2 dx + max(C2,ρ(C2)) C2 x -ρ(C 2 ) T 2 dx. Since ρ(x) ≤ ρ(C 1 ) for x ∈ (min(C 1 , ρ(C 1 )), C 1 ) and ρ(x) ≥ ρ(C 2 ) for x ∈ (C 2 , max(C 2 , ρ(C 2 ))), hence J(ρ) ≤ C2 C1 x -ρ(x) T -f ′ (k(x)) 2 dx + C1 min(C1,ρ(C1)) x -ρ(x) T 2 dx + max(C2,ρ(C2)) C2 x -ρ(x) T 2 dx ≤ ∞ -∞ x -ρ(x) T -f ′ (k(x)) 2 dx = J(ρ). Hence inf ρ∈ B J(ρ) ≤ inf ρ∈B J(ρ).
This proves the Lemma. Lemma 3.4.

Let C1 = C 1 -3T 2 f ′ (k) 2 2 + 1 1/3 C2 = C 2 + 3T 2 f ′ (k) 2 2 + 1 1/3 B0 = {ρ ∈ B : ρ(x) = x for x / ∈ [ C1 , C2 ]},
then there exists an unique ρ0 ∈ B0 such that

J(ρ 0 ) = min ρ∈ B0 J(ρ) = min ρ∈B J(ρ).
Proof. Let ρk ∈ B be such that

lim k→∞ J(ρ k ) = inf h∈ B J(ρ). Let η(x) = x for all x ∈ R, then η ∈ B and f ′ (k) 2 2 = J(η) ≥ lim k→∞ J(ρ k ) ≥ lim k→∞      C1 min(C1,ρ k (C1)) x -ρ k (x) T 2 dx + max(C2,ρ k (C2)) C2 x -ρk (x) T 2 dx      . Since ρk (x) = ρk (C 1 ) if x ∈ (min(C 1 , ρk (C 1 )), C 1 ), ρk (C 2 ) if x ∈ (C 2 , max(C 2 , ρ k (C 2 )))
and hence there exists k 0 > 0 such that for all k ≥ k 0 ,

3T 2 f ′ (k) 2 2 + 1 ≥ 3T 2 C1 min(C1,ρ k (C1))
x -ρk (C 1 )

T 2 dx + 3T 2 max(C2,ρ k (C2)) C2 x -ρk (C 2 ) T 2 = (C 1 -min(C 1 , ρk (C 1 ))) 3 + (max(C 2 , ρk (C 2 )) -C 2 ) 3 . Hence min(C 1 , ρk (C 1 )) ≥ C1 max(C 2 , ρk (C 2 )) ≤ C2 .
This implies that ρk (C 1 ), ρk (C 2 ) ∈ [ C1 , C2 ] and hence

inf ρ∈ B J(ρ) = inf ρ∈ B0 J(ρ). Let H = L 2 ( C1 , C2 ), K = {ρ ∈ B : C1 ≤ min(C 1 , ρ(C 1 )) ≤ max(C 2 , ρ(C 2 )) ≤ C2 }.
Then K is a closed convex set in H and hence from the projection Theorem in a Hilbert space, there exists an unique ρ0 ∈ K such that J(ρ 0 ) = min ρ∈K J(ρ).

This proves the Lemma.

In order to prove the main results, we need the following backward algorithm. In [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF] we have generalized this to several other cases where it play an imprtant role in proving the exact controllability. This construction is not unique and one can have infinitely many datas which gives the same solution u(•, T ) (see [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF]). Lemma 3.5.(Backward algorithm): Let C1 < C2 , ρ0 be as in Lemma 3.4. Then there exists an ũ0 ∈ L ∞ (R), ũ ∈ L ∞ (R × R + ) such that ũ is the solution of (1.1) with initial data ũ0 . Moreover ũ satisfies

f ′ (ũ(x, T )) =
x -ρ0 T and the construction of ũ0 , ũ are algorithmimic and easy to compute. Proof. Without loss of generality we can assume that ρ0 : [ C1 , C2 ] → [ C1 , C2 ] is a non decreasing left continuous function with ρ0 ( Ci ) = Ci for i = 1, 2.

Step 1 : Discretization of ρ0 : Let n ≥ 1 and C1 = y 0 < y

1 < • • • < y n = C2 be such that |y i -y i+1 | ≤ 1/n. From the left continuity, define C1 = x 0 ≤ x 1 ≤ • • • ≤ x n = C2 by ρ-1 0 [y 0 , y i ] = [x 0 , x i ] and ρ n (x) = x if x / ∈ [ C1 , C2 ] y 0 χ [y0,y1] (x) + n-1 i=1 y i χ (yi,yi+1] (x) if x ∈ [ C1 , C2 ]. Then for x ∈ R, |ρ n (x) -ρ0 (x)| ≤ 1/n.
Step 2 : Define a i,n , b i,n , s i,n , a i,n (t), b i,n (t), s i,n (t) (See Figure 3.1) by

f ′ (a i,n ) = y i -x i T f ′ (b i,n ) = y i -x i+1 T f ′ (s i,n ) = f (b i,n ) -f (a i,n ) b i,n -s i,n a i,n (t) = y i,n + f ′ (a i,n )(t -T ) b i,n (t) = y i,n + f ′ (b i,n )(t -T ) s i,n (t) = y i,n + f ′ (s i,n )(t -T ). Now f ′ (a i,n ) = yi-xi T ≥ yi-xi+1 T = f ′ (b i,n ) and f ′ (b i,n ) = yi-xi+1 T ≤ yi+1-xi+1 T = f ′ (a i+1,n ). Hence b i,n ≤ min{a i,n , a i+1,n } and from convexity a i,n ≥ s i,n ≥ b i,n . Therefore for all 0 ≤ t ≤ T, a i,n (t) ≤ s i,n (t) ≤ b i,n (t). Let s i,n (0) = α i and for (x, t) ∈ R × [0, T ], define f ′ (u n (x, t)) =    f ′ (a i,n ) if a i,n (t) < x < s i,n (t) f ′ (b i,n ) if s i,n (t) < x < b i,n (t) xi+1-y t if b i,n (t) < x < a i+1,n (t).
Since a 0,n = a n,n = θ f , we have

f ′ (u n (x, t)) = 0 if x / ∈ [ C1 , C2 ], 0 ≤ t ≤ T.
Then clearly u n satisfies

u nt + f (u n ) x = 0 R × (0, T ) f ′ (u n (x, t)) = x-ρn(x) t if C1 < x < C2 0 if x / ∈ [ C1 , C2 ]. Also u n (x, 0) =    a i,n if a i,n < x < s i,n (0), b i,n if s i,n (0) < x < a i+1,n θ f if x / ∈ [ C1 , C2 ]. Hence |f ′ (u n (x, 0))| ≤ Max{|f ′ (a i,n )|, |f ′ (b i,n )|} ≤ | C2 -C1 | T and T V (f ′ (u n (x, 0))) ≤ |f ′ (a i,n ) -f ′ (b i,n )| + |f ′ (b i,n ) -f ′ (a i+1,n )| = x i -x i+1 T + y i -y i+1 T ≤ 2( C2 -C1 ) T . x 1 x i x i+1 y 1 y i s i (t, P) a i (t, P) b i ( t ,P ) a i+ 1 (t ,P ) a i (P) b i (p) (P) α i t=T y i+1 t=0 C 2 C 1 ~θ θ f f C ~2 C 1 ~Fig. 3.1.
Hence from Helley's theorem, there exist a subsequence still denoted {f ′ (u n (•, 0))} converges to a function z pointwise. Let ũ0 (x) = (f ′ ) -1 (z(x)), hence u n (x, 0) → ũ0 (x). From super linear growth, {u n (•, 0)} are uniformly bounded, hence ũ0 ∈ L ∞ (R). Further more by construction, u n satisfies

f ′ (u n (x, T )) = x -ρ n (x) T .
Let ũ be the solution of (1.1) with ũ0 as its initial data. From the dominated convergence Theorem, u n (•, 0) → ũ0 in L 1 loc (R), hence from L 1 contractivity, u n (x, T ) → ũ(x, T ) a.e. x ∈ R. Therefore for a.e. x ∈ R,

f ′ (ũ(x, T )) = x -ρ0 (x) T .
Hence the Lemma. Proof of Theorem 3.2. From Lemma 3.5, there exists an initial data ũ0 and the corresponding solution ũ such that

f ′ (ũ(x, T )) = x -ρ0 (x) T if x ∈ [ C1 , C2 ], ũ0 (x) = θ f if x / ∈ [ C1 , C2 ]. Since f ′ (a 1 ) = f ′ (a 2 ) = 0. Therefore u 0 ∈ A and hence from (3.14) inf w0∈A J(w 0 ) ≤ J(ũ 0 ) = J(ρ 0 ) = inf ρ∈B J(ρ) ≤ inf w0∈A J(w 0 ).
Hence ũ0 is an optimal solution to the problem and this proves the Theorem.

Generalization.

We extend the optimal control problem for the case when the target function can take arbitrary values out side a compact set and we generalized to initial and boundary value problem. Also same method works for L p cost functional. Remark 4.1 In the optimal Control Problem, condition on k can be relaxed and is as follows. We can assume that for x ∈ (C 1 , C 2 )

f ′ (k(x)) = α 1 if x < C 1 , α 2 if x > C 2 .
Then the class B is defined as follows. Let ρ ∈ L ∞ loc (R) be such that (i). ρ is non decreasing function (ii). There exist

A 1 < A 2 such that ρ(x) = x -α 1 T if x < A 1 , x -α 2 T if x > A 2 .
Let B = {ρ; ρ satisfying (i) and (ii) }.

Then by the similar arguments one can show that there exist a unique ρ ∈ B such that

J(ρ) = inf ρ∈B J(ρ). (4.1) 
Then using the backward algorithm as earlier we get the corresponding solution for the optimal control problem which can be compute easily. Remark 4.2 In view of the controllability of initial and boundary value problems [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF], we can extend the optimal controllability for the boundary value problem. To illustrate this, let us consider one sided initial boundary value problem. Let 0 < T, 0 < C, and k ∈ L 2 loc (R) such that k(x) = θ f for x large. Let u 0 ∈ L ∞ , b ∈ L ∞ (0, T ) and u be the solution of (1.2) in Ω = (0, ∞) × (0, T ) with

u(t, 0) = b(t) 0 < t < T, u(x, 0) = u 0 (x) x > 0, J(u 0 , b) = R |f ′ (u(x, T ) -f ′ (k(x))| 2 dx.
In order to make integral finite assume u 0 (x) = θ f for x large. Hence define

A = {(u 0 , b) ∈ L ∞ (R) × L ∞ (0, T ); u 0 (x) = θ f , for large x}.
Then optimal control problem is to find (ũ 0 , b) such that

J(ũ 0 , b) = inf (u0,b)∈A J(u 0 , b). ( 4 

.2)

From Joseph-Gowda [START_REF] Veerappa Gowda | Explicit formula for the solution of Convex conservation laws with boundary condition[END_REF] and Lax -Olienik 

f ′ (u(x, T )) = x -ρ 2 (x) T if x ∈ (C 1 , C). (ii). f ′ (u(x, t)) = x T -ρ1(x) , 0 < x < C 1 and x T -ρ(x) ≤ ∧,
where ∧ is a constant depending on the Lipschitz constant of

f on [-b ∞ , b ∞ ]. Therefore J(u 0 , b) = C1 0 x T -ρ 1 (x) -f ′ (k(x)) 2 dx + C C1 x -ρ 2 (x) T -f ′ (k(x)) 2 dx = J 1 (ρ 1 , C 1 ) + J 2 (ρ 2 , C 1 ) = J(ρ 1 , ρ 2 , C 1 ) m = inf u0,b J(u 0 , b) = inf ρ1,ρ2,C1 {J 1 (ρ 1 , C 1 ) + J 2 (ρ 2 , C 1 )}. Let (ρ 1,k , ρ 2,k , C 1,k
) be a minimizing sequence. As in the previous case, it follows that there exists A > 0, such that ρ 2,k (x) = x for all k and x ≥ A. Hence {ρ i k } are uniformly bounded monotone functions, therefore from Helly's theorem there exist a subsequence still denoted by {ρ

1,k , ρ 2,k , C k } converges (ρ 1 , ρ2 , C) for all x ∈ [0, C].
Hence by Fatau's Lemma (ρ 1 , ρ2 , C) is an optimal solution and from [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF] we can construct the solution (ũ 0 , b).

If C is known, then ρ1 and ρ2 can be obtained from the L 2 -projection as follows: Let η 1 (x) = Jp (ρ).

1 .

 1 Introduction. Let f : R → R be C 1 , strictly convex function having super linear growth. That is lim |u|→∞ f (u) |u| = ∞. (1.1)

  .15) Proof. Since B ⊂ B, hence inf ρ∈ B J(ρ) ≥ inf ρ∈B J(ρ). (3.16) Let ρ ∈ B and define ρ by ρ

[ 7 ]

 7 formulas for any (u 0 , b) ∈ A. there exist 0 ≤ C 1 ≤ C and ρ 1 : [0, C 1 ] → [0, T ] a non increasing function and ρ 2 : [C 1 , C] → R a non decreasing function such that (i). ρ 2 (x) = x for x large and

xT

  -ρ1(x) then x η1 ≤ T,η1(x) x is a non increasing right continuous function. Let η : [0, C] → R be function such that 1. η(x)x is non increasing right, continuous function in [0, C] andx η(x) ≤ T in [0, C]. 2. η| ( C,C) is non decreasing function. Let K N = {η; η satisfying (1) , (2) and 0 ≤ η ≤ N }. Then K N is a closed convex set in L 2 ((0, C)) and let ηk ∈ K N such that J(η) = inf η∈KN J(η) = inf{ C 0 |η(x) -f ′ (k(x))| 2 dx + C C | x -η(x) T -f ′ (k(x))| 2 dx}.Then for large η, if we defineρ1 (x) = T -x η(x) for x ∈ (0, C) ρ2 , (x) = η(x) for x ∈ ( C1 , C)then (ρ 1 , ρ2 , C) is the optimal solution.

Remark 4 . 3

 43 Let 1 < p < ∞ and k be a measurable function satisfying (3.5) and f ′ (k) ∈ L p (R). Let u 0 ∈ A and define the cost functionalJ p (u 0 ) = R |f ′ (u(x, T )) -f ′ (k(x))| p dx.Then from Lax-Oleinik formula, there exists a ρ ∈ B such thatJ p (u 0 ) = Jp (ρ) = R x -ρ(x) T -f ′ (k(x)) p dx and inf u0∈A J p (u 0 ) = inf ρ∈B Jp (ρ).Then as in Lemma 3.3inf ρ∈B Jp (ρ) = inf ρ∈ B0 Jp (ρ). and B0 ⊂ L p ([ C1 , C2 ]) is a closed convex set. Hence from uniform convexity of L p spaces. there exists a unique ρ0 ∈ B0 such that Jp (ρ 0 ) = inf u0∈ B0