
HAL Id: hal-00805313
https://hal.science/hal-00805313

Preprint submitted on 27 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARAS: FULLY ALGEBRAIC TWO-LEVEL DOMAIN
DECOMPOSITION PRECONDITIONING

TECHNIQUE WITH APPROXIMATION ON
COARSE INTERFACES

Thomas Dufaud, Tromeur-Dervout Damien

To cite this version:
Thomas Dufaud, Tromeur-Dervout Damien. ARAS: FULLY ALGEBRAIC TWO-LEVEL DOMAIN
DECOMPOSITION PRECONDITIONING TECHNIQUE WITH APPROXIMATION ON COARSE
INTERFACES. 2012. �hal-00805313�

https://hal.science/hal-00805313
https://hal.archives-ouvertes.fr

ARAS: FULLY ALGEBRAIC TWO-LEVEL DOMAIN DECOMPOSITION

PRECONDITIONING TECHNIQUE WITH APPROXIMATION ON COARSE

INTERFACES

THOMAS DUFAUD1 AND DAMIEN TROMEUR-DERVOUT1

1 UNIVERSITÉ DE LYON, UNIVERSITÉ LYON 1, CNRS, INSTITUT CAMILLE-JORDAN,

43, BOULEVARD DU 11 NOVEMBRE 1918, 69622 VILLEURBANNE, FRANCE

Abstract. This paper focuses on the development of a two-level preconditioner based on a fully algebraical en-

hancement of a Schwarz domain decomposition method. We consider the purely divergence of a Restricted Additive

Scwharz iterative process leading to the preconditioner developped by X.-C. Cai and M. Sarkis in SIAM Journal of

Scientific Computing, Vol. 21 no. 2, 1999. The convergence of vectorial sequence of traces of this process on the

artificial interface can be accelerated by an Aitken acceleration technique as proposed in the work of M. Garbey and

D. Tromeur-Dervout, in International Journal for Numerical Methods in Fluids, Vol. 40, no. 12,2002. We propose

a formulation of the Aitken-Schwarz technique as a preconditioning technique called Aitken-RAS 1. The Aitken ac-

celeration is performed in a reduced space to save computing or permit fully algebraic computation of the accelerated

solution without knowledge of the underlying equations. A convergence study of the Aitken-RAS preconditioner is

proposed also application on industrial problem.

Key words. Domain decomposition, Restricted Additive Schwarz preconditioner, Aitken-Schwarz method,

algebraic multilevel preconditioner;

1. Introduction. The convergence rate of a Krylov method such as GCR and GMRES,

developed by Einsenstat & al [18], to solve a linear system Au = f, A = (aij) ∈ Rm×m, u ∈
Rm, b ∈ Rm, depends on the matrix eigenvalues distribution. They derived the convergence

rate of the GCR and GMRES methods as for the GCR:

||ri||2 ≤ [1−
λmin(M)2

λmin(M)λmax(M) + ρ(R)2
]i/2||r0||2 ≤ [1−

1

κ(M)
]i/2||r0||2 (1.1)

where M = (A+At)/2 and R = (A−At)/2. The GMRES method is mathematically equiv-

alent to the ORTHORES algorithm developed by Young and Cea [40]. Its convergence rate

follows the same formula as (1.1) if A is positive real. Otherwise when A is diagonalisable

A = XΛX−1 , the convergence of the GMRES method depends on the distribution of the

eigenvalues and the condition number κ(X) as follows. Let λ1, . . . , λµ be the eigenvalues of

A with a non-positive real part, and let Λµ1, . . . , λn those with a positive real part belonging

to the circle centred in C > 0 with a radius R with C > R. Then the GMRES convergence

rate can be written as:

||ri1||2 ≤ κ(X)

[

D

d

]µ [
R

C

]i−µ

||r0||2 (1.2)

with D = maxi=1,µ;j=µ1,n |λi − λj | and d = mini=1,µ |λi|.(1.1) and (1.2), and, gener-

ally speaking, decreases when the condition number κ2(A) = ||A||2||A
−1||2 of the non-

singular matrix A increases. This implies the need to reduce the scattering of the eigenval-

ues distribution in the complex plane in order to improve the convergence rate. This is the

goal of a preconditioning technique. The left-preconditioning techniques consist to solve

M−1Au = M−1f such that κ2(M
−1A) << κ2(A). In this work we focus on the Schwarz

1This paper extends the proposition of the ARAS preconditioning technique published in T. Dufaud and D.

Tromeur-Dervout, Aitken’s acceleration of the Resctricted Additive Schwarz preconditioning using coarse approxi-

mations on the interface. C. R. Math. Acad. Sci. Paris, Vol. 348, no. 13-14, pages 821-824, 2010, by developing

the building of the preconditioner and its theoretical properties. Moreover, it focuses on a fully algebraic technique

based on SVD to approximate the solutions. Finally, results on industrial linear systems are provided.

1

preconditioning techniques and the preconditioning techniques that are related to the Schur

complement of the matrix A.

Let us first recall some state of the art about the Schwarz and Aitken-Schwarz solvers,

and preconditioners based on the Restricted Additive Schwarz (RAS).

1.1. State of the art of Schwarz and Aitken techniques. First, lets us consider the

Generalized Schwarz Alternating Method introduced by Engquist and Zao [19] that gathers

several Schwarz techniques (see Quarteroni and Valli [35]). For sake of simplicity, let us

consider the case where the whole domain Ω is decomposed into two sub-domains Ω1 and

Ω2, with overlapping or not, defining two artificial boundaries Γ1, Γ2. Let Ω11 = Ω1\Ω2,

Ω22 = Ω2\Ω1 if there is an overlap. Let L(x) be the continuous operator associated with the

discrete operator A. It can be written in its multiplicative version as:

Algorithm 1 GSAM: Multiplicative version

1: DO until convergence

2: Solve

L(x)u2n+1
1 (x) = f(x), ∀x ∈ Ω1, (1.3)

u2n+1
1 (x) = g(x), ∀x ∈ ∂Ω1\Γ1, (1.4)

Λ1u
2n+1
1 + λ1

∂u2n+1
1 (x)

∂n1
= Λ1u

2n
2 + λ1

∂u2n
2 (x)

∂n1
, ∀x ∈ Γ1 (1.5)

3: Solve

L(x)u2n+2
2 (x) = f(x), ∀x ∈ Ω2, (1.6)

u2n+2
2 (x) = g(x), ∀x ∈ ∂Ω2\Γ2, (1.7)

Λ2u
2n+2
2 + λ2

∂u2n+2
2 (x)

∂n2
= Λ2u

2n+1
1 + λ2

∂u2n+1
1 (x)

∂n2
, ∀x ∈ Γ2. (1.8)

4: Enddo

where Λi are some operators and λi are constants.

According to the specific choice of the operators Λi and the values of scalars λi, we

obtain the family of Schwarz domain decomposition techniques:

Overlap Λ1 Λ2 λ1 λ2 Method

yes Id Id 0 0 Schwarz

yes Id Id α α ORAS (St Cyr & al [36])

No Id 0 0 1 Neumann-Dirichlet (Marini & Quarteronni [33])

No Id Id 1 1 Modified Schwarz (Lions [31])
TABLE 1.1

Derived methods obtained from the specific choices of the operators Λi and the values of scalars λi in the GSAM.

If Λ1 = Λ2 = I and λ1 = λ2 = 0 then the above multiplicative version is the classical

Multiplicative Schwarz. If Λ1 = Λ2 = constant and λ1 = λ2 = 1 then it is the modified

Schwarz proposed by Lions in [32].

Engquist and Zao [19] showed that with an appropriate choice of the operators Λi this

domain decomposition method converges in two iterations. They established the proposition

that follows:

2

PROPOSITION 1.1. If Λ1 (or Λ2) is the Dirichlet to Neumann operator at the artificial

boundary Γ1 (or Γ2) for the corresponding homogeneous PDE in Ω2 (or Ω1) with homo-

geneous boundary condition on ∂Ω2 ∩ ∂Ω (or ∂Ω1 ∩ ∂Ω) then the Generalized Schwarz

Alternating method converges in two steps.

The GSAM method converges in two steps if the Dirichlet-Neumann operators Λi, i =
1, 2, are available. These operators are not local to a sub-domain but they link up together all

the sub-domains. In practice, some approximations defined algebraically of these operators

are used (see Chevalier & Nataf [11], Gander & al [23], Gerardo-Giorda & Nataf [27]).

In the Aitken-Schwarz methodology introduced by Garbey & Tromeur-Dervout [25, 26],

only the convergence property of the Schwarz method is used. Consequently, no direct ap-

proximation of the Dirichlet-Neumann map is used, but an approximation of the operator of

error linked to this Dirichlet-Neumann map is performed. This Aitken-Schwarz methodology

is based on the purely linear convergence for the Schwarz Alternating method when the local

operators are linear operators.

DEFINITION 1.2. Let
(

(

uk
i

)

i=1,...,n
= uk

)

k∈N

be a vectorial sequence converging to-

ward (ξ)i=1,...,n = ξ purely linearly if

uk+1 − ξ = P
(

uk − ξ
)

(1.9)

where P ∈ Rn×n is a constant error’s transfer operator independent of k and non-singular.

We assume that there exists a norm ||.|| such as ||P || < 1. Then P and ξ can be determined

from n+ 1 iterations , using the equations:
(

uk+1 − uk, ..., u2 − u1
)

= P
(

uk − uk−1, ..., u1 − u0
)

(1.10)

So, if
(

un − un−1, ..., u1 − u0
)

is non-singular P can be written as :

P =
(

un+1 − un, ..., u2 − u1
) (

un − un−1, ..., u1 − u0
)−1

(1.11)

Then if ||P || < 1, (I − P) is non singular and it is possible to compute ξ as

ξ = (I − P)
−1 (

un+1 − Pun
)

(1.12)

For domain decomposition methods, the vectorial sequences un corresponds to the iterated

solution at the subdomains artificial interfaces. To apply directly the Aitken’s acceleration

in the vectorial case, we have to construct the matrix P or an approximation of it, and to

apply the Aitken’s acceleration (1.12). Algorithm 2 describes the acceleration written in the

canonical base of Rn (”physical space”).

Algorithm 2 Vectorial Aitken’s acceleration in the physical space

Require: G : Rn → Rn an iterative method having a pure linear convergence

Require: (uk)1≤k≤n+1, n + 1 successive iterates of G starting from an arbitrary initial

guess u0

1: Form Ek = uk+1 − uk, 0 ≤ k ≤ n
2: if

[

En−1, . . . , E0
]

is invertible then

3: P =
[

En, . . . , E1
] [

En−1, . . . , E0
]−1

4: u∞ = (In − P)−1(un+1 − Pun)
5: end if

The drawback of Algorithm 2 is to be limited to a sequence of small vector size because

it needs a number of iterations related to the vector size n. In order to overcome this difficulty,

3

some approximation of the error transfer operator P is proposed using some coarse approx-

imation spaces to represent the solution. Garbey [24] proposed to write the solution in the

eigenbasis associated to the part of the separable operator associated to the direction parallel

to the artificial interfaces, or with a coarse approximation of the sinus or cosinus expansion

of the solution at the interface. Tromeur-Dervout [39] proposed to build an approximation

space based on the Singular Value Decomposition (SVD) of the interface solutions of the

Schwarz iterates. This last approximation override any constraints about separability of the

linear operator A and mesh considerations.

Nevertheless this last techniques fail when:

• the iterative process based on domain decomposition diverges too fast,

• the local solutions are inaccurately solved leading to a less numerically efficient

acceleration by the Aitken’s process.

In such cases the Aitken-Schwarz method as solver is no longer suitable should be con-

sidered as preconditioner of a Krylov method. The purpose of this paper is to detail and to

extend the preconditioners based on Schwarz domain decomposition accelerated by Aitken’s

techniques developped by Dufaud & Tromeur-Dervout [16] with building and approximation

of the matrix P arising from the SVD approximation of the Schwarz interface solutions.

1.2. State of the art of preconditioners based on RAS. The techniques of precondi-

tioning that are based on domain decomposition of Schwarz’s type have been widely devel-

oped this last decade and accelerated multiplicative Schwarz has been ”a consistently good

performer” as said Cai & al [7]. The first type of domain decomposition preconditioning to

appear was domain decomposition based on substructuring technique of Bramble & al [5]

followed by the Additive Schwarz (AS) preconditioning of Dryja & Widlund [14], Gropp &

Keyes [28]. It is built from the adjacency graph G = (W,E) of A, where W = {1, 2, ...,m}
and E = {(i, j) : aij 6= 0} are the edges and vertices of G. Starting with a non-overlapping

partition W = ∪p
i=1Wi,0 and δ ≥ 0 given, the overlapping partition {Wi,δ} is obtained

defining p partitions Wi,δ ⊃ Wi,δ−1 by including all the immediate neighbouring vertices of

the vertices in the partition Wi,δ−1. Then the restriction operator Ri,δ : W → Wi,δ defines

the local operator Ai,δ = Ri,δAR
T
i,δ, Ai,δ ∈ Rmi,δ×mi,δ on Wi,δ . The AS preconditioning

writes: M−1
AS,δ =

p
∑

i=1

RT
i,δA

−1
i,δRi,δ .

Cai & Sarkis [8] introduced the restriction matrix R̃i,δ on a non-overlapping sub-domain

Wi,0, and then derived the Restricted Additive Schwarz (RAS) iterative process as:

uk = uk−1 +M−1
RAS,δ

(

f −Auk−1
)

, withM−1
RAS,δ =

p
∑

i=1

R̃T
i,δA

−1
i,δRi,δ (1.13)

They showed experimentally that the RAS exhibits a faster convergence than the AS, as Ef-

stathiou & Gander demonstrated in [17] for the Poisson problem, leading to a better precon-

ditioning that depends on the number of sub-domains. We note, that Cai & al [6] develop

extensions of RAS for symmetric positive definite problems using the so-called harmonic

overlaps (RASHO).

When it is applied to linear problems, the RAS has a pure linear rate of convergence /

divergence. When it converges, its convergence can be enhanced with optimized boundary

conditions giving the ORAS method of St Cyr & al [36]. In this case, the transmission condi-

tion in GSAM takes the form Λi to be the normal derivative (Neumann boundary condition).

Then, an optimisation problem is done to minimize the amplification factor of the Schwarz

method with this Robin coefficient in the Fourier space. The drawback of this method is

4

that it can only be applied to separable operators, and need regular step size and periodic

boundary conditions in the direction orthogonal to the interface to be mathematically valid.

Nevertheless, if it is not the case, the parameters in the Robin conditions are set based on this

postulate and applied in the current case.

This Neumann-Dirichlet map is related to the Schur complement of the discrete operator

(see for example Natarajan [34] or Steinbach [37]).

Saad & Li [30] introduced the SchurRAS method based on the ILU factorisation of the

local operatorsAi,δ present in the RAS method. Magoules & al [22] introduced the patch sub-

structuring methods and demonstrated its equivalence with the overlapping Schwarz methods.

In this work the Dirichlet and Neumann boundary conditions present in the Schwarz alter-

nated method have been replaced by Robin boundary conditions to enhance the convergence

rate. The patch method consists in introducing an overlap in the Schur complement technique.

These two techniques take care of the data locality in order to avoid global communications

involving all sub-domains. Nevertheless, as in the RAS preconditioning technique, the main

drawback of this locality is a decreasing of the preconditioning efficiency with respect to the

number of sub-domains.

Another related work that takes care to involve all the sub-domains present in the Schur

complement is the substructuring method with a suitable preconditioner for the reduced equa-

tion of Bramble & al [5], Carvalho & al [9] [10], Khoromskij & Wittum [29]. Let us describe

the iterative substructuring method and the preconditioning by the additive Schwarz precon-

ditioner for the Schur complement reduced equation on the interface problem designed by

[9]. Let Γ be the set of all the indices of the mesh points which belong to the interfaces

between the sub-domains. Grouping together the unknowns associated to points of the mesh

corresponding to Γ into the vector uΓ and the ones corresponding to the other unknowns (cor-

responding to the points of mesh associated to the interior I of sub-domains) into the vector

uI , we get the reordered problem:

(

AII AIΓ

AΓI AΓ

)(

uI

uΓ

)

=

(

fI
fΓ

)

(1.14)

Eliminating the unknowns uI from the second block row of (1.14) leads to the following

reduced equation for uΓ:

SuΓ = fΓ −AΓIA
−1
II fI , (1.15)

where

S = AΓΓ −AΓIA
−1
II AIΓ (1.16)

is the Schur complement of the matrix AII in A. Let be Γi = ∂Ωi\∂Ω. Let RΓi
: Γ → Γi be

the canonical pointwise restriction which maps vectors on Γ into defined vectors on Γi, and

let be RT
Γi

: Γi → Γ its transposed. The Schur complement matrix (1.16) can also be written

as:

S =

p
∑

i=1

RT
Γi
S(i)RΓi

(1.17)

where

S(i) = A
(i)
ΓiΓi

−AΓiiA
−1
ii AiΓi

(1.18)

5

is referred to the local Schur complement associated with the sub-domain Ωi. S(i) that in-

volves the submatrices from the local matrix A(i) which is defined as

A(i) =

(

Aii AiΓi

AΓii AΓiΓi

)

(1.19)

Then they defined a BPS (Bramble, Pasciak & Schatz [5]) preconditioner which is based

on the set V which gathers the cross points between sub-domains (i.e points that belong to

more than two sub-domains) and the sets Ei of interface points (without the cross points in

V)

Ei = (∂Ωj ∩ ∂Ωl)− V (1.20)

Γ = (

m
⋃

i=1

Ei) ∪ V (1.21)

The operator Ri defined the standard pointwise restriction of nodal values on Ei while op-

erator RV defined the canonical restriction on V . Then a coarse mesh is associated with the

sub-domains and an interpolation operator RT is defined. This operator corresponds to the

linear interpolation between two adjacent cross points Vj Vi in order to define values on the

edge Ei . This allows to define AH the Galerkin cross grid operator AH = RART . They

deduced a very close variant of BPS preconditioner that can be written as:

MBPS =
∑

Ei

RT
i SiiRi +RTA−1

H R (1.22)

They defined a coarse-space operator

Λ0 = R0SR
T
0 (1.23)

where R0 : U → U0 is a restriction operator which maps full vector of U into vector in U0

where U0 is a q-dimensional subspace of U the algebraical space of nodal vectors where the

Schur complement matrix is defined.

MBPS =
∑

Ei

RT
i S̃iiRi +RT

0 Λ
−1
0 R0 (1.24)

where S̃ii is an approximation of Sii. The definition of U0 gives different preconditioners:

Vertex-based coarse space, sub-domain-based coarse space, edge-based coarse space, de-

pending on the set of points of the interface Γ that are involved. From the implementation

practical point of view, the coarse matrix Λ0 is constructed once and involve matrix vector

products of the local Schur complement only.

1. The advantages of this method, is to defined the two-level preconditioner only on

the interface Γ. It is intimately related to the Schur complement operator defined on

the interface.

2. The drawback is to have to define a priori the coarse space U0 without any knowl-

edge of the solution behavior. Consequently it can be expensive in term of number

of coarse space vectors, specifically for 3D problems where cross-points between

sub-domains in 2D, become cross-regions between sub-domains in 3D .

Our approach will follow the same spirit as this two-level preconditioning working only

on the interface. But we still work on the system Ax = b and not SuΓ = gΓ and we use an a

posteriori knowledge of the global Dirichlet to Neumann map that is based on the pure linear

6

convergence/divergence of the RAS to define the coarse space (equivalent of the definition of

U0).

The plan of this paper is the following. Section 2 will derive the Aitken-Schwarz precon-

ditioning. Section 3 will focus on coarse approximation of the solution at the artificial in-

terfaces, notably with a random set of orthogonal vectors and an orthogonal set of vectors

obtained through the SVD of the Schwarz interface solutions. Then, section 4 proposes a

study of convergence of the ARAS class preconditioners. Eventually numerical tests are pro-

vided on academic problems in section 5 and industrial problems in section 6.

2. Aitken-Schwarz method derived as preconditioning technique. In this section we

study the integration of the Aitken’s acceleration into a Richardson process in order to formu-

late a preconditioning technique based on Aitken. More precisely, we propose to enhance the

RAS preconditioning technique, presented in section 1, by the Aitken’s acceleration. We first

present the mechanism of the method and develop the equation to extract a corresponding

Richardson’s process. Then we point out that the method in its simple form does not exhibit

the complete acceleration after one application and need an update as when the method is

used as solver. The result is a multiplicative preconditioner based on the Aitken RAS precon-

ditioner. Finally we present those preconditioners in their approximated form in order to save

computing.

2.1. The Aitken Restricted Additive Schwarz preconditioner: ARAS. Let Γi =
(Imi,δ

− RT
i,δ)Wi,δ be the interface associated to Wi,δ and Γ = ∪p

i=1Γi be the global in-

terface. Then u|Γ ∈ Rn is the restriction of the solution u ∈ Rm on the Γ interface and

ek|Γ = uk
|Γ − u∞

|Γ is the error of an iteration of a RAS iterative process, equation (2.1) at the

interface Γ.

uk = uk−1 +M−1
RAS,δ(f −Auk−1) (2.1)

In section 1 we wrote that the Schwarz iterative method has a pure linear convergence.

This property enables us to use the Aitken’s technique presented the same section. The pre-

viously mentioned G iterative process is replaced by a RAS iterative process.

Using the linear convergence property of the RAS method, we would like to write a

preconditioner which includes the Aitken’s acceleration process. We introduce a restriction

operator RΓ ∈ R
n×m from W to the global artificial interface Γ, with RΓR

T
Γ = In. The

Aitken Restricted Additive Schwarz (ARAS) must generate a sequence of solution on the

interface Γ, and accelerate the convergence of the Schwarz process from this original se-

quence. Then the accelerated solution on the interface replaces the last one. This could be

written combining an AS or RAS process eq.(2.2a)) with the Aitken process written in Rm×m

eq.(2.2b) and subtracting the Schwarz solution which is not extrapolated on Γ eq.(2.2c). We

can write the following approximation u∗ of the solution u:

u∗ = uk−1 +M−1
RAS,δ(f − Auk−1) (2.2a)

+RT
Γ (In − P)−1

(

uk
|Γ − Puk−1

|Γ

)

(2.2b)

−RT
Γ InRΓ

(

uk−1 +M−1
RAS,δ(f −Auk−1)

)

(2.2c)

We would like to write u∗ as an iterated solution derived from an iterative process of the

form u∗ = uk−1 + M−1
ARAS,δ

(

f −Auk−1
)

, where M−1
ARAS,δ is the Aitken-RAS precondi-

tioner.

7

First of all, we write an expression of eq.(2.2b) depending on eq.(2.1) and which only

involves the iterated solution uk−1 ∈ Rm, as follows:

eq.(2.2b) := RT
Γ (In − P)

−1
(

uk
|Γ − Puk−1

|Γ

)

= RT
Γ (In − P)

−1
RΓ

(

RT
Γ InRΓu

k −RT
ΓPRΓu

k−1
)

↓ with eq.(2.1)

= RT
Γ (In − P)

−1
RΓ

(

RT
Γ InRΓ

(

uk−1 +M−1
RAS,δ

(

f −Auk−1
)

)

−RT
ΓPRΓu

k−1
)

= RT
Γ (In − P)

−1
RΓR

T
Γ InRΓ

(

uk−1 +M−1
RAS,δ

(

f −Auk−1
)

)

−RT
Γ (In − P)

−1
RΓR

T
ΓPRΓu

k−1

= RT
Γ (In − P)

−1
RΓ

(

uk−1 +M−1
RAS,δ

(

f −Auk−1
)

)

−RT
Γ (In − P)

−1
PRΓu

k−1

Then, we re-write eq.(2.2) with this new expression of eq.(2.2b) as follows:

u∗ = uk−1 +M−1
RAS,δ(f −Auk−1)

+RT
Γ (In − P)

−1
RΓ

(

uk−1 +M−1
RAS,δ

(

f −Auk−1
)

)

−RT
Γ (In − P)

−1
PRΓu

k−1 −RT
Γ InRΓ

(

uk−1 +M−1
RAS,δ(f −Auk−1)

)

↓ factorizing by
(

uk−1 +M−1
RAS,δ

(

f −Auk−1
)

)

=
(

Im −RT
Γ InRΓ +RT

Γ (In − P)
−1

RΓ

)(

uk−1 +M−1
RAS,δ

(

f −Auk−1
)

)

−RT
Γ (In − P)−1 PRΓu

k−1

↓ isolating uk−1 from M−1
RAS,δ

(

f −Auk−1
)

= uk−1 +
(

−RT
Γ InRΓ +RT

Γ (In − P)
−1

RΓ −RT
Γ (In − P)

−1
PRΓ

)

uk−1

+
(

Im −RT
Γ InRΓ +RT

Γ (In − P)
−1

RΓ

)

M−1
RAS,δ

(

f −Auk−1
)

One can simplify E =
(

RT
Γ (In − P)

−1
RΓ −RT

Γ (In − P)
−1

PRΓ

)

as follows:

E = RT
Γ (In − P)

−1
RΓ

(

RT
Γ InRΓ −RT

ΓPRΓ

)

= RT
Γ (In − P)

−1
RΓR

T
Γ (In − P)RΓ

= RT
Γ (In − P)−1 (In − P)RΓ

= RT
Γ InRΓ

And then writes,

u∗ = uk−1 +
(

−RT
Γ InRΓ +RT

Γ InRΓ

)

uk−1

+
(

Im −RT
Γ InRΓ +RT

Γ (In − P)−1 RΓ

)

M−1
RAS,δ

(

f −Auk−1
)

= uk−1 +
(

Im −RT
Γ InRΓ +RT

Γ (In − P)
−1

RΓ

)

M−1
RAS,δ

(

f −Auk−1
)

= uk−1 +
(

Im +RT
Γ

(

(In − P)
−1

− In

)

RΓ

)

M−1
RAS,δ

(

f −Auk−1
)

8

Hence the formulation eq.(2.2) leads to an expression of an iterated solution u∗:

u∗ = uk−1 +
(

Im +RT
Γ

(

(In − P)
−1

− In

)

RΓ

)

M−1
RAS,δ

(

f −Auk−1
)

This iterated solution u∗ can be seen as an accelerated solution of the RAS iterative pro-

cess. Drawing our inspiration from the Stephensen’s method [38], we build a new sequence

of iterates from the solutions accelerated by the Aitken’s acceleration method. Then, one

considers u∗ as a new uk and writes the following ARAS iterative process:

uk = uk−1 +
(

Im +RT
Γ

(

(In − P)−1 − In

)

RΓ

)

M−1
RAS,δ

(

f −Auk−1
)

(2.3)

Then we defined the ARAS preconditioner as

M−1
ARAS,δ =

(

Im +RT
Γ

(

(In − P)
−1

− In

)

RΓ

)

p
∑

i=1

R̃T
i,δA

−1
i,δRi,δ (2.4)

Remark 1. The ARAS preconditioner can be considered as a two-level additive precon-

ditioner. The preconditioner consists in computing a solution on an entire domain applying

the RAS preconditioner and add components computed only on the interface Γ.

2.2. Composite Multiplicative form of ARAS: ARAS2. If P is known exactly, the

ARAS process written in the equation (2.3) needs two steps to converge to the solution u
with an initial guess u0 = 0. Then we have:

PROPOSITION 2.1. If P is known exactly then we have

A−1 =
(

2M−1
ARAS,δ −M−1

ARAS,δAM
−1
ARAS,δ

)

that leads
(

I −M−1
ARAS,δA

)

to be a nilpotent matrix of degree 2.

Proof We consider the postulate: ”If P is known exactly, the ARAS process written in eq.(2.3)

needs two steps to converge to the solution with an initial guess u0 = 0”.

We write the two first iterations of the ARAS process for any initial guess u0 ∈ Rm and

for all f ∈ Rm:

u1 = u0 +M−1
ARAS,δ

(

f −Au0
)

And the second iterations leads to:

u2 = u1 +M−1
ARAS,δ

(

f −Au1
)

= u0 +M−1
ARAS,δ

(

f −Au0
)

+M−1
ARAS,δ

(

f −A
(

u0 +M−1
ARAS,δ

(

f − Au0
)

))

Let u0 = 0, then,

u2 = M−1
ARAS,δf +M−1

ARAS,δ

(

f −A
(

M−1
ARAS,δf

))

=
(

2M−1
ARAS,δ −M−1

ARAS,δAM
−1
ARAS,δ

)

f

= u

Since this expression is true for all f ∈ Rm we can write:

A−1 = 2M−1
ARAS,δ −M−1

ARAS,δAM
−1
ARAS,δ

9

Now we can write:

u =
(

2M−1
ARAS,δ −M−1

ARAS,δAM
−1
ARAS,δ

)

f

=
(

Im + Im −M−1
ARAS,δA

)

M−1
ARAS,δf

= M−1
ARAS,δf +

(

Im −M−1
ARAS,δA

)

M−1
ARAS,δf

↓ with Au = f

= M−1
ARAS,δAu +

(

Im −M−1
ARAS,δA

)

M−1
ARAS,δAu

Thus,

(

Im −M−1
ARAS,δA

)

u =
(

Im −M−1
ARAS,δA

)

M−1
ARAS,δAu

Which is equivalent to

0 =
(

Im −M−1
ARAS,δA

)2

u, ∀u ∈ R
m

Hence
(

Im −M−1
ARAS,δA

)

is nilpotent of degree 2. []

The previous proposition leads to an approximation of A−1 written from the 2 first iter-

ations of the ARAS iterative process (2.3). Those 2 iterations compute the Schwarz solutions

sequence on the interface needed in order to accelerate the Schwarz method by the Aitken’s

acceleration. We now write 2 iterations of the ARAS iterative process (2.3) for any initial

guess and for all uk−1 ∈ Rm.

uk+1 = uk−1 +M−1
ARAS,δ

(

f −Auk−1
)

+M−1
ARAS,δ

(

f −A
(

uk−1 +M−1
ARAS,δ

(

f −Auk−1
)

))

= uk−1 +M−1
ARAS,δf −M−1

ARAS,δAu
k−1

+M−1
ARAS,δf −M−1

ARAS,δAu
k−1 −M−1

ARAS,δAM
−1
ARAS,δ

(

f − Auk−1
)

= uk−1 + 2M−1
ARAS,δ

(

f −Auk−1
)

−M−1
ARAS,δAM

−1
ARAS,δ

(

f −Auk−1
)

= uk−1 +
(

2M−1
ARAS,δ −M−1

ARAS,δAM
−1
ARAS,δ

)

(

f −Auk−1
)

Then we defined the ARAS2 preconditioner as

M−1
ARAS2,δ = 2M−1

ARAS,δ −M−1
ARAS,δAM

−1
ARAS,δ (2.5)

Remark 2. According to the linear algebra literature about preconditioning technique

[4], the ARAS2 preconditioner can be considered as a composite multilevel preconditioner.

Actually, the ARAS2 preconditioner is a multiplicative form of ARAS which is itself an additive

preconditioner adding an operation on the entire domain with RAS and an operation on a

coarse interface with the Aitken formula.

10

2.3. Approximated form of ARAS and ARAS2. As the previous subsection suggests,

since P is known exactly there is no need to use ARAS as a preconditioning technique.

Nevertheless, when P is approximated, the Aitken’s acceleration of the convergence depends

on the local domain solving accuracy, and the cost of the building of an exact P depends

on the size n. This is why P is numerically approximated by PUq
as in [39], defining q ≤

n orthogonal vectors Ui ∈ Rn, defining the columns of the matrix Uq ∈ Rn×q . Then

it makes sense to use PUq
in the ARAS preconditioning technique to define the ARAS(q)

preconditioner:

M−1
ARAS(q),δ =

(

Im +RT
ΓUq

(

(

Iq − PUq

)−1
− Iq

)

U
T
q RΓ

)

p
∑

i=1

R̃T
i,δA

−1
i,δRi,δ (2.6)

and ARAS2(q),

M−1
ARAS2(q),δ = 2M−1

ARAS(q),δ −M−1
ARAS(q),δAM

−1
ARAS(q),δ (2.7)

Different kind of approximation techniques of the error transfer operator matrix P have

been proposed in the work of [24, 26, 3, 2, 21]. Nevertheless, we are interested in alge-

braic ways to compute an Aitken acceleration. In section 3 we proposed two fully algebraic

approaches.

3. Basis to approximate the interface solution. We focus here on an algebraic way

to compute an Aitken acceleration of a sequence of Schwarz solutions on the interface. The

global approach consists on an explicit building of P̂ computing how the spanning vectors

Ui are modified by the Schwarz iteration. Figure 3.1 illustrates the steps for constructing the

matrix P̂ . Step (a) starts from the spanning vector on the interface RT
ΓUi and gets its value

on the interface in the physical space. Then step (b) performs a complete Schwarz iteration

with zero local right hand sides and homogeneous boundary conditions on the others artificial

interfaces. Step (c) decomposes the trace solution on the interface in the spanning vector set

Uq . Thus, we obtain the column i of the matrix P̂ .

FIGURE 3.1. Steps to build the P̂ matrix

The full computation of P̂ can be done in parallel, but it needs as much local domain

solution as the number of interface points (i.e the size of the matrix P̂).

Its adaptive computation is required to save computing. This methodology was first used

with Fourier basis functions [21, 15]. This section focuses on the definition of orthogonal

”base” Uq that will extend this adaptive computation in a general context. In the following,

11

we use the term ”base” to denote a spanning vectors set that defines the approximation space.

The key point of these preconditioners’s efficiency is the choice of this orthogonal ”base” Uq.

It must be sufficiently rich to numerically represent the solution at the interface, but it has to

be not too large for the computation’s efficiency.

We first propose a ”naive” approach consisting of selecting an arbitrary set of orthog-

onalized random vectors to generate the space to approximate the solution. Secondly, we

represent the solution in a space arising from the singular value decomposition of a sequence

of Schwarz solutions. Doing this, we assume to represent the main modes of the solutions.

3.1. Orthogonal ”base” arising from an arbitrary coarse algebraic approximation

of the interface.. A choice consists in having a coarse representation of the interface’s solu-

tion u ∈ Rn from an algebraical point of view. Nevertheless, it is not possible to take a subset

of q vectors of the canonical base of Rn, as if some components of u are not reachable by the

”base” Uq , then the approximation ||u − Uq(U
t
qu)|| will be very bad. This reason leads us

to define Uq as a set of orthogonal vectors where each component is coming from a random

process in order that each vector can contribute to a part of the searched solution at the inter-

face. We split q such as q =

p
∑

i=1

qi and we associate qi random vectors to the interface Γi,

1 ≤ i ≤ p. Then these qi vectors are orthogonalized to form qi columns of the ”base” Uq .

This strategy is hazardous but can be a simple way to improve the convergence of a

Schwarz process without knowledge of the problem and the mesh.

The orthogonal ”base” Uq is obtained applying the same principle as illustrated in Figure

3.1, leading to Algorithm 3.

Algorithm 3 Vectorial Aitken’s acceleration in an arbitrary built space without inversion

Require: G : Rn → Rn an iterative method having a pure linear convergence

1: Compute q random vectors vi ∈ Rn following a uniform law on [0, 1]
2: Orthogonalize those q vectors to form Uq ∈ Rn×q

3: Apply one iterate of G on homogeneous problem, Uq → W = G(Uq)

4: Set P̂ = Ut
qW

5: ξ̂ = (Iq − P̂)−1 (û1 − P̂ û0) {Aitken Formula}

6: ξ = Uq ξ̂

The lack of this method is that there is no possibility to control the quality of the base

to perform the acceleration. A more controllable method will be preferred. In the following

subsection, we propose a different starting point to build the base. The main idea will be in

the fact that we can compress the vectorial sequence using a Singular Value Decomposition.

Since the Uq matrix is built, P is built the same way.

3.2. Approximation compressing the vectorial sequence. A totally algebraic method

based on the Singular Value Decomposition of the Schwarz solutions on the interface has been

proposed when the modes of the error could be strongly coupled [39]. This method offers the

possibility for the Aitken Schwarz method to be used on a large class of problem without

mesh consideration. Moreover, when computing an Aitken acceleration, the main difficulty

is to invert the matrix
[

En−1, . . . , E0
]

which can be close to singular. In a computation, most

of the time is consumed solving some noise that does not actually contribute to the solution.

The singular value decomposition offer a tools to concentrate the effort only on the main parts

of the solution.

12

3.2.1. The singular value decomposition. A singular-value decomposition (SVD) of a

real n×m (n > m) matrix A is its factorization into the product of three matrices:

A = UΣV∗, (3.1)

where U = [U1, . . . , Um] is a n × m matrix with orthonormal columns, Σ is a n × m non-

negative diagonal matrix with Σii = σi, 1 ≤ i ≤ m and the m×m matrix V = [V1, . . . , Vm]
is orthogonal. The left U and right V singular vectors are the eigenvectors of AA∗ and A∗A
respectively. It readily follows that Avi = σiui, 1 ≤ i ≤ m

We are going to recall some properties of the SVD. Assume that the σi, 1 ≤ i ≤ m are

ordered in decreasing order and there exists r such that σr > 0 while σr + 1 = 0. Then A
can be decomposed in a dyadic decomposition:

A = σ1U1V
∗
1 + σ2U2V

∗
2 + . . .+ σrUrV

∗
r . (3.2)

This means that SVD provides a way to find optimal lower dimensional approximations of

a given series of data. More precisely, it produces an orthonormal base for representing the

data series in a certain least squares optimal sense. This can be summarized by the theorem

of Schmidt-Eckart-Young-Mirsky:

THEOREM 3.1. A non unique minimizer X∗ of the problem minX,rankX=k ||A−X ||2 =
σk+1(A), provided that σk > σk+1, is obtained by truncating the dyadic decomposition of

(3.2) to contain the first k terms: X∗ = σ1U1V
∗
1 + σ2U2V

∗
2 + . . . + σkUkV

∗
k The SVD

of a matrix is well conditioned with respect to perturbations of its entries. Consider the

matrix A,B ∈ Rn, the Fan inequalities write σr+s+1(A + B) ≤ σr+1(A) + σs+1(B) with

r, s ≥ 0, r + s+ 1 ≤ n. Considering the perturbation matrix E such that ||E|| = O(ǫ), then

|σi(A + E) − σi(A)| ≤ σ1(E) = ||E||2, ∀i. This property does not hold for eigenvalues

decomposition where small perturbations in the matrix entries can cause a large change in the

eigenvalues.

This property allows us to search the acceleration of the convergence of the sequence of

vectors in the base linked to its SVD.

PROPOSITION 3.2. Let (uk)1≤k≤q q successive iterates satisfying the pure linear con-

vergence property: uk − u∞ = P (uk−1 − u∞). Then there exists an orthogonal base

Uq =
[

U1, U2, . . . , U q
]

of a subset of Rn such that

• αk
l = σlV

∗
kl with (σl)l∈N decreasing and |V ∗

kl| ≤ 1 ⇒ ∀l ∈ {1, ..., q},

|αk
l | ≤ |σl|

• uk =
∑q

l=1 α
k
l U

l, ∀k ∈ {1, ..., q}
One can write:

(αk+1
1 − αk

1 , . . . , α
k+1
q − αk

q)
T = P̂ (αk

1 − αk−1
1 , . . . , αk

q − αk−1
q)T (3.3)

where P̂
def
= U∗

qPUq . Moreover (α∞
1 , . . . , α∞

q)T obtained by the acceleration process rep-

resents the projection of the limit of the sequence of vectors in the space generated by Uq.

Proof By theorem 3.1.3 there exists a SVD decomposition of
[

u1, . . . , uq
]

= UqΣV
∗ and

we can identify αk
l as σlV

∗
kl. The orth onormal property of V associated to the decrease of σl

with increasing l leads to have αk
l bounded by |σl|: ∀l ∈ {1, ..., q}, |αk

l | ≤ |σl|.
Taking the pure linear convergence of uk in the matrix form, and applying Uq leads to:

U
∗
q(u

k − u∞) = U
∗
qPUqU

∗
q(u

k−1 − u∞) (3.4)

(αk
1 − γ∞

1 , . . . , αk
q − γ∞

q)T = P̂ (αk−1
1 − γ∞

1 , . . . , αk−1
q − γ∞

q)T (3.5)

13

where (γ∞
j)1≤j≤q represents the projection of u∞ on the span {U1, . . . , Uq}. []

We can then derive Algorithm 4. This algorithm is similar to Algorithm 2 since the error

transfer operator is defined using the errors of the linear iterative process in a space arising

from the Singular Values Decomposition of q+2 successive iterates. Therefore the third step

of Algorithm 2 is equivalent to the sixth step of Algorithm 4.

Algorithm 4 Vectorial Aitken’s acceleration in the SVD space with inversion

Require: G : Rn → R
n an iterative method having a pure linear convergence

Require: (uk)1≤k≤q+2, q + 2 successive iterates of G to solve the linear system Au = f ,

starting from an arbitrary initial guess u0

1: Form the SVD decomposition of Y =
[

uq+2, . . . , u1
]

= USV T

2: Set l the index such that l = max1≤i≤m+1 {S(i, i) > tol}, {ex.:tol = 10−12.}

3: Set Ŷ1:l,1:l+2 = S1:l,1:lV
t
1:l,q−l:q+2

4: Set Ê1:l,1:l+1 = Ŷ1:l,2:l+2 − Ŷ1:l,1:l+1

5: if Ê1:l,1:l is non singular then

6: P̂ = Ê1:l,2:l+1Ê
−1
1:l,1:l

7: ŷ∞1:l,1 = (Il − P̂)−1 (Ŷ1:l,l+1 − P̂ Ŷ1:l,l) {Aitken Formula}
8: u∞ = U:,1:l ŷ

∞
1:l,1

9: end if

PROPOSITION 3.3. Successive applications of Algorithm 4 converge to the limit u∞.

Proof As the sequence of vector uk converges to a limit u∞ then we can write

Ξ =
[

u1, . . . , uq
]

= [u∞, . . . , u∞] + E

where E is a n×q matrix with decreasing coefficients with respect to the columns. The SVD of

Ξ∞ = [u∞, . . . , u∞] leads to have U1 = u∞ and σi(Ξ
∞) = 0, i ≥ 2. The fan inequalities

lead to have σi(Ξ) ≤ σ1(E) = ||E||2, i ≥ 2. Consequently, successive applications of

Algorithm 4 decrease the number of non zero singular values at each application. []
In Algorithm 4 the building of P needs the inversion of the matrix Ê1:l,1:l which can

contain very small singular values even if we selected those greater than a certain tolerance.

This singular value can deteriorate the ability of P to accelerate the convergence. If it is the

case, we can proceed inverting this matrix with its SVD, replacing by zeros the singular values

less than a tolerance instead of inverting them (see numerical recipes [20]). A more robust

algorithm can be obtained without inverting Ê1:l,1:l. It consists in building P by applying

the iterative method G to the selected columns of Uq that appears in Algorithm 4. Then

P̂ = U∗
1:n,1:lG(U1:n,1:l) as done in Algorithm 5.

4. Convergence of ARAS and ARAS2 and their approximated form. As an enhance-

ment of the RAS preconditioning technique, ARAS and ARAS2 should have a better conver-

gence rate than the RAS technique. We formulate the convergence rate of a RAS technique

considering the linear convergence of the Restricted Additive Schwarz method and extend

this formulation to the Aitken’s technique. Then we propose a relation between the spectral

radius of those methods.

In the following we note

T∗ = (I −M−1
∗ A) (4.1)

Any Richardson’s process can be written as

uk = T∗u
k−1 + c, where c ∈ R

nis constant (4.2)

14

Algorithm 5 Vectorial Aitken acceleration in the SVD space without inversion

Require: G : Rn → Rn an iterative method having a pure linear convergence

Require: (uk)1≤k≤q+2, q + 2 successive iterates of G to solve the linear system Au = f ,

starting from an arbitrary initial guess u0

1: Form the SVD decomposition of Y =
[

uq+2, . . . , u1
]

= USV T

2: Set the index l such that l = max1≤i≤q+1 {S(i, i) > tol}, {ex.:tol = 10−12.}
3: Apply one iterate of G on homogeneous problem, with l + 2 initial guesses U:,1:l →

W:,1:l = G(U:,1:l)

4: Set P̂ = U
t
:,1:lW:,1:l

5: Set Ŷ1:l,1:2 = S1:l,1:lV
t
1:l,q+1:q+2

6: ŷ∞1:l,1 = (Il − P̂)−1 (Ŷ1:l,2 − P̂ Ŷ1:l,1) {Aitken Formula}
7: u∞ = U:,1:l ŷ

∞
1:l,1

Remark 3. As the ARAS2 iterative process correspond to 2 iterations of the ARAS process,

we notice that TARAS2 = T 2
ARAS .

4.1. Ideal case. When building the ARAS preconditioner, we exhibit the fact that TARAS

is nilpotent when the error’s transfer operator on the interfaceΓ, if P is considered exact. This

property gives the following proposition:

PROPOSITION 4.1. If P is known exactly then,

ρ (TARAS2) = ρ (TARAS) = 0 (4.3)

Proof If P is known exactly then Proposition 2.1 is verified and TARAS and TARAS2 are

nilpotent. The spectral radius of a nilpotent matrix is equal to 0. []
Remark 4. Obviously, ρ (TARAS2) = ρ (TARAS) < ρ (TRAS)
But the matrix P is often numerically computed and then ρ (TARAS) is no longer equal

to 0. The value of ρ (TARAS) depends on the accuracy of the local domain solutions and

when P is written in another space, depends on the quality of this space. In the following we

propose a framework to study the convergence of TARAS(q) and TARAS2(q). The goal is to

provide key elements to understand the influence of approximating P in an orthogonal base

on the preconditioner.

4.2. Convergence of RAS for an elliptic operator. In this subsection we express the

convergence rate of a RAS iterative process considering its convergence on the artificial in-

terfaces in proposition 4.2. Since we can link the convergence of RAS on the entire domain

to the convergence on the interface, it becomes possible to study the effect of modifying the

error’s transfer operator P .

PROPOSITION 4.2. Let A be a discretized operator of an elliptic problem on a domainΩ.

Let us consider a RAS iterative process such as TRAS = I −M−1
RASA defined on p domains.

The data dependencies between domains is located on an artificial interface Γ. Then there

exists an error’s transfer operator on the interface Γ, P such as there exists a norm ||.|| for

which ||P || < 1. The convergence rate of TRAS is

ρ(TRAS) = max {|λ| : λ ∈ λ(P)} (4.4)

Proof In the case of elliptic problem the maximum principle is observed. Then, for the

Schwarz method the error is maximal on artificial interfaces. We write the error of a Schwarz

process starting for the definition of the RAS iterative method:

uk+1 = TRASu
k +M−1

RASb (4.5)

15

The convergence of such a process is given by [1] [12]:

ek = T k
RASe

0 (4.6)

On the interface, one can write:

ek|Γ = P ke0|Γ (4.7)

The error is maximal on the interface thus,

||ek||∞ = ||ek|Γ||∞ (4.8)

Equations (4.6), (4.7) and (4.8) lead to

||T k
RASe

0||∞ = ||P ke0|Γ||∞ < ||P k||∞||e0|Γ||∞ (4.9)

Then we can write,

sup
||e0||∞=1

(

||T k
RASe

0||∞
)

= sup
||e0

|Γ
||∞=1

(

||P ke0|Γ||∞

)

(4.10)

= ||P k||∞ (4.11)

Hence,

lim
k−>∞

||P k||
1
k
∞ = ρ(P) = ρ(TRAS) (4.12)

[]

4.3. Convergence of ARAS and ARAS2 in their approximated form. As we men-

tioned previously, there exist different approaches to approximate the error transfer operator

P . For a fully algebraic approach, one will choose the approximation of the operator in a

basis built explicitly as we described in 3. When it is possible, one can build a complete base

analytically and make an approximation of the operator in this base by truncation. In the

following, we choose the analytical approach to study the convergence of the method.

Here we focus on elliptic and separable operators. We propose a theorem giving the

convergence rate of an ARAS iterative process when the error’s transfer operator can be

exactly computed in a space spanned by the eigenvectors of P and then truncated to provide

an approximation of the error transfer operator in the physical space.

THEOREM 4.3. Let A be a discretized operator of an elliptic problem on a domain Ω.

Let us consider a RAS iterative process such as TRAS = I −M−1
RASA defined on p domains.

Let the error transfer operator P on an interface Γ be diagonalisable. If P is diagonalisable,

its decomposition in eigenvalues leads to have P = U
ˆ̂
PU−1 where for i ∈ J1, nK,

ˆ̂
P =

diag(λi). The error on the interface Γ in the approximation space follows ˆ̂ek+1
|Γ =

ˆ̂
P ˆ̂ek|Γ.

Each mode converges linearly and independently from the others following ˆ̂ek+1
|Γ,i = λi

ˆ̂ek|Γ,i.

Let Qλ ∈ R
n×n be a diagonal matrix such that ql = 1 if 1 ≤ l ≤ q and ql = 0 if q < l.

And let Q̄λ = In −Qλ. A coarse approximation of
ˆ̂
P can be done choosing a set of q strong

modes as P̃ = Qλ
ˆ̂
P . Writing the preconditioner as:

M−1
ARAS(q),δ =

(

Im +RT
ΓU

(

(

In − P̃
)−1

− In

)

U
−1RΓ

) p
∑

i=1

R̃T
i,δA

−1
i,δRi,δ (4.13)

16

The spectral radius of TARAS(q) is :

ρ(TARAS(q)) = ρ(Q̄λ
ˆ̂
P) = λq+1 < min{|λ| : λ ∈ λ(Qλ

ˆ̂
P)} (4.14)

Proof We consider the assumptions of the theorem and the formula of the approximated pre-

conditioner 4.13. The equation (2.2) can be written for ARAS(q) such as:

u∗ = TRASu
k−1 +M−1

RASb

+RT
Γ (In − P)

−1
(

uk
|Γ − Puk−1

|Γ

)

RΓ

−RT
Γ InRΓ

(

TRASu
k−1 +M−1

RASb
)

We consider that on the interface:
(

TRASu
k−1 +M−1

RASb
)

|Γ
= Puk−1

|Γ + c (4.15)

With c ∈ R
n, a constant vector independent of u|Γ.

Extracting the interface’s solution in the approximation space,

ˆ̂u∗
|Γ =

ˆ̂
P ˆ̂uk−1

|Γ + ˆ̂c+
(

In − P̃
)−1 (

ˆ̂uk
|Γ − P̃ ˆ̂uk−1

|Γ

)

−Qλ
ˆ̂
P ˆ̂uk−1

|Γ −Qλ
ˆ̂c

Then,

ˆ̂uk
|Γ = Q̄λ

ˆ̂
P ˆ̂uk−1

|Γ +Qλ
ˆ̂u∞
|Γ + Q̄λ

ˆ̂c (4.16)

The error on the interface is

ˆ̂u∞
|Γ − ˆ̂uk

|Γ = ˆ̂u∞
|Γ − Q̄λ

ˆ̂
P ˆ̂uk−1

|Γ −Qλ
ˆ̂u∞
|Γ − Q̄λ

ˆ̂c

Thus,

ˆ̂ek|Γ = Q̄λ

(

ˆ̂u∞
|Γ −

ˆ̂
P ˆ̂uk−1

|Γ − ˆ̂c
)

(4.17)

Regarding equation (4.15),
ˆ̂
P ˆ̂uk−1

|Γ + ˆ̂c = ˆ̂uk
|Γ, and then,

ˆ̂u∞
|Γ −

ˆ̂
P ˆ̂uk−1

|Γ − ˆ̂c = ˆ̂ekΓ =
ˆ̂
P ˆ̂ekΓ (4.18)

Hence we write,

ˆ̂ek|Γ = Q̄λ
ˆ̂
P ˆ̂ek−1

|Γ (4.19)

We showed that the ARAS iterative process has an error’s transfer operator, Q̄λ
ˆ̂
P , equal

to the part of the error’s transfer operator
ˆ̂
P that we did not compute. We note that ||Q̄λ

ˆ̂
P || ≤

||
ˆ̂
P || < 1.

A is a discretized operator of an elliptic problem, then we can apply Proposition 4.2 and

write:

ρ(TARAS(q)) = ρ(Q̄λ
ˆ̂
P) (4.20)

Then we proof equation 4.14. []
Remark 5. For a separable operator, the error transfer operator on an interface between

two domains is diagonalisable [24]. Then, the error transfer operator P on an interface Γ
is diagonalisable for a global operator which is separable and for which the interfaces of all

the domains are parallel to one discretization direction.

17

4.4. Convergence study in the case of the 2D Poisson’s equation. We consider a

simple case of an elliptic problem on a rectangle defined in equation (4.21). The problem is

discretized by 2D finite differences and decomposed into 2 domains Ω1 and Ω2 of the same

size.

{

−△u = f, in Ω = [0, 1]× [0, π]
u = 0, on ∂Ω

(4.21)

Γ2 Γ1

Ω1 Ω2

y

x

FIGURE 4.1. 2D domain decomposition for Poisson’s equation

In the Fourier base, for a separable operator with 2 artificial interfaces, the acceleration

is written with P̂ =
(0 P̂Γ2

P̂Γ1
0

)

such as

(

êkΓ1

êkΓ2

)

=

(

0 P̂Γ2

P̂Γ1
0

)(

êk−1
Γ1

êk−1
Γ2

)

(4.22)

We study the case of a regular grid and write the semi-discretized 2D Poisson’s operator

on [0,Γ1] × [0, π] ∪ [Γ2, 1] × [0, π], Γ1 > Γ2. We consider Nx + 1 in the direction x. The

overlap in terms of number of step size in direction x is denoted by δ. And we denote by λl

the eigenvalues of the discretized operator − ∂2

∂y2 considering a second order finite difference

scheme. We find the coefficient of the matrices P̂Γi
solving the equations:

−
û1
i+1,l−2û1

i,l+û1
i−1,l

h2
x

+ λlû
1
i,l = 0 , i ∈ J1, Nx − 1K

û1
0,l = 0

û1
Nx,l

= 1

(4.23)

−
û2
i+1,l−2û2

i,l+û2
i−1,l

h2
x

+ λlû
2
i,l = 0 , i ∈ J1, Nx − 1K

û2
0,l = 1

û2
Nx,l

= 0

(4.24)

The roots of those equations are such as,

r1 =
2 + λlh

2
x +

√

λ2
l h

4
x + 4λlh2

x

2
(4.25)

r2 =
2 + λlh

2
x −

√

λ2
l h

4
x + 4λlh2

x

2
(4.26)

18

Then for the first domain Ω1 the solutions have the form:

û1
l,j =

rj1 − rj2
rNx

1 − rNx

2

(4.27)

Thus,

û1
Nx−δ,l =

rNx−δ
1 − rNx−δ

2

rNx

1 − rNx

2

(4.28)

P̂Γ1
appears to be diagonal and its diagonal coefficients δl,Γ1

can be analytically derived

such as:

δl,Γ1
= û1

Nx−δ,l ∗ û
2
δ,l (4.29)

=

(

rNx−δ
1 − rNx−δ

2

rNx

1 − rNx

2

)(

−rNx

2 rδ1 + rNx

1 rδ2
rNx

1 − rNx

2

)

(4.30)

Exactly the same development can be done to find δl,Γ2
.

Remark 6. If the two domains have the same size, then δl,Γ1
= δl,Γ2

.

The P̂ matrix has the form:

P̂ =

0 δ1,Γ2

. . .
. . .

0 δn,Γ2

δ1,Γ1
0

. . .
. . .

δn,Γ1
0

, with 1 > δ1,Γi
≥ ... ≥ δn,Γi

. (4.31)

For the sake of simplicity we consider that the domain Ω1 and Ω2 have the same size.

We note δl = δl,Γ1
= δl,Γ2

. Then we can calculate the determinant of (P̂ − λIn):

det(P̂ − λIn) =

n
∏

l=1

(δl − λ)(δl + λ)

Hence the spectrum is {δ1, ..., δn,−δ1, ...,−δn}.

We showed that the error’s transfer operator is diagonalisable for this problem. P can be

written in a base U of eigenvectors as follows:

P = U
ˆ̂
PU

−1, with
ˆ̂
P = diag(δ1, ..., δn,−δ1, ...,−δn) (4.32)

Then we can estimate the convergence rate of the RAS, ARAS(q) and ARAS2(q) apply-

ing Theorem 4.3.

ρ(TRAS) = δ1 (4.33)

ρ(TARAS(q)) = δq+1 (4.34)

ρ(TARAS2(q)) = δ2q+1 (4.35)

Because the eigenvalues and the values of P̂Γi
are equal we can verify a correspondence

between the approximation by truncation in the eigenvectors space and the Fourier space.

19

Selecting the first Fourier mode corresponds to selecting the highest eigenvalues. Let us

introduce the transfer matrix CΓi
from the real space to the Fourier space and the transfer

matrix DΓi
from the Fourier space to the real space:

CΓi
: Rn −→ Cn and DΓi

: Cn −→ Rn

e|Γi
7−→ ê|Γi

ê|Γi
7−→ e|Γi

Then we write

P = DP̂C =

(

DΓ1
0

0 DΓ2

)(

0 P̂Γ2

P̂Γ1
0

)(

CΓ1
0

0 CΓ2

)

(4.36)

The approximation is done by applying the operator

QF =

(

QΓ1,F 0
0 QΓ2,F

)

where QΓ1,F = diag(ql), ql = 1 if 1 ≤ l ≤ q and ql = 0 if q < l. Then we write the

preconditioner

M−1
ARAS(q) = (I +RT

ΓD(In −QF P̂)−1 − In)CRΓ)M
−1
RAS (4.37)

As previously we introduce a matrix Q̄F = (I −QF).
We can then follow the demonstration done in the proof of theorem 4.3 writing the error

on the interface in the Fourier space as

û∞
|Γ − ûk

|Γ = û∞
|Γ − Q̄F P̂ ûk−1

|Γ −QF û
∞
|Γ − Q̄F ĉ (4.38)

Thus,

êk|Γ = Q̄F

(

û∞
|Γ − P̂ ûk−1

|Γ − ĉ
)

(4.39)

Regarding equation (4.15), P̂ ûk−1
|Γ + ĉ = ûk

|Γ, and then,

êk|Γ = Q̄F ê
k
|Γ (4.40)

As êk|Γ = P̂ êk−1
|Γ we write

êk|Γ = Q̄F P̂ êk−1
|Γ (4.41)

We showed that the ARAS iterative process has an error transfer operator, Q̄F P̂ , equal

to the part of the error transfer operator P̂ that we did not compute. We note that ||Q̄λP̂ || ≤
||P̂ || < 1.

We can apply Proposition 4.2 and write:

ρ(TARAS(q)) = ρ(Q̄F P̂) (4.42)

The conclusion becomes the same as applying Theorem 4.3.

We pointed out here the way the approximation of the error’s transfer operator affects

the convergence of Schwarz iterative processes in the case of a separable operator for a two

domain decomposition. This enables us to understand the philosophy of approximating the

matrix P in different spaces and links the works done in [24, 2, 26].

20

5. Results on academic problems.

5.1. 2D theoretical study. The goal of this section is to validate the ARAS method

on a simple case where the ARAS preconditioner can be written analytically and where we

can apply Theorem 4.3. We consider the 2D problem decomposed in 2 domains presented

in subsection 4.4. The grid size is about 32 × 32. This subsection provides the theoretical

framework we implement in Matlab. Here, we verify numerically the theoretical results given

previously.

We build the matrix P̂ ∈ C
30×30. Only the internal points are taken, leading to 30

modes which can be accelerated. Those modes decrease from 0.8106 to 0.1531. We decide

to compute the entire P̂ and a truncated one of size q = 15, QF P̂ . Figure 5.1 shows the

coefficient of the matrix computed. The goal here is to retrieve the convergence rate given by

the application of theorem 4.3 in equation (4.33). The convergence rate of a ARAS(q) type

preconditioner is related to the coefficients of P̂ denoted by δl.

0 5 10 15 20 25 30 35
0

0.1

0.2535
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

modes

δ Γ

Fourier modes
 on diagonal

Selected modes

FIGURE 5.1. Diagonal coefficients of P̂ and QF P̂ corresponding to the modes to accelerate.

For q = 15 we note that,

δ1 = 0.8106 (5.1)

δq+1 = 0.2535 (5.2)

δ2q+1 = 0.0643 (5.3)

Then we compute the RAS, ARAS(q) and ARAS2(q) preconditioners and compute for

each preconditioner of type ∗ the spectral radius of T∗ and the conditioning number in the 2
norm of M−1

∗ A. The convergence for each appropriate stopping criteria is 10−10.

Table 5.1 shows the numerical convergence rate of RAS, ARAS(15), ARAS2(15), and

ARAS2(30) for the test case presented in Subsection 4.4. The numerical values obtained for

ρT∗ match perfectly the theoretical results. It exhibits also that the Aitken acceleration of

the RAS enhances the condition number of the preconditioned problem. In accordance with

the theory, when q = 30, the size of the artificial interface, P is exact and M−1
ARAS2 = A−1

numerically.

21

prec. ∗ ρ(T∗) κ(M−1
∗ A) It. Rich. It. GCR

RAS 0.8106 30.0083 96 18

ARAS(q=15) 0.2535 5.2358 14 7

ARAS2(q=15) 0.0643 1.1451 7 5

ARAS2(q=30) 1.4319 e-13 1.0000 1 1
TABLE 5.1

Numerical performance of RAS, ARAS and ARAS2 on the 2D Poisson problem.

Moreover the number of iterations of the iterative process ARAS(q=15) is twice the

number of iterations of the iterative process ARAS2(q=15).

5.2. Observing the influence of the partitioning and the approximation space on a

2D Helmholtz problem. Here, we focus on the influence of the partitioning chosen to set

up the domain decomposition method. We also focus on the influence of the choice of a base

to approximate the Aitken’s acceleration. When the mesh is known it is possible to partition

the operator following a geometric partitioning. One point is to see what can happen if we

partition the operator with a graph partitioning approach such as METIS. Another point is

to see how the choice of a base influence the performance and the cost of the ARAS type

preconditioner.

Let us consider the 2D Helmholtz problem (−ω−△)u = f in Ω = [0, 1]2, u = 0 on ∂Ω.

The problem is discretized by second order finite differences with m points in each direction

x and y giving a space step h = 1
m−1 . The set value ω = 0.98 4

h2 (1− cos(πh)) is close to the

minimum eigenvalue of the discrete −△ operator in order to have an ill-conditioned discrete

problem with κ∞(A) = 1.7918E + 07 for m = 164.

FIGURE 5.2. Partitioning into 8 parts on a 2D Helmholtz problem of size 164 × 164, (left) Physical Band

partitioning, (right) METIS partitioning.

First we solve the problem with a physical band partitioning, and then we solve it with

a METIS partitioning using eight sub-domains. Figure 5.2 illustrates the physical band and

the METIS partitioning using eight sub-domains. In the physical partitioning, borders are

smooth, contrary to the METIS partitioning which creates corners and irregular borders. The

corners give cross points which deteriorate the convergence of the Schwarz method.

For each partitioning, we build the ARAS2 preconditioner in two different bases:

• an orthogonal base arising from the application of the preconditioner RAS on a

sequence of random vectors (see subsection 3.1).

• a base built from the successive Schwarz solution on the interface and passed in its

SVD base (see subsection 3.2).

22

Remark 7. In the following, we denote by ARAS2(r=n
q) the preconditioner approximated

in the ”random” base. Because the number of vectors can be high for this kind of base, we

choose to express the reduction number r in parentheses instead of q, the number of column

of Uq , but the formula is still:

M−1
ARAS(r=n

q
),δ =

(

Im +RT
ΓUq

(

(

Iq − P̃Uq

)−1

− Iq

)

U
−1
q RΓ

) p
∑

i=1

R̃T
i,δA

−1
i,δRi,δ

Figure 5.3 (respectively Figure 5.4) presents the Richardson process with ARAS2 and the

ARAS2 preconditioned GCR Krylov method for the physical band partitioning (respectively

a METIS partitioning) using a random base or a SVD base. These results were obtained

with a sequential Matlab code able to run small academic problems. The Krylov method

used is the gradient conjugate residual GCR while the LU factorisation is used to solve the

sub-domain’s problems.

These results exhibit:

• Richardson processes in Figure 5.3 converge while in Figure 5.4 only the RAS itera-

tive process converges and the ARAS2 process diverges. Consequently the physical

partitioning enables good convergence of the RAS which can be accelerated with

the approximation of P by PUq
. The METIS partitioning slows the convergence of

the RAS due to the cross points.Then, using a domain decomposition method as a

solver with an algebraic partitioning can produce bad results when it is accelerated

by Aitken. Let us notice that the full P makes the RAS process converge in one

iteration.

• Nevertheless, the Aitken-RAS used as a preconditioner is very efficient even on

the METIS partitioning with cross points where the Aitken-RAS as a Richardson

process diverges. This makes the Aitken-RAS a robust algebraic preconditioner. We

must notice that the effect of the preconditioning with a METIS partitioning is less

efficient than the one with the physical partitioning.

• The better the base Uq is able to represent the interface solution, the better the pre-

conditioner is for the random base and the SVD base.

Let us observe the difference between the two choices of base to compute the accelera-

tion. On the one hand, the choice of an orthogonal base arising from the application of the

RAS preconditioner on a sequence of random vectors presents good advantages for a precon-

ditioner. With this approach, the preconditioner can be used for different right-hand sides.

However, the number of vectors necessary to describe the interface can be close to the size of

the global interface, increasing the cost of the preconditioner. On the other hand, it is possi-

ble to build the acceleration for many iterations of the Additive Schwarz process, computing

the SVD of the interface solutions. Then the acceleration process is problem-dependent, but

experience shows that a small number of iterations can enable a good approximation of PUq
.

For a physical partitioning, we can evaluate the cost of each preconditioner. For each sub-

domain, the artificial interface is of size 164 for the uppermost or lowermost sub-domain, and

164 ∗ 2 = 328 for internal sub-domains. Hence, for p = 8 the global interface has a size

of 164 ∗ (6 ∗ 2 + 2) = 2296. For r = 1 the base is complete and PUq
is exact. There is

no need to use ARAS as a preconditioning technique. For all r the size of Γ is 2296
r . Then

the number of M−1
RASx = y products to build M−1

ARAS is 3 ∗ 2296
r . While the number of

M−1
RASx = y products to build M−1

ARAS for the base arising from SVD only depends on the

number of Richardson iterations.

Figure 5.3, shows that for r = 8, n = 185 and the number of products M−1
RASx = y is 555,

the convergence of GCR is reached in 11 iterations. For 24 iterations of Schwarz, we build a

23

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

Schwarz iterations

lo
g

1
0

(
||
u

k
+

1
−

u
k
||

∞
)

RAS
ARAS2(2)
ARAS2(4)
ARAS2(8)

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

Schwarz iterations

lo
g

1
0

(
||
u

k
+

1
−

u
k
||

∞
)

RAS
ARAS2−svd(24)
ARAS2−svd(16)
ARAS2−svd(8)

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

2

Krylov iterations

lo
g

1
0

(
||
r
k
||

2
)

RAS
ARAS2(2)
ARAS2(4)
ARAS2(8)

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

2

Krylov iterations

lo
g

1
0

(
||
r
k
||

2
)

RAS
ARAS2−svd(24)
ARAS2−svd(16)
ARAS2−svd(8)

FIGURE 5.3. Solving 2D Helmholtz equation on a 164× 164 Cartesian grid, physical band partitioning, p =
8,(left) ARAS2(r = n

q
) is built with a Random base, (right) ARAS2(q) is built with a SVD base, (top) Convergence

of Iterative Schwarz Process, (bottom) convergence of GCR method preconditioned by RAS and ARAS2.

matrix PUq
of size 24, which is around eight times smaller than with the previous base. The

number of matrix products is 48, 12 times smaller than with the previous base. The number of

GCR iterations is 15. Eventually, the cost of a good independent preconditioner is excessive

compared to the one with the SVD.

Figure 5.5 focuses on the eigenvalue of the error transfer operators when the base is

computed from SVD and both partitioning. We compute all the singular values corresponding

24

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

Schwarz iterations

lo
g

1
0

(
||
u

k
+

1
−

u
k
||

∞
)

RAS
ARAS2(2)
ARAS2(4)
ARAS2(8)

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

Schwarz iterations

lo
g

1
0

(
||
u

k
+

1
−

u
k
||

∞
)

RAS
ARAS2−svd(24)
ARAS2−svd(16)
ARAS2−svd(8)

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

2

Krylov iterations

lo
g

1
0

(
||
r
k
||

2
)

RAS
ARAS2(2)
ARAS2(4)
ARAS2(8)

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

2

Krylov iterations

lo
g

1
0

(
||
r
k
||

2
)

RAS
ARAS2−svd(24)
ARAS2−svd(16)
ARAS2−svd(8)

FIGURE 5.4. Solving 2D Helmholtz equation on a 164×164 Cartesian grid, METIS partitioning, p = 8,(left)

ARAS2 is built with a Random base, (right) ARAS2 is built with a SVD base, (top) Convergence of Iterative Schwarz

Process, (bottom) convergence of GCR method preconditioned by RAS and ARAS2.

to the number of interface points and select 24 singular values from this set of n values. For

8 partitions with a manual partitioning, n = 2296 and with a METIS partitioning we obtain

1295 interfaces points. We saw that the Aitken-RAS technique used as a Richardson iterative

process diverges for the METIS partitioning. We study the spectrum of a preconditioner

in the two cases and compare it to the spectrum of the RAS preconditioning method. For

convenience we consider only a set of the 40 largest eigenvalues.

The predicted values of the spectrum of the error transfer operator on the interface gives

25

0 5 10 15 20 25 30 35 40

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

eigenvalue indices

λ

λ(T

RAS
)

λ(P)
λ(T

ARAS
)

λ((I
n
 − Q) P)

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

eigenvalue indices

λ

λ(T

RAS
)

λ(P)
λ(T

ARAS
)

λ((I
n
 − Q) P)

FIGURE 5.5. Eigenvalues of TARAS(q = 24) compared to eigenvalues of PUq
for a 164 × 164 Cartesian

grid, p = 8,(top) Band partitioning, ARAS is built with a SVD base computed with 24 singular vectors chosen over

2296, (bottom) METIS partitioning, ARAS is built with a SVD base computed with 24 singular vectors chosen over

1295.

a good approximation of the spectrum of the iterative process in the case of the band parti-

tioning. Otherwise, for the METIS partitioning, it appears that the spectrum gives a good idea

of the spectrum of the iterative method but differs for the first eigenvalues. Then it appears

that the first eigenvalue of TARAS is greather than 1 instead of the value computed for Q̄P ,

which is less than 1. It should explain why the iterative process diverges.

This empirical analysis shows the influence of a partitioning technique on the Schwarz

26

preconditioner. It is important to know that if the user has the entire knowledge of the lin-

ear system he solves then he should provide a physical partitioning which can have smooth

boundaries. Otherwise, if the sub-problems are non-singular then the Schwarz method used

as a preconditioning technique is efficient but can present a lack of speed in the convergence.

The second point is the choice of a good base. The two bases are efficient, but the one arising

from the SVD presents the best choice for time computing considerations.

6. Results on industrial problems. In section 5 we pointed out that a graph partitioning

to define the domain decomposition and the algorithm of approximation using the SVD of the

Schwarz solutions should be a good choice to algebraically build the ARAS preconditioner.

We first propose an estimation of the computing cost and then apply the preconditioner to an

industrial problem.

6.1. Computing cost modelling. We want to evaluate the cost of building and applying

an ARAS type preconditioner in terms of arithmetic complexity. We denote by AC(∗) the

arithmetic complexity of an operation ∗. Let considers a matrix A ∈ Rm×m. This matrix is

decomposed into p sub-matricesAi ∈ Rmi×mi . The decomposition leads to have an interface

Γ of size n. The coarse interface is of size q. We denote by xα ∈ Rα where α ∈ N should be

any of m, mi, n or q.

6.1.1. Arithmetic complexity of applying an ARAS type preconditioner. Let consid-

ers the operation:

M−1
RASxm =

p
∑

i=1

R̃T
i A

−1
i xmi

= y

The cost of such an operation mostly consists in the p operationsA−1
i xmi

which depends

on the cost of a chosen method to inverse Ai such as a Krylov methods or a LU factorization

or maybe an incomplete LU factorization.

Then the cost of applying a RAS preconditioner is written as:

AC
(

M−1
RASxm

)

= p×AC
(

A−1
i xmi

)

(6.1)

We now consider the operation:

M−1
ARAS(q)xm =

(

Im +RT
ΓUq

(

(

Iq − PUq

)−1
− Iq

)

U
T
q RΓ

)

p
∑

i=1

R̃T
i A

−1
i Rixm

The cost of such an operation consists in one application of a RAS preconditioner, the

base transfer operated by Uq and solving
(

Iq − PUq

)

yq = xq . Others or summing operations:

1 sum between 2 vectors of size n and, one subtract between two vector of size q.

Then the cost of applying a RAS preconditioner is written as:

AC
(

M−1
ARASxm

)

= p×AC
(

A−1
i xmi

)

+AC
(

U
T
q xm

)

+AC
(

(

Iq − PUq

)−1
xq

)

+AC (Uqxq)

+AC (xq − xq) +AC (xn + xn)

We note that:

• An addition between 2 vectors of size n consists in n operations.

• A subtraction between 2 vectors of size n consists in n operations.

27

• A scalar product between 2 vectors of size n consists in n product and n sum.

• A multiplication between a matrix with n lines and m columns and a vector with m
lines consists in n scalar products of vectors of size m.

Then we write,

AC (xn + xn) = n

AC (xq − xq) = q

AC (Uqxq) = m× 2× q

AC
(

U
T
q xm

)

= q × 2×m

And,

AC
(

M−1
ARASxm

)

= p×AC
(

A−1
i xmi

)

(6.2)

+AC
(

(

Iq − PUq

)−1
xq

)

(6.3)

+4× q ×m+ n+ q (6.4)

Remark 8. In most cases the coarsening is such that q ≪ m. Then the cost

AC
(

(

Iq − PUq

)−1
xq

)

should be very small compared to the cost p×AC
(

A−1
i xmi

)

. If it is the case

AC
(

M−1
ARAS(q)xm

)

= AC
(

M−1
RASxm

)

+O(m) (6.5)

This means that the cost of one application of the ARAS preconditioner is close to the

cost of one application of the RAS preconditioner when q ≪ m.

We now estimate the cost of applying an ARAS2 preconditioner:

M−1
ARAS2(q)xm = 2M−1

ARAS(q) −M−1
ARAS(q)AM

−1
ARAS(q)xm (6.6)

It consists in 2 applications of ARAS(q) and one matrix vector product on the entire

domain. We note that the matrix A is sparse. So, denoting by nnz(A) the number of non

zeros elements of A we write,

AC(Axm) = 2× nnz(A)

Hence,

AC
(

M−1
ARAS2(q)xm

)

= 2×AC
(

M−1
ARAS(q)xm

)

+ 2× nnz(A) + 2O(m) (6.7)

Remark 9. For q ≪ m,

AC
(

M−1
ARAS2(q)xm

)

= 2×AC
(

M−1
RASxm

)

+O(nnz(A)) +O(m)

28

6.1.2. Arithmetic complexity of building the coarse space Uq and PUq
. We focus

here on the cost to build a base arising from the SVD of the Schwarz solutions on the interface.

We refer to Algorithm 5 which proposes a robust way to implement the Aitken’s acceleration

without inversion.

We compute q + 2 iterations of a RAS iterative process. It consists in applying the

preconditioner on a vector xm and summing the result with another vector of the same size.

We can write

AC(TRASxm) = AC(M−1
RASxm) +O(m) (6.8)

Then we perform a SVD over a set of q + 2 vectors of size n, Xq+2 ∈ Rn×(q+2).

AC(building Uq) ≤ (q + 2)×AC(TRASxm) +AC(SV D(Xq+2)) (6.9)

After this, we apply one iteration of the Schwarz iterative process on at most the q first

left singular vectors to build PUq
. Thus,

AC(building Uq and PUq
) ≤ (q + 2)×AC(TRASxm)

+AC(SV D(Xq+2) + q ×AC(M−1
RASxm) (6.10)

Hence,

AC(building Uq and PUq
) ≤ 2(q+1)×AC(M−1

RASxm)+AC(SV D(Xq+2))+O(m) (6.11)

The cost of building the coarse space and the error transfer operator depends on the num-

ber q of vectors needed. Then the ARAS(q) preconditioner will be a good choice compared

to RAS if q is sufficiently small compared to the number of application of the preconditioner

involved in the Krylov iterative method.

Remark 10. This computation, following the robust algorithm 5, is nearly two times

costly than Algorithm 4 with inversion. In fact, the building of PUq
with Algorithm 4 consists

in inverting an error matrix of size q and multiplying it, on the left, by another matrix of size

q. For simplicity we consider those operations of order O(m).

AC(building Uq and PUq
) ≤ (q+2)×AC(M−1

RASxm)+AC(SV D(Xq+2))+O(m) (6.12)

In order to save computing, Algorithm 4 with inversion is the best choice.

6.1.3. Parallelization. It is important to note that the Restricted Additive Schwarz pro-

cess is fully parallel, in the sense that the inverse of Ai can be computed independently by

every single process i handling a domain i. Then for p processes, we can re-write the formula

(6.1):

AC
(

M−1
RASxm

)

= AC
(

A−1
i xmi

)

(6.13)

The parallelism leads to have a reduction of the matrix vector product. Then we write,

for p processes:

AC (Uqxq) = mi × 2× q

AC
(

U
T
q xm

)

= q × 2×mi

AC(Axm) = 2× nnzi(A)

Table 6.1 shows the parallel arithmetic complexity in O(mi) for building and applying a

parallel ARAS(q) preconditioner.

29

Task AC(SVD(Xq+2)) AC
(

A−1
i xmi

)

Building 1 q + 2
Apply 0 1

TABLE 6.1

Parallel complexity for building and applying an ARAS(q) preconditioner

6.2. Application on a 3D CFD industrial case. We consider CASE 017 RM07 avail-

able in the sparse matrix collection [13], which represents a 3D viscous case with a ”frozen”

turbulence. Here, the geometry is a jet engine compressor. The problem is discretized among

54527 nodes. Seven variables per node are considered. The resulting matrix is of size 381689
with 37464962 non-zeros. The matrix is not symmetric.

We use a PETSc-MPI implementation with a PARMETIS partitioning taking into ac-

count the block structure and the weight of each block. The matrix is partitioned in four

parts, with a minimum overlap. We apply the ARAS and ARAS2 left-preconditioners with

40 basis vectors computed following Algorithm 5.

Figure 6.1 shows the convergence of the preconditioned GMRES and the convergence

of the Richardson processes associated to the preconditioners. In order to disminish the cost

of building phase, the tolerance is set to 10−6 for the local solution, but only for the building

phase.Then, the iterations to build PUq
take less cpu-time and memory allocation than one

application of the preconditioner during the solution phase. The ARAS(q) preconditioner has

been presented as a left preconditioner. The stopping criteria used for the GMRES method

implemented in PETSc is based on the relative residual. This is why the curves are not going

to the same tolerance. We discuss this point with the following results. For a minimal overlap,

without knowledge of the underlying equations and mesh design, the ARAS preconditioner

is efficient, and also its mutliplicative version, ARAS2.

Table 6.2 shows the performance results corresponding to Figure 6.1 on an SGI Altix

Xe340. While applying ARAS(40) or ARAS2(40), both Solution Time and Memory alloca-

tion are reduced. The time involved in the building phase of the preconditioner depends of

the choice of local factorization and the kind of algorithm chosen. The different times follows

the formula of the arithmetic complexity presented in Subsection 6.1. The relative residual

for RAS and ARAS(q) is the same. We explain the difference of convergence between ARAS

and ARAS2 for this case by the fact that the Richardson processes diverge and leads to an

amplified inaccurary in ARAS2.

Prec. Building Solution Max. Loc. Mem ||Ax− b||2/||b||2
Time (s.) Time (s.) (M.O.)

RAS 8.684 1552.89 1068 1.5704 e-09

ARAS (40) 429.943 1086.63 1048 9.7492e-10

ARAS2 (40) 446.454 1174.97 1010 2.2760e-07
TABLE 6.2

Solving 3D Navier Stokes equation (CASE RM07), PARMETIS partitioning with weights, p = 4, overlap 0,

ARAS2 is built with a SVD basis, GMRES method preconditioned by RAS and ARAS (built with tol = 10−6).

7. Conclusion. We presented an integration of the Aitken acceleration technique in the

RAS preconditioning. This integration leads to a multi-level preconditioner. One level is the

entire domain, while the second is the entire artificial interface. Since the computation of the

error transfer operator is costly, we propose an algebraic computation of a coarse space, built

30

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

350

Schwarz iterations

lo
g

1
0

(
||
u

k
+

1
−

u
k
||

∞
)

RAS p=4, ov=0
ARAS(40) p=4, ov=0
ARAS2(40) p=4, ov=0

0 20 40 60 80 100 120 140 160 180
−14

−12

−10

−8

−6

−4

−2

0

2

Krylov iterations

lo
g

1
0

(
||
rk

||
2
)

RAS p=4, ov=0
ARAS(40) p=4, ov=0
ARAS2(40) p=4, ov=0

FIGURE 6.1. Solving 3D Navier Stokes equation (CASE RM07), PARMETIS partitioning with weights, p = 4,

overlap 0, ARAS2 is built with a SVD basis, (left) Convergence of Iterative Schwarz Process, (right) convergence of

GMRES method preconditioned by RAS and ARAS (built with tol = 10−6).

from the SVD decomposition of Schwarz solutions on the interface. The results is a cheap

and fully algebraic enhancement of the RAS preconditioner. An analysis of the convergence

of this preconditioner is given when the basis is built analytically and shows the effect of

the preconditioner depending on the choice of the mode to be accelerated. Finally, a result

is provided on a 3D industrial case without knowledge of the underlying equations and the

mesh design.

Future work should focus on other algorithms to build algebraically the Aitken acceleration

in order to reduce the time spent in the building time. Another issue concerns work on parti-

tioning techniques for domain decomposition. Actually, there is no technique to provide local

system with insurance of inversion.

Acknowledgements. This work was funded by the French National Agency of Research

under the contract ANR-TLOG07-011-03 LIBRAERO. The work of the second authors was

also supported by the région Rhône-Alpes through the project CHPID of the cluster ISLE.

Authors are grateful to FLUOREM for providing the industrial test cases and the PETSc code

setting the problem solving environment.

The experiments were done on the cluster SGI-XEON of the Centre pour le Développement

du Calcul Scientifique Parallèle of the Université Lyon 1.

REFERENCES

[1] O. AXELSSON, Iterative Solution Methods, Cambridge University Press, 1996, ch. 5.

[2] J. BARANGER, M. GARBEY, AND F. OUDIN-DARDUN, The aitken-like acceleration of the schwarz method

on nonuniform cartesian grids, SIAM J. Sci. Comput., 30 (2008), pp. 2566–2586.

[3] N. BARBEROU, M. GARBEY, M. HESS, M. RESH, T. ROSSI, J. TOIVANEN, AND D. TROMEUR-DERVOUT,

Efficient metacomputing of elliptic linear and non-linear problems, Journal of Parallel and Distributed

Computing, 63 (2003), pp. 564–577.

31

[4] R. BEAUWENS, Iterative solution methods, Appl. Numer. Math., 51 (2004), pp. 437–450.

[5] J. H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of preconditioners for elliptic prob-

lems by substructuring. I, Math. Comp., 47 (1986), pp. 103–134.

[6] X.-C. CAI, M. DRYJA, AND M. SARKIS, A restricted additive Schwarz preconditioner with harmonic over-

lap for symmetric positive definite linear systems, Cubo, 6 (2004), pp. 73–95.

[7] X.-C. CAI, W. D. GROPP, AND D. E. KEYES, A comparison of some domain decomposition and ILU

preconditioned iterative methods for nonsymmetric elliptic problems, Numer. Linear Algebra Appl., 1

(1994), pp. 477–504.

[8] X.-C. CAI AND M. SARKIS, A restricted additive Schwarz preconditioner for general sparse linear systems,

SIAM J. Sci. Comput., 21 (1999), pp. 792–797 (electronic).

[9] L. M. CARVALHO, L. GIRAUD, AND P. LE TALLEC, Algebraic two-level preconditioners for the Schur

complement method, SIAM J. Sci. Comput., 22 (2000), pp. 1987–2005.

[10] L. M. CARVALHO, L. GIRAUD, AND G. MEURANT, Local preconditioners for two-level non-overlapping

domain decomposition methods, Numer. Linear Algebra Appl., 8 (2001), pp. 207–227.

[11] P. CHEVALIER AND F. NATAF, An optimized order 2 (OO2) method for the Helmholtz equation, C. R. Acad.

Sci. Paris Sér. I Math., 326 (1998), pp. 769–774.

[12] P. G. CIARLET, Introduction à l’analyse numérique matricielle et à l’optimisation, Masson, 1994, ch. 5.

[13] T.A. DAVIS AND Y. HU, The university of florida sparse matrix collection. ACM Transactions on Mathemat-

ical Software (to appear), 20YY. http://www.cise.ufl.edu/research/sparse/matrices.

[14] M. DRYJA AND O. B. WIDLUND, Some domain decomposition algorithms for elliptic problems, in Iterative

methods for large linear systems (Austin, TX, 1988), Academic Press, Boston, MA, 1990, pp. 273–291.

[15] T. DUFAUD AND D. TROMEUR-DERVOUT, Adaptive aitken-schwarz method for non separable operator on

multiprocessor systems, in Parallel Computational Fluid Dynamics Recent Advances & Future Direc-

tions, Rupak Biswas and NASA Advanced Supercomputing Division NASA Ames Research Center,

eds., DEStech Publications, 2010, pp. 297–305.

[16] , Aitken’s acceleration of the restricted additive Schwarz preconditioning using coarse approximations

on the interface, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 821–824.

[17] E. EFSTATHIOU AND M. J. GANDER, Why restricted additive Schwarz converges faster than additive

Schwarz, BIT, 43 (2003), pp. 945–959.

[18] S. C. EISENSTAT, H. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for nonsymmetric

systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.

[19] B. ENGQUIST AND H.-K. ZHAO, Absorbing boundary conditions for domain decomposition, Appl. Numer.

Math., 27 (1998), pp. 341–365. Absorbing boundary conditions.

[20] B. FLANNERY, W. H. PRESS, S. TEUKOLSKY, AND W. VETTERLING, eds., Numerical Recipes: The Art of

Scientific Computing, Cambridge University Press, third ed., 2007.

[21] A. FRULLONE AND D. TROMEUR-DERVOUT, A new formulation of nudft applied to aitken-schwarz ddm on

nonuniform meshes, in Parallel Computational Fluid Dynamics 2005, 2006, pp. 493–500.

[22] M. J. GANDER, L. HALPERN, F. MAGOULÈS, AND F.-X. ROUX, Analysis of patch substructuring methods,

Int. J. Appl. Math. Comput. Sci., 17 (2007), pp. 395–402.

[23] M. J. GANDER, F. MAGOULÈS, AND F. NATAF, Optimized Schwarz methods without overlap for the

Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 38–60 (electronic).

[24] M. GARBEY, Acceleration of the Schwarz Method for Elliptic Problems, SIAM J. Sci. Comput., 26 (2005),

pp. 1871–1893.

[25] M. GARBEY AND D. TROMEUR-DERVOUT, Two level domain decomposition for multiclusters, in 12th Int.

Conf. on Domain Decomposition Methods DD12, T. Chan & Al editors, ed., ddm.org, 2001, pp. 325–

339.

[26] , On some aitken like acceleration of the schwarz method, Internat. J. Numer. Methods Fluids, 40

(2002), pp. 1493–1513. LMS Workshop on Domain Decomposition Methods in Fluid Mechanics (Lon-

don, 2001).

[27] L. GERARDO-GIORDA AND F. NATAF, Optimized Schwarz methods for unsymmetric layered problems with

strongly discontinuous and anisotropic coefficients, J. Numer. Math., 13 (2005), pp. 265–294.

[28] W. D. GROPP AND D. E. KEYES, Parallel performance of domain-decomposed preconditioned Krylov meth-

ods for PDEs with locally uniform refinement, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 128–145.

[29] B. N. KHOROMSKIJ AND G. WITTUM, Numerical solution of elliptic differential equations by reduction

to the interface, vol. 36 of Lecture Notes in Computational Science and Engineering, Springer-Verlag,

Berlin, 2004.

[30] Z. LI AND Y. SAAD, SchurRAS: a restricted version of the overlapping Schur complement preconditioner,

SIAM J. Sci. Comput., 27 (2006), pp. 1787–1801 (electronic).

[31] P.-L. LIONS, On the Schwarz alternating method. I, in First International Symposium on Domain Decompo-

sition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA, 1988, pp. 1–42.

[32] , On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, in Third Interna-

tional Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX,

32

1989), SIAM, Philadelphia, PA, 1990, pp. 202–223.

[33] L. D. MARINI AND A. QUARTERONI, A relaxation procedure for domain decomposition methods using finite

elements, Numer. Math., 55 (1989), pp. 575–598.

[34] RAMESH NATARAJAN, Domain decomposition using spectral expansions of Steklov-Poincaré operators. II.

A matrix formulation, SIAM J. Sci. Comput., 18 (1997), pp. 1187–1199.

[35] A. QUARTERONI AND A. VALLI, Domain decomposition methods for partial differential equations, Numer-

ical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York,

1999. Oxford Science Publications.

[36] A. ST-CYR, M. J. GANDER, AND S. J. THOMAS, Optimized multiplicative, additive, and restricted additive

Schwarz preconditioning, SIAM J. Sci. Comput., 29 (2007), pp. 2402–2425 (electronic).

[37] O. STEINBACH, A natural domain decomposition method with non-matching grids, Appl. Numer. Math., 54

(2005), pp. 362–377.

[38] J. STOER AND R. BULIRSCH, Introduction to numerical analysis, vol. 12 of Texts in Applied Mathematics,

Springer-Verlag, New York, third ed., 2002. Translated from the German by R. Bartels, W. Gautschi and

C. Witzgall.

[39] D. TROMEUR-DERVOUT, Meshfree adaptative aitken-schwarz domain decomposition with application to

darcy flow, in PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, BHV

Topping and P Ivanyi, eds., vol. 21 of Computational Science Engineering and Technology Series,

SAXE-COBURG PUBLICATIONS, 2009, pp. 217–250.

[40] D. M. YOUNG AND K. C. JEA, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative

methods, Linear Algebra Appl., 34 (1980), pp. 159–194.

33

