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ABSTRACT 
The three-dimensional confinement of electrons and holes in the semiconductor quantum dot (QD) structure profoundly 
changes its density of states compared to the bulk semiconductor or the thin-film quantum well (QW) structure. The aim 
of this paper is to theoretically investigate the microwave properties of InAs/InP(311B) QD lasers. A new expression of 
the modulation transfer function is derived for the analysis of QD laser modulation properties based on a set of four rate 
equations. Analytical calculations point out that carrier escape from ground state (GS) to excited state (ES) induces a 
non-zero resonance frequency at low bias powers. Calculations also show that the carrier escape leads to a larger 
damping factor offset as compared to conventional QW lasers. These results are of prime importance for a better 
understanding of the carrier dynamics in QD lasers as well as for further optimization of low cost sources for optical 
telecommunications. 
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1. INTRODUCTION 

Self-organised quantum dot (QD) lasers are promising laser sources for optical fibre communications because of  their 
attractive characteristics, such as low threshold current density [1], high differential gain [2], high bandwidth [3,4] and 
low chirp [5,6]. QD lasers are expected to be alternatives of the quantum well (QW) counterparts for optical 
telecommunications. However, the QD lasers have not realized the expected dynamic properties, and the maximum 
modulation bandwidth remains limited to 10-12 GHz [7,8] at wavelengths in 1300-1500 nm bands, much below the best 
reported values for QW lasers. Therefore, it is necessary to clarify the origins of limited modulation bandwidth of QD 
lasers, and then to find strategies for improving the modulation bandwidth to meet the network requirement. The 
modulation bandwidth is strongly dependent on resonance frequency and damping factor. The resonance frequency has 
been demonstrated to be limited by the maximum modal gain and nonlinear gain effects [9].  In particular, QD lasers are 
commonly observed to exhibit a stronger damping compared to QW lasers [10,11,12], which limits their maximum 
modulation bandwidth. The underlying physical mechanisms are still under investigation, carrier capture dynamics 
[13,14,15], Coulomb interaction [12] and gain compression [11] are proposed to the origins. The modulation transfer 
function derived from the two standard QW rate equations [9] is an efficient tool for the analysis of QW laser modulation 
characteristics, however, it does not work well on QD lasers because of the more complicated carrier dynamics. One 
theoretical approach to study QD laser dynamics is to simulate the modulation properties numerically based on a set of 
rate equations [12]. These equations, however, are complicated for a direct understanding of the QD laser modulation 
response, so a simple model describing the essential QD dynamical properties is desired. Sugawara et. al proposed an 
empirical expression to fit the experimental modulation response [16]. Foire et. al developed an indirect approach to 
recast the set of complex QD rate equations into the standard QW rate equations [8]. This paper aims to theoretically 
investigate the microwave properties of InAs/InP(311B) QD lasers [17]. Based on a set of four rate differential equations 
[18], we developed a new analytical modulation transfer function, which includes the impacts of wetting layer (WL) and 
excited state (ES). Definitions of relaxation resonance frequency and damping factor are improved as well. The 
analytical analysis shows that carrier escape from GS to ES is responsible for the commonly observed strong damping of 
QD lasers, and leads to a non-zero resonance frequency at low bias powers. These results are significant for a better 
understanding of carrier dynamics of QD lasers and point to possible routes for the improvement of QD laser dynamic 
properties. 
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2. STEAY-STATE PROPERTIES AND TURN-ON DELAY PROPERTIES  

2.1  Numerical model description 

 
Figure 1. Illustration of carrier dynamics model including a direct relaxation channel (dash lines)                                          

Figure 1 shows the schematic of the carrier dynamics for the InAs/InP(311B) QD laser [18]. It is assumed that there is 
only one QD ensemble, and the QDs are always neutral, electrons and holes being treated as electron-hole (eh) pairs. 
There are only one two-fold degenerated GS and one lowest four-fold degenerated ES in the QDs. GS laser emission 
occurs when the threshold is reached, and the stimulated emission from the ES is not taken into account in the model.  
Carriers are supposed to be injected directly from the contacts into the WL levels, so the barrier dynamics are not 
considered. Then, carriers are either captured into ES within time WL

ESτ   or directly into GS within timeWL
GSτ . Once in the 

ES level, carriers can also relax to GS within timeES
GSτ . On the other hand, the eh-pairs recombine spontaneously or 

escape from GS and ES within timesGS
ESτ , GS

WLτ and ES
WLτ , and these times are decided by the Fermi distribution for the 

quasi-thermal equilibrium without external excitation [19]. Following the sketch of figure 1, the four rate equations on 
carrier and photon number are as follows: 
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where , ,WL ES GSN  are carrier numbers in WL, ES, GS and GSS  is photon number. , ,
spon
WL ES GSτ are spontaneous emission times, 

SPβ is spontaneous emission factor and pΓ  is optical confinement factor. gv  is the group velocity and pτ is photon 

lifetime. The GS gain is described as follows: 
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where GSa is the differential gain and BN  is the total QD number. ,GS ESf  are the probabilities to find an empty carrier 

state in GS and ES: 
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Since the carrier escape from GS to WL has been demonstrated to have little effects on laser properties [18], the    
 / GS

GS WLN τ  term in Eq. (1) and Eq. (3) can be neglected. 



 
 

 

 

2.2 Steady-state properties and turn-on delay properties 

Steady-state properties as well as turn-on delay properties are studied by solving the four rate equation model 
numerically. The capture timeWL

ESτ and relaxation time ES
GSτ  are fixed from the time resolved photoluminescence 

experiment [20]. The direct carrier capture time from WL to GS WL
GSτ  is observed to be larger than the capture time WL

ESτ  

in low excitation regime [21], while in strong excitation regime WL
GSτ  becomes as short asWL

ESτ , i. e. WL WL
GS ESτ τ≈ [20]. In our 

calculation, we take 1.5WL WL
GS ESτ τ=  and the differential gain aGS = 0.5×10-14 cm2. Other simulation parameters are 

summarized in table 1. 

Table 1. The QD material parameters and the laser parameters 

QD material parameters Laser parameters 
WL energy:                                       EWL=0.97 eV Active region length:                L=0.11 cm 
ES energy:                                        EES=0.87 eV Active region width:                W=3×10-4 cm 
GS energy:                                        EGS=0.82 eV Number of QD layers:              N=5 

Capture time from WL to ES:         WL
ESτ =25.1 ps QD density:                               ND=5×1010 cm-2 

Relaxation time from ES to GS:     ES
GSτ = 11.6 ps Optical confinement factor:      pΓ =0.06 

Spontaneous time of WL and ES:   spon spon
WL ESτ τ= =500 ps Spontaneous emission factor:   SPβ =1× 10-4 

Spontaneous time of GS:                spon
GSτ =1200 ps Internal modal loss:                   iα =6 cm-1 

Refractive index:                              nr=3.27 Mirror reflectivity:                      R1=R2=0.3 
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Figure 2.  Calculated photon number and carrier number as a function of injected current. 
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Figure 3.  Turn-on delay of the GS lasing at various current injection levels. 



 
 

 

 

Steady-state properties of the InAs/InP (311B) QD laser are shown in figure 2. With the increased current injection, both 
the carrier populations in GS and ES are enhanced. Then, above an injected current of about 48 mA, the GS population 
gets clamped which leads to the occurrence of the GS lasing emission, while the ES population continues increase with a 
decreased slope efficiency. Figure 3 presents the transient responses of GS lasing at several current injections. With the 
increase of injected current, the delay time becomes shorter which indicates a decreased carrier lifetime [22]. Both the 
oscillation frequency and the damping factor increase with the increasing current. The oscillation frequency at 75 mA, 
100 mA and 200 mA are 1.94GHz, 2.64 GHz and 3.52 GHz, respectively. The relaxation oscillation cannot be 
distinguished at 300 mA due to the strong damping of relaxation oscillations. 

3. SMALL-SIGNAL ANALYSIS OF INTENSITY MODULATION RESPONSE  

3.1 Analytical derivations 

Based on the set of rate equations (1-4) and considering , , , ,WL ES GS GSI N N N S as well as GSg  as dynamic variables, we can 

derive the differential rate equations on carrier and photon density:  
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where  
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where the gain variation is p
GS GS GS GS GSdg a dN a dS= − , and /p

GS GS GSa g S= −∂ ∂ ��Applying a small-signal analysis to the 

differential rate equations allows extracting a new expression of the QD laser’s modulation response: 
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The four parameters which characterize ( )H w  are given by: 
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And the improved relaxation resonance frequencyRw and damping factor Γ are defined as 

 2
33 44 34 43Rw γ γ γ γ= −                                                                                   (11) 

33 44γ γΓ = +                                                                             (12) 

Using the set of equations (8), Eq. (11) and Eq. (12) can be re-expressed as follows: 
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where we have used the steady-state relation 1/ / spon
p p g GS p SP GS GS GSv g N Sτ β τ− Γ = Γ . It is important to note that the 

improved resonance frequency and damping factor differ from those for QW lasers [9]. For the QD structure, 2
Rw  

andΓ contain an additional term / GS
ES ESf τ , i. e. carrier escape from the GS to the ES. Since the first term in 2

Rw  

dominates over all the other terms, the resonance frequency can be reduced to2 /R g GS GS pw v S a τ≈ . Employing this 

simplified definition of 2
Rw  and rewrite the damping factor: 
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τ τ τ

Γ
Γ = + + +                                                          (15) 

where the so-called K-factor is as follows: 
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p
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The expression of K-factor is found to be the same as of the conventional one for QW lasers.  The term / GS
ES ESf τ  in 

damping factor Γ dominates in the offset and is comparable to2RKf  even at high bias powers, so the offset can not be 

neglected.   

Based on the steady-state results in the former section, the modulation responses are calculated from Eq. (9) for various 
current levels and depicted in figure 4. Numerical results show that both the relaxation frequency and the damping factor 
increase with the pump current. At a current injection of around 135 mA, the modulation bandwidth reaches the 
maximum value ~5.5 GHz, which is in good agreement with the commonly measure values [23,24,25]. 
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Figure 4. Intensity modulation response at several injected currents. 

3.2 Experimental results and simulations 

The studied laser device under experiment is a InAs/InP(311B) QD laser [17], where the heterostructure is grown by 
MBE on a (311)B oriented InP substrate and it has as-cleaved facet. The active region consists of 5 QD layers, and the 
dot density is ~1011cm2 [26]. The length and width of the ridge wave-guide FP laser are 1.1 mm and 3×10-3 mm, 
respectively.  Experiments show a GS lasing peak at 1.52 �m at room temperature in continuous wave (cw) operation 
and the photon lifetime is measured to be 5.8 ps.  In this section, we use the new analytical transfer function Eq. (9) to 
simulate the laser modulation performance. In the calculations, the differential gain GSa  is the only fitting parameter 

which is adjusted to 0.25×10-14 cm2, other parameters are set to the experimental values. 
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Figure 5. The resonance frequency as a function of the normalized current. Dots are the experimental results [17] and 

the solid line corresponds to the theoretical result.  

Figure 5 shows that the resonance frequency Rf  as a function of the normalized current 1/2( )thI I− . Numerical results 

(solid line) obtained from Eq. (9) lead to a relative good agreement with the experimental results (dots). However, at 
large current injections, the calculated resonance frequency is higher than the experimental result, this is because the gain 
compression is not considered in our model. Analytical analysis points out that the carrier escape from GS to ES induces 
a non-zero resonance frequency around 1 GHz at low bias powers. This resonance frequency offset is larger than the one 
due to spontaneous emission only in QW lasers [9].  
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Figure 6. Comparisons of damping factor from our improved QD model and that from the QW model (inset). 

Figure 6 shows the evolution of damping factor Γ as a function of resonance frequency2
Rf : the relation calculated from 

our improved QD model is 20.20 14.9RfΓ = +  (GHz), in comparison with the result from conventional QW model 

(inset): 20.23 0.066RfΓ = +  (GHz). The two K-factors are nearly the same ~0.2 ns, which is 3 times smaller than the 

experimental value 0.6 ns [17]. Such a discrepancy can be attributed to the fact that the simulation does not take into 
account the gain saturation effects. Further studies will investigate the influence of p

GSaΓ which is comparable to the 

differential gain GSa  [9]. The offset of damping factor from the QD model is much larger than that from the QW model, 

according to Eq. (15), this is attributed to the carrier escape from GS to ES ( / GS
ES ESf τ ).  The large values can well 

indicate the commonly observed strong damping in QD lasers [10,12]. The deviation from linearity at low relaxation 
resonance frequency is because of the spontaneous emission term ( ) / ( )spon

p SP GS GS GSN Sβ τΓ in the damping factor 

expression. This phenomenon has been observed in InGaAsP bulk lasers by Su et. al via a parasitic-free optical 
modulation technique [27].  



 
 

 

 

4. CONCLUSION  

A new analytical expression of the modulation response has been derived for QD lasers, which includes the impacts of 
wetting layer, excited states and ground state. We also improved the definitions of resonance frequency and damping 
factor for QD lasers.  From the analysis, it is found that at low bias powers, carrier escape from GS to ES gives rise to a 
non-zero resonance frequency associated with a strong damping rate. These results are of first importance for a better 
understanding of the carrier dynamics in QD lasers for high-speed applications, and point to possible routes for the 
improvement of QD laser dynamics as well. 
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