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Abstract. In this work we study population size as a fraction of the true
Pareto optimal set and analyze its effects on selection and performance
scalability of a conventional multi-objective evolutionary algorithm ap-
plied to many-objective optimization of small MNK-landscapes.

1 Introduction

Conventional multi-objective evolutionary algorithms (MOEAs) [1] are known to
scale up poorly to high dimensional objective spaces [2], particularly dominance-
based algorithms. This lack of scalability has been attributed mainly to inap-
propriate operators for selection and variation. The population size greatly in-
fluences the dynamics of the algorithm. However, its effects on large dimensional
objectives spaces are not well understood. In this work we set population size
as a fraction of the true Pareto optimal set and analyze its effects on selection
and performance scalability of a conventional MOEA applied to many-objective
optimization. In our study we enumerate small MNK-landscapes with 3− 6 ob-
jectives, 20 bits, and observe the number of Pareto optimal solutions that the
algorithm is able to find for various population sizes.

2 Methodology

In our study we use four MNK-landscapes [3] randomly generated with m = 3,
4, 5 and 6 objectives, n = 20 bits, and k = 1 epistatic bit. For each landscape
we enumerate all its solutions and classify them in non-dominated fronts. The
exact number of true Pareto optimal solutions POST found by enumeration are
|POST | = 152, 1554, 6265, and 16845 for m = 3, 4, 5, and 6 objectives, respec-
tively. Similarly, the exact number of non-dominated fronts of the landscapes
are 258, 76, 29, and 22, respectively.

We run a conventional MOEA for a fixed number of generations. The al-
gorithm uses a population P from which it creates an offspring population Q
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by recombination and mutation. The population P for the next generation is
obtained from the joined population P ∪Q by survival selection. In this work we
use NSGA-II as the evolutionary multi-objective optimizer, set with two point
crossover with rate pc = 1.0, and bit flip mutation with rate pm = 1/n.

Once evolution is over, we compare the set of POST with the sets of unique
non-dominated solutions obtained at each generation after survival selection to
determine which are true Pareto optimal solutions, count their number at each
generation, and their accumulated number found during evolution.

3 Experimental Results and Discussion

Let us denote by F1 the set of non-dominated solutions in population P , and
FT
1 the set of solutions in by F1 that are true Pareto optimal solutions. Fig.1

shows the number of solutions in F1 and FT
1 over the generations for m = 3

and 4 objectives, running the algorithm for 100 generations with three different
population sizes |P | = 50, 100 and 200.

First we analyze results for m = 3 objectives. When we set population size to
|P | = 50 or 100, a value smaller than the number of true Pareto optimal solutions
|POST | = 152, it can be seen in Fig.1 (a.1) and (a.2) that after few generations
all solutions in the population are non-dominated, |F1| = |P |. However, not all
solutions in F1 are true Pareto optimal solutions, i.e. |FT

1 | < F1 = |P |. Also, it
is important to note that FT

1 fluctuates up and down after an initial increase.
On the other hand, when we set the population size to a value larger than the
number of true Pareto optimal solutions, |P | = 200 > |POST | = 152, it can
be seen in Fig.1 (a.3) that the instantaneous non-dominated set is a subset of
the population, F1 ⊂ P . Also, note that from generation 35 onwards, all non-
dominated solutions in the population are also true Pareto optimal, F1 = FT

1 .
In this case, the algorithm finds and keeps in P almost all true Pareto optimal
solutions, 147 out of 152, during the latest stage of the search.

It is known that the number of true Pareto optimal solutions |POST | in-
creases considerably with the number of objectives. However, this is often ig-
nored and the algorithm is set with a very small population size compared to
|POST |. To study these cases, Fig.1 (b.1)-(b.3) show results for m = 4 objec-
tives setting population size to the same values used for m = 3 objectives, which
are very small compared to |POST |, i.e |P | ≤ 200 < |POST | = 1554. Note
that these settings of population size magnify the difficulties observed for m = 3
with |P | = 50 or |P | = 100. That is, fewer solutions are true Pareto optimal,
although the set of non-dominated solutions of the population quickly contains
mutually non-dominated solutions only. Also, larger fluctuations are observed in
the number of true Pareto optimal solutions FT

1 .
In general, if |P | is set to a value smaller than |POST |, the algorithm cannot

keep all true Pareto optimal solutions in the population. However, we would
expect an ideal algorithm to keep as many true Pareto optimal solutions as the
size of its population, |FT

1 | = |F1| = |P | < |POST |. This is not what we observe
in our results. To explain this behavior, Fig.2 shows the instantaneous number
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(a.1) m = 3, |P | = 50
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(a.2) m = 3, |P | = 100
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(a.3) m = 3, |P | = 200
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(b.1) m = 4, |P | = 50
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(b.2) m = 4, |P | = 100
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(b.3) m = 4, |P | = 200

Fig. 1. Number of non-dominated F1 and actual number of true Pareto optimal solu-
tions FT

1 in the population over the generations. |POST | = 152, and 1554 for m = 3,
and 4 objectives, respectively. Population sizes |P | = 50, 100, and 200.
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(a) m = 3, |POST | = 152
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(b) m = 4, |POST | = 1554
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(c) m = 5, |POST | = 6265

Fig. 2. Accumulated and instantaneous number of true Pareto optimal solutions, AFT
1

and FT
1 , m = 3, 4, and 5 objectives. Population sizes |P | = 50, 100, and 200.

of true Pareto optimal solutions in the population |FT
1 | and its accumulated

number |AFT
1 | over the generations for population sizes |P | = 50, 100, and 200.

Note that a large number of true Pareto optimal solutions are found by the
algorithm. However, not all these solutions remain in the population (except in
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(a) m = 4, |POST | = 1554
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(b) m = 5, |POST | = 6265
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(c) m = 6, |POST | = 16845

Fig. 3. Accumulated and instantaneous number of true Pareto optimal solutions, AFT
1

and FT
1 , m = 4, 5, and 6 objectives. Population sizes 1/3, 2/3 and 4/3 of POST .

the case m = 3 |P | = 200). Some of these solutions are lost from one generation
to the next one during the survival selection step of the algorithm. At this
step, the algorithm joins the population P with the offspring population Q and
ranks individuals with respect to dominance-depth. The best rank is given to
true Pareto optimal solutions and also to some others that are not true optimal
but appear non-dominated in the combined population. Let us call the set of
best ranked non-dominated solutions obtained from P ∪Q as FP∪Q

1 . If this set

FP∪Q
1 is larger than the population P , a sample of them P = F 1 ⊂ FP∪Q

1 is
chosen based on crowding distance during the survival step. At this point, some
true Pareto optimal solutions are dropped in favor of lest crowded non-optimal
solutions. Summarizing, P = F 1 ⊂ FP∪Q

1 and therefore FT
1 ⊂ F1 is more likely

to occur for population sizes smaller than the number of true Pareto optimal
solutions |POST |.

Fig.2 (a) and Fig.3 (a)-(c) show results for m = 3, 4, 5 and 6 objectives
using population sizes that correspond approximately to 1/3, 2/3 and 4/3 of the
set POST , respectively. From these figures note that increasing population size
from 1/3 to 4/3 of POST translates into a striking performance scalability of the
algorithm, measured on terms of the number of true Pareto optimal solutions
found and kept in the population. For population size 4/3 of POST the number of
AFT

1 = FT
1 ⊂ F1 and the algorithm can actually find and keep in the population

147 out of 152, 1545 out of 1554, 6248 out of 6265, and 16842 out of 16845 true
Pareto optimal solutions for 3, 4, 5 and 6 objectives, respectively.

These results show that the effectiveness of the algorithm in many-objective
landscapes depends strongly on the size of the population. However, it should be
noted that larger populations demand more computational time and memory.
Also, a relatively larger number of solutions need to be evaluated. For example,
after 100 generations, using a population size 4/3 of POST , the conventional
MOEA used in this study evaluates approximately a number of solutions equiv-
alent to 2%, 19%, 76% and 215% of the size of the search space for m = 3,
4, 5, and 6 objectives, respectively. In the future, we would like to analyze the
efficiency of MOEAs in many-objective landscapes.
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4 Conclusions

In this work we analyzed the effects of population size on selection and scalability
of a conventional dominance-based MOEA for many-objective optimization. We
showed that the performance of a conventional MOEA can scale up fairly well
to high dimensional objective spaces if a sufficiently large population size is used
compared to the size of the true Pareto optimal set.
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