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The irregular chromatic index of trees
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1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
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Abstract. A graph G is locally irregular if adjacent vertices of G have
distinct degrees. An edge colouring of G is locally irregular if each of its
colours induces a locally irregular subgraph of G. The irregular chromatic
index of G refers to the least number of colours used by a locally irregular
edge colouring of G (if any). We propose a linear-time algorithm for
determining the irregular chromatic index of any tree.

1 Introduction

Let G be a graph. We say that G is locally irregular if adjacent vertices of G
have distinct degrees. A k-edge colouring φ : E(G) → {1, ..., k} of G is said to
be locally irregular if each colour of φ induces a locally irregular subgraph of G.
The least number of colours used by a locally irregular edge colouring of G (if
any) is the irregular chromatic index of G, denoted χ′irr(G).

Locally irregular edge colourings were introduced to deal with the famous 1-
2-3 and Detection Conjectures. Assume that φ is a k-edge colouring of G taking
values in {1, ..., k}. Each vertex v of G may then be assigned a colour sφ(v) which
is the sum of the colours assigned to the edges incident to v. If the resulting
vertex colouring of G is proper, i.e. we have sφ(u) 6= sφ(v) for every pair {u, v}
of adjacent vertices in G, then we say that φ is neighbour sum distinguishing.
It was conjectured by Karoński,  Luczak and Thomason that every graph with
no isolated edges admits a neighbour sum distinguishing edge colouring using 3
colours [7].

1-2-3 Conjecture. All graphs without isolated edges admit a neighbour sum
distinguishing 3-edge colouring.

A list version of the 1-2-3 Conjecture was also raised in [2]. In the paper
that introduced the 1-2-3 Conjecture, the authors considered another version of
the problem where adjacent vertices are distinguished by the multiset of their
incident colours rather than by their sum. This led to the following definition.
Let mφ(v) denote the multiset of colours of the edges incident to v. We say that
φ is neighbour multiset distinguishing if mφ(u) 6= mφ(v) for every pair {u, v} of
adjacent vertices in G. Neighbour multiset distinguishing edge colourings (also
called detectable colourings in the literature) were mainly considered by Addario-
Berry et al. in [1]. In particular, they showed that all graphs without isolated
edges admit a neighbour multiset distinguishing 4-edge colouring and that only 3



colours suffice for a wide number of graphs. These results agree with the following
conjecture.

Detection Conjecture. All graphs without isolated edges admit a neighbour
multiset distinguishing 3-edge colouring.

Similarly as for neighbour sum and neighbour multiset distinguishing edge
colourings, there exist graphs that do not admit any locally irregular edge colour-
ing. We say that these graphs are non-colourable (with respect to locally irreg-
ular edge colourings). Connected non-colourable graphs are odd length paths,
odd length cycles, and some special tree-like graphs with maximum degree at
most 3 obtained by connecting an arbitrary number of triangles in a specific
way [3]. These exceptions apart, it is believed that graphs have a small irregular
chromatic index. The following conjecture was thus raised in [3].

Local Irregularity Conjecture. Colourable graphs have irregular chromatic
index at most 3.

Clearly, a locally irregular edge colouring is also neighbour multiset distin-
guishing. Thus, if the Local Irregularity Conjecture were true, then the Detection
Conjecture would also be true for colourable graphs. However, there does not
seem to be any systematic relationship between locally irregular and neighbour
sum distinguishing edge colourings. Please refer to [8] for an in-depth review
on the background of the problem of distinguishing adjacent vertices of a graph
thanks to an edge colouring.

A negative result exhibited in [4] states that even if the Local Irregularity
Conjecture turned out to be true, i.e. even if the irregular chromatic index of
colourable graphs only took value in {1, 2, 3}, it would remain difficult, in gen-
eral, to determine the irregular chromatic index of a given graph. This result
meets similar complexity results on the problems of determining the least num-
ber of colours used by a neighbour sum or neighbour multiset distinguishing edge
colouring of a graph (see [5] and [6], respectively). Unfortunately, this complex-
ity result is quite general as it is not restricted to any particular class of graphs.
In particular, we still do not know whether it is hard, in general, to determine
the irregular chromatic index of a bipartite graph. On the other hand, some
results on the irregular chromatic index of trees are known. In particular, it was
proved, as mentioned above, that odd length paths are the only non-colourable
trees, and that colourable trees do not refute the Local Irregularity Conjecture.
Examples of trees with irregular chromatic index 3 were also exhibited in [3]

Colourable Trees Theorem. Colourable trees have irregular chromatic index
at most 3.

In this work, we propose a linear-time algorithm for determining the irregu-
lar chromatic index of any tree. A motivation for focusing on trees is that a lot
of graphs are known to be decomposable into a few edge-disjoint forests (cor-
responding to the notion of arboricity of graphs), and that this property could



lead to natural upper bounds on the irregular chromatic index of such graphs.
Suppose indeed that G can be decomposed into a edge-disjoint forests with no
odd length paths. Then, since the irregular chromatic index of a tree is at most 3,
one can use a new set of 3 colours to colour independently the edges of each of
the a forests in a locally irregular way. The a resulting locally irregular 3-edge
colourings then perform a locally irregular 3a-edge colouring of G. We could
even expect to use less colours if we knew sufficient conditions for a tree to have
irregular chromatic index at most 2.

This paper is organized as follows. We first provide, in Section 2, some ter-
minology and notation that are used in the next sections. We then introduce in
Section 3 an algorithm for constructing ‘almost’ locally irregular 2-edge colour-
ings of a special class of trees called shrubs. In Section 4, we show how to get
a locally irregular 2-edge colouring of a tree with maximum degree at least 5
by first decomposing it into shrubs and then unifying almost locally irregular
2-edge colourings of these shrubs. We then exhibit, in Section 5, the conditions
under which our colouring strategy does not lead to a locally irregular 2-edge
colouring when applied to a tree with maximum degree 3 or 4. All these results
yield a linear-time algorithm for determining the irregular chromatic index of
any tree in concluding Section 6.

2 Definitions and terminology

By choosing a particular node r of a tree T as the root of T , one naturally
defines an orientation of T from its root to its leaves. The resulting rooted tree
is denoted Tr. According to the orientation of Tr, a node u has at most one
neighbour, denoted u−, which is nearer from r than u. This node, if it exists, is
referred to as the father of u in Tr. In contrast, the other neighbours of u are
the children of u in Tr. Clearly, the root r has no father and the leaves of Tr
have no children. In the special case where u has only one child in Tr, we denote
by u+ this node. We say that Tr is a shrub if r+ is defined, i.e. if r has only one
child.

Assuming that u has p ≥ 1 children v1, ..., vp in Tr, for every i ∈ {1, ..., p} we
denote by Tr[u, i] the subtree of Tr induced by u and the nodes in the subtree
of Tr rooted at vi. Notice that every such Tr[u, i] is a shrub, with vi = u+ and
u = v−i . Clearly, Tr is isomorphic to the tree obtained by identifying the roots
of the shrubs Tr[r, 1], ..., Tr[r, d(r)].

In the next sections, a locally irregular k-edge colouring is also called a k-liec
for short. Assuming that a liec φ of Tr uses colour a, the a-subgraph of Tr refers
to the subgraph of Tr induced by the edges with colour a. If u is a node of Tr,
then the a-degree of u is the degree of u in the a-subgraph of Tr.

Suppose now that Tr is a shrub and that φ : E(Tr) → {a, b} is a 2-edge
colouring of Tr. To make the colour of the edge rr+ by φ explicit, we also denote
φ by φa,b when φ(rr+) = a, or φb,a when φ(rr+) = b. If φa,b is a 2-edge colouring
of Tr using colours a and b, and {c, d} is a pair of distinct colours, then we can



r r r

(a) 2-aliec φ1
a,b, φ2

a,b and φ3
a,b of

Tr[r, 1], Tr[r, 2] and Tr[r, 3], respec-
tively

r

(b) A 2-liec φa,b of Tr

Fig. 1. Examples of rooted trees, shrubs, 2-liec and 2-aliec. Thick (resp. thin) edges
represent a-coloured (resp. b-coloured) edges.

obtain a 2-edge colouring φc,d of Tr using colours c and d by swapping {a, b} and
{c, d}: φc,d(uv) = c if φa,b(uv) = a, or φc,d(uv) = d otherwise. A swapping of
φa,b to φb,a is called an inversion. Clearly, a node with a-degree p in Tr by φa,b
has b-degree p by φb,a. We further say that φa,b is ‘almost’ a 2-liec of Tr (2-aliec
for short) if either φa,b is a 2-liec of Tr, or rr+ is isolated in the a-subgraph and
φa,b is a 2-liec of Tr[r, 1].

Consider finally a tree T whose edge set E(T ) is partitioned into p parts
E1, ..., Ep, and let φ1a,b, ..., φ

p
a,b be 2-edge colourings of E1, ..., Ep, respectively.

The union φa,b = φ1a,b+ ...+φpa,b of φ1a,b, ..., φ
p
a,b is defined by φa,b(uv) = φia,b(uv)

if and only if uv ∈ Ei.
Figure 1 depicts how a 2-liec φa,b of a tree Tr with d(r) = 3 can be obtained

by first decomposing it into shrubs Tr[r, 1], Tr[r, 2] and Tr[r, 3], then computing
2-aliec φ1a,b, φ

2
a,b and φ3a,b of these shrubs, and finally considering the union

φ1a,b + φ2a,b + φ3a,b as φa,b.

3 Constructing 2-aliec of shrubs

Algorithm 1 constructs a 2-aliec φa,b of any shrub Tr. In this algorithm, p ≥ 0
denotes the number of children of r+. Roughly speaking, the algorithm first
inductively constructs 2-aliec φ1a,b, ..., φ

p
a,b of Tr[r

+, 1], ..., Tr[r
+, p], respectively.

It then inverts some of the φia,b’s so that their union is a 2-aliec of Tr when rr+

is coloured a.

The keystone of Algorithm 1 is Line 7. Let us prove that the 2-aliec φa,b of
Tr, obtained by inverting some of the φia,b’s, necessarily exists.

Lemma 1. The 2-aliec φa,b of Tr claimed at Line 7 necessarily exists.

Proof. If p = 0, then there is nothing to prove. Thus, r+ has p ≥ 1 children
v1, ..., vp in Tr. We first consider small values of p, i.e. p ∈ {1, 2, 3}, before
generalizing our arguments.



1 if p = 0 then
2 φa,b(rr

+) = a;

3 else
4 foreach i ∈ {1, ..., p} do
5 compute a 2-aliec φi

a,b of Tr[r+, i] inductively;

6 φ0
a,b(rr

+) = a;

7 choose φi
ci,c

′
i

= φi
a,b or φi

b,a for every i ∈ {1, ..., p} so that

φa,b = φ0
a,b + φ1

c1,c
′
1

+ φ2
c2,c

′
2

+ ...+ φp

cp,c
′
p

is a 2-aliec of Tr;

Algorithm 1: Algorithm for constructing 2-aliec φa,b of a shrub Tr

– Suppose p = 1. If φa,b = φ0a,b + φ1a,b is not a 2-aliec of Tr, then v1 has

a-degree 2 in Tr[r
+, 1] by φ1a,b. Besides, φ1a,b is a 2-liec of Tr[r

+, 1]. The

colouring φa,b = φ0a,b + φ1b,a, obtained by inverting φ1a,b, is thus clearly a
2-aliec of Tr.

– Suppose p = 2. If φa,b = φ0a,b + φ1a,b + φ2a,b is not a 2-aliec of Tr, then a

child of r+, say v1, has a-degree 3 in Tr[r
+, 1] by φ1a,b, and φ1a,b is a 2-liec of

Tr[r
+, 1]. Now consider φa,b = φ0a,b+φ1b,a+φ2a,b. If φa,b is not a 2-aliec of Tr,

then the other child v2 of r+ has a-degree 2 in Tr[r
+, 2] by φ2a,b. Moreover,

φ2a,b is a 2-liec of Tr[r
+, 2]. Thus, φa,b = φ0a,b + φ1a,b + φ2b,a is a 2-aliec of Tr.

– Suppose p = 3. If φa,b = φ0a,b+φ1a,b+φ2a,b+φ3a,b is not a 2-aliec of Tr, then a

child of r+, say v1, has a-degree 4 in Tr[r
+, 1] by φ1a,b, and φ1a,b is a 2-liec of

Tr[r
+, 1]. Now, if φ0a,b +φ1b,a +φ2a,b +φ3a,b is not a 2-aliec of Tr, then another

child of r+, say v2, has a-degree 3 in Tr[r
+, 2] by φ2a,b, and φ2a,b is a 2-liec

of Tr[r
+, 2]. Again, the a-degree of the last child v3 of r+ in Tr[r

+, 3] by
φ3a,b is 3 if φ0a,b + φ1a,b + φ2b,a + φ3a,b is not a 2-aliec of Tr. Under all these

assumptions, we clearly get that φa,b = φ0a,b + φ1a,b + φ2b,a + φ3b,a is a 2-aliec
of Tr.

By following the same scheme for p ≥ 4, i.e. by inverting none of the φia,b’s,
then one, two, three, ..., of them, we either find a 2-aliec φa,b of Tr or find out
what are all of the a-degrees of v1, ..., vp in Tr[r

+, 1], ..., Tr[r
+, p] by φ1a,b, ..., φ

p
a,b,

respectively. More precisely, in this last situation, we get that one of these a-
degrees is equal to p + 1, two of them are equal to p, three of them are equal
to p − 1 (unless p is not big enough), and so on. Under the assumption that
p ≥ 4, notice that the biggest bp+1

2 c values of the resulting a-degree sequence

are strictly greater than bp+1
2 c+1, while its other values are strictly greater than

dp+1
2 e − 1. Considering that the a-degrees of v1, ..., vp are ordered decreasingly,

i.e. v1 has a-degree p + 1, v2 has a-degree p, ..., the 2-edge colouring φa,b =

φ0a,b + φ1a,b + ... + φ
b p+1

2 c
a,b + φ

b p+1
2 c+1

b,a + ... + φpb,a, obtained by inverting the last

(dp+1
2 e− 1) 2-aliec, is a 2-aliec of Tr since r+ thus has a- and b-degree bp+1

2 c+ 1

and dp+1
2 e − 1, respectively. ut



(a) 2-aliec φ1
a,b, φ2

a,b

and φ3
a,b of Tr[r+, 1],

Tr[r+, 2] and Tr[r+, 3]
are computed, and
φ0
a,b(rr

+) = a

(b) The 2-edge
colouring φ0

a,b +
φ1
a,b +φ2

a,b +φ3
a,b

(c) If φ0
a,b + φ1

a,b +
φ2
a,b + φ3

a,b is not a 2-
aliec, then v1 has a-
degree 4 in Tr[r+, 1]
by φ1

a,b

(d) If φ0
a,b + φ1

b,a +
φ2
a,b + φ3

a,b is not a 2-
aliec, then v2 has a-
degree 3 in Tr[r+, 2]
by φ2

a,b

(e) If φ0
a,b + φ1

a,b + φ2
b,a +

φ3
a,b is not a 2-aliec, then
v3 has a-degree 3 in
Tr[r+, 3] by φ3

a,b

(f) φ0
a,b +φ1

a,b +φ2
b,a +φ3

b,a

is a 2-aliec

Fig. 2. Application of Algorithm 1 on a shrub Tr such that r+ has 3 children

Figure 2 shows an application of Algorithm 1 on a shrub. Using Algorithm 1,
and thanks to Lemma 1, we get:

Theorem 2. Every shrub admits a 2-aliec.

4 From shrubs to trees

Consider the following procedure based on Algorithm 1 for possibly computing a
2-liec of any colourable tree T . Let r be a node of T with degree p ≥ 1. Start by
decomposing Tr into the p shrubs Tr[r, 1], ..., Tr[r, p] and, then, compute 2-aliec
φ1a,b, ..., φ

p
a,b of Tr[r, 1], ..., Tr[r, p], respectively. These necessarily exist according

to Theorem 2. Finally, invert some of the φia,b’s so that their union is a 2-liec of
Tr.

The success of this colouring procedure is not guaranteed since, in special
cases, inverting the φia,b’s in every possible way does not lead to a 2-liec of Tr.

However, the more children r has, the more possible ways for inverting the φia,b’s
there are. Hence, the choice of r for rooting T before applying the colouring
procedure above is crucial. Because the number of possibilities for inverting the



φia,b’s grows exponentially in front of d(r), this strategy actually leads to a 2-liec
of Tr whenever d(r) ≥ 5.

Theorem 3. If ∆(T ) ≥ 5, then χ′irr(T ) ≤ 2.

Proof. Let r be a node of T with p ≥ 5 neighbours v1, ..., vp. Let φ1a,b, ..., φ
p
a,b

be 2-aliec of Tr[r, 1], ..., Tr[r, p], respectively, which necessarily exist according to
Theorem 2. Consider successively the 2-edge colourings φa,b of Tr obtained by
inverting none, one, two, ..., of the φia,b’s. If, at some step, φa,b is a 2-liec, then
the claim is true for T . Otherwise, at each step, a conflict arises because, for at
least one of the children vi, the a-degree of vi in Tr[r, i] by φia,b is equal to the
a-degree of r by φa,b. In particular, if the 2-edge colouring obtained by inverting
none of the φia,b’s is not a 2-liec of Tr, then we reveal that one of the vi’s has
a-degree p. Similarly, if the 2-edge colourings obtained by inverting one of the
φia,b’s are not 2-liec of Tr, then we reveal that two of the vi’s have a-degree p−1.

If the 2-edge colourings obtained by inverting two of the φia,b’s are not 2-liec of
Tr, then we reveal that three of the vi’s have a-degree p−2. And so on. We stop
the procedure once all of the a-degrees have been revealed.

Once the procedure has stopped, we get that the a-degree sequence is (p, p−
1, p−1, p−2, p−2, p−2, ...), where the element p−k appears exactly k+1 times,
except maybe in the case where p − k is the last value of the sequence. When
p ≥ 5, each of the a-degrees is strictly greater than bp2c. Hence, if the a-degrees of

v1, ..., vp are ordered decreasingly, then φa,b = φ1a,b+...+φ
d p2 e
a,b +φ

d p2 e+1

b,a +...+φpb,a,

obtained by inverting the last bp2c φ
i
a,b’s, is a 2-liec of Tr since the a- and b-degrees

of r are then dp2e and bp2c, respectively, which are strictly less than the a- and
b-degree of its neighbours in the a- and b-subgraphs, respectively. ut

Thanks to Theorems 2 and 3, we can now easily give an alternate proof of
the Colourable Trees Theorem (Section 1).

Proof (Colourable Trees Theorem). Let T be a colourable tree. If we have∆(T ) ≤
2, then T is a path with even length and χ′irr(T ) ≤ 2. If∆(T ) ≥ 5, then χ′irr(T ) ≤
2 according to Theorem 3. Let us thus suppose that ∆(T ) ∈ {3, 4}, and let r be
a node of T with degree p = ∆(T ) whose neighbours are denoted by v1, ..., vp.
As in the proof of Theorem 3, let φ1a,b, ..., φ

p
a,b be 2-aliec of Tr[r, 1], ..., Tr[r, p]

(these 2-aliec necessarily exist by Theorem 2), respectively, and try out the
inversion procedure. If no 2-liec φa,b of Tr can be found, then the revealed a-
degree sequence is necessarily (3, 2, 2) when p = 3, or (4, 3, 3, 2) when p = 4.
Assuming that the a-degrees of v1, ..., vp are ordered decreasingly, then φa,b =
φ1a,b + φ2b,a + φ3c,a, where c is a third colour, is a 3-liec of Tr for p = 3 since
r thus has a-, b- and c-degree 1 while its neighbours have degree 3, 2, and 2
in the a-, b- and c-subgraph, respectively. When p = 4, a 3-liec of Tr is, for
example, φa,b = φ1a,b + φ2b,a + φ3b,a + φ4c,a since r then has a-, b- and c-degree 1,
2, and 1, respectively, while its neighbours have a-, b- and c-degree 4, 3 and 2,
respectively. ut



Signature D1,D2 Resulting D0

{1}, {1} {1, 3}
{1}, {2} {2, 3}
{1}, {3} {1, 2}
{1}, {4} {1, 2, 3}
{2}, {2} {3}

Signature D1,D2 Resulting D0

{2}, {3} {2}
{2}, {4} {2, 3}
{3}, {3} {1, 2}
{3}, {4} {1, 2}
{4}, {4} {1, 2, 3}

Table 1. All possible canonical signatures of Tr and resulting D0 when p = 2

5 Trees with irregular chromatic index 3

We now turn our concern to trees with maximum degree at most 4. In our
proof of the Colourable Trees Theorem, we have pointed out that the colouring
procedure presented in Section 4 does not always provide a 2-liec of a tree Tr.
This typically occurs when the inversion procedure of the φia,b’s fails, i.e. every

possible inversion of some of the φia,b’s is not a 2-liec. A simple computation
shows that the inversion procedure fails if and only if the a-degree sequence of
the vi’s in the Tr[r, i]’s by the φia,b’s is bad, i.e. is (1), (2, 1), (3, 2, 2) or (4, 3, 3, 2)
when p = d(r) is 1, 2, 3 or 4, respectively.

Consequently, if there exist 2-aliec ψ1
a,b, ..., ψ

p
a,b of Tr[r, 1], ..., Tr[r, p], respec-

tively, leading to a a-degree sequence which is not bad, then inverting some of
the ψia,b’s necessarily leads to a 2-liec of Tr. We thus now focus on the structure

of shrubs Tr with maximum degree at most 4 such that r+ has the same a-degree
by all of the possible 2-aliec of Tr. Assuming that r+ always has a-degree k in
this way, with k ∈ {1, ..., 4}, we call Tr a k-bad shrub.

Suppose r+ has children v1, ..., vp with p ≥ 0. For each of these nodes vi,
we denote by Di the set of all possible a-degrees of vi in Tr[r

+, i] by all of the
possible 2-aliec of Tr[r

+, i]. The Di’s perform the signature of Tr. Analogously,
we denote by D0 the set of all possible a-degrees of r+ by all of the 2-aliec of
Tr. According to our definitions, note that Tr is a k-bad shrub if and only if,
regarding its signature, we have D0 = {k}, i.e. D0 is a singleton.

The set D0 of any shrub Tr can be easily computed thanks to an inductive
scheme inspired by Algorithm 1. Roughly speaking, we first compute inductively
the set D0 of each of the p schrubs Tr[r

+, 1], . . . , Tr[r
+, p]. By definition, the

set D0 of Tr[r
+, i] corresponds to the set Di of Tr. Thanks to the signature

D1, ..., Dp of Tr, which is, in some sense, a compact way for representing the
2-aliec of the Tr[r

+, i]’s which are of interest for us, the set D0 of Tr can finally
be deduced. Using this procedure, we are able to identify, in the next result, all
k-bad signatures of Tr, i.e. signatures making the set D0 of Tr being {k} for
every k ∈ {1, ..., 4}.

Theorem 4. All k-bad signatures are those given in Table 3.

Proof. We consider each possible signature of Tr with regards to p ≤ 3, the
number of children of r+. For the sake of simplicity, we here only detail the
proof for the easy cases, i.e. p = 0 and p = 1, so that the reader gets an idea



Signature D1,D2,D3 Resulting D0

{1}, {1}, {1} {1, 2, 4}
{1}, {1}, {2} {1, 3, 4}
{1}, {1}, {3} {2, 3, 4}
{1}, {1}, {4} {1, 2, 3}
{1}, {2}, {2} {1, 3, 4}
{1}, {2}, {3} {3, 4}
{1}, {2}, {4} {1, 3}
{1}, {3}, {3} {2, 4}
{1}, {3}, {4} {2, 3}
{1}, {4}, {4} {1, 2, 3}

Signature D1,D2,D3 Resulting D0

{2}, {2}, {2} {1, 3, 4}
{2}, {2}, {3} {3, 4}
{2}, {2}, {4} {1, 3}
{2}, {3}, {3} {4}
{2}, {3}, {4} {3}
{2}, {4}, {4} {1, 3}
{3}, {3}, {3} {2, 4}
{3}, {3}, {4} {2}
{3}, {4}, {4} {2, 3}
{4}, {4}, {4} {1, 2, 3}

Table 2. All possible canonical signatures of Tr and resulting D0 when p = 3

D0 = {k} p Signature

{1} 0 -
1 D1 = {2}

{2}
1 D1 = {1}
2 D1 = {2}, D2 = {3}
3 D1 = {3}, D2 = {3}, D3 = {4}

{3} 2 D1 = {2}, D2 = {2}
3 D1 = {2}, D2 = {3}, D3 = {4}

{4} 3 D1 = {2}, D2 = {3}, D3 = {3}
Table 3. List of all k-bad signatures

of the technique we use. The remaining cases, i.e. p = 2 and p = 3, are given
in Tables 1 and 2. Signatures in bold are those which are k-bad for some k. All
remaining cases that do not appear in these tables do not concern bad signatures
and can be deduced from canonical cases thanks to the following two rules. First,
if D1, ..., Dp is not a bad signature of Tr, then D′1, ..., D

′
p is not a bad signature

when Di ⊆ D′i for every i ∈ {1, ..., p} (inclusion rule). Second, if D1, ..., Di, ..., Dp

is a k-bad signature and D1, ..., D
′
i, ..., Dp is a k′-bad signature with k′ 6= k for

some D′i 6= Di, then D1, ..., Di ∪D′i, ..., Dp is not a bad signature (union rule).

If p = 0, then rr+ has to be coloured a and r+ thus necessarily has a-degree 1.
Therefore, the empty signature is a 1-bad signature. Now suppose that p = 1. If
D1 = {1}, then, in every 2-aliec of Tr[r

+, 1], v1 has a-degree 1 and we have to
colour rr+ with colour a. Thus D0 = {2}, and D1 = {1} is a 2-bad signature.
Similarly, if D1 = {2}, then every 2-aliec of Tr[r

+, 1] is actually a 2-liec and we
have to invert it before colouring rr+ with colour a. Therefore, D0 = {1}, and
D1 = {2} is a 1-bad signature. If there exists a 2-aliec φ1a,b of Tr[r

+, 1] such that

v1 has a-degree 3 or 4, then we may either colour rr+ with colour a directly or
invert φ1a,b before. In the first situation, r+ has a-degree 2, while it has a-degree 1
in the second one. Therefore, D0 = {1, 2} if 3 or 4 belongs to D1. Thus, D1 is
not a bad signature whenever it contains 3 or 4. Finally, D1 = {1, 2} is not a bad
signature since we get D0 = {1, 2} by the union rule. Every other possibilities



for D1 leads to a D0 which is not a singleton by the inclusion and union rules.
Therefore, D1 = {1} and D1 = {2} are the only bad signatures when p = 1. ut

Arbitrarily many k-bad shrubs can be constructed thanks to Theorem 4 by
connecting ”bad pieces” together. First choose a k-bad signature, i.e. let p and
D1 = {d1}, ..., Dp = {dp} be values corresponding to one row of Table 3. Let Tr
be a single edge rr+, and T1, ..., Tp be d1-, ..., dp-bad shrubs, respectively. Then
identify the roots of T1, ..., Tp with r+. The resulting shrub Tr is clearly k-bad.

Suppose r has p ≥ 1 neighbours in a colourable tree T . As explained above, if
the shrubs Tr[r, 1], ..., Tr[r, p] are k1-, ..., kp-bad, respectively, and the sequence
(k1, ..., kp) is one of the bad a-degree sequences (1), (2, 1), (3, 2, 2) or (4, 3, 3, 2),
then we cannot deduce a 2-liec of Tr thanks to the colouring procedure introduced
in Section 4. In this situation, we say that r is bad. We end up this section by
showing that if r is bad, i.e. our colouring procedure does not provide a 2-liec of
Tr, then every node r′ 6= r of T is also bad. This implies that χ′irr(T ) = 3 if and
only if any node of T is bad.

First remark, by comparing the bad a-degree sequences and the bad signa-
tures from Table 3, that the following holds.

Observation 5. If {d1}, ..., {dp} is a d0-bad signature, then (d0, d1, ..., dp) is a
bad sequence. Conversely, if σ is any permutation of {d0, d1, ..., dp} and (d0, d1, ..., dp)
is a bad sequence, then {σ(d1)}, ..., {σ(dp)} is a σ(d0)-bad signature.

Theorem 6. If r is a bad node of T , then so is any other node r′ 6= r of T .

Proof. Note that it suffices to show the claim when r and r′ are neighbours in T .
Suppose that p ≥ 1 and p′ ≥ 0 denote the degree of r and r′, respectively, and
r′ (resp. r) is the first child of r (resp. r′) in Tr (resp. Tr′), i.e. r′ = r+ (resp.
r = (r′)+) in Tr[r, 1] (resp. Tr′ [r

′, 1]).
Because r is bad, the shrubs Tr[r, 1], ..., Tr[r, p] are k1-, ..., kp-bad, respec-

tively, and (k1, ..., kp) is a bad a-degree sequence. According to Theorem 4, if
Tr[r, 1] is k1-bad, then Tr[r

′, 1], ..., Tr[r
′, p′ − 1] are `1-, ..., `p′−1-bad, respec-

tively, and {`1}, ..., {`p′−1} is a k1-bad signature. Besides, according to Obser-
vation 5, the sequence (k1, `1, ..., `p′−1) is bad. Now, because r is bad, it means
that {k2}, ..., {kp} is a k1-bad signature again by Observation 5 and Tr′ [r

′, 1] is
a k1-bad shrub. Thus, Tr′ [r

′, 1], Tr′ [r
′, 2], ..., Tr′ [r

′, p′] are k1-, `1-, ..., `p′−1-bad
shrubs, respectively, and (k1, `1, ..., `p′−1) is a bad sequence. Therefore, r′ is bad.

ut

Corollary 7. χ′irr(T ) = 3 if and only if any node of T is bad.

All trees with irregular chromatic index 3 can be constructed as follows. First
choose one of the bad sequences (d1, ..., dp), and construct p shrubs T1, ..., Tp
which are d1-, ..., dp-bad, respectively. Recall that there are infinitely many
such shrubs as pointed out above. Finally identify the roots of T1, ..., Tp. By
construction, the node used for the identification is bad, and the obtained tree
thus has irregular chromatic index 3 according to Corollary 7.



1 if T is an odd length path then
2 χ′

irr(T ) is undefined;

3 else if T is locally irregular then
4 χ′

irr(T ) = 1;

5 else if ∆(T ) ≤ 2 or ∆(T ) ≥ 5 then
6 χ′

irr(T ) = 2;

7 else
8 choose an arbitrary node r of T with degree p ≥ 1;
9 foreach i ∈ {1, ..., p} do

10 let Di be the set D0 of Tr[r, i] computed inductively;
11 if Di is not a singleton then
12 χ′

irr(T ) = 2;
13 exit algorithm;

14 let Di = {di} for every i ∈ {1, ..., p};
15 if (d1, ..., dp) is not a bad a-degree sequence then
16 χ′

irr(T ) = 2;

17 else
18 χ′

irr(T ) = 3;

Algorithm 2: Algorithm for the irregular chromatic index of a tree T

6 Determining the irregular chromatic index of trees

We now propose an algorithm that determines, thanks to our previous results,
the irregular chromatic index of an input tree T . Recall that the bad a-degree
sequences are (1), (2, 1), (3, 2, 2) and (4, 3, 3, 2).

Theorem 8. Algorithm 2 determines the irregular chromatic index of any tree
T in O(n), where n is the order of T .

Proof. The correctness of Algorithm 2 follows from the previous results and
observations. In particular, the correctness of Lines 5-6 follows from Theorem 3,
while the correctness of Lines 11-12 and Lines 15-16 follows from observations
raised in Section 5. The correctness of Lines-17-18 follows from Corollary 7. The
most costly instruction of Algorithm 2 is Line 10, which is achieved in O(n) by
computing the values of D0 from leaves to root for each shrub as in the proof
of Theorem 4. Every other line of the algorithm runs either in O(1) or O(n).
Therefore, we get that Algorithm 2 has running time O(n). ut

Theorem 3 gives a sufficient condition for a tree to have irregular chromatic
index at most 2 that is easy to recognize. As mentioned in Section 5, trees with
irregular chromatic index 3 have a predictable structure made up of ”bad pieces”,
i.e. those given in Table 3. By carefully studying how these pieces must be
connected, we can find sufficient conditions for a tree to have irregular chromatic



index 3. These conditions mainly concern the location of nodes with degree 3
or 4 and the way they are organized in such trees.

Observe, for example, that no bad signature includes {1} whenever p ≥
2. This means that if a node with degree at least 3 of T is connected to a
hanging path with odd length, then T has irregular chromatic index at most 2.
Additionally, note that if the colouring procedure from Section 4 fails on Tr, i.e.
r is bad, when r has degree ∆(T ) = 4, then r necessarily has a neighbour with
degree 4 since one of the Tr[r, i]’s is a 4-bad shrub. Therefore, if T has a node r′

with degree 4 which has no neighbour with degree 4, then r′ is not bad and T
has irregular chromatic index at most 2 by Corollary 7.
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