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Fused Mackey functors

Serge Bouc

Abstract: Let G be a finite group. In [5], Hambleton, Taylor and Williams have
considered the question of comparing Mackey functors for G and biset functors defined on
subgroups of G and bifree bisets as morphisms.

This paper proposes a different approach to this problem, from the point of view of
various categories ofG-sets. In particular, the categoryG-set of fused G-sets is introduced,
as well as the category S(G) of spans in G-set. The fused Mackey functors for G over a
commutative ring R are defined as R-linear functors from RS(G) to R-modules. They

form an abelian subcategory Mack
f
R(G) of the category of Mackey functors for G over R.

The categoryMack
f
Z
(G) is equivalent to the category of conjugation Mackey functors of [5].

The categoryMack
f
R(G) is also equivalent to the category of modules over the fused Mackey

algebra µ
f
R(G), which is a quotient of the usual Mackey algebra µR(G) of G over R.

AMS Subject classification : 18A25, 19A22, 20J15.

Keywords : Mackey functor, biset functor, conjugation, fused.

1. Introduction

This note is devoted to the frequently asked question of comparing Mackey
functors for a single finite group G with biset functors defined only on sub-
groups of G and left-right free bisets as morphisms. The answer to this ques-
tion has already been given by Hambleton, Taylor and Williams ([5]), but in
a rather computational and non canonical way (in particular, in Section 7,
the definition of the functor j• requires the choice of sets of representatives
of orbits of any finite G-set).

The present paper makes a systematic use of Dress definition ([3]) and
Lindner definition ([6]) of Mackey functors, to avoid these non canonical
choices. This leads to the definition of the category of fused G-sets (Sec-
tion 3), and the category of fused Mackey functors (Section 4) for a finite
groupG, which is equivalent to the category of “conjugation invariant Mackey
functors” of [5]. This category is also equivalent to the category of modules
over the fused Mackey algebra, introduced in Section 5.

2. Conjugation bisets revisited

2.1. First a notation : when G is a finite group, and X is a finite G-set, let
G-set↓X denote the category of (finite) G-sets over X : its objects are pairs
(Y, b) consisting of a finite G-set Y , and a morphism of G-sets b : Y → X . A

1



morphism f : (Y, b) → (Z, c) in G-set↓X is a morphism of G-sets f : Y → Z
such that c ◦ f = b.

There is an obvious notion of disjoint union in G-set↓X , and the corre-
sponding Grothendieck group is called the Burnside group over X . It will be
denoted by B(GX), or B(X) when G is clear from the context.

Similarly, when G and H are finite groups, and U is a (G,H)-biset, one
can define the category (G,H)-biset↓U of (G,H)-bisets over U , and the
Burnside group B(GUH) of (G,H)-bisets over U .

2.2. WhenH is a subgroup ofG, and Y is anH-set, induction fromH-sets to
G-sets is an equivalence of categories from H-set↓Y to G-set↓IndG

HY . A quasi-

inverse equivalence is the functor sending the G-set (X, a) over IndG
HY to the

H-set a−1(1×HY ) (see [2] Lemma 2.4.1). In particular B(HY ) ∼= B(GInd
G
HY ).

2.3. Now an observation: when H and K are subgroups of G, the conju-
gation (K,H)-bisets defined in Section 6 of [5] are exactly those over the
biset KGH (the set G on which K and H act by multiplication), i.e. the
(K,H)-bisets U for which there exists a biset morphism U → KGH .

Indeed, a conjugation (K,H)-biset U is a bifree (K,H)-biset isomorphic
to a disjoint union of bisets of the form (K ×H)/S, where S is a subgroup
of K ×H of the form

Sg,A = {(gx, x) | x ∈ A}

where A is a subgroup of H , and g is an element of G such that gA ≤ K.
For such a transitive biset (K ×H)/S, the map

∀(k, h)S ∈ (K ×H)/S, (k, h)S 7→ kgh−1

is a morphism of (K,H)-bisets.
Conversely, let U be a (K,H)-biset for which there exists a biset mor-

phism α : U → KGH . Then for any u ∈ U , the stabilizer Su of u in K ×H
is the subgroup

Su = {(k, h) ∈ K ×H | k · u · h−1 = u}

of K ×H . Then if (k, h) ∈ Su,

α(k · u) = kα(u) = α(u · h) = α(u)h .

Let Au denote the projection of Su into H , and set gu = α(u). It follows that
Su ⊆ Sgu,Au

.
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Conversely, if (k, h) ∈ Sgu,Au
, then k = guh, and there exists some x ∈ K

such that (x, h) ∈ Su, since h ∈ Au. Thus x · u · h−1 = u, from which follows
that

α(x · u) = xgu = α(u · h) = guh ,

hence x = guh = k, and Su = Sgu,Au
. Observation 2.3 follows.

2.4. In other words, conjugation (K,H)-bisets form a category ConjGK,H,

and there is a forgetful functor Φ : (K,H)-biset↓
KGH

→ ConjGK,H sending
(U, a) to U . This functor is full, preserves disjoint unions, and moreover it
induces a surjection on the corresponding sets of isomorphism classes. This
means that Φ induces a surjective group homomorphism (still denoted by Φ)
from B(KGH) to the Grothendieck group BG

K,H of conjugation (K,H)-bisets.

2.5. If H , K and L are subgroups of G, if (U, a) is a (K,H)-biset over KGH

and (V, b) is an (L,K)-biset over LGK , the composition (V, b) ◦ (U, a) is the
(L,H)-biset over LGH defined by the following diagram:

V

b

��

U

a

��

V ×K U

b×Ka

��
◦ =

LGK KGH G×K G

µ

��

LGH

where µ is multiplication in G. This composition is associative, and additive
with respect to disjoint unions. Hence it induces a composition

◦̂ : B(LGK)× B(KGH) → B(LGH) .

Hence, one can define a category B̂(G) whose objects are the subgroups
of G, and such that Hom

B̂(G)(H,K) = B(KGH), for subgroups H and K

of G. Composition is given by ◦̂, and the identity morphism of the subgroup
H of G in the category B̂(G) is the class of the biset (HHH , iH), where
iH : HHH → HGH is the inclusion map from H to G.

Since the functor Φ maps the composition ◦̂ to the composition of bisets,
and the identity morphism of H in B̂(G) to the identity biset HHH , one can

extend Φ to a functor B̂(G) → B(G), which is the identity on objects.
In other words, the category B(G) introduced in Section 3 of [5] is the

quotient of the category B̂(G) obtained by identifying morphisms which have
the same image by Φ.

2.6. By the above Remark 2.2, when H and K are subgroups of G, there is
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a group isomorphism

B(KGH) ∼= B
(
IndG×G

K×H(KGH)
)

,

(with the usual identification of (K,H)-bisets with (K ×H)-sets). Now the
biset KGH is actually the restriction to (K ×H) of the (G,G)-biset G. By
the Frobenius reciprocity, it follows that

IndG×G
K×H(KGH) ∼= IndG×G

K×HRes
G×G
K×H(GGG) ∼=

(
IndG×G

K×H •
)
× GGG ,

where • is a set of cardinality 1. Since IndG×G
K×H•

∼= (G/K)×(G/H), it follows
(after switching G/H and G) that

IndG×G
K×H(KGH) ∼= (G/K)×G× (G/H) ,

where the (G,G)-biset structure of the right hand side is given by

∀(a, b, x, y, g) ∈ G5, a · (xK, g, yH) · b = (axK, agb, b−1yH) .

2.7. It should now be clear that the additive completion B̂•(G) is equivalent
to the category whose objects are finite G-sets, where for any two finite G-sets
X and Y

HomB•(G)(X, Y ) = B
(
G
(Y ×G×X

)
G
) ,

the (G,G)-biset structure on (Y ×G×X) being given as above by

∀(a, b, g, x, y) ∈ G3 ×X × Y, a · (y, g, x) · b = (ay, agb, b−1x) .

Keeping track of the composition ◦̂ along the above isomorphism shows that
the composition in the category B̂•(G) can be defined by linearity from the
following: if X , Y , and Z are finite G-sets, if

V

f

����
��
��
��
�

e

��

d

��9
99

99
99

99
9 U

c

����
��
��
��
��

b

��

a

��9
99

99
99

99
9

and

Z G Y Y G X

are (G,G)-bisets over (Z × G × Y ) and (Y × G × X), respectively, their
composition is given by the following (G,G)-biset over (Z ×G×X)

(V ×d,c U)/G
γ

zzttt
tt
tt
tt

β
��

α

$$J
JJ

JJ
JJ

JJ

Z G X
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where V ×d,c U is the pullback of V and U over Y , i.e. the set of pairs
(v, u) ∈ V × U with d(v) = c(u), and (V ×d,c U)/G the set of orbits of G on
it for the action given by (v, u) · g = (vg, g−1u). This makes sense because
d(v · g) = g−1d(v) = g−1c(u) = c(g−1 · u) if d(v) = c(u). The map (γ, β, α) is
given by

(γ, β, α)
(
(v, u)G

)
=

(
f(v), e(v)b(u), a(u)

)
.

2.8. The functor Φ : B̂(G) → B(G) extends uniquely to an additive functor

Φ• : B̂•(G) → B•(G), and the category B•(G) is the quotient of B̂•(G) ob-
tained by identifying morphisms which have the same image by Φ•. Clearly,
two morphisms f, g ∈ Hom

B̂•(G)(X, Y ) are identified if and only if f − g is in
the kernel of the group homomorphism

φ : B
(
G(Y ×G×X)G

)
→ B

(
G(Y ×X)G

)

induced by the correspondence

U

c

����
��
��
��
�

b

��

a

��;
;;

;;
;;

;;
U

c

����
��
��
��
�

a

��;
;;

;;
;;

;;

7→

Y G X Y X

on bisets. In other words, a morphism f in B̂•(G) gives the zero morphism
in B•(G) if and only if it belongs to Kerφ.

2.9. Now the (G,G)-biset GGG is isomorphic to IndG×G
∆(G)•, where ∆(G) is

the diagonal subgroup of G× G. It follows that there is an isomorphism of
(G,G)-bisets

Y ×G×X ∼= IndG×G
∆(G)(Y ×X) .

Hence, by Remark 2.2 again, since ∆(G) ∼= G,

B
(
G(Y ×G×X)G

)
∼= B

(
G(Y ×X)

)
,

where G(Y ×X) is the usual cartesian product with diagonal G-action. More
precisely, this isomorphism is induced by the correspondence

U

c

����
��
��
��
�

b

��

a

��:
::

::
::

::
b−1(1)

c

����
��
��
��
�

a

��9
99

99
99

99

7→

Y G X Y X
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It is then easy to check that the composition of

V

f

����
��
��
��
�

e

��

d

��9
99

99
99

99
9 U

c

����
��
��
��
��

b

��

a

��9
99

99
99

99
9

and

Z G Y Y G X

corresponds to the usual pullback diagram

e−1(1)×d,c b
−1(1)

����
��
��
��

��;
;;

;;
;;

;

e−1(1)
f

����
��
��
�� d

��=
==

==
==

= b−1(1)
c

����
��
��
�� a

��=
==

==
==

=

Z Y X

In other words, the category B̂•(G) is equivalent to the category S(G) whose
objects are the finite G-sets, where

HomS(G)(X, Y ) = B
(
G(Y ×X)

)
,

and composition is induced by pullback. It has been shown by Lindner ([6],
see also [2]) that the additive functors on this category are precisely the
Mackey functors for G.

2.10. It remains to keep track of identifications by Φ, i.e. to start with a
morphism f ∈ HomS(G)(X, Y ), to lift it to

f+ ∈ Hom
B̂•(G)(X, Y ) = B

(
G(Y ×G×X)G

)
,

and see when f+ lies in Kerφ. Now f is represented by a difference of two
G-sets over G(Y ×X) of the form

Z

b

����
��
��
��
�

a

��9
99

99
99

99
9 Z ′

b′

����
��
��
��
��

a′

��=
==

==
==

==
=

−

Y X Y X .

By induction from ∆(G) to G × G, the G-set on the left hand side lifts to
the following (G×G)-set over (G×G)(Y ×G×X)

G× Z
γ

{{ww
ww
ww
ww
w

β

��

α

##G
GG

GG
GG

GG

Y G X
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where the (G×G)-actions on G× Z and Y ×G×X are given respectively
by (s, t) · (g, z) = (sgt−1, tz) and (s, t) · (y, g, x) = (sy, sgt−1, tx), and where

(γ, β, α)(g, z) =
(
gb(z), g, a(z)

)
.

Similarly the G-set
(
Z ′, (b′, a′)

)
lifts to

(
G× Z ′, (γ′, β ′, α′)

)
.

Now f+ is in Kerφ if and only if there is an isomorphism

G× Z

γ

����
��
��
��
��
�

α

��=
==

==
==

==
==

G× Z ′

γ′

����
��
��
��
��
��

α′

  A
AA

AA
AA

AA
AA

A

θ
−→

Y X Y X .

of (G×G)-sets over Y ×X . Since (g, z) = g · (1, z) for any (g, z) ∈ G× Z,
it follows that θ is a map from G× Z to G× Z ′ of the form

(g, z) 7→
(
gu(z), v(z)

)
,

where u is a map from Z to G and v is a map from Z to Z ′. Now for any
(s, t) ∈ G×G, the equality

θ
(
(s, t) · (g, z)

)
= (s, t) · θ

(
(g, z)

)

gives (
sgt−1u(tz), v(tz

)
=

(
sgu(z)t−1, tv(z)

)
.

This is equivalent to

u(tz) = tu(z) and v(tz) = tv(z) .

This means that u is a morphism of G-sets from Z to Gc, which is the set G
with G-action by conjugation, and v is a morphism of G-sets.

Moreover θ is a bijection if and only if v is.
Finally θ is an morphism of (G,G)-bisets over Y × X if and only if

α′ ◦ θ = a and γ′ ◦ θ = γ, i.e. equivalently if

a′ ◦ v = a and gu(z) · b′ ◦ v(z) = g · b(z)

for any (g, z) ∈ G× Z. In other words

a = a′ ◦ v and b = u ∗ (b′ ◦ v) ,

where, for any map w : Z → Y , the map u ∗ w : Z → Y is defined by
(u ∗ w)(z) = u(z) · w(z). The map u ∗ w is a map of G-sets if u : Z → Gc

7



and w : Z → Y are. Note that w′ = u ∗ w if and only if w = ū ∗ w′, where
ū : Z → Gc is defined by ū(z) = u(z)−1.

It follows that f maps to the zero morphism in B(G) if and only if there
exists u : Z → Gc and an isomorphism v : Z → Z ′ such that

a′ ◦ v = a and b′ ◦ v = u ∗ b ,

But then v is an isomorphism

Z

b′◦v

����
��
��
��
��

a′◦v

��7
77

77
77

77
7 Z ′

b′

����
��
��
��
��

a′

��;
;;

;;
;;

;;
;;

v
−→

Y X Y X .

of G-sets over Y ×X , and f is also represented by the difference

Z

b

����
��
��
��
��

a

��8
88

88
88

88
8 Z

u∗b

����
��
��
��
��

a

��<
<<

<<
<<

<<
<

−

Y X Y X ,

since a′ ◦ v = a and b′ ◦ v = u ∗ b. These are the morphisms in the category
S(G) that vanish in B•(G). In other words:

2.11. Theorem : Let G be a finite group. Let S(G) denote the quotient
category of S(G) defined by setting, for any two finite G-sets Y and Y

HomS(G)(X, Y ) = B
(
G
(Y ×X)

)
/K(Y,X) ,

where K(Y,X) is the subgroup generated by the differences

(2.12) Z

b

����
��
��
��
��

a

��8
88

88
88

88
8 Z

u∗b

����
��
��
��
��

a

��<
<<

<<
<<

<<
<

−

Y X Y X ,

where a : Z → X, b : Z → Y , and u : Z → Gc are morphisms of G-sets.
Then the functor Φ• induces an equivalence of categories S(G) ∼= B•(G).
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Since the difference 2.12 factors as

Z

b

����
��
��
��

Id

��.
..
..
..
.

◦

Y Z




Z

Id

����
��
��
��

Id

��-
--
--
--
-

−

Z Z

Z

u∗Id

����
��
��
��

Id

��+
++
++
++
+

Z Z




Z

Id

����
��
��
��

a

��.
..
..
..
.

◦

Z X

the morphism vanishing in S(G) are generated in the category S(G) by the
morphisms of the form

Z

Id

����
��
��
��
�

Id

��8
88

88
88

88
Z

u∗Id

����
��
��
��
�

Id

��<
<<

<<
<<

<<
<

−

Z Z Z Z .

2.13. It follows that the additive functors from S(G) to the category of
abelian groups are exactly those Mackey functors (in the sense of Dress)
such that for any G-set Z and any u : Z → Gc, the morphism M∗(u ∗ Id) is
equal to the identity map of M(Z).

This condition is additive with respect to Z, since the map u ∗ IdZ maps
each G-orbit of Z to itself. Hence these functors are exactly the functors for
which the map M∗(u ∗ Id) is the identity map of M(G/H), for any subgroup
H of G and any u : G/H → Gc. Such a map is of the form gH 7→ gcH ,
where c ∈ CG(H). The map u ∗ Id : G/H → G/H is the map gH 7→ gcH .

Translated in terms of the usual definition of Mackey functors, this map
expresses the action of c on M(H) = M(G/H). This shows that additive
functors from S(G) to abelian groups are exactly the Mackey functors for the
group G such that, for any H ≤ G, the centralizer CG(H) acts trivially on
M(H). These are the “conjugation invariant Mackey functors” introduced
in [5].

3. Fused G-sets

Let Z be any (finite) G-set. The multiplication (u, v) 7→ u ∗ v endows the set
HomG-set(Z,G

c) with a group structure. Moreover, for any finite G-set X ,
this group acts on the left on the set HomG-set(Z,X), via (u, f) 7→ u ∗ f .
This action is compatible with the composition of morphisms: if Y is a finite
G-set, if u : Z → Gc and v : Y → Gc are morphisms of G-sets, then for any
morphisms of G-sets f : Z → Y and g : Y → X , one checks easily that

(3.1) (v ∗ g) ◦ (u ∗ f) =
(
u ∗ (v ◦ f)

)
∗ (g ◦ f) .

9



3.2. Notation : Let G-set denote the category of fused G-sets: its objects
are finite G-sets, and for any finite G-sets Z and Y

HomG-set(Z, Y ) = HomG-set(Z,G
c)\HomG-set(Z, Y ) .

The composition of morphisms in G-set is induced by the composition of
morphisms in G-set.

3.3. Remark : For any G-set Y , set Y I = Y ×Gc. This notation is chosen
to evoke a path object in homotopy theory (cf. [4] Section 4.12). There is a
natural morphism p : Y I → Y × Y , defined by p(y, g) = (y, gy), for y ∈ Y
and g ∈ G, and a morphism i : Y → Y I defined by i(y) = (y, 1), for y ∈ Y .
The composition p ◦ i is equal to the diagonal map Y → Y × Y .

Two morphisms a, b : Z → Y in G-set are equal in the category G-set if
and only if the morphism (a, b) : Z → Y × Y factors as

Y I

p

��
Z

ϕ
;;xxxxxxxxxx

(a,b)
// Y × Y

for some morphism of G-sets ϕ : Z → Y I .

3.4. Remark : It follows from 3.1 that the map u 7→ u ∗ IdZ is a group
antihomomorphism from HomG-set(Z,G

c) to the group of G-automorphisms
of Z. Hence a morphism f : Z → Y in the category G-set is an isomorphism
if and only if any of its representatives f : Z → Y in G-set is an isomorphism.

3.5. Weak pullbacks of fused G-sets. Disjoint union of G-sets is a
coproduct in G-set. There is also a weak version of pullback in G-set : let

T
c

~~~~
~~
~~
~~ d

��@
@@

@@
@@

@

X

a
  @

@@
@@

@@
@ Y

b��~~
~~
~~
~~

Z

be a commutative diagram in G-set, where underlines denote the images in
G-set of morphisms in G-set. This means that a ◦ c = b ◦ d, i.e. that there
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exists u ∈ HomG-set(T,G
c) such that

b ◦ d = u ∗ (a ◦ c) .

But u ∗ (a ◦ c) = a ◦ (u ∗ c). It follows that there is a unique morphism
e ∈ HomG-set(T,X ×a,b Y ) such that the diagram

T

u∗c

����
��
��
��
��
��
��
��
�
e

���
�
�

d

��6
66

66
66

66
66

66
66

66

X ×a,b Y

p
zzuu
uu
uu
uu
u

q
$$I

II
II

II
II

X

a
%%J

JJ
JJ

JJ
JJ

JJ
Y

b
zzttt

tt
tt
tt
tt

Z

is commutative in G-set, where p : X ×a,b Y → X and q : X ×a,b Y → Y are
the canonical morphisms from the pullback X ×a,b Y . In other words, the
diagram

(3.6) T

c

����
��
��
��
��
��
��
��
�
e

��
d

��6
66

66
66

66
66

66
66

66

X ×a,b Y

p
zzuu
uu
uu
uu
u

q
$$I

II
II

II
II

X

a
%%J

JJ
JJ

JJ
JJ

JJ
Y

b
zzttt

tt
tt
tt
tt

Z

is commutative in G-set.
But still (X ×a,b Y, p, q) need not be a pullback in G-set, since the mor-

phism e making Diagram 3.6 commutative is generally not unique, as e it-
self depends on the choice of u. Moreover, the lifts a and b of a and b to
G-set are not unique : it should be noted however that if a′ = v ∗ a and
b′ = w ∗ b are other lifts of a and b, respectively, where v ∈ HomG-set(X,Gc)
and w ∈ HomG-set(Y,G

c), then the map f : (x, y) 7→
(
v(x)x, w(y)y

)
is an

11



isomorphism of G-sets from X ×a′,b′ Y to X ×a,b Y , such that the diagram

X ×a′,b′ Y
p′

zzvv
vv
vv
vv
vv

q′

##H
HH

HH
HH

HH
H

f

++VVVV
VVVV

VVVV
VVVV

VVVV
VV

X

a′
$$I

II
II

II
II

II

v∗Id ++WWWW
WWWW

WWWW
WWWW

WWWW
WWWW

WWWW
W Y

uuu
uuu
b′

zzuu
uu

WWWW
WWWW

WWWW
W

w∗Id ++WWWW
WWWWW

WWWWW
WW

X ×a,b Y

p
zzuu
uu
uu
uu
u

q

$$I
II

II
II

II

Z

Id
++WWWW

WWWWW
WWWWW

WWWWW
WWWWW

WWWWW
W X

a

%%J
JJ

JJ
JJ

JJ
JJ

Y

b
zzttt

tt
tt
tt
tt

Z

is commutative in G-set. Since a′ = a, b′ = b, v ∗ Id = Id, and w ∗ Id = Id,
this yields a commutative diagram

X ×a′,b′ Y
f

//

p′

yyttt
tt
tt
tt
t XXXXX

X

q′

++XXXX
XXXXX

XXXXX
XXXXX

XXX
X ×a,b Y

p

ssfffff
fffff

fffff
fffff

fffff
fffff q

$$I
II

II
II

II

X

a

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU Y

b
ttjjjj

jjjj
jjjj

jjjj
jjjj

jj

Z

in G-set, and f is an isomorphism. This shows that the weak pullback
X ×a,b Y only depends on a and b in the category G-set. For this reason, it
may be denoted by X ×a,b Y .

3.7. Spans of fused G-sets. Recall (cf. [9], [1] for the general definition)
that if X and Y are finite G-sets, then a span ΛZ,a,b over X and Y in the
category G-set is a diagram of the form

Z
a

~~~~
~~
~~
~~ b

��@
@@

@@
@@

@

X Y

where Z is a finite G-set and a, b are morphisms in the category G-set.
Two spans ΛZ,a,b and ΛZ′,a′,b′ over X and Y are equivalent if there exists an
isomorphism f : Z → Z ′ in G-set such that the diagram

Z

f

��

a

~~~~
~~
~~
~~ b

��@
@@

@@
@@

@

X Y

Z
a′

``@@@@@@@@ b′

??~~~~~~~~
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is commutative. The set of equivalence classes of spans of fused G-sets
over X and Y is an additive monoid, where the addition is defined by dis-
joint union (i.e. ΛZ1,a1,b1

+ ΛZ2,a2,b2
= ΛZ1⊔Z2,a1⊔a2,b1⊔b2

). The corresponding
Grothendieck group is isomorphic to HomS(G)(Y,X).

It should be noted that even if there is no pullback construction in the cat-
egory G-set, the isomorphism classes of spans in G-set can still be composed
by weak pullback, and this induces the composition of morphisms in S(G).

4. Fused Mackey functors

4.1. Definition : Let R be a commutative ring. Let RS(G) (resp. RS(G))
denote the R-linear extension of the category S(G) (resp. S(G)), defined as
follows:

• The objects of RS(G) and RS(G) are finite G-sets.

• For finite G sets X and Y ,

HomRS(G)(X, Y ) = R⊗Z HomS(G)(X, Y ) ,

HomRS(G)(X, Y ) = R⊗Z HomS(G)(X, Y ) .

• Composition of morphisms is induced by the pullback in G-set (resp.
the weak pullback in G-set).

A Mackey functor for G over R in the sense of Lindner ([6]) is an R-linear
functor from RS(G) to the category R-Mod of R-modules.

Similarly, a fused Mackey functor for G over R is an R-linear functor
from RS(G) to R-Mod. A morphism of fused Mackey functors is a natural
transformation of functors. Fused Mackey functors for G over R form a
category denoted by Mack

f
R(G).

The following is an equivalent definition of fused Mackey functors, à la
Dress:

4.2. Definition : Let R be a commutative ring. A fused Mackey functor
for the group G over R is a bivariant R-linear functor M = (M∗,M∗) from
G-set to R-Mod such that:

13



1. For any finite G-sets X and Y , the maps

M(X)⊕M(Y )
(M∗(iX),M∗(iY )

//
M(X ⊔ Y )

(M∗(iX),M∗(iY )
oo

induced by the canonical inclusions iX : X → X⊔Y and iY : Y → X⊔Y
are mutual inverse isomorphisms.

2. If
X ×a,b Y

p
zzuu
uu
uu
uu
u

q
$$I

II
II

II
II

X

a
%%J

JJ
JJ

JJ
JJ

JJ
Y

b
zztt
tt
tt
tt
tt
t

Z

is a weak pullback diagram in G-set, then M∗(a)M∗(b) = M∗(p)M
∗(q).

A morphism of fused Mackey functors is a natural transformation of bivariant
functors.

The category Mack
f
R(G) can be viewed as a full subcategory of the cat-

egory MackR(G) of Mackey functors for G over R. In the case R = Z,
this category is equivalent to the category of conjugation invariant Mackey
functors introduced in [5].

The inclusion functor Mack
f
R(G) →֒ MackR(G) has a left adjoint:

4.3. Definition : Let M be a Mackey functor for G over R, in the sense
of Lindner, i.e. an R-linear functor RS(G) → R-Mod. When X is a finite
G-set, set

Mf (X) = M(X)/
∑

Z,a,u

Im
(
M(Λa,IdZ

)−M(Λu∗a,IdZ
)
)

,

where the summation runs through triples (Z, a, u) consisting of a finite G-
set Z, and morphisms of G-sets a : Z → X and u : Z → Gc, and Λa,IdZ

denotes the span
Z

a

����
��
��
�

IdZ
66

66
66

66
66

66

X Z

of G-sets.
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4.4. Proposition : Let R be a commutative ring, and G be a finite group.

1. Let M be a Mackey functor for G over R. The correspondence

X 7→ Mf (X)

is a fused functor Mf for G over R.

2. The correspondence F : M 7→ Mf is a functor from MackR(G) to
Mack

f
R(G), which is left adjoint to the inclusion functor

I : Mack
f
R(G) →֒ MackR(G) .

Moreover F ◦ I is isomorphic to the identity functor of Mack
f
R(G).

Proof : For Assertion 1, to prove that Mf is a Mackey functor, observe that
if ΛZ,a,b is a span of finite G-sets of the form

Z
a

����
��
��
�

b

��7
77
77
77

X Y

and u : Z → Gc is a morphism of G-sets, then

ΛZ,a,b − ΛZ,u∗a,b = (ΛZ,a,IdZ − ΛZ,u∗a,IdZ) ◦ ΛZ,IdZ ,b .

It follows that the R-module
∑

Z,a,u

Im
(
M(Λa,IdZ

)−M(Λu∗a,IdZ
)
)

is equal to the sum
∑

Z,a,b,u

Im
(
M(Λa,b)−M(Λu∗a,b)

)
.

In other words, it is equal to the image by M of the R-submodule KR(X, Y )
of HomRS(G)(Y,X) generated by the morphisms Λa,b − Λu∗a,b, i.e. to the
kernel of the quotient morphism

HomRS(G)(Y,X) → HomRS(G)(Y,X) .

This shows that KR is an ideal in the category RS(G). So if M is an R-linear
functor RS(G) → R-Mod, the correspondence

X 7→ Mf (X) = M(X)/
∑

f∈KR(X,Y )

ImM(f)

15



is an R-linear functor from the quotient category RS(G) to R-Mod.
Assertion 2 is straightforward: first it is clear that F ◦ I is isomorphic to

the identity functor, since Nf = N when N is a fused Mackey functor. This
isomorphism F ◦ I ∼= Id

Mack
f
R
(G) provides the counit of the adjunction. Next

for any Mackey functor M , there is a projection morphism M → IF(M),
and this yields the unit of the adjunction.

4.5. Remark : Assertion 2 shows that Mack
f
R(G) is a reflective subcategory

of Mack
f
R(G) (cf. [7], Chapter IV, Section3).

4.6. Remark : If the Mackey functor M is given in the sense of Dress, then
for any finite G-set X

Mf (X) = M(X)/
∑

a:Z→X
u:Z→Gc

Im
(
M∗(a)−M∗(u ∗ a)

)
,

where Z is a finite G-set, and a, u are morphisms of G-sets.

4.7. Corollary :

1. If P is a projective Mackey functor, then P f is projective in the category
Mack

f
R(G).

2. The category Mack
f
R(G) has enough projective objects. More precisely,

if N is a fused Mackey functor, and θ : P → I(N) is an epimorphism
in MackR(G) from a projective Mackey functor P , then F(θ) : P f → N
is an epimorphism in Mack

f
R(G).

Proof : Assertion 1 follows from the fact that F is left adjoint to the exact
functor I. Assertion 2 is then straightforward.

5. The fused Mackey algebra

When G is a finite group, set ΩG = ⊔
H≤G

G/H , and let RBΩG
denote the Dress

construction for the Burnside functor RB over the ring R. Recall that RBΩG
,

as a Mackey functor in the sense of Dress, is obtained by precomposition of
RB with the endofunctor X 7→ X × ΩG of G-set.

Also recall (cf. [2] Lemma 7.3.2 and Proposition 4.5.1) that the functor
RBΩG

is a progenerator of the category MackR(G), and that the algebra
EndMackR(G)(BΩG

) ∼= B(Ω2
G) is isomorphic to the Mackey algebra µR(G) of G

over R, introduced by Thévenaz and Webb ([8]).
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It follows from Corollary 4.7 that the functor (RBΩG
)f is a progenerator

in the category Mack
f
R(G). Hence this category is equivalent to the category

of modules over the algebra End
Mack

f
R
(G)

(
(RBΩG

)f
)
.

5.1. Definition : The fused Mackey algebra of G over R is the algebra

µf
R(G) = End

Mack
f
R
(G)

(
(RBΩG

)f
)

.

5.2. Lemma : Let X be a finite G-set. Then (RBX)
f is isomorphic to

the Yoneda functor HomRS(G)(X,−).

Proof : Denote by YX the Yoneda functor HomRS(G)(X,−). For any fused
Mackey functor N for G over R

Hom
Mack

f
R
(G)

(
(RBX)

f , N) ∼= HomMackR(G)

(
RBX , I(N)

)

∼= I(N)(X) ∼= N(X)
∼= Hom

Mack
f
R
(G)(YX , N) .

The lemma follows, since all these isomorphisms are natural.

5.3. Theorem : The fused Mackey algebra µf
R(G) is isomorphic to the

quotient of the algebra RB(Ω2
G)

∼= µR(G) by the R-module generated by dif-
ferences of the form

Z

b

����
��
��
��
�

a

��3
33
33
33
33

Z

u∗b

����
��
��
��
�

a

��6
66

66
66

66

−

ΩG ΩG ΩG ΩG ,

where a, b : Z → ΩG and u : Z → Gc are morphisms of G-sets.

Proof : This follows from Lemma 5.2, since the quotient in the theorem is
precisely EndRS(G)(ΩG).

5.4. Remark : One can deduce from this theorem that the fused Mackey
algebra µf

R(G) is always free of finite rank as an R-module, and this rank
does not depend on the commutative ring R. More precisely, Thévenaz and
Webb have shown ([8] Proposition 3.2) that the Mackey algebra µR(G) has
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an R-basis consisting of elements of the form

tHK cg,K rLKg ,

where (H,L, g,K) runs through a set of representatives of 4-tuples consisting
of two subgroups H and L of G, and element g of G, and a subgroup K of
H ∩ gL, for the equivalence relation ≡ given by

(H,L, g,K) ≡ (H ′, L′, g′, K ′) ⇔





H = H ′, L = L′,
and
∃h ∈ H, ∃l ∈ L, g′ = hgl, K ′ = hK .

Similarly, the quotient algebra µf
R(G) of µR(G) has a basis consisting of the

images of the elements tHK cg,K rLKg , where (H,L, g,K) runs through a set of
representatives of 4-tuples as above, modulo the relation ≡f defined by

(H,L, g,K) ≡f (H ′, L′, g′, K ′) ⇔





H = H ′, L = L′,
and
∃h ∈ H, ∃l ∈ L, ∃x ∈ CG(K),
g′ = hxgl, K ′ = hK .
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