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Abstract—We propose in this paper to reconstruct the plau- B. Basic belief density

sibility function curve in combination operations on continuous ) : : - : . :
consonant basic belief densities (bbd). First are presented prop- A "basic belief density’ (bbd) is a non negative functiorf

erties of nested focal elements that lead to a set based graphical®N Z Such thatn”(A) = 0 if A is not a closed interval iff.
representation of focal sets. Examples of belief functions for The integral ofm”? onZ is called/NT <1 [1].

classical pdfs precedes then a proposal of simplification of the .

plausibility formulation. This is done for singletons in conjunctive C. Normalized bbd
and disjunctive combination operations with help of the focal el- m? is a normalized bbd if its integral NT is equal to 1
ements properties. Conflict existing between information sources otherwisemI(Q) = 1—INT [1]. Agents of evidence deriving

ﬁ;::ge%\fnkted with at last some tracks to follow for conflict from probability density functions induce normalized bbds

Keywords: Continuous belief functions, focal sets graphial D. Least commitment

representation, plausibility curve reconstruction, conpnc- 14 gpply the least commitment (LC) principle consists in
tive and disjunctive rules of combination, conflict, conso- payer 'give more belief than justified’ to a bbd that is also
nant bbds. consonant if its focal set is composed of nested intervdls [1

I. INTRODUCTION E. Focal set

Continuous belief functions consonant focal domains canSuppose a bbar”. The closed intervalsi = [z,y] of T
be strictly ordered using a continuous index. As we will seguch asm?*(A4) > 0 are calledfocal elementf 7 [1]. We
we use this property to propose multidimensional graphicdéfine the focal set of by:
representations of focal domains. This is especially ugefu Fr={A=[zy:z,ye Rz <ym (4 >0} (1)
represent the focal domain’s layout after combination aper
tions. Labeling focal sets helps also to simplify the plhility
function relations and to express the conflict existing lBefw E Consonant bbd
agents of evidence. IA bbd m? is consonant when all intervals of the focal set
Il. BASICS OF CONTINUOUS BELIEF FUNCTIONS F* are nested. In these conditions can the whole set of focal

elements be labeled by a usually continuous index [1, 2,.3, 4]
A. TheR, Z and 7 sets We call z this label taking values iR, and note the focal

Smets [1] defines the set of extended real numbiers-  intervals A* such as:
R U[—o0,00] as the set of real numbef® increased of the 4= _ (4=~ 4=+ e R,, A" e[, 4], A7 € [L,QF]. (2)
two infinity elements. ’ ’ ’ T T
In this way does the sef, g,a,3 € R,a < (3 of closed, Note thatA° is the singletory.
half open and open interval[; dr correspond to:

o) = Lo = {[z,v], (z, 9], [z, 9), (z,9) s 2,y € Q= [a, 5]}

The 7, g set reserved to the closed intervals [x,y]Bf, g
is composed of their pairs of bounds (x,y). Zmaz 1S finite or not depending on bounds values(bf

For two different valuesy;, z; of z we have:
2i < zj & A% C A% Nz, 25 € Z =10, 2Zmas) » Zmaz € R+. (3)

Note that the general casE = 7|_. ., includes the Bbds and their related belief functions are Borel sigma
[0, 0], [~00,y], [z,00] intervals and() with [z,y] = @ algebra generated l¥y[1]. Moreover do consonant bbds imply
if z>y. infinite countable focal sets that can be ordered in accaelan
Following definitions are given o and cover the cases whergo the used continuous index. This is convenient to make
the domainZy, is a finite intervalQ = [Q—, Q™. measurements or integrations on their domain



G. Evidential corpus support,z corresponds to the absolute value of the standard

Pieces of evidence provided by a supposed reliable sour&®"€: e — 4l
of information S, are described by a set of focal intervais p=—— %€ R* (4)
and an associated bbd,.
We note&; = (F;, m;) the pair composed of the focal s&t

and focal intervals are:

and the bbdn; modeling the knowledge given by a source of A =u—oz,pu+ ozl (5)
information S; on the closed finite or infinite domaifl; = . i .
[, 0. To generallze_th|s representation of focal eIemeA_fs, and
v A** can be defined around according to two functions of
H. Cognitive independence called A~ and A™ by:
Suppose two sources of informatid# and S; and their { A" =p— A (2)z, ©)
associated pieces of eviden& and &;. As defined by AT =+ AT (2)z, z € Z.

Shafer [5] and Smets [6], variables; and S; are said to . equivalently:

be cognitively independernif the knowledge induced by the o

particular value of one of them does not change our belief z= %, A* e [Q,pul, 5
about the value that the second could teked we note it y— AT At ¢ 1, Q. ™
S1182. This is typically what happends when sources of AT ’

information are sensors fixed on a same structure and if of and~~ are thus reciprocal functions one from the other

course they don't interfere with each other. if and only if A~ and A* differ from 0.
Ill. FROM PDFS TO CONSONANTLC BBDS For symmetrical or triangular pdfs with compact support,
A. Introduction it is possible to normalize and A functions are expressed

On many occasions are continuous agents of evidence ba%(é%ordmg to the pdf's mode and support bounds by:

on physical phenomena that can be modeled by continuous { A~ (z) =A" =u-Q7, )
probability density functions. Most of these pdfs are urdalo At(z) =AtT =0T —pu, Vze[0,1].

and are thus related to consonant bbds. In the framework9f Fqca) intervals length

continuous belief functions, we consider in any case th& pd
supports() are closed interval)—, Q"] with bounds inR.
Let f be such an unimodal pdf of mode variances? and
support2, 2 a continuous random variable and at lasa { I=(z) =p—A* =A"(2)z, )
continuous index taking values i = [0, 2;m42] , 2maz € R+ IT(z) =AT—u =AT(2)z

by the relation:

When the bijectivey function exists, it is possible to link
the lengths:

B. Deduction of the focal intervals from the pdf

When the mode off is not equal to one of the support R(z) = 1= (2) (10)
bounds, focal elementd® = [A*~, A**] are thus such that . . . , :

F(A*=) = f(A**). This happens with Gaussian, Cauch))f"hereR |§ a rat|o'funct|on defined on the domain afFocal
Laplace and some Beta and Gamma distributions for instanEE?rval A7 length's (=) equals thus to:

Under these conditions has Smets [1] defined a bijective-func I(z) =(R(z)+ 1)l (2) = (R(z)+1) I*(2)
tion v such that focal elements correspond/#5—, y(A*™)] (A ( A+ R(z)

or [y~1(A*F), A**]. =(A7(2) + AT (2)).

When p is equal to2~ or QF as in case of strictly in- For symmetrical pdfsR(z) = 1 Vz € Z and in addition to an
creasing or decreasing pdfs such as Exponential and somfenite support,l is thus expressed by:

Gamma and Beta distributions for instance, focal intervals 1) — 9 12
correspond tgA*~, u] or [u, A*T] and they function does (2) = 202. (12)
not exist. We thus define two functions™ and~~ such that For triangular distributions f(z|Q~,Q%, u) with p ¢
focal intervals respectively correspond[#*—, 7" (A4*7)]and {Q~,Q*t}, R is also a constant. But if only one of the two
[y~ (A*T), A**]. If and only if " and~~ are injections thus functionsy* or 4~ is injective thenR does not exist and
are they invertible and*o~~ = Id, whereld, is the identity one of the functiong~ or It equals to 0. That happens with
function on the domain of. triangular distributions whep, = Q= or yu = Q7.

For other pdfs,R and thus! are nonlinear functions as
illustrated in figure 1 showing the focal intervals, v (z)]

It is convenient to index consonant focal intervals by Eength in case of th&(2, 2) distribution forz € [0, u]. R or !
standard parameter in the way to provide normalized relatiofunctions have then to be obtained accurately by interjpolat
or curves for belief functions. As proposed for Gaussidior instance.
pdfs [2], in case of symmetrical unimodal pdfs with infinite

11)

C. Standardized z index



If 22 > Zmaz, Pl(x) = 0. That appears when the pdf’s support
Q is finite andzx ¢ Q.

In combination operations of cognitive independent agents
B does this integral form allow to separate integrals.

] IV. EXAMPLES OF BELIEFS DEDUCED FROM CLASSICAL
CONSONANT PDFS

A. Introduction

In this section and for a lot of common consonant bbds we
provide expressions of:
% " d2 o4 Toe g g0 a2 e de as 20 e z, the numeric index,
e [, the focal intervals length,
e f, the pdf,
Figure 1. Focal intervals length*(2, 2) pdf. e m, the bbd deduced from the pdf,
Betf. e M, the integral of the bbd,
! e PI, the plausibility function.
Note that PI(z) = 1 - M(z) since bbds are normalized.

B. Normal pdf

In this case is given by equation (4), by equation (12)
and the pdf by:

Betf] (X) .. .: ...... ....... : .. Betfl (Y+(X))

1 _z2
flz)= \/ﬂae . (15)

The bbd is a Maxwell-Boltzmann distribution witla = 1

and is given by:
m(z) = \/%Z2€_é. (16)

The bbd’s integral is given by:

z 2 22 3 22
M(z) =erf(— —\/jze 27 = — (*7*)7 17
Figure 2. Gaussian’s pdf Focal domah. (2) f(\/i) ™ \/E'y 22 (17)

where~(a, ) is the lower incomplete gamma function [9].
The plausibility corresponds to:

E. Focal set graphical representation ,
In addition to the model proposed by Strats [7], figure 2 Pi(z) = erfe(—=) + \/gze*§ -2 (5, i) . (18)

illustrates the triangular shape of the domain represegritie V2 4 VA2 2

focal set ordered in function afhere for a Gaussian pdf . This whereT'(a, z) is the upper incomplete gamma function [9].

is always the case wheR (10) is constant but depends on thé-igure 3 illustrates these normalized functions.

expression used farthat is not unique. Ristiet al.[2] use for C. Lapl of

instance relation (4) when in [3, 8], authors use its quadrat™ aplace p

expression. This changes the focal domain’s graphicaleshapeqigiioan I(_fg)lace density; is given by relation (4). by

F. LC bbd deducted from a continuous pdf The pdf is given by:

From the relation given by Smets [1], accordingztand 1 19
with help of I giving the focal intervals length, a bbd is flz) = o2 (19)
deduced from a pdf by:

Sbetf(2) The bbd equals to:
et f(z
m(z) = —l(2) =5 (13) m(z) = 2z¢ V%, (20)

The bbd’s integral is given by:
G. Plausibility .function simplif.ic.a'tion . . . M(z)=1-(1+ \/iz)e—\/iz. 1)
The expression of the plausibility function can be simptifie o
in case of consonant belief densities since focal interasds The plausibility is given by:

nested. Ifz, represents the index value of a singletothen:
P 9 Pl(z) = (1+V22)e” V> 22)

pl(x) = pl(zz) = /Zmaw m(z)dz. (14)

x
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Figure 3. Normalized basic beliefs induced by a Gaussian pdf.

D. Triangular pdf

Figure 4. Venn diagram of symmetrical pdfs combination.

We use a set approach as in [4] and ngig and 77 the

Triangular pdfs can be used in place of some unimodal Begabsets of intervals of; and F; that intersect withz, F7
and Gamma distributions for which the R ratio (10) does nand 7 their complements.
be linear. For triangular pdfs, € [0,1] is given by relation (7) g Graphical representation of sets

with A parameters as in (8).
The length of focal intervals is:

I(2) = (27— Q7).
The pdf is given by:

2(1—=2)

FO={ § L omanie
The bbd is given by:
m(z) = 2z.
The bbd’s integral is given by:
M(z) = 2°.
The plausibility is given by:
Pl(z) =1—2°.

V. SINGLETONS PLAUSIBILITY IN COMBINATION

(23)

(24)

(25)

(26)

OPERATIONS OF INDEPENDANTCONSONANT BBDS

A. introduction

Figure 4 illustrates the organization of intervals BfxF;
relatively to values ofr by a Venn diagram. The whole
domain represent$;xF; into a Cartesian coordinate system.
Axes correspond to the (positive)indexes of the focal sets
concerned by the combination hefe and F;. Whenn agents
have to be combined, the domain is a n-dimensional space.
Axes represenf;’, 7 sets and their complements separated
at locationsz and z7. Subsets ofF;xF; represented on the

J
diagram by letters correspond to those specified here after:

o A D FIXFY eB CFIXFT
e AUB : ]-‘Z-x]-'f e BUCUD : FIxFj,
e CUD : F'xF7 e EUF CFIXFY,
eDUE :FNF;=0 eD CFPNF;=0.

Pairs(z{, z7),z € Q2 draw linesJ, O and . According to
z{, z7 relations, the intermodal distange; — ;| and for bbds
based on symmetrical pdfs with infinite support, line relias
correspond to:

O :2f= 7‘“i_’t%+mzf,x € [—oo, i),

0 . Z;E = ‘#i*l—l(]‘rfa»zv, , T € [Miv,uj]: (28)
. —|pi—pjltoizy

O .zf:7m /”;’J‘ T2 x € [y, +oo].

We propose to construct the plausibility curve resulting Qiyom |ine directions we deduce also in case of such pdfs that:

the combination of consonant cognitive independent pie€es

evidence. Suppose a random variableon Q = [—o0, 0]

and two consonant cognitive independent pieces of evidence

& and &; of focal intervals ordering indexes’ and 27. If o o o
we conside€; and&; resulting of two symmetrical pdfs with C. Plausibility of a conjunctive combination

infinite support and modes such as< p;, then we have the

following indexes values for a given singletan

_ le—pyl T +
Zj =5 7 ERT.

z _ |lz—pl T +
zi =15,z €RT,
T

(27)

i
Q] = Qg = Qg = |arct§;)|. (29)

J

The plausibility of the conjunctive combination of two cog-
nitive independent pieces of eviden€e and &; at singleton
x corresponds to:

phige(z) = // m; (27 )m;(23)dz7dz3 . (30)
TXFg
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Figure 5. Plausibility curve of conjunctive combination ofagents of Figure 7.  Plausibility curve of disjunctive combination of &ents of
evidence deduced from Gaussian pdfs. evidence deduced from Gaussian pdfs: intermode details.

AUBUCUD and thus:

|FEOFS = I|F + | F = |7 nFflL
— |FixF;| - [FoxFe),

0.9

(33)

0.8

07| Note that the set called in figure 4 leads to conflicting
intervals and thus t@. A refinement [5] of7; andF; to F;xF;

is then done with help of intervals without mass. Convexity
of disjoint intervalsa,, b;] € F;, [a;,b;] € F; using min (\)
and max {) operators is done by:

A=A UA;UAL € FixF;,
A= [a,b] A; = [ai,bi} e Fi ,Aj = [aj,bj} 6.7:]‘, AiﬂAJ’ :@,
Ay = [(a, \/a]‘) Abi/\bj,ai\/aj V(bi /\bj)} .

0.6

0.5

0.4+

0.34

0.2

0.1+

o (34)
2 o : From relations (33), the plausibility’l;g2(x) in case of
X cognitive independent agenfs and & based on normalized
bbds is given by:
Figure 6. Plausibility curve of disjunctive combination of aents of Plig2(z) = Pli(z)+ Plz(z) — Plig2(z),
evidence deduced from Gaussian pdfs. =1— (1 - Pli(x))(1 — Pla(z)), (35)

=1- Ml(x)Mg(at)

: . This corresponds to Smets DRC plausibility relation [6].
From (14) and sincefy L &): When mergingn agents of evidence, the relation (33) cor-
Pliga(x) = Pli(x)Pla(x), responds to:

= Ply(z;)Pla(22 :
1(22) 2(z_m) Plho..on(z) =1-1ILZF(1 - Pli(z)), (36)
where z1 and 22 label the agents of evidence focal séfs =1— L= Mi(z).
and]-"g. i . , .. .
Whenn independent cognitive agents of evidence have to b&igure 6 shows the result of the singleton's disjunctive
merged, relation (31) corresponds to: plausibility obtained by merging the same pieces of evidenc

_ 1ri=n as in case of the conjunctive combination. Figure 7 illussa
Pho..on(@) = M=iPl). 32 Getails of the intermode intervés, 7.5] showing initial plau-
This non-normalized combination operation is commutaibility peaks preservation.
tive, associative but not idempotent. As in probabilitit® Since based on normalized bbds, this combination operation
combination of two similar agents produces a more preciagso normalized. From relation (35) we see that the operatio
result. Figure 5 shows the result obtained when mergiig commutative, associative but not idempotent.
3 conflicting pieces of evidence based on Gaussian pdfs

(€1Y)

W (x;5,4), N (2;6.5,1), N (2;7.5,0.5)). E. Conflict
- . . N The conflict's expression proposed in [8] can be expressed
D. Plausibility of a disjunctive combination according to the: labels of the bbds to be merged and the

The inclusion-exclusion principle is also valid for infiit intermodal distancéu; — p2|. If we suppose the modes of two
sets [10]. In figure 4, the union of]” and 77 corresponds to consonant unimodal pdfs such as < u», A parameters as



on the frame of discernment. The calculus can be done in
real-time or even by interpolation of prerecorded resiNtn-
normalized conjunctive combination also provides the éegr

of discordance between information sources. This caldudiss

to be done again at each new sample and by a numerical
integration approach. Here again, it can be useful to have
recorded a lot of items in a matrix. If more than two infor-
mation sources have to be merged, these partial conflicts can
for instance be added to calculate a kind of global confli¢t. A
last, conjunctive and disjunctive combination resultsspraed
here can be mixed according to the conflict value as done
1 in adaptive combination in the way to be more confident or
4 cautious in applications behaviors or measurements.
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