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NON-AUTONOMOUS HONESTY THEORY IN ABSTRACT STATE SPACES WITH

APPLICATIONS TO LINEAR KINETIC EQUATIONS

L. ARLOTTI, B. LODS & M. MOKHTAR-KHARROUBI

ABSTRACT. We provide a honesty theory of substochastic evolution families in real abstract

state space, extending to an non-autonomous setting the result obtained for C0-semigroups

in our recent contribution [On perturbed substochastic semigroups in abstract state spaces,

Z. Anal. Anwend. 30, 457–495, 2011]. The link with the honesty theory of perturbed

substochastic semigroups is established. Several applications to non-autonomous linear

kinetic equations (linear Boltzmann equation and fragmentation equation) are provided.

1. INTRODUCTION

Perturbation theory in L1 spaces goes back to a classical and seminal paper by T. Kato
[16] on Kolmogorov’s differential equations and is strongly tied to positivity and to con-
vergence monotone arguments. This theory had a renewal of interest in the 70’s when E.
B. Davies [12] adapted it to the (non-commutative) context of quantum dynamical semi-
groups. Later, a new impetus came from various problems from kinetic theory [2, 29] and
gave rise to a general formalism, called ”honesty theory” of perturbed substochatic semi-
groups [8, 25, 3, 14]. Such a honesty theory provides a ”resolvent perturbation approach”
characterizing the generator of the underlying perturbed semigroup by means of a suit-
able functional; this theory is described in the book [7]. Afterwards, this honesty theory
was improved and extended in different directions in [19] while a noncommutative ver-
sion of [19] in the Banach space of trace class operators was given in [18]. In a recent
paper [6], we provided a general honesty theory of perturbed substochastic semigroup
in abstract state spaces (i.e. ordered Banach spaces with additive norm on the positive
cone), unifying in one hand the results of [19] and [18] and in another hand providing
another (equivalent) approach to the honesty which relies on Dyson-Phillips expansions
rather than the usual resolvent approach; we refer to [6] for more precise information
and also for much more references. Our aim here is to built a non-autonomous version of
this honesty theory and to show how kinetic equations fit into this theory. Dealing with
such non-autonomous (two-parameters) families of operators leads to important techni-
cal difficulties and, in particular, prevents us to use (in a direct way) any approach based
on resolvent estimates. We will resort to several of the results developed in our previous
contribution [6] in which a crucial point was, indeed, the introduction of a perturbation
approach based only on fine estimates of Dyson-Phillips expansions which contrasts with
the previous existing results, usually based on a resolvent approach.

1



2 L. ARLOTTI, B. LODS & M. MOKHTAR-KHARROUBI

Before entering the details of the present paper, let us spend few words recalling briefly
some properties of the class of Banach spaces we shall deal with in this paper (which
coincide with the one investigated in [6]). In all this paper, we shall assume that E is a
real ordered Banach space with a generating positive cone E+ (i.e. E = E+−E+) on which
the norm is additive, i.e.

‖u+ v‖ = ‖u‖+ ‖v‖ u, v ∈ E+.

The additivity of the norm implies that the norm is monotone, i.e.

0 6 u 6 v =⇒ ‖u‖ 6 ‖v‖.

In particular, the cone E+ is normal [9, Proposition 1.2.1] and any bounded monotone
sequence of E+ is convergent. Moreover, there exists a linear positive functional Φ on E
which coincides with the norm on the positive cone (see e.g. [11, p. 30]), i.e.

Φ ∈ E⋆
+, 〈Φ, u〉 = ‖u‖, u ∈ E+ (1.1)

We note also that by a Baire category argument there exists a constant γ > 0 such that
each u ∈ E has a decomposition

u = u1 − u2 where ui ∈ E+ and ‖ui‖ 6 γ‖u‖ (i = 1, 2); (1.2)

i.e. the positive cone X+ is non-flat, see [22, Proposition 19.1].
In such abstract state space E , the natural question addressed by honesty theory of

subtochastic semigroups is the following: let the generator A of a positive semigroup
(U(t))t>0 in E be given with ‖U(t)u‖ 6 ‖u‖ for any u ∈ E+ and let a nonnegative operator
B : D(B) ⊂ E → E with D(A) ⊂ D(B) be such that

〈Ψ, (A + B)u〉 6 0 ∀u ∈ D(A) ∩ E+. (1.3)

It is known (following the approach of a seminal paper of Kato [16]) that there exists an
extension K of the sum (A + B,D(A)) which generates a nonnegative semigroup (V(t))t
in E . The scope of honesty theory of substochastic semigroups is then to provide criteria
in order to determine whether K is the closure of A+ B or not (notice that, in general, K
may be a proper extension of A + B). We emphasize here that, for formally conservative
equations, i.e. whenever inequality (1.3) is an equality, the property K = A+ B is neces-
sary and sufficient to assert that the corresponding semigroup is norm-preserving on the
positive cone, i.e.

K = A+ B ⇐⇒ ‖V(t)u‖ = ‖u‖ for any u ∈ E+ and any t > 0.

Whenever (1.3) is ’only’ an inequality, the concept of honesty of the semigroup (V(t))t>0 is
more involved and we refer to [19, 6] for further details (see also Section 3.2). We notice
only here that the above inequality (1.3) implies that

∫ t

0
‖BU(t)u‖dt 6 ‖u‖ − ‖U(t)u‖ ∀u ∈ D(A) ∩ E+ , t > 0 (1.4)

and an identity in (1.3) would yield an identity in (1.4).
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As already said, in the present paper, we wish to extend this kind of problematic to
the more delicate case of evolution families (U(t, s))t>s>0. We recall here the following
definition (see, e.g., [10, 15]):

DEFINITION 1.1. A family (U(t, s))t>s of bounded operators in E is called an evolutionary
family if the following conditions are fulfilled:

(i) for each u ∈ E the function (t, s) 7→ U(t, s)u is continuous for t > s;
(ii) U(t, s) = U(t, r)U(r, s), U(t, t) = I, t > r > s;

(iii) ‖U(t, s)‖ 6 Ceβ(t−s), t > s for some constants C, β > 0.

The starting point for our analysis will be then the following set of Assumptions that
will hold for all the rest of the paper:

ASSUMPTION 1.2. Let (U(t, s))t>s be a given evolution family and let (B(t))t>0 be a family
of unbounded operators in E . We assume the following

(i) U(t, s)u ∈ E+ for any u ∈ E+ and t > s > 0;
(ii) ‖U(t, s)u‖E 6 ‖u‖E for any u ∈ E+ and any t > s > 0;

(iii) for any t > 0, B(t)u ∈ E+ for any u ∈ D(B(t)) ∩ E+;
(iv) for any u ∈ E and any s > 0 one has

U(t, s)u ∈ D(B(t)) for a. e. t > 0, (1.5)

and the mapping t ∈ [s,∞) 7→ B(t)U(t, s)u is measurable. Moreover, for any t > s > 0
and any u ∈ E+ the following holds:

∫ t

s

‖B(τ)U(τ, s)u‖E dτ 6 ‖u‖E − ‖U(t, s)u‖E . (1.6)

Whenever the inequality in (1.6) is an equality, we shall say that we are in the formally
conservative case.

Clearly, points (i) and (ii) mean that the unperturbed evolution family (U(t, s))t>s is
substochastic. The family of unbounded nonnegative operators (B(t))t>0 will then be
seen as perturbation of (U(t, s))t>s where inequality (1.6) will play the role, in this non-
autonomous framework, of the above (1.4). Assumption (iv) is crucial in our analysis and
will be met in the various applications to linear kinetic equations we have in mind.

In Section 2, borrowing ideas to Kato’s seminal paper [16], we can prove (see Theorem
2.1) that, under Assumptions 1.2, there exists an evolution family (V(t, s))t>s in E such
that

V(t, s)u = U(t, s)u+

∫ t

s

V(t, r)B(r)U(r, s)udr, ∀u ∈ E . (1.7)

Moreover, the evolution family (V(t, s))t>s is substochastic, i.e. ‖V(t, s)u‖E 6 ‖u‖E for
any u ∈ E+. Notice that, in order to the above identity to make sense, our assumption
that U(r, s)u ∈ D(B(r)) for a. e. r > s plays a crucial role. The proof of such an
existence result is constructive and the evolution family (V(t, s))t>s satisfying (1.7) is built
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as a generalization of the Dyson–Phillips expansion series:

V(t, s)u =
∞∑

n=0

Vn(t, s)u ∀u ∈ E , t > s > 0

with V0(t, s) = U(t, s) and

Vn+1(t, s)u =

∫ t

s

Vn(t, r)B(r)U(r, s)udr, t > s > 0, u ∈ E . (1.8)

The above series converges in E and one can prove that it provides an evolution family
satisfying the variation of constant formula (1.7).

Notice that perturbation theory of strongly continuous evolution families is already a
well-developed research area which followed somehow the paths of the perturbation the-
ory of C0-semigoups. In particular, we refer the reader to the seminal work [24] where
a non-autonomous Miyadera perturbation theory has been developed. Our results in the
present paper do not resort to such a Miyadera theory, however some of the ideas im-
plemented in [24] will play an important role in our analysis. More precisely, in [24]
(see also [17, 21, 23]), the perturbation theory for the evolution family is based upon
known perturbation results for C0-semigroups via the following well-known feature of
evolution family [10]: to a given evolution family, say (U(t, s))t>s>0, one can associate a
C0-semigroup (T0(t))t>0 acting on the lifted space

X = L1(R+, E)

endowed with its natural norm ‖ · ‖X given by ‖f‖X =
∫∞
0 ‖f(s)‖Eds for any f ∈ X (see

Section 3) for more details). The semigroup (T0(t))t>0 is given by:

[T0(t)f ] (r) = χ+(r − t)U(r, r − t)f(r − t) r > 0

where χ+(·) stands for the indicator function of the set R+.
While the approach of [24] consists in applying, in the space X, the now classical

Miyadera perturbation theorem [7] to that semigroup (T0(t))t>0, our approach in the
present paper is different since the construction of (V(t, s))t>s is non-autonomous in na-
ture: we do not work in the space X to construct (V(t, s))t>s. In this sense, our approach
is essentially self-contained and no use of the results of [24] is necessary for our analysis.

However, we will borrow some of the ideas of [24] to deal with the honesty theory of
(V(t, s))t>s, exploiting in particular the results we obtained in [6] for perturbed semigroup
in the space X. The fundamental observation is that the lifted space X is also an abstract
state space whose norm ‖ · ‖X can be uniquely extended to a positive bounded linear
functional Ψ satisfying

Ψ ∈ X
⋆
+, 〈Ψ, f〉

X
= ‖f‖X, f ∈ X+.

Now, to the perturbed evolution family (V(t, s))t>s corresponds a unique C0-semigroup
(T (t))t>0 in X and both the semigroups (T0(t))t>0 and (T (t))t>0 are substochastic semi-
groups in X and one can determine the link between the two semigroups and their respec-
tive generators (Z,D(Z)) and (G,D(G)).
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Precisely, we construct in Section 3 and borrowing some ideas of [27], a perturbation

operator B̂ : D(B̂) ⊂ X → X which is nonnegative in X, such that D(B̂) ⊃ D(Z) and
satisfying 〈

Ψ,
(
Z + B̂

)
f
〉
X

6 0 ∀f ∈ D(Z) ∩ X+.

In other words, the honesty theory for C0-semigroup developed in [6] applies in the space

X and G is an extension of the sum (Z + B̂,D(Z)). It is moreover possible to prove that
the semigroup (T (t))t>0 is exactly the one obtained by a direct application, in X, of Kato’s

theorem [6]. Notice that building the perturbation B̂ and recognizing that (T (t))t>0 coin-
cide with the semigroup obtained thanks to Kato’s theorem will require several additional
measurability assumptions, besides Assumptions 1.2, that will be introduced progressively
in the text.

Clearly, the great interest of working in the lifted space X is that it allows us to exploit
the results established in [6] about honesty of C0-semigroups and we shall adopt the
following definition for the honesty of (V(t, s))t>s:

DEFINITION 1.3. The evolution family (V(t, s))t>s is honest in E if and only if the associated
semigroup (T (t))t>0 is honest in X.

As already said, several characterizations of the honesty of (T (t))t>0 have been estab-
lished in our recent contribution [6] but it is very challenging to be able to express such
characterizations in explicit terms involving only the known objects in E that are B(t) and
the Dyson-Phillips iterated Vn(t, s).

This is the object of the core of our paper, developed in Section 4. The novelty of our
approach lies in a constant interaction between results established in the space X and
results typical to E while the previous existing approach [24, 17] essentially works in the
lifted space X to deduce property in E . Let us explain with more details the results of
Section 4: we first provide, under some additional assumptions on (B(t))t>0, a practical

interpretation of the perturbation B̂ as simply the multiplication operator in X by B(·).
Such an additional assumption, see Assumption 4.10, is clearly restrictive but turns out
to be very well-suited to the case of non-integral operators that we have in mind for
applications.

Second, we construct a second family of Dyson-Phillips iterated (Vn(t, s))n∈N (t > s >

0) which is such that, for any u ∈ E+ and any n ∈ N,

Vn(t, s)u ∈ D(B(t)) for almost every t > s. (1.9)

Finally, we show that this second family of iterated actually coincide with the original one
(1.8), i.e. Vn(t, s) = Vn(t, s) for any t > s > 0 and any n ∈ N. This allows to prove the
main result of the paper (Theorem 4.19) that asserts that the evolution family (V(t, s))t>s

is honest if and only if the following holds for any u ∈ E+

lim
n→∞

∫ t

s

‖B(τ)Vn(τ, s)u‖E dτ = 0 ∀t > s.
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Notice that in the formally conservative case for simplicity, one easily sees that the evolu-
tion family (V(t, s))t>s is conservative if and only if it is honest.

In Section 5, we deal with applications to kinetic theory in arbitrary geometry under
the assumption that the cross-sections are space homogeneous. Non-autonomous kinetic
equation have already been investigated in [26] underlying in particular the influence of
time-dependent forcing term. Our approach is different here and we are dealing rather with
time-dependent collision operators. The main technical point is to show how Assumptions
1.2 are satisfied in the context of kinetic theory. In addition, as in the autonomous case
[20], we show also how the honesty of space homogeneous kinetic equations of the form

∂tf(v, t) + Σ(v, t)f(v, t) =

∫

V

b(t, v, v′)f(v′, t)dµ(v′) v ∈ V

implies the honesty of full (transport) kinetic equations




∂tf(x, v, t) + v · ∇xf(x, v, t) + Σ(v, t)f(x, v, t)

=

∫

V

b(t, v, v′)f(x, v′, t)dµ(v′) x ∈ Ω, v ∈ V

f(x, v, t) = 0 if (x, v) ∈ Γ−

where Ω ⊂ R
d is a open subset, µ is a Borel measure over R

d with support V (we refer
to Section 5.2 for details on the various terms in the above equation). We investigate this
problem in the state space E = L1(Ω × V,dx ⊗ dµ(v)). Here, as in [20], we deal with
singular and subcritical kinetic equation: namely, the kinetic equation is singular in the
sense that the collision operator

f ∈ L1(V,dµ(v)) 7−→

∫

V

b(t, v, v′)f(v′)dµ(v′) ∈ L1(V,dµ(v))

is an unbounded operator while the subcritical assumption refers to
∫

V

b(t, v, v′)dµ(v′) 6 Σ(t, v) for a. e. (t, v) ∈ R
+ × V.

We finally provide a practical criterion of honesty of space homogeneous kinetic equations
in terms of existence of a detailed balance condition, inspired by the results of [20].

In section 6, we revisit briefly some of the results of [4] for non-autonomous fragmen-
tation equation

∂tu(t, x) = −a(t, x)u(t, x) +

∫ ∞

x

a(t, y)b(t, x, y)u(t, y)dy x > 0, t > s

under some reasonable assumptions on a(t, ·) and b(t, ·, ·) (see Section 6 for details). We
show how the abstract theory developed in the first four sections of the present paper do
fit to such a problem and allow to recover in a very simple way several results of [4].
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2. PERTURBATION THEORY OF SUBSTOCHASTIC EVOLUTION FAMILIES

As it is the case for autonomous problem (i.e. for C0-semigroup), it is possible to obtain
an abstract generation result for evolution families. Under the above set of Assumptions,
one can construct an evolution family (V(t, s))t>s in E .

THEOREM 2.1. Assume that Assumptions 1.2 hold true. Then, there exists an evolution family
(V(t, s))t>s in E such that

V(t, s)u = U(t, s)u+

∫ t

s

V(t, r)B(r)U(r, s)udr, ∀u ∈ E . (2.1)

Moreover, ‖V(t, s)u‖E 6 ‖u‖E for any u ∈ E+ while ‖V(t, s)u‖E 6 2γ‖u‖E for any u ∈ E .

The proof of the above result consists actually in constructing the evolution family
(V(t, s))t>s as a generalization of the Dyson–Phillips expansion series. Precisely, define
for any n ∈ N:

V0(t, s) = U(t, s), t > s > 0, and

Vn+1(t, s)u =

∫ t

s

Vn(t, r)B(r)U(r, s)udr, t > s > 0, u ∈ E .
(2.2)

One has

PROPOSITION 2.2. For any n > 0 and any t > s > 0, Vn(t, s) ∈ B(E) with the following
properties:

(1) Vn(t, s)u ∈ E+ for any u ∈ E+;
(2)

∑n
k=0 ‖Vk(t, s)u‖E 6 2γ‖u‖E for any u ∈ E while

n∑

k=0

‖Vk(t, s)u‖E 6 ‖u‖E for any u ∈ E+. (2.3)

(3) For any 0 6 s 6 r 6 t:

Vn(t, s)u =
n∑

k=0

Vk(t, r)Vn−k(r, s)u, ∀u ∈ E .

(4) For any n > 1, limh→0Vn(t+ h, t)u = 0 for any u ∈ E , t > 0.
(5) For any s > 0, the mapping [s,∞) ∋ t 7→ Vn(t, s) is strongly continuous.
(6) For any r > 0 and any t > r, the mapping s ∈ (r, t) 7−→ Vn(t, s) is strongly continuous.

Proof. We prove all the above points (1)–(6) by induction. All these points are clearly
satisfied for n = 0 (except clearly point (4)). Assume now they hold for any k 6 n for
some given n ∈ N and let us prove they still hold true for k = n+ 1. In all the sequel, we
assume t > s > 0 to be fixed.

(1) Let u ∈ E+ be given. Since Vn(t, s) is a bounded positive linear operator in E ,
Vn+1(t, s)u is well-defined by Eq. (2.2) and it is clear from Assumptions 1.2 (iii) that
Vn+1(t, s)u ∈ E+.
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(2) Let us first assume u ∈ E+ to be given. The induction assumption implies that

‖Vn(t, r)v‖E 6 ‖v‖E −

n−1∑

k=0

‖Vk(t, r)v‖E

for any t > r > 0 and any v ∈ E+. Applying this to v = B(r)U(r, s)u ∈ E+ and using
(1.6), we get:

‖Vn+1(t, s)u‖E 6

∫ t

s

‖B(r)U(r, s)u‖E dr −

n−1∑

k=0

∫ t

s

‖Vk(t, r)B(r)U(r, s)u‖E dr

6 ‖u‖E − ‖U(t, s)u‖E −

n−1∑

k=0

∫ t

s

‖Vk(t, r)B(r)U(r, s)u‖E dr.

Now, one has
∫ t

s

‖Vk(t, r)B(r)U(r, s)u‖E dr =

∫ t

s

〈Φ,Vk(t, r)B(r)U(r, s)u〉E dr

=

〈
Φ,

∫ t

s

Vk(t, r)B(r)U(r, s)udr

〉

E

= 〈Φ,Vk+1(t, s)u〉E

= ‖Vk+1(t, s)u‖E

from which we deduce that

‖Vn+1(t, s)u‖E 6 ‖u‖E −
n∑

k=0

‖Vk(t, s)u‖E ∀u ∈ E+, t > s > 0. (2.4)

This proves (2.3) and we deduce from (1.2) that ‖Vn+1(t, s)u‖E 6 2γ‖u‖E for any u ∈ E
and any t > s > 0.

(3) Let t > r > s > 0 be given and let u ∈ E be fixed. Using the induction assumption,
one has

n+1∑

k=0

Vk(t, r)Vn+1−k(r, s)u = U(t, r)Vn+1(r, s)u+Vn+1(t, r)U(r, s)u

+

n∑

k=1

Vk(t, r)Vn+1−k(r, s)u. (2.5)

Now, U(t, r)Vn+1(r, s)u is equal to

U(t, r)

∫ r

s

Vn(r, τ)B(τ)U(τ, s)udτ =

∫ r

s

U(t, r)Vn(r, τ)B(τ)U(τ, s)udτ

=

∫ r

s

Vn(t, τ)B(τ)U(τ, s)udτ −
n∑

j=1

∫ r

s

Vj(t, r)Vn−j(r, τ)B(τ)U(τ, s)udτ
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where we used the fact that the induction formula is true for any k 6 n. In the same way,

Vn+1(t, r)U(r, s)u =

∫ t

r

Vn(t, σ)B(σ)U(σ, r)U(r, s)udσ

=

∫ t

r

Vn(t, σ)B(σ)U(σ, s)udσ

from which we deduce that

U(t, r)Vn+1(r, s)u +Vn+1(t, r)U(r, s)u =

∫ t

s

Vn(t, τ)B(τ)U(τ, s)udτ

−

n∑

j=1

∫ r

s

Vj(t, r)Vn−j(r, τ)B(τ)U(τ, s)udτ. (2.6)

Now,

Vn+1−k(r, s)u =

∫ r

s

Vn−k(r, τ)B(τ)U(τ, s)udτ

so that
n∑

k=1

Vk(t, r)Vn+1−k(r, s)u =

n∑

k=1

∫ r

s

Vk(t, r)Vn−k(r, τ)B(τ)U(τ, s)udτ,

which, from (2.5) and (2.6) proves that

n+1∑

k=0

Vk(t, r)Vn+1−k(r, s)u =

∫ t

s

Vn(t, τ)B(τ)U(τ, s)udτ = Vn+1(t, s)u

and the result holds true for n+ 1.
(4) Let n > 0 and u ∈ E+ be fixed and let h > 0. Then, according to (2.4),

‖Vn+1(t+ h, t)u‖ 6 ‖u‖ − ‖U(t + h, t)u‖

from which we easily deduce that

lim
h→0+

‖Vn+1(t+ h, t)u‖ = 0 ∀u ∈ E+

and the result extends to any u ∈ E by linearity.
(5) Given t > 0 and h > 0, one has from (3)

Vn+1(t+ h, s)u−Vn+1(t, s)u =

n+1∑

k=1

Vk(t+ h, t)Vn+1−k(t, s)u+

(U(t+ h, t)− I)Vn+1(t, s)u. (2.7)

Therefore, since (4) holds for any 1 6 k 6 n+ 1 and, from the strong continuity of U(·, t)
we clearly get from (2.7) that

lim
h→0

‖Vn+1(t+ h, s)u−Vn+1(t, s)u‖ = 0.
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One proves the result similarly for h < 0. Therefore, the mapping t 7→ Vn+1(t, s)u is
continuous over [s,∞).

(6) Let t > s > r and h ∈ R such that s+ h ∈ (r, t). Assume first that h > 0. Since

Vn(t, s) =

n∑

k=0

Vk(t, s+ h)Vn−k(s+ h, s)

one has

Vn(t, s + h)−Vn(t, s) = Vn(t, s + h)(I−U(s + h, s)) +
n−1∑

k=0

Vk(t, s+ h)Vn−k(s + h, s)

and clearly Vn(t, s+ h)−Vn(t, s) strongly converges to zero as h → 0+. One proceeds in
the same way for h < 0 and this proves point (6). �

With this result in hands, one can prove Theorem 2.1.

Proof of Theorem 2.1. As it is the case for Kato’s Theorem (see [6]), the proof consists only
in defining the evolution family (V(t, s))t>s as the strong limit of

∑n
k=0Vk(t, s). Precisely,

for any fixed t > s > 0 and any u ∈ E+, the sequence (
∑n

k=0Vk(t, s)u)n is nondecreasing
and bounded according to Proposition 2.2, (2). Therefore, one can define

V(t, s)u =

∞∑

n=0

Vn(t, s)u = lim
N→∞

N∑

n=0

Vn(t, s)u for any u ∈ E+, (2.8)

and ‖V(t, s)u‖E 6 ‖u‖E , ∀u ∈ E+. Let us now prove (2.1). Let u ∈ E and t > s > 0 be
fixed. By construction, for any n ∈ N:

n∑

k=0

Vk(t, s)u = U(t, s)u+

∫ t

0

n∑

k=1

Vk−1(t, r)B(r)U(r, s)udr. (2.9)

Now, according to Prop. 2.2 (2),
∥∥∥∥∥

n∑

k=1

Vk−1(t, r)B(r)U(r, s)u

∥∥∥∥∥
E

6 2γ‖B(r)U(r, s)u‖E ∀0 6 r 6 t

and, since the mapping r ∈ (s, t) 7→ ‖B(r)U(r, s)u‖E is integrable, one can use (2.8)
together with the dominated convergence theorem to get

lim
n→∞

∫ t

s

n∑

k=1

Vk−1(t, r)B(r)U(r, s)udr =

∫ t

s

V(t, r)B(r)U(r, s)udr

which, combined with (2.9) yields (2.1). Moreover, thanks to Prop. 2.2, (3), one gets
easily that

V(t+ s)u = V(t, r)V(r, s)u, ∀t > r > s > 0 , u ∈ E . (2.10)

Let us now prove that

i) for any s > 0, the mapping [s,∞) ∋ t 7→ V(t, s) is strongly continuous;



11

ii) for any t > 0, the mapping (0, t] ∋ s 7→ V(t, s) is strongly continuous at s = t.

Let us prove i) for any fixed s > 0, i.e.

lim
h→0+

‖V(t+ h, s)u−V(t, s)u‖E = 0, ∀t > s, u ∈ E .

From (2.10), as in the proof of Proposition 2.2 (4), it is enough to prove that

lim
h→0+

‖V(s + h, s)u−V(s, s)u‖E = 0, ∀u ∈ E . (2.11)

Let u ∈ E be fixed. One has

‖V(s + h, s)u−V(s, s)u‖E = ‖V(s + h, s)u− u‖E

6 ‖V(s + h, s)u−U(s+ h, s)u‖E + ‖U(s + h, s)u− u‖E .

According to (2.1),

‖V(s + h, s)u−U(s + h, s)u‖E 6 2γ

∫ s+h

s

‖B(r)U(r, s)u‖E dr

which clearly converges to 0 as h → 0+. Since limh→0+ ‖U(s+h, s)u−u‖E = 0, this proves
(2.11). We prove ii) in the same way. Now, according to [17, Lemma 1.1], all the above
properties are enough to assert that (V(t, s))t>s is a evolutionary family in E . �

3. A SEMIGROUP APPROACH

It is by now well-documented that non-autonomous Cauchy problems can be handled
with through an appropriate semigroup formulation (see [10, Chapter 3] for a thorough
discussion on this topic). Such an approach consists actually in associating to an expo-
nentially bounded evolution family (U(t, s))t>s on E a C0-semigroup on the vector-valued
space

X = L1(R+, E)

endowed with its natural norm ‖ · ‖X given by

‖f‖X =

∫ ∞

0
‖f(s)‖Eds, f ∈ X.

It is clear that ‖ · ‖X is additive on the positive cone

X+ = {f ∈ X, f(s) ∈ E+ a. e. s > 0}

and, as in the Introduction, the norm on X+ can be uniquely extended to a positive
bounded linear functional Ψ satisfying

Ψ ∈ X
⋆
+, 〈Ψ, f〉

X
= ‖f‖X, f ∈ X+.

Clearly, Ψ is related to Φ by:

〈Ψ, f〉
X
=

∫ ∞

0
〈Φ, f(s)〉E ds, ∀f ∈ X+. (3.1)
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One can define the operator family (T0(t))t>0 on X:

[T0(t)f ](s) =

{
U(s, s− t)f(s− t), s > t > 0,

0 s > 0, s− t /∈ R+.
(3.2)

It is easily verified that (T0(t))t>0 is a C0-semigroup in X that we shall call the evolutionary
semigroup associated to the evolution family U and we denote its generator by (Z,D(Z)).
Notice that, given f ∈ X+, since f(s) ∈ E+ for almost every s > 0, one deduces from
Assumptions 1.2 (ii) that

‖T0(t)f‖X =

∫ ∞

0
‖[T0(t)f ](s)‖Eds =

∫ ∞

t

‖U(s, s − t)f(s− t)‖Eds

6

∫ ∞

t

‖f(s− t)‖Eds =

∫ ∞

0
‖f(r)‖Edr = ‖f‖X.

Using the terminology of [6], the semigroup (T0(t))t>0 is substochastic. Equivalently,

〈Ψ,T0(t)f〉X 6 〈Ψ, f〉
X

∀t > 0, f ∈ X+.

In particular, if f ∈ D(Z) ∩X+, one gets

〈Ψ,Zf〉
X
= lim

t→0+
t−1 〈Ψ,T0(t)f − f〉

X
6 0.

In the same way, to the evolution family (V(t, s))t>s in E constructed in Theorem 2.1, one
can associate a substochastic C0-semigroup (T (t))t>0 in X defined by

[T (t)f ](s) =

{
V(s, s− t)f(s− t), s > t > 0,

0 s > 0, s − t /∈ R+, f ∈ X.
(3.3)

Its generator will be denoted by (G,D(G)) and

〈Ψ,Gf〉
X
6 0 ∀f ∈ D(G) ∩ X+. (3.4)

3.1. Construction of an additive perturbation B̂. We want to understand in this section
the link between G and Z. In particular, we aim to prove that G is the (minimal) extension
of some additive perturbation of Z, of course related to the family (B(t))t>0. To do so, a
first natural attempt would be to introduce the ’multiplication’ operator in X :

B f = B(·)f(·) with

D(B) = {f ∈ X , f(s) ∈ D(B(s)) a.e. s > 0, B(·)f(·) ∈ X}.
(3.5)

To do so, we need additional assumptions on the family (B(t))t>0:

ASSUMPTION 3.1. Let ∆ = {(t, s) ; 0 6 s 6 t < ∞} In addition to Assumptions 1.2, we
assume that, for any f ∈ X, the mapping

(t, s) ∈ ∆ 7−→ B(t)U(t, s)f(s) ∈ E

is well-defined for almost (t, s) ∈ ∆ and is measurable.
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REMARK 3.2. For any f ∈ X, the mapping

(t, s) ∈ ∆ 7−→ B(t)U(t, s)f(s) ∈ E

turns out be integrable. Indeed, for any T > 0, set ∆T = {(s, r) ; 0 6 r 6 s 6 T} and
assumes first f(s) ∈ E+ for almost every s > 0. Then, by Fubini’s theorem

∫

∆T

‖B(t)U(t, s)f(s)‖Edsdt =

∫ T

0
dt

∫ t

0
‖B(t)U(t, s)f(s)‖Eds

=

∫ T

0
ds

∫ T

s

‖B(t)U(t, s)f(s)‖Edt 6

∫ T

0
‖f(s)‖Eds

according to Assumptions 1.2 (iv). Letting then T → ∞, we get that
∫

∆
‖B(t)U(t, s)f(s)‖Edsdt 6 ‖f‖X ∀f ∈ X+

for which we deduce easily the result for general f ∈ X.

In all the sequel, we shall assume that Assumptions 3.1 are in force. Introduce the
following definition:

DEFINITION 3.3. For any λ > 0 and any f ∈ X, let Bλf : s > 0 7→ [Bλf ](s) be given by

[Bλf ](s) =

∫ s

0
exp(−λ(s− τ))B(s)U(s, τ)f(τ)dτ for a.e. s > 0. (3.6)

Then, one has the following

PROPOSITION 3.4. For any λ > 0 and any f ∈ X, Bλf ∈ X with

‖Bλf‖X 6 ‖f‖X ∀f ∈ X+.

In particular, Bλ : f ∈ X 7→ Bλf is a bounded operator in X. Moreover, for any f ∈ X and
any λ > 0, the following holds
[
(λ− G)−1f

]
(t) =

[
(λ−Z)−1f

]
(t)

+

∫ t

0
exp(−λ(t− r))V(t, r) [Bλf ] (r)dr for a.e. t > 0. (3.7)

In other words,

(λ− G)−1
Bλf = (λ− G)−1f − (λ−Z)−1f ∀f ∈ X, ∀λ > 0. (3.8)

Proof. The first part of the proposition is easy to prove using (1.6) and we focus on the
proof of (3.7). Let f ∈ X be fixed. Since G is the generator of (T0(t))t>0, one has for any
λ > 0,

[
(λ−Z)−1f

]
(t) =

[∫ ∞

0
exp(−λs)T0(s)fds

]
(t)

=

∫ ∞

0
exp(−λs) [T0(s)f ] (t)ds for a.e. t > 0.
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Notice that, to prove the above second identity, we can invoke [24, Lemma 3.2] since
the mapping s ∈ R

+ 7→ exp(−λs)T0(s)f ∈ X is integrable. Using again [24, Lemma
3.2], since the mapping (t, s) ∈ R

+ × R
+ 7→ exp(−λs)χ+(t − s)U(t, t − s)f(t− s) ∈ E is

measurable and, for any s > 0, one has [exp(−λs)T0(s)f ](t) = exp(−λs)χ+(t− s)U(t, t−
s)f(t− s) for almost every t > 0, we get

[
(λ−Z)−1f

]
(t) =

∫ t

0
exp(−λ(t− s))U(t, s)f(s)ds for a.e. t > 0. (3.9)

In the same way,

[
(λ− G)−1f

]
(t) =

∫ t

0
exp(−λ(t− s))V(t, s)f(s)ds for a.e. t > 0. (3.10)

Now, for a given s ∈ (0, t), applying Duhamel formula (2.1) to u = f(s), we get

∫ t

0
exp(−λ(t− s))V(t, s)f(s)ds =

∫ t

0
exp(−λ(t− s))U(t, s)f(s)ds

+

∫ t

0
exp(−λ(t− s))ds

∫ t

s

V(t, r)B(r)U(r, s)f(s)dr

which, thanks to Assumptions 3.1 and according to Fubini’s theorem, yields

∫ t

0
exp(−λ(t− s))V(t, s)f(s)ds =

∫ t

0
exp(−λ(t− s))U(t, s)f(s)ds

+

∫ t

0
dr

∫ s

0
exp(−λ(t− s))V(t, r)B(r)U(r, s)f(s)ds.

Since V(t, r) ∈ B(E) for any t > r > 0, we easily get that

∫ t

0
exp(−λ(t− s))V(t, s)f(s)ds =

∫ t

0
exp(−λ(t− s))U(t, s)f(s)ds

+

∫ t

0
exp(−λ(t− r))V(t, r)dr

∫ s

0
exp(−λ(r − s))B(r)U(r, s)f(s)ds

which, combined with (3.10), (3.9) and (3.6) yields (3.7). �

An important consequence of the above Proposition is the following which is inspired
by [27]

THEOREM 3.5. One has D(Z) ⊂ D(G). Let B̂ with domain D(B̂) = D(Z) be defined as

B̂f = Gf −Zf ∀f ∈ D(Z).

Then, B̂ is Z-bounded and for any f ∈ D(Z) one has

B̂f = lim
λ→∞

λBλf. (3.11)
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In particular, B̂f ∈ X+ for any f ∈ D(Z) ∩ X+ and
〈
Ψ,
(
Z + B̂

)
f
〉
X

6 0 ∀f ∈ D(Z) ∩ X+. (3.12)

Finally, the following Duhamel’s identity holds

T (t)f = T0(t)f +

∫ t

0
T (t− s)B̂T0(s)fds ∀f ∈ D(Z), t > 0. (3.13)

Proof. The fact that D(Z) ⊂ D(G) is a direct consequence of (3.8). With such a property,

the above definition of the unbounded operator B̂ makes sense. Notice that, with such a

definition, (G,D(G)) can be seen now as an extension of (Z + B̂,D(Z)). Let now f ∈ X

and λ > 0, setting g = (λ − Z)−1f , applying the operator (λ − G) to the left of Eq. (3.8)
yields

Bλf = f − (λ− G)g = (λ−Z)g − (λ− G)g = (G − Z)g = B̂g

since g ∈ D(Z). This exactly means that

Bλ = B̂ (λ−Z)−1 ∈ B(X) ∀λ > 0. (3.14)

In particular, B̂ is Z-bounded. Now, as a generator of a C0-semigroup, the operator
(Z,D(Z)) satisfies

lim
λ→∞

λ(λ−Z)−1f = f and lim
λ→∞

λZ(λ−Z)−1f = Zf ∀f ∈ D(Z)

(see e.g. [13, Lemma II.3.4]). Using the fact that B̂ is Z-bounded, this proves (3.11)

and, since Bλ is non-negative, we get that B̂ is a non-negative operator. Finally, (3.12)

follows easily from (3.4) since G is an extension of (Z+B̂,D(Z)). It remains now to prove
Duhamel’s identity (3.13). To do so, one notices that, according to (3.8) and (3.14),

(λ− G)−1f = (λ−Z)−1f + (λ− G)−1
B̂(λ−Z)−1f ∀f ∈ X, λ > 0. (3.15)

Now, for f ∈ D(Z), T0(s)f ∈ D(Z) for any s > 0 and, since B̂ is Z-bounded, one has

B̂(λ−Z)−1f = B̂

∫ ∞

0
exp(−λs)T0(s)fds =

∫ ∞

0
exp(−λs)B̂T0(s)fds. (3.16)

Thus, thanks to Fubini’s theorem

(λ− G)−1
B̂(λ−Z)−1f =

∫ ∞

0
exp(−λτ)T (τ)

(∫ ∞

0
exp(−λs)B̂T0(s)fds

)
dτ

=

∫ ∞

0

(∫ ∞

0
exp(−λ(s+ τ))T (τ)B̂T0(s)fdτ

)
ds

=

∫ ∞

0

(∫ ∞

s

exp(−λt)T (t− s)B̂T0(s)fdt

)
ds

with the change of variable τ → t = s+ τ. Using again Fubini’s theorem yields then

(λ− G)−1
B̂(λ−Z)−1f =

∫ ∞

0
exp(−λt)

(∫ t

0
T (t− s)B̂T0(s)fds

)
dt
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and one sees that (3.15) reads
∫ ∞

0
exp(−λt)T (t)fdt =

∫ ∞

0
exp(−λt)T0(t)fdt

+

∫ ∞

0
exp(−λt)

(∫ t

0
T (t− s)B̂T0(s)fds

)
dt f ∈ D(Z), λ > 0

which is exactly (3.13). �

REMARK 3.6. If we define, as in [24] the set D as the subspace of X made of all linear
combinations of elements of the form:

t > 0 7−→ ϕ(t)U(t, s)u where s > 0 , u ∈ E

and ϕ ∈ C 1
c (R) with supp(ϕ) ∈ [s,∞), then one can prove (see Lemma A.1 in Appendix A)

that D ⊂ D(Z), D ⊂ D(B) and B̂|D = B|D. Thus, B̂ is an extension of B|D. Moreover, if

f ∈ D, Duhamel’s identity (3.13) holds with B instead of B̂.

From the general substochastic semigroup theory as developed in [6] (more precisely,
according to Kato’s theorem [6, Theorem 2.1 & Theorem 2.3]), one deduces from (3.12)

that there exists an extension of (Z+B̂,D(Z)) that generates a minimal substochastic C0-
semigroup in X. Our goal is to prove that such an extension is exactly G and the minimal
semigroup is exactly (T (t))t>0. To do so, let us introduce the following

DEFINITION 3.7. For any f ∈ X, t > 0 and n ∈ N, define

[Tn(t)f ] (r) = χ+(r − t)Vn(r, r − t)f(r − t) r > 0

One has the following

LEMMA 3.8. For any n ∈ N and any t > 0, Tn(t) ∈ B(X). Moreover, for any λ > 0
∫ ∞

0
exp(−λt)Tn(t)fdt = (λ−Z)−1

[
B̂(λ−Z)−1

]n
f ∀f ∈ X. (3.17)

Finally, for any f ∈ D(Z) and any n > 1

Tn(t)f =

∫ t

0
Tn−1(t− s)B̂T0(s)fds t > 0. (3.18)

Proof. The fact that Tn(t) is a bounded operator for any n ∈ N and any t > 0 is easily
seen. Let us now prove (3.17) by induction. It is clear that, for n = 0, (3.17) holds
true. Assume now it holds for some fixed n ∈ N. Let now f ∈ X. Considering that
(t, τ) ∈ R

+ × R
+ 7→ exp(−λτ)χ+(t− τ)Vn+1(t, t− τ)f(t− τ)E is measurable, we deduce

from [24, Lemma 3.2] that the following holds for any t > 0
[∫ ∞

0
exp(−λτ)Tn+1(τ)fdτ

]
(t) =

∫ ∞

0
exp(−λτ)χ+(t− τ)Vn+1(t, t− τ)f(t− τ)dτ

=

∫ t

0
exp(−λ(t− s))Vn+1(t, s)f(s)ds.
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For some fixed s ∈ (0, t), using (2.2) with u = f(s) one obtains
[∫ ∞

0
exp(−λτ)Tn+1(τ)fdτ

]
(t) =

∫ t

0

(∫ t

s

exp(−λ(t− s))Vn(t, r)B(r)U(r, s)f(s)dr

)
ds.

Considering that the mapping (r, s) ∈ ∆ 7→ Vn(t, r)B(r)U(r, s)f(s) ∈ E is measurable
and that Vn(t, r) is a bounded operator for any t, r > 0, we obtain thanks to Fubini’s
theorem that
[ ∫ ∞

0
exp(−λτ)Tn+1(τ)fdτ

]
(t) =

∫ t

0

(∫ r

0
exp(−λ(t− s))Vn(t, r)B(r)U(r, s)f(s)ds

)
dr

=

∫ t

0
exp(−λ(t− r))Vn(t, r)

(∫ r

0
exp(−λ(r − s))B(r)U(r, s)f(s)ds

)
dr.

Now, from (3.6) one gets
[∫ ∞

0
exp(−λτ)Tn+1(τ)fdτ

]
(t) =

∫ t

0
exp(−λ(t− r))Vn(t, r)[Bλf ](r)dr.

Arguing as before, one recognizes that
∫ ∞

0
exp(−λτ)Tn+1(τ)fdτ =

∫ ∞

0
exp(−λτ)Tn(τ)Bλfdτ.

The induction hypothesis finally yields
∫ ∞

0
exp(−λτ)Tn+1(τ)fdτ = (λ−Z)−1

[
B̂(λ−Z)−1

]n
Bλf

which exactly means that (3.17) holds for n+1 since Bλ = B̂(λ−Z)−1. Let us now prove
(3.18). For n ∈ N, n > 1 and f ∈ D(Z), one sets

Jn(t) :=

∫ t

0
Tn−1(t− s)B̂T0(s)fds.

Notice that, T0(s)f ∈ D(Z) so B̂T0(s)f is meaningful for any s > 0. Now, according to [6,
Theorem 2.3 & Eq. (2.13)], one knows that

∫ ∞

0
exp(−λt)Jn(t)dt = (λ−Z)−1

[
B̂(λ−Z)−1

]n
f ∀λ > 0.

Using (3.17), one sees that Jn(t) and Tn(t)f have the same Laplace transform which
shows (3.18). �

REMARK 3.9. Notice that, on the basis of formula (3.18), one can reproduce the argument of
[6, Proposition 4.1 (i) & (ii)] and prove that the following hold:

(1) For any f ∈ D(Z), the mapping t ∈ (0,∞) 7−→ Tn(t)f is continuously differentiable
with

d

dt
Tn(t)f = Tn(t)Zf + Tn−1(t)B̂f. (3.19)
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(2) For any f ∈ D(Z), Tn(t)f ∈ D(Z), the mapping t ∈ [0,∞) 7−→ ZTn(t)f is continu-
ous and

ZTn(t)f = Tn(t)Zf + Tn−1(t)B̂f − B̂Tn−1(t)f. (3.20)

Indeed, the proof of [6, Proposition 4.1 (i) & (ii)] relies only on the relation (3.18) and not
on the fact that the sequence of iterated is obtained via Kato’s theorem.

Notice that, besides (3.18), one can state another equivalent induction relation be-
tween Tn(t) and Tn+1(t), namely

LEMMA 3.10. For any f ∈ D(Z) and any n > 1 it holds

Tn(t)f =

∫ t

0
T0(t− s)B̂Tn−1(s)fds t > 0. (3.21)

Proof. Let f ∈ D(Z) and n > 1 be fixed. Define gn(t) = Tn(t)f , t > 0. One knows from
point (2) of Remark 3.9 that gn(t) ∈ D(Z) for any t > 0. Moreover, combining (3.19)
and (3.20) one checks easily that gn(·) is continuously differentiable. Since moreover
gn(0) = 0, one sees that the mapping t > 0 7→ gn(t) ∈ X is a classical solution to the
Cauchy problem





d

dt
gn(t) = Zgn(t) + B̂Tn−1(t)f t > 0

gn(0) = 0

and, since Z is the generator of the C0-semigroup (T0(t))t>0, one gets that

gn(t) =

∫ t

0
T0(t− s)B̂Tn−1(s)fds =

∫ t

0
T0(s)B̂Tn−1(t− s)fds∀t > 0

which is exactly (3.21). �

With this in hands, one can finally prove that the semigroup (T (t))t>0 is exactly the
one constructed thanks to Kato’s theorem [6]. Namely, one has the following:

THEOREM 3.11. For any λ > 0, the resolvent of G is given by

(λ− G)−1f = lim
n→∞

(λ−Z)−1
n∑

k=0

[
B̂(λ−Z)−1

]k
f, f ∈ X. (3.22)

The semigroup (T (t))t>0 is the smallest substochastic C0-semigroup whose generator is an

extension of (Z + B̂,D(Z)) and

T (t)f =

∞∑

n=0

Tn(t)f ∀t > 0, f ∈ X.
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Proof. For f ∈ X+ one has, for any N > 0,
∑N

n=0 Tn(t)f ∈ X+ and

∥∥∥∥∥

N∑

n=0

Tn(t)f

∥∥∥∥∥
X

=

∫ ∞

0
χ+(r − t)

∥∥∥∥∥

N∑

n=0

Vn(r, r − t)f(r − t)

∥∥∥∥∥
E

dr

6

∫ ∞

t

N∑

n=0

‖Vn(r, r − t)f(r − t)‖E dr.

For some given r > t > 0, since f(r − t) ∈ E+, one can apply (2.3) to get

N∑

n=0

‖Vn(r, r − t)f(r − t)‖E 6 ‖f(r − t)‖E

and ∥∥∥∥∥

N∑

n=0

Tn(t)f

∥∥∥∥∥
X

6

∫ ∞

t

‖f(r − t)‖Edr =

∫ ∞

0
‖f(s)‖Eds = ‖f‖X .

Therefore, the sequence
(∑N

n=0 Tn(t)f
)
N

is a nonnegative and bounded sequence of X.

It converges towards some limit that we denote T̂ (t)f . Since V(t, s)u =
∑∞

n=0Vn(t, s)u
for any u ∈ E and any (t, s) ∈ ∆, it is not difficult to deduce from Definition 4.13 that, for

any f ∈ X+, the limit T̂ (t)f has to coincide with T (t)f , i.e.

T (t)f =

∞∑

n=0

Tn(t)f ∀t > 0.

Now, since for any λ > 0 one has

(λ− G)−1f =

∫ ∞

0
exp(−λt)T (t)fdt = lim

N→∞

N∑

n=0

∫ ∞

0
exp(−λt)Tn(t)fdt

one immediately gets (3.22) from (3.17) for any f ∈ X+. Clearly, the identity extends to
general f ∈ X by linearity. Now, with Theorem 3.5 and the subsequent Remark, one sees
that (3.22) is enough to conclude that the semigroup (T (t))t>0 is exactly the one obtained
applying the classical substochastic semigroup theory in X (see [6, Theorem 2.1]) and the
other properties follow. �

At this stage, as just explained in the above proof, one sees finally that the semigroup
(T (t))t>0 is exactly the semigroup obtained by applying Kato’s theorem [6, Theorem 2.1]

to the operators Z and its perturbation B̂. In particular, we shall be able, in the next
section to exploit the recent results about the honesty theory for perturbed substochastic
semigroups and extend them to build an honesty theory for perturbed evolution families.
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3.2. Reminder on the honesty theory of C0-semigroups. We recall here some of the
results we obtained recently for perturbed substochastic semigroups in abstract Banach
spaces. We refer the reader to [6] for further details. The honesty of the semigroup
(T (t))t>0 is defined through several useful functionals. Precisely, let

a0 : f ∈ D(G) 7→ a0(f) = −〈Ψ,Gf〉
X
∈ R.

and let a denote its restriction to D(Z), i.e.

a : f ∈ D(Z) 7→ a(f) = −
〈
Ψ,Zf + B̂f

〉
X

∈ R.

Then, one has the following result which allows us to define a third functional â:

PROPOSITION 3.12. ([6, Prop. 4.5]) For any f ∈ D(G), there exists

lim
t→0+

1

t

∞∑

n=0

a

(∫ t

0
Tn(s)fds

)
=: â(f). (3.23)

Furthermore, for f ∈ D(G)+, â(f) 6 a0(f) 6 ‖Gf‖.

With this in hands, one defines the concept of honest trajectory [6, Definition 4.7] (see
also [6, Section 3] for an equivalent notion of honesty):

DEFINITION 3.13. Let f ∈ X+ be given. Then, the trajectory (T (t)f)t>0 is said to be honest
if and only if

‖T (t)f‖X = ‖f‖X − â

(∫ t

0
T (s)fds

)
, for any t > 0.

The whole C0-semigroup (T (t))t>0 will be said to be honest if all trajectories are honest.

REMARK 3.14. Notice that, in the formally conservative case, by virtue of Proposition 4.6,
a(f) = 0 for any f ∈ D(Z) so that the trajectory (T (t)f)t>0 is honest if and only ‖T (t)f‖X =
‖f‖X for any t > 0. Thus the whole semigroup is honest if and only if it is conservative.

We recall, at this stage, the definition of the honesty for the evolution family (V(t, s))t>s:

DEFINITION 3.15. The evolution family (V(t, s))t>s is said to be honest in E whenever the
C0-semigroup (T (t))t>0 in X, given by (3.3), is honest in X.

REMARK 3.16. We will provide, in Section 4.3, that it is also possible to give a definition of
honest trajectory (V(t, s)u)t>s in E for any u ∈ E+.

Necessary and sufficient conditions of honesty are provided in [6] in terms of the per-

turbation B̂ (see [6, Theorem 4.8]):

THEOREM 3.17. Given f ∈ X+, the following statements are equivalent

(1) the trajectory (T (t)f)t>0 is honest;

(2)
∫ t

0 T (s)fds ∈ D(Z + B̂) for any t > 0;
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(3) the set
(
B̂
∫ t

0 Tn(s)fds
)
n

is relatively weakly compact in X for any t > 0;

(4) limn→∞

∥∥∥B̂
∫ t

0 Tn(s)fds
∥∥∥
X

= 0 for any t > 0.

Clearly, these sufficient conditions are given in X and involve mathematical objects
defined in the lifted space X. This is not satisfactory when dealing with the honesty of
the evolution family (V(t, s))t>s in E . The purpose of the next section is to provide an
explicit criterion for (V(t, s))t>s involving only mathematical objects defined in E , namely
(B(t))t>0 and the sequence of iterated (Vn(t, s))n. The first technical difficulty will be to

give a practical interpretation (in terms of B(·)) of the perturbation B̂.

4. CRITERION FOR THE HONESTY OF (V(t, s))t>s

4.1. Practical interpretation of B̂. In this paragraph, we provide a practical representa-

tion formula for the operator (B̂,D(Z)). The following results use several fine properties

of both the operators Z and B̂, which for the convenience of the reader, have been post-
poned in an Appendix (see Appendix A).

To obtain a practical characterization of the operator B̂, we need the following assump-
tion

ASSUMPTION 4.1. Assume that the family (B(t))t>0 is such that, for any t > 0, B(t) is
’increasingly closed’ in the sense that: if (un)n ⊂ D(B(t)) ∩ E+ is increasing with limn un =
u ∈ E+, and supn ‖B(t)un‖E < ∞ then u ∈ D(B(t)) and

lim
n

B(t)un = B(t)u.

REMARK 4.2. Clearly, if B(t) is a closed operator then the above holds true. Notice however
that assuming that B(t) for any t > 0 is a closed operator is a too strong hypothesis for
the applications we have in mind. On the contrary, Assumption 4.1 will be satisfied in the
practical situations we will consider in the second part of the paper. It holds true in particular
whenever B(t) is a suitable integral operator with nonnegative kernel on some L1-space.

With this additional assumption, the operator B̂ has the following interpretation:

PROPOSITION 4.3. Assume that Assumptions 3.1 and 4.1 are in force and let f ∈ D(Z) be
given. Then f(t) ∈ D(B(t)) for almost every t > 0 and

[
B̂f
]
(t) = B(t)f(t) for almost every t > 0.

In other words, B̂f = Bf for any f ∈ D(Z), i.e. D(Z) ⊂ D(B) and B|D(Z) = B̂.

REMARK 4.4. The reader may legitimately ask why we introduced a new operator B̂ if, at

the end, B̂ is only the multiplication operator B. Here are two answers to this natural
question. First, it appears very difficult, even under Assumption 4.1 to prove directly that
D(B) ⊃ D(Z) and that Bf = Gf − Zf for any f ∈ D(Z). Second, the conclusion of Prop.
4.3 may change drastically if Assumption 4.1 does not hold. Indeed, if instead of Assumption
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4.1, one assumes (which would sound more natural) that B(t) is closable for any t > 0 with

closure in E given by B(t), then one can prove following the approach of [17] that, for any
f ∈ D(Z): [

B̂f
]
(t) = B(t)f(t) for a.e.t > 0.

We leave the details to the reader.

Proof of Proposition 4.3: Let g ∈ X+ be given and let λ > 0. Since limt→0+ ‖ exp(−λt)T0(t)g−
g‖X = 0 and Bλ is a bounded operator, one has

lim
t→0+

‖Bλ exp(−λt)T0(t)g −Bλg‖X = 0.

In particular, for any decreasing positive sequence (tn)n, with limn tn = 0+, there exists a
subsequence (still denoted by (tn)n) such that

lim
n→∞

[Bλ exp(−λtn)T0(tn)g] (s) = [Bλg](s) a.e. s > 0

where, of course, the convergence is meant in E . According to Lemma A.5, we can choose
the sequence (tn)n such that

[Bλ exp(−λtn)T0(tn)g] (s) = B(s)

∫ s−tn

0
exp(−λ(s−τ))U(s, τ)g(τ)dτ for a. e. s > tn.

This means that the following convergence holds in E:

lim
n→∞

B(s)

∫ s−tn

0
exp(−λ(s − τ))U(s, τ)g(τ)dτ = [Bλg](s) a.e. s > 0.

For such a choice of s > 0, let

un =

∫ s−tn

0
exp(−λ(s− τ))U(s, τ)g(τ)dτ.

Then, by virtue of (3.9) and since g(τ) ∈ E+ for a.e. τ > 0, (un)n is an increasing sequence
of E+ which converges to

u =
[
(λ−Z)−1g

]
(s).

Since moreover (B(s)un)n converges (towards [Bλg](s)), it is a bounded sequence of E
and, according to Assumption 4.1, u ∈ D(B(s)) and

lim
n

B(s)un = B(s)u.

This reads
[
(λ−Z)−1g

]
(s) ∈ D(B(s)) with

[Bλg](s) = B(s)u = B(s)
[
(λ−Z)−1g

]
(s).

Then, for g ∈ X, writing g = g1 − g2 with gi ∈ X+ i = 1, 2, we get that

[Bλg](s) = B(s)
[
(λ−Z)−1g

]
(s) for a.e.s > 0.

Let now f ∈ D(Z). There is λ > 0 and g ∈ X such that f = (λ − Z)−1g and the above

identity reads now [B̂f ](s) = B(s)f(s) for a.e. s > 0 which proves the Proposition. �
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Using the above properties of B̂ and results obtained in Appendix A, we can prove the
following:

PROPOSITION 4.5. Assume that Assumptions 3.1 and 4.1 are in force. For any f ∈ X, one
has ∫ s

0
U(s, r)f(r)dr ∈ D(B(s)) for almost every s > 0

with

B(s)

∫ s

0
U(s, r)f(r)dr =

∫ s

0
B(s)U(s, r)f(r)dr for almost every s > 0.

Proof. The proof is a simple consequence of the Lemma A.3 given in Appendix. �

With the above interpretation of B̂ one can make more precise condition (3.11) in
Theorem 3.5:

PROPOSITION 4.6. Assume that Assumptions 3.1 and 4.1 are in force. Then the following are
equivalent

(1)
〈
Ψ ,

(
Z + B̂

)
f
〉
X

6 0 for any f ∈ D(Z)+;

(2)

∫ t

s

‖B(τ)U(τ, s)u‖Edτ 6 ‖u‖E − ‖U(t, s)u‖E for any u ∈ E+ and any t > s > 0.

Moreover, in the formally conservative case both are identities.

Proof. Recall that, according to Lemma A.4 in the Appendix, for any f ∈ X+ and any t > 0,
it holds

〈
Ψ , B̂

∫ t

0
T0(s)fds

〉

X

=

∫ ∞

0

(∫ τ+t

τ

‖B(r)U(r, τ)f(τ)‖Edr

)
dτ. (4.1)

On the other hand, Z
∫ t

0 T0(s)fds = T0(t)f − f from which we deduce easily that
〈
Ψ ,Z

∫ t

0
T0(s)fds

〉

X

=

∫ ∞

0
‖U(s + t, s)f(s)‖Eds−

∫ ∞

0
‖f(s)‖Eds. (4.2)

Combining (4.1) with (4.2) we obtain

〈
Ψ ,

(
Z + B̂

) ∫ t

0
T0(s)fds

〉
=

∫ ∞

0

(∫ τ+t

τ

‖B(r)U(r, τ)f(τ)‖Edr

)
dτ

+

∫ ∞

0
‖U(s + t, s)f(s)‖Eds−

∫ ∞

0
‖f(s)‖Eds. (4.3)

Let us now come to the equivalence between (1) and (2). Assume (1) to be satisfied.
Then, for any t > 0 and any f ∈ X+ one has from (4.3),
∫ ∞

0

(∫ τ+t

τ

‖B(r)U(r, τ)f(τ)‖Edr

)
dτ 6

∫ ∞

0
‖f(τ)‖Edτ −

∫ ∞

0
‖U(τ + t, τ)f(τ)‖Edτ
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In particular, if f ∈ X+ is such that f(s) = ϕ(s)u for any s > 0 where u ∈ E+ and ϕ is a
nonnegative continuous function with compact support in R

+, one gets
∫ ∞

0
ϕ(τ)

(∫ τ+t

τ

‖B(r)U(r, τ)u‖Edr

)
dτ 6

∫ ∞

0
ϕ(τ) (‖u‖E − ‖U(τ + t, τ)u‖E ) dτ.

Since the nonnegative function ϕ ∈ Cc(R+) is arbitrary, one obtains directly that (2) is
satisfied. Moreover, an identity in point (1) will clearly result in an identity in point (2).

Assume now that (2) is satisfied and let f ∈ D(Z)+ be fixed. Since f(τ) ∈ E+ for a. e.
τ > 0 we deduce from (4.3) that

〈
Ψ ,

(
Z + B̂

)∫ t

0
T0(s)fds

〉

X

6 0 ∀t > 0.

Moreover, because f ∈ D(Z) one has

lim
t→0+

1

t

∫ t

0
T0(s)fds = f and lim

t→0+

1

t
Z

∫ t

0
T0(s)fds = lim

t→0+

1

t

∫ t

0
T0(s)Zfds = Zf.

Since B̂ is Z-bounded, we deduce that
〈
Ψ ,

(
Z + B̂

)
f
〉
x

6 0 which is point (1). Again,

one easily gets that an identity in point (2) (which is the definition of the formally conser-
vative case) will yield an identity in (1). �

4.2. About Dyson-Phillips iterated. In this paragraph, we derive an alternative expres-
sion for the Dyson-Phillips iterated introduced in (2.2). Namely, let us introduce the family
of iterated Dyson-Phillips as follows: for any u ∈ E and any t > s > 0, set

V0(t, s)u = U(t, s)u

and, for any n > 1, set

Vn(t, s)u =

∫ t

s

U(t, r)B(r)Vn−1(r, s)udr. (4.4)

One has the following

PROPOSITION 4.7. Assume that Assumptions 1.2 and 4.1 are in force. Let u ∈ E and s > 0
be fixed. Then, for any n ∈ N, Vn(t, s)u is well-defined with

Vn(t, s)u ∈ D(B(t)) for almost every t > s

with

B(t)Vn(t, s)u =

∫ t

s

B(t)U(t, r)B(r)Vn−1(r, s)udr. (4.5)

Moreover, the mapping t ∈ [s,∞) 7→ B(t)Vn(t, s)u ∈ E is integrable. Finally,

∫ t

s

‖B(τ)Vn+1(τ, s)u‖Edτ 6

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ −

∫ t

s

‖U(t, τ)B(τ)Vn(τ, s)u‖Edτ

for any u ∈ E+, t > s, (4.6)

with an equality sign in the formally conservative case.
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Proof. The proof of the proposition follows by induction. Let us explain why Vn(t, s)u is

well-defined for any n ∈ N. For n = 1, since V0(r, s)u = U(r, s)u ∈ D(B(r)) for a.e.
r > 0, there is no problem to define

V1(t, s)u =

∫ t

s

U(t, r)B(r)U(r, s)udr.

Now, with s > 0 fixed, define f0(r) = χ+(s − r)B(r)U(r, s)u, r > 0. One has f0 ∈ X

according to (1.6) and

V1(t, s)u =

∫ t

0
U(t, r)f0(r)dr.

According to Prop. 4.5, V1(t, s)u ∈ D(B(t)) for a.e. t ∈ [s,∞) and the mapping t ∈
[s,∞) 7→ B(t)V1(t, s)u ∈ E is integrable. Then, V2(t, s)u is well-defined and, repeating
the argument, one gets the first part of the Proposition. Let us now prove (4.6). Let u ∈ E+
and n ∈ N. Define fn(r) = B(r)Vn(r, s)u ∈ E+ for a.e. r ∈ (s, t). Clearly, fn ∈ X+. Now,
according to Proposition 4.5, one has

B(τ)Vn+1(τ, s)u = B(τ)

∫ τ

s

U(τ, r)B(r)Vn(r, s)udr

=

∫ τ

s

B(τ)U(τ, r)B(r)Vn(r, s)udr a.e. τ ∈ (s, t)

i.e.

fn+1(τ) =

∫ τ

s

B(τ)U(τ, r)fn(r)dr for a.e.τ ∈ (s, t).

In particular fn+1 ∈ X+ and it follows easily by induction that the mapping

(τ, r) ∈ ∆ 7−→ B(τ)U(τ, r)fn(r)

belongs to L1(∆, E+). Therefore,
∫ t

s

‖fn+1(τ)‖E dτ =

∫ t

s

dτ

∫ τ

s

‖B(τ)U(τ, r)fn(r)‖E dr

=

∫ t

s

dr

∫ t

r

‖B(τ)U(τ, r)fn(r)‖E dτ

thanks to Fubini’s theorem. From (1.6),
∫ t

r

‖B(τ)U(τ, r)fn(r)‖E dτ 6 ‖fn(r)‖E − ‖U(t, r)fn(r)‖E

so that ∫ t

s

‖fn+1(τ)‖E dτ 6

∫ t

s

‖fn(r)‖Edr −

∫ t

s

‖U(t, r)fn(r)‖Edr

which is exactly (4.6) by definition of fn(r). Notice that, in the formally conservative case,
the last two inequalities are identities. �

An important consequence of the above Proposition is the following estimate
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COROLLARY 4.8. For any n ∈ N and any u ∈ E+ one has

n∑

k=0

∥∥Vk(t, s)u
∥∥
E
6 ‖u‖E −

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ

with the equality sign in the formally conservative case.

Proof. The proof follows easily from the above Proposition. Indeed, one has

‖Vn+1(t, s)u‖E =

∥∥∥∥
∫ t

s

U(t, r)B(r)Vn(r, s)udr

∥∥∥∥
E

=

∫ t

s

∥∥U(t, r)B(r)Vn(r, s)u
∥∥
E
dr

6

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ −

∫ t

s

‖B(τ)Vn+1(τ, s)u‖Edτ

where the last inequality is exactly (4.6). Notice that the last inequality becomes an
identity in the formally conservative case. Then, using (1.6), one obtains easily the result
by induction. �

With the above results in hands, one proves the following along the same lines of
Proposition 2.2 (details are left to the reader):

PROPOSITION 4.9. For any n > 0 one has

(1) for any 0 6 s 6 r 6 t:

Vn(t, s)u =
n∑

k=0

Vk(t, r)Vn−k(r, s)u, ∀u ∈ E .

(2) The mapping (t, s) ∈ ∆ 7→ Vn(t, s) is strongly continuous.

Our goal is now to prove that Vn(t, s) = Vn(t, s) for any n ∈ N and any (t, s) ∈ ∆. To do
so, for technical reason, we shall need here some stronger measurability than Assumption
3.1. Namely, we shall assume here the following

ASSUMPTION 4.10. Let ∆ = {(t, s) ; 0 6 s 6 t < ∞} and ∆2 = {(t, s, r) ; 0 6 r 6 s 6 t <
∞}. In addition to Assumptions 1.2, we assume that, for any f ∈ L1(∆, E), the mapping

(t, s, r) ∈ ∆2 7−→ B(t)U(t, s)f(s, r) ∈ E

is measurable.

REMARK 4.11. It can be seen that Assumption 4.10 includes our previous Assumption 3.1 as
a particular case. Moreover, if the space E is a space of type L (typically, if E is a L1-space,
see [7, Theorem 2.39]) then the results of the following section would hold under the sole
Assumption 3.1 (see Remark 4.15 after Proposition 4.14).

We begin with a technical lemma where the above Assumption 4.10 is fully exploited:
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LEMMA 4.12. For any f ∈ X, n ∈ N the mapping

(t, s) ∈ ∆ 7−→ B(t)Vn(t, s)f(s) ∈ E

is measurable. In particular, for any t > 0, the mapping

(τ, s) ∈ (0, t)× (t,∞) 7−→ U(s, s − τ)B(s − τ)Vn(s − τ, s − t)f(s− t) ∈ E

is measurable.

Proof. One first notices that, for any n > 1

B(s2)Vn(s2, s1)f(s1) =

∫ s2

s1

B(s2)U(s2, r)B(r)Vn−1(r, s1)f(s1)dr ∀s2 > s1 > 0.

Then one easily proves by induction that Assumption 4.10 implies that the mapping

(s1, s2) ∈ ∆ 7−→ B(s2)Vn(s2, s1)f(s1) ∈ E

is measurable for any n ∈ N. The conclusion follows. �

With this in hands, let us introduce the following definition:

DEFINITION 4.13. For any f ∈ X, t > 0 and n ∈ N, define
[
T n(t)f

]
(r) = χ+(r − t)Vn(r, r − t)f(r − t) r > 0.

It is easily seen that T n(t) is a bounded operator in X for any t > 0 and any n ∈ N. One
proves the following

PROPOSITION 4.14. Assume that Assumptions 4.10 and 4.1 are in force. For any n ∈ N, one

has Tn(t) = T n(t) for any t > 0.

Proof. Let us prove the first part of the result by induction. It is cleat that, for n = 0,
T 0(t) = T0(t) for any t > 0. Assume now that there is some n > 0 such that

T n(t)f = Tn(t)f ∀f ∈ X, t > 0.

Let f ∈ D(Z) be fixed. According to the definition of T n+1(t) one has for any s > t > 0

[
T n+1(t)f

]
(s) = Vn+1(s, s− t)f(s− t)

=

∫ s

s−t

U(s, r)B(r)Vn(r, s − t)f(s− t) dr

=

∫ t

0
U(s, s − τ)B(s − τ)Vn(s − τ, s − t)f(s− t) dτ. (4.7)

Now, for any s > t > τ > 0, one has

Vn(s− τ, s− t)f(s− t) =
[
T n(t− τ)f

]
(s− τ) =

[
Tn(t− τ)f

]
(s − τ)

according to Definition 4.13 and the induction hypothesis. At this stage, one makes the
following observation: since Tn(t− τ)f ∈ D(Z) for any t > τ > 0 and since any g ∈ D(Z)
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is such that g(s) ∈ D(B(s)) with [B̂g](s) = B(s)g(s) for any s > 0 (see Proposition 4.3),

one gets Tn(t− τ)f ∈ D(B̂) for any s > τ > 0 with, for any fixed τ ∈ [0, t] one has

B(s− τ)Vn(s− τ, s− t)f(s− t) =
[
B̂Tn(t− τ)f

]
(s− τ) for a. e. s > t. (4.8)

Consequently,

U(s, s− τ)B(s − τ)Vn(s− τ, s− t)f(s− t) =
[
T0(τ)B̂Tn(t− τ)f

]
(s) for a. e. s > t.

Then, using Lemma 4.12 together with [24, Lemma 3.2], one has

∫ t

0
U(s, s − τ)B(s− τ)Vn(s− τ, s− t)f(s− t)dτ =

[∫ t

0
T0(τ)B̂Tn(t− τ)fdτ

]
(s)

for almost any s > t. (4.9)

Combining (4.7) and (4.9) we get therefore

T n+1(t)f =

∫ t

0
T0(τ)B̂Tn(t− τ)fdτ.

Now, according to Lemma 3.10, one obtains that

T n+1(t)f = Tn+1(t)f ∀t > 0.

This identity is true for any f ∈ D(Z). Since D(Z) is dense in X and both Tn(t) and

T n(t) are bounded operators, we get the first part of the Proposition. With Definition

4.13, the fact that Tn(t) = T n(t) translates immediately into Vn(t, s) = Vn(t, s) for any
(t, s) ∈ ∆. �

REMARK 4.15. Notice that, if E is an L-type space (see [7, p. 39]) then (4.9) will hold under
the sole Assumption 3.1.

As a general consequence of the above results, we have the following

PROPOSITION 4.16. Assume that Assumptions 4.10 and 4.1 are in force. For any u ∈ E+ and
any n ∈ N,

Vn(t, s)u ∈ D(B(t)) for almost every t > s

with
∫ t

s

‖B(τ)Vn+1(τ, s)u‖Edτ 6

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ 6 ‖u‖E ∀n ∈ N.

Moreover,
n∑

k=0

‖Vk(t, s)u‖E 6 ‖u‖E −

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ

with the equality sign in the formally conservative case.
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Proof. Let n ∈ N be fixed. Since T n(t) = Tn(t) for any t > 0 , one also has Vn(t, s) =
Vn(t, s) for any (t, s) ∈ ∆. Then, for any u ∈ E+, s > 0, Vn(t, s)u ∈ D(B(t)) for almost
every t > s according to Proposition 4.7 and (4.6) reads
∫ t

s

‖B(τ)Vn+1(τ, s)u‖Edτ 6

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ −

∫ t

s

‖U(t, τ)B(τ)Vn(τ, s)u‖Edτ

with an equality sign in the formally conservative case. The first part of the Proposition
follows then easily. The second part follows from a direct application of Corollary 4.8. �

Moreover, one has the following:

PROPOSITION 4.17. Assume that Assumptions 4.10 and 4.1 are in force. For any n ∈ N and
any τ > 0, one has
∫ τ

0
‖B̂Tn(t)f‖Xdt =

∫ ∞

0
dr

∫ τ

0
‖B(r + t)Vn(r + t, r)f(r)‖Edt, ∀f ∈ D(Z). (4.10)

Moreover, for any f ∈ X+ and any n ∈ N

∥∥∥∥B̂
∫ τ

0
Tn(t)fdt

∥∥∥∥
X

=

∫ ∞

0
dr

∫ τ

0
‖B(r + t)Vn(r + t, r)f(r)‖Edt ∀τ > 0. (4.11)

Proof. Let f ∈ D(Z) (not necessarily in X+) and n ∈ N be fixed. One deduces directly
from (4.8) that

[
B̂Tn(t)f

]
(s) = B(s)Vn(s, s− t)f(s− t) for a. e. s > t > 0. (4.12)

Using Point (2) of Remark 3.9 and since B̂Tn(t)f = Tn+1(t)Zf + Tn(t)B̂f −ZTn(t)f , the

mapping t > 0 7→ B̂Tn(t)f ∈ X is continuous. In particular, since X = L1((0,∞), E), one
sees that this implies that for any τ > 0,

t ∈ (0, τ) 7−→

∫ ∞

0
‖B(s)Vn(s, s− t)f(s− t)χ+(s− t)‖Eds < ∞

is a continuous mapping. It is in particular integrable so that
∫ τ

0
dt

∫ ∞

t

‖B(r)Vn(r, r − t)f(r − t)‖
X
dr < ∞ ∀τ > 0.

Then, the identity follows directly from (4.12) since the mapping (s, t) 7→ B(s)Vn(s, s −
t)f(s − t) ∈ E is measurable (see Lemma 4.12). Thus, (4.10) holds for any f ∈ D(Z).
Moreover, if f ∈ X+ one also has that

∥∥∥∥B̂
∫ τ

0
Tn(t)fdt

∥∥∥∥
X

6 ‖f‖X ∀τ > 0

while, for almost every r > 0 it holds
∫ τ

0
‖B(r + t)Vn(r + t, r)f(r)‖Edt =

∫ r+τ

r

‖B(s)Vn(s, r)f(r)‖Eds 6 ‖f(r)‖E ∀τ > 0.



30 L. ARLOTTI, B. LODS & M. MOKHTAR-KHARROUBI

As a consequence, for any f ∈ X, one has, for almost every r > 0,
∥∥∥∥B̂

∫ τ

0
Tn(t)fdt

∥∥∥∥
X

6 2γ‖f‖X and

∫ r+τ

r

‖B(s)Vn(s, r)f(r)‖Eds 6 2γ‖f(r)‖E ∀τ > 0. (4.13)

Now, if f ∈ X+ is given, there exists a sequence (fk)k ⊂ D(Z)∩X+ such that ‖fk−f‖X → 0
as k → ∞. Up to a subsequence, limk→∞ ‖fk(r) − f(r)‖E = 0 for almost every r > 0.
According to (4.13), one deduces from the dominated convergence theorem that

lim
k→∞

‖B̂

∫ τ

0
Tn(t)fkdt‖X = ‖B̂

∫ τ

0
Tn(t)fdt‖X

and

lim
k→∞

∫ ∞

0
dr

∫ τ

0
‖B(r+ t)Vn(r+ t, r)fk(r)‖Edt =

∫ ∞

0
dr

∫ τ

0
‖B(r+ t)Vn(r+ t, r)f(r)‖Edt

which gives the conclusion. �

We end this section with a technical Lemma, related to the above Proposition:

LEMMA 4.18. Assume that Assumptions 4.10 and 4.1 are in force. For any u ∈ E+ and any
nonnegative ϕ ∈ Cc(R+), let

f(·) = ϕ(·)u ∈ X+.

Then,

lim
n→∞

∥∥∥∥B̂
∫ t

0
Tn(r)fdr

∥∥∥∥
X

=

∫ ∞

0
ϕ(r)

(
lim
n→∞

∫ r+t

r

‖B(τ)Vn(τ, r)u‖E dτ

)
dr (4.14)

holds for almost every t > 0.

Proof. Since f ∈ X+, Eq. (4.11) asserts that, for any n ∈ N

‖B̂

∫ t

0
Tn(s)fds‖X =

∫ ∞

0
ϕ(r)

(∫ r+t

r

‖B(τ)Vn(τ, r)u‖E dτ

)
dr, ∀t > 0.

Since
∫ r+t

r
‖B(τ)Vn(τ, r)u‖E 6 ‖u‖E for any n > 1 and almost every r, t > 0, we get the

conclusion thanks to the dominated convergence theorem. �

4.3. Honesty of (V(t, s))t>s. We have now all in hands to characterize, in terms of B(t)
and Vn(t, s) only, the honesty of the family (V(t, s))t>s. Precisely, we prove the following

THEOREM 4.19. The evolution family (V(t, s))t>s is honest if and only if

lim
n→∞

∫ t

s

‖B(τ)Vn(τ, s)u‖E dτ = 0 ∀t > s (4.15)

for any u ∈ E+.



31

Proof. Assume first that (V(t, s))t>s is honest in E , i.e. the semigroup (T (t))t>0 is honest

in X. Let u ∈ E+ be fixed. Notice that the sequence
(∫ r+t

r
‖B(τ)Vn(τ, r)u‖E dτ

)
n

is

nonincreasing for almost any r > 0 and that, given t > 0, the mapping

r ∈ R
+ 7−→ lim

n→∞

∫ r+t

r

‖B(τ)Vn(τ, r)u‖E dτ

is continuous. According to (4.14), for any ϕ ∈ Cc(R+) one has

lim
n→∞

∫ r+t

r

‖B(τ)Vn(τ, r)u‖E dτ = 0 ∀r ∈ Supp(ϕ), ∀t > 0.

Since ϕ is arbitrary, one sees that

lim
n→∞

∫ t

s

‖B(τ)Vn(τ, s)u‖Edτ = 0 ∀t > s

which gives the first implication.
Conversely, assume that (4.15) holds true for any u ∈ E+ and let f ∈ X+ and τ > 0 be

fixed. Define

Fn(r) =

∫ τ

0
‖B(r + t)Vn(r + t, r)f(r)‖Edt, ∀r > 0.

Since f(r) ∈ E+ for a. e. r > 0, one has

lim
n→∞

Fn(r) = 0 for a. e. r > 0. (4.16)

Now, according to Prop. 4.16, for any r > 0, the sequence (Fn(r))n is nonincreasing with

Fn(r) 6 ‖f(r)‖E ∀r > 0, n ∈ N

while, Proposition 4.17 asserts that
∫ ∞

0
Fn(r)dr =

∥∥∥∥B̂
∫ τ

0
Tn(t)fdt

∥∥∥∥
X

It is clear now that (4.16) together with Lebesgue Theorem implies that

lim
n→∞

∥∥∥∥B̂
∫ τ

0
Tn(t)fdt

∥∥∥∥
X

= 0.

Since f ∈ X+ is arbitrary, this exactly means that the whole semigroup is honest. �

REMARK 4.20. It is possible now to extend the definition of honesty as follows: given u ∈ E+
and s > 0, the trajectory (V(t, s)u)t>s is said to be honest if (4.15) holds true.

We conclude this section with some considerations about honesty theory in the formally
conservative case. Recall that, by definition, in such a case, the semigroup is honest if and
only if it is conservative. We can observe that such a property still holds for the evolution
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family. Indeed, according to Proposition 4.16, in the formally conservative case we have,
for any u ∈ E+ and any t > s > 0

‖V(t, s)u‖ = lim
n→∞

n∑

k=0

‖Vk(t, s)u‖ = ‖u‖ − lim
n→∞

∫ t

s

‖B(τ)Vn(τ, s)u‖dτ.

Therefore, the family (V(t, s))t>s is honest if and only if

‖V(t, s)u‖ = ‖u‖ ∀u ∈ E+, ∀t > s > 0

which exactly means that the evolution family (V(t, s))t>s is honest if and only if it is
conservative.

5. APPLICATION TO THE LINEAR BOLTZMANN EQUATION

We apply the results of the previous part of this paper to a large class of non-autonomous
linear kinetic equations.

5.1. Spatially homogeneous linear kinetic equation. We consider the non-autonomous
(spatially homogeneous) kinetic equation in L1(V,dµ(v)):





∂tf(v, t) + Σ(v, t)f(v, t) =

∫

V

b(t, v, v′)f(v′, t)dµ(v′) v ∈ V

f(v, s) = h(v) ∈ L1(V,dµ(v))

(5.1)

for some s > 0. In the above, µ is a Borel measure over Rd (d > 1) with support V while
the collision frequency Σ and the collision kernel b(t, ·, ·) satisfy the following assumptions

ASSUMPTION 5.1. (1) The mapping (t, v) ∈ R
+ × V 7→ Σ(t, v) is measurable and non-

negative. Moreover, for µ-almost every v ∈ V , the mapping t 7→ Σ(t, v) is locally
integrable on R

+.
(2) The collision kernel b is such that (t, v, v′) ∈ R

+ × V × V 7→ b(t, v, v′) is measurable
and non-negative. Moreover,

∫

V

b(t, v, v′)dµ(v) 6 Σ(t, v′) for almost every (t, v′) ∈ R
+ × V. (5.2)

REMARK 5.2. The above inequality (5.2) is a classical assumption in neutron transport theory
and is usually referred to as the sub-critical hypothesis.

One will see (5.1) as a perturbation of the simpler equation

∂tf(v, t) + Σ(v, t)f(v, t) = 0 f(v, 0) = f0(v)

and the associated evolution family

Uh(t, s)ϕ(v) = exp

(
−

∫ t

s

Σ(v, τ)dτ

)
ϕ(v), t > s > 0, ϕ ∈ Eh := L1(V,dµ).

(5.3)
We begin with the following smoothing effect of Uh(t, s):
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LEMMA 5.3. For any non-negativeϕ ∈ Eh and any s > 0 one has Uh(t, s)ϕ ∈ L1(V,Σ(t, ·) dµ)
for almost every t ∈ [s,∞), i.e.

∫

V

Uh(t, s)ϕ(v)Σ(t, v)dµ(v) < ∞ for a.e. t ∈ [s,∞). (5.4)

Proof. Let s > 0 and ϕ ∈ L1(V,dµ), ϕ > 0 µ-a.e. be fixed. One defines the mapping
Q : t ∈ [s,∞) 7→ Q(t) ∈ [0,∞] by

Q(t) =

∫

V

Σ(t, v)Uh(t, s)ϕ(v)dµ(v) =

∫

V

Σ(t, v) exp

(
−

∫ t

s

Σ(τ, v)dτ

)
ϕ(v)dµ(v).

For a given T > s, one has, thanks to Fubini’s Theorem
∫ T

s

Q(t)dt =

∫

V

ϕ(v)

(∫ T

s

Σ(t, v) exp

(
−

∫ t

s

Σ(τ, v)dτ

)
dt

)
dµ(v).

Now, for any fixed v ∈ V , since the mapping t 7→ Σ(t, v) belongs to L1
loc(R

+), the set
LΣ(·,v) ⊂ R

+ of its Lebesgue points is such that its complementary Lc
Σ(·,v) is of zero

Lebesgue measure and

Σ(t, v) exp

(
−

∫ t

s

Σ(τ, v)dτ

)
= −

d

dt
exp

(
−

∫ t

s

Σ(τ, v)dτ

)
∀t ∈ LΣ(·,v) ∩ (s, T ).

This allows to compute the integral
∫ T

s
Σ(t, v) exp

(
−
∫ t

s
Σ(τ, v)dτ

)
dt for any v ∈ V and

yields
∫ T

s

Q(t)dt =

∫

V

ϕ(v)

(
1− exp

(
−

∫ T

s

Σ(τ, v)dτ

))
dµ(v) < ∞ ∀T > s. (5.5)

This proves in particular that Q(t) < ∞ for almost every t ∈ [s,∞). This achieves the
proof. �

REMARK 5.4. Notice that the above smoothing effect of Uh(·, ·) is actually a ”trajectorial
smoothing effect” in the following sense: for any ϕ ∈ Eh and any s > 0, there exists a set
Ξϕ
s ⊂ [s,∞) such that [s,∞)\Ξϕ

s is of zero Lebesgue measure and (5.4) holds for any t ∈ Ξϕ
s .

Clearly, the set Ξϕ
s depends on the choice of ϕ. In this sense, the smoothing effect is related to

the trajectory t ∈ (s,∞) 7→ Uh(t, s)ϕ under investigation.

REMARK 5.5. Notice that, for any ϕ ∈ L1(V,dµ) and any t > s > 0, with the notations of
the above proof,

∫ t

s

Q(r)dr =

∫

V

(
1− exp(−

∫ T

s

Σ(τ, v)dτ

)
ϕ(v)dµ(v)

=

∫

V

ϕ(v)dµ(v) −

∫

V

exp

(
−

∫ t

s

Σ(τ, v)dτ

)
ϕ(v)dµ(v)

which implies that the mapping

[s,+∞[ ∋ t 7−→

∫

V

exp

(
−

∫ t

s

Σ(τ, v)dτ

)
ϕ(v)dµ(v)
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is differentiable at any t ∈ LQ (where, LQ is the set of Lebesgue point of Q) with derivative

given by −
∫
V
Σ(t, v) exp

(
−
∫ t

s
Σ(τ, v)dτ

)
ϕ(v)dµ(v).

We define then the family of perturbations (Bh(t))t>0 as

Bh(t)ϕ(v) =

∫

V

b(t, v, v′)ϕ(v′)dµ(v′) (5.6)

with domain

D(Bh(t)) =

{
ϕ ∈ L1(V,dµ) ,

∫

V

b(t, ·, v′)|ϕ(v′)|dµ(v′) ∈ L1(V,dµ)

}
∀t > 0.

Defining

σ(t, v) =

∫

V

b(t, v′, v)dµ(v′) ∀v ∈ V, t > 0

one sees easily that

D(Bh(t)) =

{
ϕ ∈ L1(V,dµ) ,

∫

V

σ(t, v)|ϕ(v)|dµ(v) < ∞

}
= L1(V, σ(t, v)dµ(v)) ∀t > 0.

The above smoothing effect has an interesting consequence:

PROPOSITION 5.6. Let Assumptions 5.1 be in force. Then, for any ϕ ∈ L1(V,dµ) and any
s > 0 one has Uh(t, s)ϕ ∈ D(Bh(t)) for almost-every t ∈ [s,∞); the mapping t ∈ [s,∞) 7→
Bh(t)Uh(t, s)ϕ ∈ L1(V,dµ) is measurable with

∫ t

s

‖Bh(τ)Uh(τ, s)ϕ‖L1(V,dµ)dτ 6 ‖ϕ‖L1(V,dµ) − ‖Uh(t, s)ϕ‖L1(V,dµ) ∀t > s

with the equality sign if

σ(t, v) = Σ(t, v) for almost every (t, v) ∈ R
+ × V. (5.7)

Proof. Let ϕ ∈ L1(V,dµ) and s > 0 be fixed. The mapping

(t, v, v′) ∈ [s,∞)× V × V 7−→ b(t, v, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′) ∈ R

+

is measurable and is actually integrable. Thanks to Fubini’s theorem and using the nota-
tions of the previous Proposition, one has for any T > s

∫ T

s

dt

∫

V

dµ(v)

∫

V

b(t, v, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′)dµ(v′)

=

∫ T

s

dt

∫

V

σ(t, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′)dµ(v′)

6

∫ T

s

dt

∫

V

Σ(t, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′)dµ(v′) =

∫ T

s

Q(t)dt
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with the equality sign if σ(t, v) = Σ(t, v) for almost every t, v. According to (5.5), one sees
that ∫ T

s

Q(t)dt = ‖ϕ‖L1(V,dµ) − ‖Uh(T, s)ϕ‖L1(V,dµ) ∀T > s

i.e.

∫ T

s

dt

∫

V

dµ(v)

∫

V

b(t, v, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′)dµ(v′)

6 ‖ϕ‖L1(V,dµ) − ‖Uh(T, s)ϕ‖L1(V,dµ) ∀T > s

with an identity if (5.7) holds. Letting then T → ∞ we get
∫ ∞

s

dt

∫

V

dµ(v)

∫

V

b(t, v, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′)dµ(v′) 6 ‖ϕ‖.

Considering that, for almost every t > s and almost every v ∈ V it holds
∫

V

b(t, v, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
ϕ(v′)dµ(v′) = [Bh(t)Uh(t, s)ϕ] (v)

we can invoke Fubini’s theorem to conclude that Bh(t)Uh(t, s)ϕ ∈ D(Bh(t)) for a. e.
t > s. Moreover, the mapping t ∈ [s,∞) 7→ BhUh(t, s)ϕ ∈ L1(V,dµ) is integrable and

∫ T

s

‖BhUh(t, s)ϕ‖L1(V,dµ)dt 6 ‖ϕ‖L1(V,dµ) − ‖Uh(T, s)ϕ‖L1(V,dµ) ∀T > s

which is an identity if (5.7) holds. �

The above Proposition shows that, in the space Eh = L1(V,dµ), the family of pertur-
bation operators (Bh(t),D(Bh(t)))t>0 and the unperturbed evolution family {Uh(t, s)}t>s

satisfy Assumptions 1.2. It is easy to show that, under Assumptions 5.1, the family of per-
turbation operators (Bh(t),D(Bh(t)))t>0 and the unperturbed evolution family {Uh(t, s)}t>s

also satisfy Assumptions 3.1 and 4.10. Indeed, let us define the space

X = L1(R+, Eh) = L1(R+ × V,dtdµ(v)

and let f ∈ X be given. The mapping

(t, v, s, v′) ∈ (R+ × V )2 7→ b(t, v, v′) exp

(
−

∫ t

s

Σ(τ, v′)dτ

)
f(s, v′)χ+(t− s)

is measurable. Moreover, it is integrable and, thanks to Fubini’s theorem, with considera-
tions similar to those used in the previous proof, we can state that Uh(t, s)f(s) ∈ D(Bh(t))
for almost every (t, s) ∈ ∆ and that the mapping (t, s) ∈ ∆ 7→ Bh(t)Uh(t, s)f(s) ∈ Eh is
integrable. This shows that Assumptions 3.1 are satisfied. Similar considerations show
that Assumptions 4.10 are also met.

Thanks to these considerations, the general abstract approach developed in Sections 2,
3.1 and 3.2 can be applied here. In particular, Theorem 2.1 applies and one can define an
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evolution semigroup (Vh(t, s))t>s in Eh given by

Vh(t, s)ϕ = Uh(t, s)ϕ+

∫ t

s

Vh(t, r)Bh(r)Uh(r, s)ϕdr, ∀ϕ ∈ L1(V,dµ). (5.8)

The C0-semigroup (T0,h(t))t>0 in X associated to (Uh(t, s))t>s is defined by (3.2) and

we denote by (Zh,D(Zh)) its generator while one associates to the evolution family
(Vh(t, s))t>s>0 a perturbed evolution semigroup (Th(t))t>0 with generator (Gh,D(Gh)).
To the perturbation family (Bh(t))t>0 one associates an operator B in X as in (3.5) and an

extension B̂ of B is provided by Theorem 3.5 so that Gh is an extension of (Zh+B̂,D(Zh))
in X. Let us prove now that Assumption 4.10 is met. Precisely,

PROPOSITION 5.7. The perturbed family (Bh(t))t>0 and the evolution family (Uh(t, s))t>s

satisfy Assumption 4.10. As a consequence, B̂ = B|D(Z) and, for any g ∈ D(Zh) ⊂ X, one

has ∫ ∞

0
dt

∫

V

σ(t, v)|g(t, v)|dµ(v) < ∞

and

[B̂g](t, v) = [Bh(t)g(t, ·)](v) =

∫

V

b(t, v, v′)g(t, v′)dµ(v′) t > 0, v ∈ V.

Proof. For a fixed t > 0, let (ϕn)n be a nonnegative increasing sequence in L1(V,dµ) with
ϕn ∈ D(Bh(t)) and supn ‖Bh(t)ϕn‖ < ∞ and limn ϕn = ϕ. This exactly means that

sup
n

∫

V

σ(v, t)ϕn(v)dµ(v) < ∞.

According to Fatou’s Lemma, one has then
∫
V
σ(v, t)ϕ(v)dµ(v) < ∞ i.e. ϕ ∈ D(Bh(t)).

Moreover, by the monotone convergence Theorem, limnBh(t)ϕn = Bh(t)ϕ in L1(V,dµ).
Assumption 4.10 is then satisfied and Proposition 4.3 yields the result. �

One can actually characterize D(Zh) along the same lines as [1, Proposition 2.1]:

PROPOSITION 5.8. Let W 1,1
0 (R+;V ) denotes the space of functions g = g(t, v) ∈ X such that,

for µ-almost every v ∈ V , the mapping

t > 0 7−→ g(t, v) is absolutely continuous with g(0, v) = 0

together with
∂g

∂t
∈ X. Then, the generator (Zh,D(Zh)) of (Th(t))t>0 is given by

Zhg(t, v) = −
∂g

∂t
(t, v)− Σ(v, t)g(t, v), g ∈ D(Z)

with D(Zh) =
{
g = g(t, v) ∈ W 1,1

0 (R+;V ) such that Σ g ∈ X

}
.

We have now everything in hands to apply the substochastic theory developed in the
first part of the paper. In this particular example in which the generator (Zh,D(Zh)) is ex-
plicit in the lifted space X, it is more convenient to treat the problem of the honesty of the
evolution family (Vh(t, s))t>s>0 directly on the perturbed evolution semigroup (Th(t))t>0.
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For such a semigroup, known necessary and sufficient conditions for the honesty have
been established by the third author in [20] and one has

THEOREM 5.9. Assume that there exists some M = M(t, v) ∈ D(Zh) with M(t, v) > 0 for
almost every (t, v) ∈ R

+ × V and such that the detailed balance condition

b(t, v, v′)M(t, v′) = b(t, v′, v)M(t, v)

holds for any t > 0 and µ-almost every v, v′ ∈ V . If there is some λ > 0 such that

λM(t, v) +
∂M

∂t
(t, v) > 0 ∀t > 0 and µ-a.e. v ∈ V

then the evolution family (Vh(t, s))t>s>0 is honest in E .

Proof. If M ∈ D(Zh) with the above properties exists, then it is satisfies

[B̂M ](t, v) =

∫

V

b(t, v, v′)M(t, v′)dµ(v′) =

∫

V

b(t, v′, v)M(t, v)dµ(v′) = σ(t, v)M(t, v)

and [
(Zh + B̂)M

]
(t, v) = −

∂M

∂t
(t, v) + (σ(t, v) − Σ(t, v))M(t, v).

Since M is non-negative and b(t, ·, ·) is subcritical, (σ(t, v) − Σ(t, v))M(t, v) 6 0 for any
t > 0 and almost any v ∈ V so that

[
(Zh + B̂)M

]
(t, v) 6 −

∂M

∂t
(t, v) 6 λM(t, v) ∀t > 0, for a.e. v ∈ V.

This shows that M is a non-negative sub-eigenfunction of Zh + B̂, i.e. we found M ∈
D(Zh) ∩X+ and λ > 0 such that

(
Zh + B̂

)
M 6 λM.

According to [6, Corollary 3.27] (see also [19]), this shows that the trajectory (Th(t)M)t>0

is honest and, since M is quasi-interior in X (it is a strictly positive function in a L1-space),
[6, Theorem 3.30] shows that the whole semigroup (Th(t))t>0 is honest from which the
result follows. �

REMARK 5.10. If there exists M0 = M0(v) ∈ L1(V,dµ) with M0(v) > 0 for a.e. v ∈ V and
such that the detailed balance

b(t, v, v′)M0(v
′) = b(t, v′, v)M0(v)

holds for any t > 0 and µ-almost every v, v′ ∈ V and

Σ(t, v)M0(v) ∈ L1([0,∞), L1(V,dµ(v))

then, for any λ > 0, one can construct some

M = M(t, v) = β(t)M0(v) ∈ D(Zh)

satisfying the hypothesis of the above Theorem for any nonnegative β(·) ∈ W 1,1(R+) such
that

β′(t) + λβ(t) > 0 (∀t > 0), β(0) = 0, β(t) > 0 ∀t > 0.
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Such a function β(·) ∈ W 1,1
0 (R+) is easily constructed.

5.2. Spatially inhomogeneous linear kinetic equation. We deal now with the spatially
inhomogeneous version of the above (5.1), i.e. we shall consider the following




∂tf(x, v, t) + v · ∇xf(x, v, t) + Σ(v, t)f(x, v, t)

=

∫

V

b(t, v, v′)f(x, v′, t)dµ(v′) x ∈ Ω, v ∈ V

f(x, v, t) = 0 if (x, v) ∈ Γ−

f(x, v, s) = h(x, v) ∈ L1(Ω× V,dx⊗ dµ(v))
(5.9)

for some s > 0. Here, Ω ⊂ R
d is a open subset, µ is a Borel measure over Rd with support

V and one defines

Λ = Ω× V

and

Γ− := {(y, v) ∈ ∂Ω × V such that y = x− τ(x, v)v for some x ∈ Ω with τ(x, v) < ∞}

where

τ(x, v) = inf{t > 0 : x− tv /∈ Ω} ∀(x, v) ∈ Λ.

From a heuristic viewpoint, τ(x, v) is the time needed by a particle having the position x
and the velocity −v ∈ V to reach the boundary ∂Ω. One can prove that τ(·, ·) is measur-
able on Λ. Moreover τ(x, v) = 0 for any (x, v) ∈ Γ−.

Let us then introduce the state space

E = L1(Λ , dx⊗ dµ(v))

with usual norm and the unperturbed evolution family (U(t, s))t>s>0 defined through

[U(t, s)ϕ](x, v) = exp

(
−

∫ t

s

Σ(v, τ)dτ

)
ϕ(x− (t− s)v, v)χ{t−s<τ(x,v)}(x, v),

for any t > s > 0 and any f ∈ E . Since Σ(τ, v) > 0, one notices easily that (U(t, s))t>s is
an evolution family in E with U(t, s)f ∈ E+ and ‖U(t, s)f‖ 6 ‖f‖ for any f ∈ E+ and any
t > s > 0. This shows that Assumptions 1.2, (i) and (ii) are satisfied.

Moreover, for any t ∈ R+, we denote by Σ(t) the multiplication operator

Σ(t) : D(Σ(t)) ⊂ E −→ E

defined by D(Σ(t)) = L1 (Λ,Σ(t, v)dx⊗ dµ(v)) and

[Σ(t)ϕ](x, v) = Σ(t, v)ϕ(x, v) ∀ϕ ∈ D(Σ(t)).

As in the spatially homogeneous case, the evolution family (U(t, s))t>s>0 has some smooth-
ing effect:

LEMMA 5.11. For any f ∈ E+ and any s > 0, one has U(t, s)f ∈ D(Σ(t)) for almost every
t ∈ [s,∞).
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The proof of this Lemma, of technical nature but non trivial, is postponed to Appendix
B.

One defines B(t) as

[B(t)ϕ](x, v) =

∫

V

b(t, v, v′)ϕ(x, v′)dµ(v′) ∀ϕ ∈ D(B(t))

where, as above,

D(B(t)) =

{
ϕ ∈ E such that

∫

Ω×V

σ(t, v)|ϕ(x, v)|dxdµ(v) < ∞

}

and

σ(t, v) =

∫

V

b(t, v′, v)dµ(v′).

We shall always assume that the Assumptions 5.1 are in force. In particular, one notices
that

D(B(t)) ⊂ D(Σ(t)) and ‖B(t)ϕ‖E 6 ‖Σ(t)ϕ‖E ∀t > 0, ϕ ∈ E+. (5.10)

Then, one gets the following

COROLLARY 5.12. For any s > 0 and any f ∈ E+

U(t, s)f ∈ D(B(t)) for almost every t ∈ [s,∞)

and the mapping t ∈ [s,∞) 7→ B(t)U(t, s)u is measurable. Moreover,
∫ r

s

‖B(t)U(t, s)f‖Edt 6

∫ r

s

‖Σ(t)U(t, s)f‖Edt

6 ‖f‖E − ‖U(r, s)f‖E ∀ϕ ∈ E+ , r > s > 0.

(5.11)

Again, the proof of this Corollary which uses techniques introduced in the proof of
Lemma 5.11 is given in Appendix B.

Notice that, as in the spatially homogeneous setting, the family of perturbation op-
erators (B(t),D(B(t)))t>0 and the unperturbed evolution family (U(t, s))t>s satisfy As-
sumptions 1.2. In particular, Theorem 2.1 applies and one can define an evolution family
(V(t, s))t>s>0 in E that satisfies the Duhamel formula

V(t, s)ϕ = U(t, s)ϕ+

∫ t

s

V(t, r)B(r)U(r, s)ϕdr, ∀ϕ ∈ E . (5.12)

In the space

X = L1(R+, E) = L1(R+ ×Λ,dt⊗ dx⊗ dµ(v))

one can then define the C0-semigroup (T0(t))t>0 given by (3.2) and with generator (Z,D(Z)),
while, to the evolution family (V(t, s))t>s>0 one associates a C0-semigroup (T (t))t>0 in

X given by (3.3). Remember that the generator (G,D(G)) of (T (t))t>0 is an extension of

the operator (Z + B̂,D(Z)) where B̂ is constructed in Theorem 3.5. As in the spatially
homogenous case, one can prove without major difficulty that, under our assumptions
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on b(·, ·, ·) and Σ(·, ·), Assumptions 3.1, 4.1 and 4.10 are also met, in particular, for any
g ∈ D(Z) ⊂ X, one has

∫ ∞

0
dt

∫

Λ

σ(t, v)|g(t, x, v)|dxdµ(v) < ∞

and

[B̂g](t, x, v) = [B(t)g(t, x, ·)](v) =

∫

V

b(t, v, v′)g(t, x, v′)dµ(v′) t > 0, (x, v) ∈ Λ.

Now, to investigate the honesty of (V(t, s))t>s, we shall, as in the autonomous case
recently studied by the third author [20], use the honesty properties of the spatially ho-
mogeneous family (Vh(t, s))t>s>0. To do so, let M be the spatial average operator

M : ϕ ∈ E 7→ Mϕ(v) =

∫

Ω

ϕ(x, v)dx, v ∈ V

one sees that M provides a bounded operator from E to Eh := L1(V,dµ) and one has the
following relation:

[MU(t, s)ϕ] (v) =

∫

Ω

[U(t, s)ϕ] (x, v)dx 6 [Uh(t, s)Mϕ] (v) ∀ϕ ∈ E+, µ-a. e. v ∈ V

(5.13)
where (Uh(t, s))t>s>0 is the evolution family in L1(V,dµ) introduced in the spatially ho-
mogeneous case (see (5.3)). From this, we deduce directly that

‖U(t, s)ϕ‖E 6 ‖Uh(t, s)Mϕ‖L1(V,dµ) ∀t > s > 0, ϕ ∈ E+ (5.14)

Since B(t) is local in x, one also has

MB(t)ϕ = Bh(t)Mϕ ∀ϕ ∈ D(B(t)), t > 0

where Bh(t) is the operator defined in (5.6) (one notices easily that, for any ϕ ∈ D(B(t)),
Mϕ belongs to D(Bh(t))). These basic observations play a crucial role in the study of
autonomous transport equations as studied in [20] and we shall see it is still the case here.
Precisely, the honesty of the evolution family (V(t, s))t>s can be deduced directly from
that governing the spatially homogeneous problem introduced in the previous subsection.
Namely,

THEOREM 5.13. If the evolution family (Vh(t, s))t>s>0 defined in (5.8) is honest in Eh =
L1(V,dµ) then the evolution family (V(t, s))t>s is honest in E .

Proof. For some ϕ ∈ E+, one deduces easily by induction from (5.13) that, for any n ∈ N,

‖B(t+ r)Vn(t+ r, r)ϕ‖E 6 ‖Bh(t+ r)Vn,h(t+ r, r)Mϕ‖
L1(V,dµ) ∀t, r > 0, (5.15)

where Vn,h(t, r) is the n-th iterated term in the Dyson-Phillips expansion series giving
(Vh(t, s))t>s>0. Since the latter is honest, Definition 3.13 directly yields that (V(t, s))t>s

is honest in E . �

REMARK 5.14. Recall that practical criteria yielding the honesty of (Vh(t, s))t>s>0 in Eh =
L1(V,dµ) are provided in Theorem 5.9
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REMARK 5.15. Notice that, if Ω = R
d, inequality (5.13) is actually an identity. This implies

in particular that inequality (5.15) is also an identity. Therefore, if Ω = R
d, the evolution

family (V(t, s))t>s is honest in E if and only if (Vh(t, s))t>s>0 is honest in Eh.

6. APPLICATION TO NON-AUTONOMOUS FRAGMENTATION EQUATION

We show in this section that the previous theoretical approach can be applied to the
study of the non-autonomous fragmentation equation investigated recently in [4]. Pre-
cisely, let us consider the problem





∂tu(t, x) = −a(t, x)u(t, x) +

∫ ∞

x

a(t, y)b(t, x, y)u(t, y)dy x > 0, t > s

u(s, x) = f(x) a.e. x > 0

(6.1)

at some fixed s > 0. As in [4], u is the distribution of particles with respect to mass x,
a(·, ·) is the fragmentation rate and b(t, x, y) is the distribution of daughter particles of
mass x resulting from splitting of a parent particle of mass y. We investigate the above
problem in the Banach space

E = L1(R+, xdx)

with usual norm which, for a non-negative function u gives the total mass of the ensemble.
We adopt here the following set of assumptions:

ASSUMPTION 6.1. The rates a(·, ·) and b(·, ·, ·) satisfy the following:
(1) The mapping (t, x) ∈ R

+×R
+ 7→ a(t, x) is measurable and non-negative. Moreover,

given T > 0, for almost every x ∈ R
+, the mapping t ∈ [0, T ] 7→ a(t, x) is bounded.

(2) The mapping (t, x, y) ∈ R
+ ×R

+ ×R
+ 7→ b(t, x, y) is measurable and non-negative.

Moreover, b(t, x, y) = 0 for almost every x > y and t > 0 with
∫ y

0
b(t, x, y)xdx = y for any y > 0 and almost any t > 0.

We observe that the fragmentation equation (6.1) can be seen as a perturbation of the
simpler non-autonomous advection equation

{
∂tu(t, x) = −a(t, x)u(t, x) x > 0, t > s

u(s, x) = f(x) a.e. x > 0
(6.2)

One introduces the family (A(t))t>0 of multiplication operators in E given by

[A(t)u](x) = −a(t, x)u(x) u ∈ D(A(t))

with domain D(A(t)) given by

D(A(t)) = {u ∈ E ; A(t)u ∈ E} = L1(R+, a(t, x)xdx).

Let then define the evolution family in E given by

U(t, s)u = exp

(
−

∫ t

s

a(τ, ·)dτ

)
u(·) t > s > 0, u ∈ E
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and the family of perturbations (B(t))t>0 given by

[B(t)u] (x) =

∫ ∞

x

a(t, y)b(t, x, y)u(t, y)dy ∀u ∈ D(B(t)) = D(A(t)), t > 0.

It is easy to verify, using Assumptions 6.1 and arguing as in the previous section, that the
evolution family (U(t, s))t>s and the family of perturbations (B(t))t>0 satisfy Assumptions
1.2, 3.1, 4.1 and 4.10. In particular one can see that, for any u ∈ E and any s > 0 one has
U(t, s)u ∈ D(B(t)) for almost every t > s; the mapping t ∈ [s;∞) 7→ B(t)U(t, s)u ∈ E is
measurable with∫ t

s

‖B(t)U(t, s)u‖ds = ‖u‖E − ‖U(t, s)u‖E ∀t > s u ∈ E+.

These conditions allow to apply here the general abstract approach developed in Sections
2, 3.1 and 3.2. We have then, for any u ∈ E and any t > s > 0,

V0(t, s)u = U(t, s)u,

and, for n > 1

Vn(t, s)u =

∫ t

s

U(t, r)B(r)Vn−1(r, s)udr (6.3)

since, for any n > 0, s > 0, and u ∈ E one has Vn(t, s)u ∈ D(B(t)) for almost every t > s,
and the mapping t ∈ [s;∞) 7→ B(t)Vn(t, s)u ∈ E is measurable. In the present case we
can also prove the following:

PROPOSITION 6.2. For any n ∈ N, any s > 0 and any u ∈ E+, the mapping r ∈ [s,∞) 7→
A(r)Vn(r, s)u ∈ E is measurable; furthermore for any t > s > 0 and any u ∈ E one has

U(t, s)u = u+

∫ t

s

A(r)U(r, s)udr (6.4)

and, for n > 1

Vn(t, s)u =

∫ t

s

A(r)Vn(r, s)udr +

∫ t

s

B(r)Vn−1(r, s)udr. (6.5)

Proof. The proof of (6.4) is almost a straightforward application of the definition of A(t)
and U(t, s) (see for instance [4, Lemma 2.1]). Now, for n > 1, using both (6.3) and (6.4),
we get

Vn(t, s)u =

∫ t

s

B(r)Vn−1(r, s)udr +

∫ t

s

dr

∫ t

r

A(τ)U(τ, r)B(r)Vn−1(r, s)udτ

for any u ∈ E and any t > s > 0. But, using Assumption 4.10 and (6.5), we check easily
that
∫ t

s

dr

∫ t

r

A(τ)U(τ, r)B(r)Vn−1(r, s)udτ =

∫ t

s

dτ

∫ τ

s

A(τ)U(τ, r)B(r)Vn−1(r, s)udr

=

∫ t

s

A(τ)

(∫ τ

s

U(τ, r)B(r)Vn−1(r, s)udr

)
dτ =

∫ t

s

A(τ)Vn(τ, s)dτ
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from which the conclusion easily follows. �

Thanks to the above proposition we obtain

PROPOSITION 6.3. Let u ∈ E and t > s > 0 be given. For any n ∈ N, let vn(t, s, ·) denote a
measurable representation of

∑n
k=0[Vk(t, s)u](·), then for almost every x > 0 one has

vn(t, s, x) = u(x)−

∫ t

s

a(r, x)vn(r, s, x)dr +

∫ t

s

∫ ∞

x

a(r, y)b(r, x, y)vn−1(r, s, y)dydr.

Proof. The identities (6.4) and (6.5) give

n∑

k=0

Vk(t, s)u = u+

∫ t

s

A(r)
n∑

k=0

Vk(r, s)udr +

∫ t

s

B(r)
n−1∑

k=0

Vk(r, s)udr,

and this gives the assertion. �

Now suppose v(t, s, ·) to be a measurable representation of V(t, s)u. According to
Assumptions 6.1 (1), for any t > s > 0 one has

∫ t

s

a(r, x)v(r, s, x)dr < ∞ for a. e. x > 0.

Therefore we also have
∫ t

s

dr

∫ ∞

x

a(r, y)b(r, x, y)v(r, s, y)dy < ∞ for a. e. x > 0

and the following equality holds:

v(t, s, x) = u(x)−

∫ t

s

a(r, x)v(r, s, x)dr +

∫ t

s

dr

∫ ∞

x

a(r, y)b(r, x, y)v(r, s, y)dy.

This allows us to recover, in a direct way, Theorem 4.1 of [4]. Moreover, because the
honesty of the evolution family (V(t, s))t>s is equivalent to that of the evolution semigroup
(T (t))t>0, if one assumes that

a(t, x) ∈ L1(0, T ; L∞([0, R])) for any T > 0, R > 0,

we have, according to [4, Theorem 5.1], that (V(t, s))t>s is honest in E . This implies that
the limit (4.15) holds.

REMARK 6.4. Notice that, using the results of Sections 3 and 4, we did not need to determine
the generator of (T (t))t>0 to recover [4, Theorem 4.1 & Theorem 5.1] and this allows
therefore to simplify the approach of [4]. Notice also that the fact that (4.15) holds for the
fragmentation equation (6.1) was not observed in [4] and is therefore a new result.
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APPENDIX A. TECHNICAL PROPERTIES OF Z AND B̂

We derive in this Appendix several fine properties of the operators Z and B̂ introduced
in Section 3. The notations and Assumptions are those of Section 3. In particular, we
assume that Assumptions 3.1 and 4.1 are in force. We begin with

LEMMA A.1. Given s > 0 and ϕ ∈ C 1
c (R+), let us define the operator

{
Aϕ,s : u ∈ E 7−→ Aϕ,su ∈ X

with [Aϕ,su](t) = χ+(t− s)ϕ(t)U(t, s)u ∀t > 0.
(A.1)

Then Aϕ,su ∈ D(Z) for any u ∈ E with

ZAϕ,s = −Aϕ′,s

where ϕ′ is the derivative of ϕ. Moreover,

[B̂Aϕ,su](t) = B(t)[Aϕ,su](t) for almost every t > 0, (A.2)

i.e. Aϕ,su ∈ D(B) and B̂Aϕ,su = BAϕ,su.

Proof. Let s > 0, u ∈ E and ϕ ∈ C 1
c (R+). For simplicity, we set f0 = Aϕ,su, i.e. f0(·) =

χ+(· − s)ϕ(·)U(·, s)u. Clearly,

‖f0‖X =

∫ ∞

0
‖f0(t)‖Edt =

∫ ∞

s

|ϕ(t)| ‖U(t, s)u‖Eds 6 2γ‖u‖E

∫ ∞

s

|ϕ(t)|dt

and, since ϕ is compactly supported, f0 ∈ X. By (3.2), one has

T0(t)f0(·) = χ+(· − t)U(·, · − t)f0(· − t)

and one checks easily that

T0(t)f0(r) = χ+(r − t− s)ϕ(r − t)U(r, s)u ∀r > 0.

Clearly, for given r > 0,

lim
t→0+

t−1

(
χ+(r − t− s)ϕ(r − t)− χ+(r − s)ϕ(r)

)
= −χ+(r − s)ϕ′(r)

and, since ϕ is compactly supported, one deduces easily that the following limit holds in
X:

lim
t→0+

t−1 (T0(t)f0(·)− f0(·)) = −χ+(· − s)ϕ′(·)U(·, s)u.

This exactly means that f0 ∈ D(Z) with Zf0(·) = −χ+(· − s)ϕ′(·)U(·, s)u, i.e. ZAϕ,s =
−Aϕ′,s. Let us now prove that f0 ∈ D(B). Since, for any t > 0 and any τ ∈ (0, t), one has
as above

U(t, τ)f0(τ) = χ+(τ − s)ϕ(τ)U(t, s)u

one deduces from (3.6) that, for any λ > 0,

[Bλf0](t) =

(∫ t

s

exp(−λ(t− τ))ϕ(τ)dτ

)
χ+(t− s)B(t)U(t, s)u for every t > s
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where we recall that B(t)U(t, s)u is well-defined for almost any t > s. Then, since

lim
λ→∞

λ

(∫ t

s

exp(−λ(t− τ))ϕ(τ)dτ

)
= ϕ(t) for almost every t > s > 0

we get easily that the following limit holds in X:

lim
λ→∞

λBλf0(·) = χ+(· − s)ϕ(·)B(·)U(·, s)u = B(·)f0(·).

This proves in particular that f0 ∈ D(B) and, since limλ→∞ λBλ = B̂ we get B̂f0 = Bf0
which achieves the proof. �

LEMMA A.2. Given τ > 0 and f ∈ X

B(s)U(s, τ)

∫ τ

0
U(τ, r)f(r)dr =

∫ τ

0
B(s)U(s, r)f(r)dr for almost every s > τ.

In particular,
∫ τ

0 U(s, r)f(r)dr ∈ D(B(s)) for almost every s > τ with

B(s)

∫ τ

0
U(s, r)f(r)dr =

∫ τ

0
B(s)U(s, r)f(r)dr for almost every s > τ.

Proof. For any f ∈ X+ and any fixed τ > 0, we introduce gτ =
∫ τ

0 U(τ, r)f(r)dr ∈
E+. According to Assumptions 1.2, the mapping s ∈ R

+ 7→ χ+(s − τ)B(s)U(s, τ)gτ is
measurable and it belongs to X since

∫ ∞

τ

‖B(s)U(s, τ)gτ ‖E 6 ‖gτ‖E 6 ‖f‖X. (A.3)

Now, thanks to Assumptions 3.1, the mapping (s, r) ∈ R
+×R

+ 7→ χ+(s−r)B(s)U(s, r)f(r)
is integrable so that, for almost every s > 0, the integral

∫ s

0 B(s)U(s, r)f(r)dr exists and

the mapping s > 0 7→
∫ s

0 B(s)U(s, r)f(r)dr ∈ E+ is integrable. In particular, for some

fixed τ > 0, the integral
∫ τ

0 B(s)U(s, r)f(r)dr ∈ E+ exists for almost every s > τ and

∫ ∞

τ

∥∥∥∥
∫ τ

0
B(s)U(s, r)f(r)dr

∥∥∥∥
E

ds =

∫ ∞

τ

(∫ τ

0
‖B(s)U(s, r)f(r)‖Edr

)
ds

6

∫

∆
‖B(s)U(s, r)f(r)‖Edrds 6 ‖f‖X. (A.4)

Thus the mapping Gτ : s ∈ R
+ 7→ χ+(s − τ)

∫ τ

0 B(s)U(s, r)f(r)dr belongs to X with
‖Gτ‖X 6 ‖f‖X. Let now D be the subspace of X made of all linear combinations of ele-
ments of the form:

t > 0 7−→ ϕ(t)U(t, s)u where s > 0 , u ∈ E

and ϕ ∈ C 1
c (R) with supp(ϕ) ∈ [s,∞). Then, for f ∈ D, it is easily seen that

B(s)U(s, τ)gτ =

∫ τ

0
B(s)U(s, r)f(r)dr for almost every s > τ
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i.e. the two functions represent the same element of X. Since D is dense in X [17, Re-
mark 1.11], the above inequalities (A.3) and (A.4) allow to assert that the above identity
extends to any f ∈ X+ proving the first part of the Lemma. Since moreover

U(s, τ)

∫ τ

0
U(τ, r)f(r)dr =

∫ τ

0
U(s, r)f(r)dr

we get that, for almost every s > τ , the integral
∫ τ

0 U(s, r)f(r)dr belongs to D(B(s)) and
the conclusion follows. �

We complement the above Lemma with the following

LEMMA A.3. For any f ∈ X and and almost all (s, τ) ∈ ∆, one has
∫ τ

0 U(s, r)f(r)dr ∈
D(B(s)) and

B(s)

∫ τ

0
U(s, r)f(r)dr =

∫ τ

0
B(s)U(s, r)f(r)dr.

Proof. For some fixed f ∈ X, we notice that the two functions

Hf : (s, τ) ∈ ∆ 7→ B(s)U(s, τ)

∫ τ

0
U(τ, r)f(r)dr ∈ E

and

H̃f : (s, τ) ∈ ∆ 7→

∫ τ

0
B(s)U(s, r)f(r)dr

are measurable. Therefore, the subset ∆0 = {(s, τ) ∈ ∆ ; Hf (s, τ) 6= H̃f (s, τ)} is a mea-

surable subset of ∆. Since, given τ > 0, one has Hf (s, τ) = H̃f (s, τ) for almost every
s > τ , one sees that ∆0 is a set of zero measure. Since moreover

U(s, τ)

∫ τ

0
U(τ, r)f(r)dr =

∫ τ

0
U(s, r)f(r)dr

we get that, for almost every s > 0, the integral
∫ τ

0 U(s, r)f(r)dr belongs to D(B(s)) for
almost every τ ∈ (0, s) with the desired conclusion. �

LEMMA A.4. For any f ∈ X+ and any t > 0, set gt :=
∫ t

0 T0(s)fds ∈ D(Z)+. One has

〈
Ψ , B̂gt

〉
X

=

∫ ∞

0

(∫ τ+t

τ

‖B(r)U(r, τ)f(τ)‖Edr

)
dτ.

Proof. One has

[
B̂gt

]
(r) = B(r)gt(r) = B(r)

∫ t

0
[T0(s)f ] (r)ds

= B(r)

∫ t

0
U(r, r − s)f(r − s)χ+(r − s)ds.

In particular, according to Lemma A.3 and Proposition 4.5, for almost any t > 0, one has
[
B̂gt

]
(r) =

∫ r

(r−t)∨0
B(r)U(r, τ)f(τ)dτ for almost any r > 0.
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Therefore, for almost every t > 0,
〈
Ψ , B̂gt

〉
X

=

∫ ∞

0
dr

∫ r

(r−t)∨0
‖B(r)U(r, τ)f(τ)‖E dτ

=

∫ ∞

0

(∫ τ+t

τ

‖B(r)U(r, τ)f(τ)‖Edr

)
dτ.

(A.5)

Since both the right-hand side and the left-hand side of (A.5) are continuous functions of
t, the above actually holds for any t > 0. �

We end this Appendix with a basic observation, based upon Lemma A.3:

LEMMA A.5. For any λ > 0 and any f ∈ X+,

[Bλ exp(−λt)T0(t)f ](s) = B(s)

∫ s−t

0
exp(−λ(s−τ))U(s, τ)f(τ)dτ for a. e. (s, t) ∈ ∆.

Proof. The proof of the result is an almost straightforward application of Lemma A.3.
Namely, for a given t > 0, one has

[BλT0(t)f ](s) =

∫ s

0
exp(−λ(s − τ))B(s)U(s, τ) [T0(t)f ] (τ)dτ

=

∫ s−t

0
exp(−λr)B(s)U(s, s − t)U(s − t, s− t− r)f(s− t− r)dr for a. e. s > t

where we used (3.2) and the measurability assumption 3.1. Now, by Lemma A.3, we get
easily the conclusion. �

APPENDIX B. TECHNICAL INTEGRATION RESULTS FOR KINETIC EQUATIONS

This last Appendix is devoted to the proof of the technical Lemma 5.11 and its conse-
quence, Corollary 5.12. We first introduce some useful notations: let

Λ± := {(x, v) ∈ Λ ; τ(x,±v) < ∞}, Λ±,∞ := {(x, v) ∈ Λ ; τ(x,±v) = +∞}

Γ− := {(y, v) ∈ ∂Ω × V such that y = x− τ(x, v)v for some x ∈ Ω with τ(x, v) < ∞}

Γ+ := {(y, v) ∈ ∂Ω×V such that y = x+ τ(x,−v)v for some x ∈ Ω with τ(x,−v) < ∞}.

Finally, set

Γ±,∞ := {(y, v) ∈ Γ± ; y ∓ tv ∈ Ω ∀t > 0}.

REMARK B.1. From a heuristic viewpoint, τ(x, v) is the time needed by a particle having the
position x and the velocity v ∈ V to reach the boundary ∂Ω. One can prove that τ(·, ·) is
measurable on Λ. Moreover τ(x, v) = 0 for any (x, v) ∈ Γ− whereas τ(x, v) > 0 on Γ+.
Notice that the mapping

τ : (x, v) ∈ Λ 7−→ τ(x, v)

is lower semi-continuous [5] (see also [28]). In particular,

Λ±,∞ =
⋂

n∈N

{(x, v) ∈ Λ ; τ(x,±v) > n}
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is the numerable intersections of open subsets of R2d. Therefore, Λ±,∞ and Λ−,∞ ∩Λ+,∞ are
Borel subsets of Λ.

Let us then introduce the state space

E = L1(Λ , dx⊗ dµ(v))

with usual norm. One recalls then the following, from [5, Proposition 2.5 & Proposition
2.10],

LEMMA B.2. There exists Borel measures ν± on Γ± such that, for any f ∈ L1(Ω,dµ), one
has ∫

Λ±

f(x, v)dµ(v)dx =

∫

Γ±

dν±(y, v)

∫ τ(y,±v)

0
f(y ∓ sv, v)ds, (B.1)

and ∫

Λ±∩Λ∓,∞

f(x, v)dµ(v)dx =

∫

Γ±,∞

dν±(y, v)

∫ ∞

0
f (y ∓ sv, v) ds. (B.2)

Proof. The proof follows from the general theory developed in [5, Propositions 2.5 & 2.10]
where, with the notations of [5], one has

F(x) = (v, 0) ∀x = (x, v) ∈ Λ

which is divergence free in the sense of [5] and the characteristic curves are given by
ζ(x, t, s) = (x− (t− s)v, v) for any t, s ∈ R, x = (x, v) ∈ Λ. �

Let us then introduce the unperturbed evolution family (U(t, s))t>s>0 defined through

[U(t, s)f ](x, v) = exp

(
−

∫ t

s

Σ(v, τ)dτ

)
f(x− (t− s)v, v)χ{t−s<τ(x,v)}(x, v),

for any t > s > 0 and any f ∈ E . One has the following

LEMMA B.3. For any f ∈ E and any t > s > 0, setting

Θ(t, s, v) = exp

(
−

∫ t

s

Σ(r, v)dr

)
∀v ∈ V

one has
∫

Λ−

[U(t, s)f ] (x, v)dxdµ(v) =

∫

Γ−

dν−(y, v)

(∫ 0∨(τ(y,−v)−(t−s))

0
Θ(t, s, v)f(y + rv, v)dr

)
(B.3)

∫

Λ+∩Λ−,∞

[U(t, s)f ] (x, v)dxdµ(v) =

∫

Γ+,∞

(∫ ∞

t−s

Θ(t, s, v)f(y − rv, v)dr

)
dν+(y, v) (B.4)
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and
∫

Λ+,∞∩Λ−

[U(t, s)f ] (x, v)dxdµ(v) =

∫

Γ−,∞

(∫ ∞

t−s

Θ(t, s, v)f(y + rv, v)dr

)
dν−(y, v). (B.5)

Proof. We prove only (B.3), the other identities being similar. According to (B.1)

∫

Λ−

[U(t, s)f ] (x, v)dxdµ(v) =

∫

Γ−

dν−(y, v)

(∫ τ(y,−v)

0
[U(t, s)f ] (y + r0v, v)dr0

)
. (B.6)

Now, for a given (y, v) ∈ Γ− and 0 6 r0 6 τ(y,−v), since τ(y + r0v, v) = τ(y, v) + r0 = r0
one has

[U(t, s)f ](y + r0v, v) = Θ(t, s, v)f(y + r0v − (t− s)v, v)χ{t−s6τ(y+r0v,v)}(y, v)

= Θ(t, s, v)f(y − (t− r0 − s)v, v)χ{t−s6r0}(y, v).

Integrating with respect to r0 and making the change of variable r0 → r = r0 − (t− s), we
get the result. �

REMARK B.4. It is natural to identify L1(Λ−), L
1(Λ+ ∩ Λ−,∞) and L1(Λ+,∞ ∩ Λ−,∞) to

closed linear subspaces of E = L1(Λ). With such an identification, one has

‖f‖E = ‖f1‖L1(Λ−) + ‖f2‖L1(Λ+∩Λ−,∞) + ‖f3‖L1(Λ+,∞∩Λ−,∞) ∀f ∈ E

where f1, f2, f3 denote the restrictions of f to Λ−, Λ+ ∩ Λ−,∞ and Λ+,∞ ∩ Λ−,∞ respec-

tively. Moreover, it is easy to see that U(t, s) leaves invariant the three subspaces L1(Λ−),
L1(Λ+ ∩Λ−,∞) and L1(Λ+,∞ ∩Λ−,∞) in the following sense: with the above decomposition
Supp(U(t, s)f1) ⊂ Λ−, Supp(U(t, s)f2) ⊂ Λ+∩Λ−,∞ and Supp(U(t, s)f3) ⊂ Λ+,∞∩Λ−,∞

for any t > s > 0. Therefore, to prove any result on U(t, s)f for some given f ∈ E , it is equiv-
alent to consider separately U(t, s)fi, i = 1, 2, 3 in their respective spaces.

One can now prove Lemma 5.11.

Proof of Lemma 5.11. According to Remark B.4, one can distinguish the three cases f ∈
L1(Λ−), f ∈ L1(Λ+ ∩Λ−,∞) and f ∈ L1(Λ+,∞ ∩Λ−,∞).

First case: Let us assume that f ∈ L1(Λ−) and let s > 0 be fixed. One first assumes that f
is continuous. For some given (y, v) ∈ Γ−, one considers the continuous functions

Qy,v : t ∈ [s,∞) 7−→

∫ 0∨(τ(y,−v)−(t−s))

0
Σ(t, v)Θ(t, s, v)f(y + rv, v)dr.
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and

Hy,v : t ∈ [s,∞) 7−→

∫ 0∨(τ(y,−v)−(t−s))

0
Θ(t, s, v)f(y + rv, v)dr.

Notice that Qy,v(t) = 0 = Hy,v(t) for t > τ(y,−v) + s. Let us compute the derivative of
Hy,v(t). Clearly,

d

dt
Hy,v(t) = 0 t ∈ [τ(y,−v) + s,∞).

Let us now consider t ∈ (s, τ(y,−v) + s). One has

d

dt
Hy,v(t) =

d

dt

∫ τ(y,−v)−(t−s)

0
Θ(t, s, v)f(y + rv, v)dr

=

∫ τ(y,−v)−(t−s)

0

(
∂

∂t
Θ(t, s, v)

)
f(y+ rv, v)dr−Θ(t, s, v)f(y+(τ(y,−v)− (t− s))v, v).

Now, denoting as above LΣ(·,v) as the set of Lebesgue points of the mapping t 7→ Σ(t, v),
one notices that

∂

∂t
Θ(t, s, v) = −Σ(t, v)Θ(t, s, v) ∀t ∈ LΣ(·,v) (B.7)

and, for such t ∈ LΣ(·,v), one has

d

dt
Hy,v(t) = −

∫ τ(y,−v)−(t−s)

0
Σ(t, v)Θ(t, s, v)f(y + rv, v)dr

−Θ(t, s, v)f(y + (τ(y,−v)− (t− s))v, v).

In other words, Hy,v is derivable at almost every t ∈ [s,∞) and, since f is nonnegative,
one has

d

dt
Hy,v(t) 6 −Qy,v(t) for almost every t > s. (B.8)

Integrating this inequality with respect to t, one finds
∫ ∞

s

Qy,v(t)dt 6 −

∫ ∞

s

d

dt
Hy,v(t)dt = Hy,v(s) =

∫ τ(y,−v)

0
f(y + rv, v)dr.

Integrating now over Γ−, we find
∫ ∞

s

dt

∫

Γ−

Qy,v(t)dν−(t, v) 6

∫

Γ−

dν−(y, v)

∫ τ(y,−v)

0
f(y + rv, v)dr = ‖f‖L1(Λ−).

In other words, recalling the expression of Qy,v, one gets that the linear form

f ∈ L1(Λ−) ∩ C (Λ−) 7−→

∫ ∞

s

dt

∫

Γ−

dν−(y, v)

∫ 0∨(τ(y,−v)−(t−s))

0
Σ(t, v)Θ(t, s, v)f(y + rv, v)dr
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extends in an unique way to a continuous linear form on L1(Λ−) such that, for any non-
negative f ∈ L1(Λ−),

∫ ∞

s

dt

∫

Γ−

dν−(y, v)

∫ 0∨(τ(y,−v)−(t−s))

0
Σ(t, v)Θ(t, s, v)f(y + rv, v)dr 6 ‖f‖L1(Λ−).

In particular, for almost every t ∈ [s,∞), one has
∫

Γ−

dν−(y, v)

∫ 0∨(τ(y,−v)−(t−s))

0
Σ(t, v)Θ(t, s, v)f(y + rv, v)dr < ∞

According to (B.3), this exactly means that∫

Λ−

Σ(t, v)[U(t, s)f ](x, v)dµ(v)dx < ∞ for almost every t ∈ [s,∞)

and yields the desired result whenever f ∈ L1(Λ−).

Second case: Let us assume that f ∈ L1(Λ−,∞ ∩ Λ+) and let s > 0 be fixed and let
(y, v) ∈ Γ+,∞ be fixed. As above, we begin with assuming that f ∈ C (Λ−,∞ ∩ Λ+) and
define

Ĥy,v : t ∈ [s,∞) 7−→

∫ ∞

t−s

Θ(t, s, v)f(y − rv, v)dr

and

Q̂y,v : t ∈ [s,∞) 7−→

∫ ∞

t−s

Σ(t, v)Θ(t, s, v)f(y − rv, v)dr.

Letting again LΣ(·,v) denote the set of Lebesgue points of Σ(·, v), one has as here above

that, for any t ∈ LΣ(·,v) ∩ [s,∞), the application Ĥy,v is derivable in t with

d

dt
Ĥy,v(t) = −Q̂y,v(t)−Θ(t, s, v)f(y − (t− s)v, v).

Let T > s be fixed. Integrating the above identity over (s, T ) one gets, since f is nonneg-
ative ∫ T

s

Q̂y,v(t)dt+ Ĥy,v(T ) 6 H(s) =

∫ ∞

0
f(y − rv, v)dr.

Integrating now over Γ+,∞ we get

∫ T

s

dt

∫

Γ+,∞

Q̂y,v(t)dν+(y, v) +

∫

Γ+,∞

Ĥy,v(T )dν+(y, v)

6

∫

Γ+,∞

dν+(y, v)

∫ ∞

0
f(y − rv, v)dr.

Recalling the expression of U(t, s)f and (B.2), this reads
∫ T

s

dt

∫

Γ+,∞

Q̂y,v(t)dν+(y, v) +

∫

Λ−,∞∩Λ+

[U(T, s)f ](x, v)dxdµ(v) 6 ‖f‖L1(Λ−,∞∩Λ+).

(B.9)
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Now, using the same argument as in the first case, one deduces that, for any f ∈ L1(Λ−,∞∩
Λ+) and almost every t ∈ [s,∞) one has

∫

Λ−,∞∩Λ+

Σ(t, v)[U(t, s)f ](x, v)dxdµ(v) < ∞

which proves the result for f ∈ L1(Λ−,∞ ∩Λ+).

Third case: Assume now that f ∈ L1(Λ−,∞ ∩ Λ+,∞). Notice that, since Λ+,∞ is a Borel
subset of Λ, the associated indicator function 1Λ+,∞∩Λ−,∞ is a Borel mapping on the
product space Λ = Ω × V . In particular, the partial applications (in all directions) are
measurable, i.e. for any v ∈ V , the application

χv : x ∈ Ω 7−→ 1Λ+,∞∩Λ−,∞(x, v)

is a Borel mapping. In particular, for any v ∈ V ,

Ωv := {x ∈ Ω , χv(x) = 1}

is a Borel subset of Ω. Now, if one assumes that f is nonnegative, one has by Fubini’s
Theorem
∫

Λ+,∞∩Λ−,∞

f(x, v)dxdµ(v) =

∫

Λ

1Λ+,∞∩Λ−,∞(x, v)f(x, v)dxdµ(v)

=

∫

V

(∫

Ω

1Λ+,∞∩Λ−,∞(x, v)f(x, v)dx

)
dµ(v).

Therefore, for any nonnegative f ∈ L1(Λ−,∞ ∩Λ+,∞) one has
∫

Λ+,∞∩Λ−,∞

f(x, v)dxdµ(v) =

∫

V

(∫

Ωv

f(x, v)dx

)
dµ(v).

Recalling now that

[U(t, s)f ](x, v) = Θ(t, s, v)f(x− (t− s)v, v) ∀(x, v) ∈ Λ−,∞ ∩Λ+,∞

one deduces that
∫

Λ+,∞∩Λ−,∞

[U(t, s)f ](x, v)dxdµ(v) =

∫

V

Θ(t, s, v)

(∫

Ωv

f(x− (t− s)v, v)dx

)
dµ(v).

For any v ∈ V , the mapping x ∈ Ωv 7→ y = x− (t− s)v ∈ Ωv is one-to-one and measure-
preserving so that

∫

Λ+,∞∩Λ−,∞

[U(t, s)f ](x, v)dxdµ(v) =

∫

V

Θ(t, s, v)

(∫

Ωv

f(y, v)dy

)
dµ(v).

Now, for fixed v ∈ V , according to (B.7) one has
∫ t

s

Σ(τ, v)Θ(τ, s, v)dτ = −

∫ t

s

∂

∂τ
Θ(τ, s, v)dτ = 1−Θ(t, s, v) for a. e. t > s.
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Thus,
∫

V

Θ(t, s, v)

(∫

Ωv

f(y, v)dy

)
dµ(v) =

∫

V

(∫

Ωv

f(y, v)dy

)
dµ(v)

−

∫

V

(∫ t

s

Σ(τ, v)Θ(τ, s, v)dτ

∫

Ωv

f(y, v)dy

)
dµ(v).

In other words,

‖U(t, s)f‖L1(Λ+,∞∩Λ−,∞) = ‖f‖L1(Λ+,∞∩Λ−,∞)

−

∫ t

s

(∫

V

Σ(τ, v)Θ(τ, s, v)

(∫

Ωv

f(y, v)dy

)
dµ(v)

)
dτ (B.10)

One recognizes as above that, for any τ ∈ (s, t)
∫

V

Σ(τ, v)Θ(τ, s, v)

(∫

Ωv

f(y, v)dy

)
dµ(v)

=

∫

V

Σ(τ, v)Θ(τ, s, v)

(∫

Ωv

f(x− (τ − s)v, v)dx

)
dµ(v)

=

∫

Λ+,∞∩Λ−,∞

Σ(τ, v)[U(τ, s)f ](x, v)dxdµ(v)

so that (B.10) becomes

∫ t

s

(∫

Λ+,∞∩Λ−,∞

Σ(τ, v)[U(τ, s)f ](x, v)dxdµ(v)

)
dτ

= ‖f‖L1(Λ+,∞∩Λ−,∞) − ‖U(t, s)f‖L1(Λ+,∞∩Λ−,∞). (B.11)

In particular,
∫

Λ−,∞∩Λ+,∞

Σ(τ, v)[U(τ, s)f ](x, v)dxdµ(v) < ∞ for almost every τ ∈ [s,∞).

This achieves the proof. �

The proof of Corollary 5.12 uses the above computations:

Proof of Corollary 5.12. The fact that U(t, s) maps E+ into D(B(t)) for almost every t > s
and that the mapping t ∈ [s,∞) 7→ B(t)U(t, s)u is measurable is a consequence of the
previous Lemma exactly as for the proof of Proposition 5.6. Let us now prove (5.11). One
uses once again the representation provided by Remark B.4 which allows us to distinguish
between the three cases: f ∈ L1(Λ−), f ∈ L1(Λ−,∞ ∩Λ+) or f ∈ L1(Λ+,∞ ∩Λ−,∞). One

uses the notations of Lemma 5.11. First, if f ∈ L1(Λ−), for any (y, v) ∈ Γ− integrating
(B.8) between with respect to t over (s, r) (for some fixed r > s), one gets

∫ r

s

Qy,v(t)dt 6 Hy,v(s)−Hy,v(r)
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or, equivalently,

∫ r

s

(∫ 0∨(τ(y,−v)−(t−s))

0
Σ(t, v)Θ(t, s, v)f(y + r0v, v)dr0

)
dt

6

∫ τ(y,−v)

0
f(y + r0v, v)dr0 −

∫ 0∨(τ(y,−v)−(r−s))

0
Θ(r, s, v)f(y + r0v, v)dr0.

Integrating now over Γ− and using (B.1) we get
∫ r

s

‖Σ(t)U(t, s)f‖L1(Λ−) 6 ‖f‖L1(Λ−) − ‖U(r, s)f‖L1(Λ−).

Second, consider f ∈ L1(Λ−,∞ ∩Λ+). According to (B.9) (and recalling the expression of

Q̂y,v(t) we directly get
∫ r

s

‖Σ(t)U(t, s)f‖L1(Λ−,∞∩Λ+) 6 ‖f‖L1(Λ−,∞∩Λ+) − ‖U(r, s)f‖L1(Λ−,∞∩Λ+) ∀r > s.

Finally, for f ∈ L1(Λ+,∞ ∩Λ−,∞), (B.11) exactly means that
∫ r

s

‖Σ(t)U(t, s)f‖L1(Λ−,∞∩Λ+,∞) = ‖f‖L1(Λ−,∞∩Λ+,∞)−‖U(r, s)f‖L1(Λ−,∞∩Λ+,∞) ∀r > s.

Summing up all these inequalities we obtain the desired result. �
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