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A SIMPLE INTRODUCTION TO WATER WAVES

DIMITRIOS MITSOTAKIS

Abstract. The theory of the water waves is the main subject in coastal hydro-
dynamics and plays a significant role in applied mathematics and in physics.
In these notes we present the basics of the water wave theory. Specifically,
after introducing briefly the basic concepts of continuum mechanics, we derive
the physical laws describing the physics of an inviscid, incompressible fluid,
namely the Euler equations. Euler equations are the governing equations of
water waves, but because of the great difficulties in the theoretical and nu-
merical studies of these equations, simple, approximate mathematical models
have been derived instead. The models are usually simplified so as to be valid
for specific types of waves.Water waves are usually divided into categories de-
pending on the magnitude of their amplitude and their wavelength compared
to the water depth. Some waves such as the Tsunami waves are generated
in the deep ocean as waves of small amplitude with large wavelength, but as
they approach the shoreline they grow in amplitude while their wavelength is
decreased. Here, we will derive models for long waves with or without using
the small amplitude assumption.

Key words and phrases: Water waves; Boussinesq equations; Serre equa-
tions; KdV equation; BBM equation; dispersive waves; solitary waves

1. Introduction to Kinematics

Kinematics is the branch of classical mechanics that describes the motion of
bodies and systems of bodies without consideration of the causes of the motion.
In this section we present the basic tools for studying the motion of a continuous
body moving in R

d with d = 2 or 3. For further reading we suggest the books
[Hun06, Log06, Pat83, Whi99] on which these notes are based on.

Let ~a be (the label of) a particle of a continuous body that at t = 0 occupies the
region P0. By a fluid motion we mean a mapping φt : P0 → Pt, which maps the
region P0 into the region Pt = φt(P0) which is occupied by the same fluid at time
t. We assume that φt is represented by the formula

~x = ~X(~a, t) (1)

with X(~a, 0) = ~a. ~a is the Lagrangian coordinates or the particle’s label at t = 0
while ~x is the Eulerian coordinate representing the position of the same particle ~a

at time t. Usually, the mapping ~X : Rd×R → R
d, is also referred to as the particle

path. We assume that ~X is a diffeomorphism of Rd, i.e. is smooth and invertible

where the derivative D~a
~X =

(

∂aj
Xi

)

ij
is a nonsingular matrix. Roughly speaking,
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2 D. MITSOTAKIS

the last condition means that the motion does not crush a nonzero material volume
to zero volume.

The region Pt occupied by the material particles ~a at time t can be described
also as the bounded set with smooth boundary such that

Pt = { ~X(~a, t) : ~A ∈ P0}.

For a given fluid motion the velocity is defined by ~U(~a, t) = ~Xt(~a, t) . Then the
corresponding spatial velocity ~u(~x, t) is defined by

~u
(

~X(~a, t)
)

= ~U(~a, t).

Conversely, given a smooth spatial velocity ~u(~x, t), we may reconstruct the motion

of ~X(~a, t) by solving the system of ODEs

~Xt(~a, t) = ~u
(

~X(~a, t), t
)

,

with ~X(~a, 0) = ~a as initial condition.
Assume that we take measurements for the material volume at time t. Let a

measurement f be a function of the spatial coordinates (~x, t), then the correspond-
ing measurement F of the material coordinates is a function of (~a, t) and they are
connected by the formula

F (~a, t) = f
(

~X(~a, t), t
)

.

The rate of change of f at a given spatial point is given by the derivative ft (or
∂tf), while the rate of change of f following a particle path is given by Ft. The last
derivative is called the material derivative of f and is usually denoted by Df/Dt.
According to the chain rule,

Df

Dt
( ~X(~a, t), t) = ft( ~X(~a, t), t) + ~Xt(~a, t) · ∇f( ~X(~a, t), t)

= ft( ~X(~a, t), t) + ~u( ~Xt(~a, t), t) · ∇f( ~X(~a, t), t)

The last relationship implies the compact form

D

Dt
=

∂

∂t
+ ~u · ∇.

We also define the vorticity as the curl of the velocity field, i.e. ω = ∇× ~u.
Here we present the Reynolds’ transport theorem which may be thought of as a

generalization of the Leibniz rule1 for differentiating one dimensional integrals with
variable endpoints:

d

dt

∫

Pt

f d~x =

∫

Pt

{ft +∇ · (f~u)} d~x, (2)

or after using the divergence theorem it can be written as

d

dt

∫

Pt

f d~x =

∫

Pt

ft d~x +

∫

∂Pt

f~u · ~n dS. (3)

Now we have all the tools needed to derive the Euler’s equations.

1 d

dt

(

∫

b(t)
a(t)

f(x, t)dx
)

=
∫

b(t)
a(t)

ft(x, t)dx + f(b(t), t) · b′(t) − f(a(t), t) · a′(t).
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2. Derivation of the Euler equations

The Euler equations consist of a set of physical conservation laws such as the
conservation of mass and momentum, together with the assumption that the density
of the fluid is constant, cf. [Whi99].

First we derive the conservation of mass. We consider a fluid of density ρ(~x, t).
The mass contained in a material volume Pt is then given by

∫

Pt

ρ d~x.

If the mass of the material volume does not change with time, then

d

dt

∫

Pt

ρ d~x = 0.

Hence, using (2), we get that
∫

Pt

{ρt +∇ · (ρ~u)} d~x = 0.

Since this equality holds for all t ≥ 0 and for an arbitrary smooth region Pt, we
conclude that

ρt +∇ · (ρ~u) = 0. (4)

Assuming that the medium is homogenous, i.e. that the density of the fluid is
constant, the conservation of mass reduces to the equation

∇ · (~u) = 0. (5)

We proceed with the derivation of the equation of conservation of momentum.
The total momentum of a material volume Pt is

∫

Pt

ρ~u d~x.

Newton’s second law states that the rate of change of the momentum of a material
volume is equal to the force acting on it. Taking into account that the only forces
acting on the material volume is the surface pressure force p that acts in the inward

normal direction and the gravity force ~F = −ρg~k, where ~k is the unit vector
perpendicular to the horizontal plane. Thus

d

dt

∫

Pt

ρ~u d~x = −
∫

∂Pt

p~n dS +

∫

Pt

~F d~x.

Using (2), and the divergence theorem, we find that
∫

Pt

{

(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇p− ~F
}

d~x = 0,

where the tensor product ~u⊗ ~u = (uiuj)ij and therefore

∫

Pt







∂

∂t
(ρui) +

d
∑

j=1

∂

∂xj

(ρuiuj) +
∂p

∂xi

− Fi







d~x = 0.

Since this equation holds for any t ≥ 0 and for any arbitrary smooth region Pt, we
conclude that

(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇p = ~F . (6)
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Assuming that the density of the fluid is constant, i.e. ρt = |∇ρ|2 = 0, and using
(5), the conservation of momentum (6) reduces to

~ut + (~u · ∇) ~u+
1

ρ
∇p = −g~k. (7)

We close the derivation of the Euler equations by studying the vorticity of the
velocity field. The vorticity is defined as ~ω = ∇× ~u. Taking curl on both sides of
the conservation of momentum (7) we have

~ωt + ~u · ∇~ω = ~ω · ∇~u. (8)

If d = 2 then ω = ∂v
∂x

− ∂u
∂y

, and ~ω ·∇~u = 0, so (8) reduces to the transport equation

ωt + ~u · ∇ω = 0. (9)

From equations (8) and (9) we conclude that if the flow is irrotational initialy
(i.e. ∇ × ~u = 0 for t = 0) then the flow remains irrotational for all time t. The
irrotationality condition is formulated as

∇× ~u = 0 (10)

One main consequence of the irrotationality condition is that the momentum equa-
tion (7) can be written as

~ut +
1

2
∇|~u|2 + 1

ρ
∇p = −g~k. (11)

3. Boundary and initial conditions

The Euler equations consist of the conservation of mass (5), conservation of
momentum (7) and the irrotationality condition (10) defined on a strip-like domain
bounded above from the free surface η(~x, t) and bellow from the horizontal bottom
h0. To close the system of these conservation laws we need to impose two boundary
conditions and two initial conditions. There are two kinds of boundary condition
for the free surface; the kinematic and the dynamic boundary conditions. The
kinematic boundary condition on a free surface states that the surface of the water
is impermeable, and thus the fluid velocity ~u satisfies

~u · ~n = ~V · ~n,
on the free surface, where ~n is the unit normal to the surface and ~V is the velocity
tangent to the surface. Assuming that the free surface has the equation F (~x, t) = 0
and that it is smooth we have that the unit normal and the normal velocity are
given in terms of F as

~n =
∇F

|∇F | ,
~V = − Ft

|∇F |~n.

Using these expressions, the kinematic boundary condition becomes:

DF

Dt
= 0, on F = 0,

meaning that the material particles on the surface remain on the surface. For a
surface that is a graph with equation z = η(x, t) then the kinematic condition can
be written as

ηt + ~u · ∇η = 0, on z = η(x, t), (12)

where now x denotes only the horizontal independent variable and z the vertical.
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The dynamic boundary condition on the free surface is that the stresses on either
side of the surface are equal. In the case of an air-water interface, we neglect the
motion of the air, because of its smaller density, and assume that the atmospheric
pressure is constant p = 0.

The boundary condition on the bottom is the impermeability condition of the
bottom, i.e.

~u · ~n = 0, on h0,

where ~n is the unit outward normal to the boundary.

4. Non-dimensionalization and normalization

For simplicity, we will restrict the analysis only in the case d = 2. In this case,
the Euler equations for inviscid, incompressible and irrotational flow with a free
surface over a horizontal bottom at height y = −h0 (the undisturbed level of fluid
is at y = 0) may be written in dimensional and unscaled variables as follows: Let
η(x, t) be the deviation of the free surface of the fluid above its level of rest and
consider the domain Ωt = {(x, y) : −∞ < x < ∞, −h0 ≤ y ≤ η(x, t)}. The for
(x, y) ∈ Ωt and t ≥ 0 we have

ut + uux + vuy +
1

ρ
px = 0, (13)

vt + uvx + vvy +
1

ρ
py = −g, (14)

ux + vy = 0, (15)

uy = vx, (16)

where g is the acceleration of gravity, u = u(x, y, t), respectively v = v(x, y, t),
denotes the horizontal, respectively the vertical, velocity component, ρ is the (con-
stant) density of the fluid, and p = p(x, y, t) the pressure. The system (13)–(16) is
supplemented by the free surface kinematic and dynamic boundary conditions

ηt + uηx = v, at y = η(x, t), (17)

p = 0, at y = η(x, t). (18)

At the bottom y = −h0 we assume that the normal component of the velocity
vanishes, i.e. that

v = 0, at y = −h0, (19)

We also assume that initial conditions for η and u have been specified and let

η(x, 0) = η0(x), x ∈ R, (20)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω0, (21)

where η0 and u0 are given real functions. (We assume that u0 satisfies the com-

patibility condition ∂u0

∂y
(x, y) = −

∫ y

h0

∂2u0

∂x2 (x, y′) dy′ in Ω0, which follows assuming

that (15), (16) and (19) hold at t = 0).
Water waves are usually characterized by their amplitude and their wavelength

compared to the water depth. We assume that a characteristic wavelength is λ, and
a characteristic amplitude A. The so called shallow water condition states that the
water depth h0 is much smaller compared to the wavelength i.e. σ = h0/λ ≪ 1.
We define also another important parameter ε = A/h0. As it will be more clear
also later in these notes, ε measures the local size of nonlinear effects, while σ
measures the local size of dispersive effects. Usually, waves in the deep water are
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characterized by the small amplitude assumption since ε ≪ 1 but as the waves
approach the shoreline they gain amplitude, i.e. ε = O(1) and finally they break
σ2 ≪ ε. The smallness of σ is used to derive simple model equations that do not
depend on the vertical coordinate y. It is also common to divide water waves into
three main categories depending on the value of the quotient S = ε/σ2 known as
the Stokes number (sometimes also referred to as Ursel number). Stokes number is
a measure of the relative strength of nonlinear and dispersive effects. For example,
nonlinear but non-dispersive waves are characterized by σ2 ≪ ε or S ≫ 1, while
for weakly nonlinear and weakly dispersive σ2 ≪ 1 and σ2 = O(ε), i.e. S = O(1),
and finally we speak about strongly nonlinear but weakly dispersive waves when
σ2 ≪ 1 but ε = O(1) and S > 1.

To derive simple mathematical models from the Euler equations the first step is
to introduce non-dimensional independent variables that are defined as follows:

x∗ =
x

λ
, y∗ =

y

h0

, and t∗ =
σg

c0
t. (22)

We know from the linear theory that the horizontal velocity u(x, y, t) has the
following order of magnitude: u = O(εc0), where c0 =

√
gh0 is the linear wave

phase velocity. Then the nondimensional horizontal velocity is:

u∗ =
u

ε c0
. (23)

In the case of long waves the motion of the fluid is essentially horizontal, i.e. the
vertical component of the velocity is usually very small. That is v = O(σ2εc0), thus
we define

v∗ =
v

σ2εc0
, (24)

also the pressure is scaled by the static pressure, p = O(ρgh0), and thus

p∗ =
p

ρgh0

. (25)

Finally, since a typical amplitude of a wave is considered in this analysis to be A,
i.e. η = O(A), the nondimensional free surface elevation is given

η∗ =
1

εh0

η. (26)

Then, the problem (13)–(21) is transformed into the equivalent problem that
follows, in which the dependent variables and the initial conditions are of order

one, while powers of ε and σ signify the order of magnitude of terms they multiply.
We seek u∗ = u∗(x∗, y∗, t∗), v∗ = v∗(x∗, y∗, t∗), p∗ = p∗(x∗, y∗, t∗), η∗ = η∗(x∗, t∗),
defined for −∞ < x∗ < ∞, −1 ≤ y∗ ≤ εη∗(x∗, t∗), t∗ ≥ 0, such that,

εu∗

t∗ + ε2u∗u∗

x∗ + ε2v∗u∗

y∗ + p∗x∗ = 0, (27)

εσ2v∗t∗ + ε2σ2u∗v∗x∗ + ε2σ2v∗v∗y∗ + p∗y∗ = −1, (28)

u∗

x∗ + v∗y∗ = 0, (29)

u∗

y∗ − σ2v∗x∗ = 0. (30)

This system is supplemented with the free surface and bottom boundary conditions,
which now take the form:

η∗t∗ + εu∗η∗x∗ = v∗, for y∗ = εη∗(x∗, t∗), (31)

p∗ = 0, for y∗ = εη∗(x∗, t∗), (32)
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v∗ = 0, for y∗ = −1, (33)

and the initial conditions

η∗(x∗, 0) = η∗0(x
∗), u∗(x∗, y∗, 0) = u∗

0(x
∗, y∗), (34)

where, in terms of the functions η0, u0 in (20)–(21) we have

η∗0(x
∗) :=

1

h0ε
η0

(

x∗h0

σ

)

, u∗

0(x
∗, y∗) :=

1

εc0
u0

(

h0

σ
x∗, h0y

∗

)

. (35)

To derive model equations we will follow the great lines of [Bar04, BC98, BCS02a,
BS76, DM08, Whi99]. Moreover, in what follows we simplify the notation by drop-
ping the ∗. We proceed first with the derivation of models that describe the bidi-
rectional wave propagation.

5. Model equations

It has been observed that the horizontal velocity of the fluid is usually uniform
across the fluid depth and thus it is convenient to study either the depth averaged
velocity or the velocity of the fluid at a certain height above the bottom. It is
expected that in both cases the values of the velocities will be close. Here, we will
obtain approximate models to the Euler equations by using the mean velocity with
respect to depth:

ū =
1

1 + εη

∫ εη

−1

u(x, y, t)dy. (36)

Integrating the equation of the conservation of mass (continuity equation) (29)
we have

∫ εη

−1

ux dy + v(x, εη, t) − v(x,−1, t) = 0. (37)

Using Leibniz rule2 we have

∫ εη

−1

ux dy =
∂

∂x

∫ εη

−1

u dy − u(x, εη, t) · εηx = [hū]x − u(x, εη, t) · εηx. (38)

Applying the boundary conditions (31) and (33) we obtain from (38) the (exact)
equation

ηt + [hū]x = 0, (39)

where h denotes the total depth 1 + εη.
Similarelly, integrating the momentum equation (27) and using Leibniz rule, the

continuity equation (39) and the boundary conditions (31)–(33) we have

εhūt + ε2hūūx + ε2
∂

∂x

∫ εη

−1

(u2 − ū2) dy = −
∫ εη

−1

px dy. (40)

2 d

dt

(

∫

b(t)
a(t)

f(x, t)dx
)

=
∫

b(t)
a(t)

ft(x, t)dx + f(b(t), t) · b′(t) − f(a(t), t) · a′(t).
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5.1. The Serre-Green-Naghdi equations. In this subsection we will derive
model equations for strongly nonlinear long waves known to as the Serre-Green-
Naghdi equations (sometimes also referred to as also as the Su and Gardner equa-
tions), cf. [Ser53a, Ser53b, SG69, GLN74]. For the derivation of model equations,
crucial role plays the assumptions on the pressure field. Using Leibniz rule and
boundary condition (32) gives

∫ εη

−1

px dy = [hp̄]x − hxp(h) = [hp̄]x. (41)

To compute p̄ we write the y momentum equation (28) as

− py = 1 + εσ2Γ(x, y, t), (42)

where
Γ(x, y, t) = vt + εuvx + εvvy. (43)

Integrating (42) from y to εη we get

− p(x, y, t) = (y − h)− εσ2

∫ εη

y

Γ(x, z, t) dz, (44)

and taking the mean value

− hp̄ = −1

2
h2 − εσ2

∫ εη

−1

∫ εη

y

Γ(x, z, t) dz dy, (45)

and therefore, equation (40) is written

ūt + ηx + εūūx +
σ2

h

∂

∂x

∫ εη

−1

∫ εη

y

Γ(x, z, t) dz dy = − ε

h

∂

∂x

∫ εη

−1

(u2 − ū2) dy (46)

To compare u and ū we compute the Taylor3 polynomial of u around the bottom
−1. Denoting by ub the horizontal velocity at the bottom and using the boundary
condition (33) and the irrotationality condition (30), the Taylor polynomial for u
is

u(x, y, t) = ub(x, t) −
1

2
σ2(y + 1)2

∂2ub

∂x2
+O(σ4) (47)

and for v

v(x, y, t) = −y
∂ub

∂x
+

1

3!
σ2(y + 1)3

∂3ub

∂x3
+O(σ4). (48)

Integrating (47) it follows that

ub = ū+
1

6
σ2h2

∂2ū

∂x2
+O(σ4, εσ4), (49)

and consequently,

u(x, y, t) = ū+
1

6
σ2h2

∂2ū

∂x2
− 1

2
σ2(y + 1)2

∂2ū

∂x2
+O(σ4, εσ4). (50)

Taking squares in the previous equation we have:

u2(x, y, t) = ū2 +
1

3
ūσ2h2

∂2ū

∂x2
− ūσ2(y + 1)2

∂2ū

∂x2
+O(σ4, εσ4). (51)

Integrating (51) from −1 to εη and after simplifications follows that:
∫ εη

−1

(u2 − ū2)dy = O(σ4, εσ4). (52)

3f(x) = f(a) + (x− a)fx(a) +
1
2!
(x− a)2fxx(a) + O(x− a)3.
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Moreover, the vertical velocity

v(x, y, t) = −y
∂ū

∂x
+O(σ2). (53)

Substituting the last relation into (43) gives

Γ(x, y, t) = −y[ūxt + εūūxx − ε(ūx)
2] +O(σ2, εσ2). (54)

Combining (54), (52), (46) and taking into account that the quantity ūxt+εūūxx−
ε(ūx)

2 is independent of y we have

ūt + ηx + εūūx − σ2

3h

∂

∂x
[h3(ūxt + εūūxx − ε(ūx)

2)] = O(σ4, εσ4). (55)

In this setting we assume that σ ≪ 1 and ε = O(1). Summarizing, we derived
the Serre-Green-Naghdi system of equations given by

ηt + [(1 + εη)ū]x = 0, (56)

ūt + ηx + εūūx − σ2

3h

∂

∂x
[h3(ūxt + εūūxx − ε(ūx)

2)] = O(σ4, εσ4). (57)

Dropping the high-order terms and going back to dimensional variables is easy
to see that system (56)–(57) writes

ht + [hū]x = 0, (58)

ūt + ghx + ūūx −
1

3h

∂

∂x
[h3(ūxt + ūūxx − (ūx)

2)] = 0, (59)

with h = h0 + η.

5.2. The ‘classical’ Boussinesq system. Considering long waves of small am-
plitude, i.e. when σ ≪ 1 and ε ≪ 1 Serre system could be simplified more. For
example, keeping the terms of O(ε, σ2) in (57) we obtain the ‘classical’ Boussinesq
system, [Bou72, Per80, BCS02b]:

ηt + [(1 + εη)ū]x = 0, (60)

ūt + ηx + εūūx − σ2

3
ūxxt = O(σ4, εσ2), (61)

and in dimensional variables, setting the right-hand side equal to zero, we have

ht + [hū]x = 0, (62)

ūt + ghx + ūūx − 1

3
ūxxt = 0, (63)

with h = h0 + η.

5.3. Unidirectional model equations: The KdV and the BBM equations.

The previous systems describe the two-way propagation of water waves. In this
section we will derive equations that describe water waves traveling mainly in one
direction, such as the KdV and the BBM equations.

From the equations (60) and (61) of the ‘classical’ Boussinesq system we observe
that ηt + ūx = O(ε) and ūt + ηx = O(ε, σ2) respectively. From these equations the
wave equation follows ηtt + ηxx = O(ε, σ2), from which we choose the component
traveling to the right, i.e. the solutions such that ηt + ηx = O(ε, σ2). If we choose
such η and set ū = η then we obtain an O(1) solution, traveling mainly towards
one direction. Moreover, since ηt + ηx = O(ε, σ2) we deduce the general low order
approximation ∂t + ∂x = O(ε, σ2).
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To improve the accuracy of the solution we assume that

ū = η + εA+ σ2B +O(ε2, σ4), (64)

where A, B are functions of η and its derivatives with respect of x. Substitution
into the system (60)–(61) and collecting the terms of the same order we have

ηt + ηx + ε(Ax + 2ηηx) + σ2Bx = O(ε2, σ4), (65)

ηt + ηx + ε(At + ηηx) + σ2(Bt −
1

3
ηxxt) = O(ε2, σ4). (66)

Equating the terms of the same order so as equations (65)–(66) coincide and using
the low order approximations At + Ax = O(ε, σ2) and Bt + Bx = O(ε, σ2) we get
A = − 1

4
η2 and B = 1

6
ηxx. Therefore, (64) reduces to

u = η − ε

4
η2 +

σ2

6
ηxx

and so (60) reduces to the KdV equation:

ηt + ηx +
3

2
εηηx +

σ2

6
ηxxx = O(ε2, σ4). (67)

Ignoring the high-order terms and turning back to the dimensional and unscaled
variables, KdV takes the form

ηt +
√

gh0ηx +
3

2

√

g

h0

ηηx +
h3
0

6

√

g

h0

ηxxx = 0. (68)

To derive the BBM equation we use the fact that ηt + ηx = O(ε, σ2) and thus
ηxxx = −ηxxt + O(ε, σ2). Substituting the last identity into (67) we get the BBM
equation

ηt + ηx +
3

2
εηηx − σ2

6
ηxxt = O(ε2, σ4), (69)

which in dimensional and unscaled variables could be written in the form:

ηt +
√

gh0ηx +
3

2

√

g

h0

ηηx − h2
0

6
ηxxt = 0. (70)

5.4. The Shallow Water equations. Assuming that the pressure is hydrostatic,
i.e. the vertical accelerations are negligible, and py = −1, (or in dimensional
variables py = −ρg), equation (45) reduces to hp̄ = 1

2
h2. Therefore, equation (46)

with the help of (52) leads to

ūt + ηx + εūūx = O(σ4, εσ4), (71)

and the Shallow Water Wave system:

ht + ε[hū]x = 0, (72)

ūt + ηx + εūūx = O(σ4, εσ4). (73)

In dimensional variables, dropping the high order terms the Shallow Water equa-
tions are written as

ht + [hū]x = 0, (74)

ūt + ghx + ūūx = 0, (75)

which is a nonlinear system of conservation laws without dispersive terms. This
system can also be derived using the shallow water assumption σ2 ≪ 1 and keeping
only the terms of O(ε) in (63).
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