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Multiple Interaction and Localization Phenomena in the
Postbuckling of Compressed Thin-Walled Members

A. Luongo* and M. Pignatarot
University of Rome, Rome, Italy

In this paper, the effect of boundary conditiens on multiple interactive buckling in thin-walled members under
compression is analyzed by means of the general theory of stability. The total potential energy is expanded to up
to third-order terms to investigate structures with asimmetric postbuckling behavior; initial geometric imperfections
are taken into account. Under simplifying assumptions, the nonlinear equations governing the postcritical behavior
reduce to a linear eigenvalue problem that is independent of the geometric and mechanical properties of the column
and depends on the boundary conditions only. Localization of the buckling patterns is verified when a large number
of local buckling modes occur simultaneously. A continuum represeptation, based on the substitution of the
algebraic eigenvalue problem with a differential equation, is proposed.

I. Introduction

N the past, many researchers gave a great deal of attention

to the occurrence of simultaneous or nearly simultaneous
buckling modes in elastic structures. This is due to the fact
that structures with stable postbuckling behavior in corre-
spondence with each of the single buckling modes may exhibit
sensitivity to imperfection when two or more buckling modes
interact.'? Following the pioneering work of Van der Neut®
and Koiter and Kuiken,* a lot of work has been stimulated
recently on this topic by the extensive use of high-strength
materials in plate assemblages such as thin-walled members
(TWM), where local and overall buckling modes are likely to
occur simultaneously.>*? All this work, however, regards the
interaction between one overall and one single local buckling
mode (single interaction) and therefore is valid for moderately
long members. For long members, an investigation of the
interaction must necessarily take into account the presence of
a greater number of local modes that occur under (nearly) the
same critical stress (multiple interaction). This argument has
been analyzed very recently in a few papers,'>!* where the
postbuckling behavior of simply supported TWM under com-
pression has been investigated.

In this work, the effect of multiple interaction on the
postbuckling behavior of TWM under compression for vari-
ous boundary conditions is analyzed. The analysis is based on
the general theory of stability! by expanding the total poten-
tial energy up to third-order terms in order to investigate
structures with asymmetric behavior. It is shown that, under
suitable simplifying assumptions, it is possible to replace the
nonlinear governing equations with a linear eigenvalue prob-
lem that is independent of the TWM geometric and mechani-
cal properties and depends on boundary conditions only. The
occurrence of a cluster of local buckling modes leads to a
local deformation concentrated in one or more narrow bands
of the beam axis. This phenomenon is known as “localization
of the buckling patierns,”t>"’
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All results can be justified on the basis of a continuum
representation that can be applied when an infinite number of
local buckling modes are interacting. This procedure is based
on the replacement of the algebraic eigenvalue problem with a
differential equation. A numerical example has been worked
out on the postbuckling behavior of two stiffened panels with
slender and stocky stiffeners under different boundary condi-
tions.

II. Structural Model and Postbuckling Aunalysis

Let us consider the total potential energy of a plate of
length ¢, width b, and thickness ¢ uniformly compressed by
the stress N, in the longitudinal direction x:
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Where E is the Young modulus, v the Poisson ratio, and 4 a
load parameter. Let us assume for the strain measures the
following expressions:
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where u,v are the in-plane displacement components in the x,y
directions, w is the lateral displacement, and a comma denotes
differentiation with respect to the following variable.

By replacing Egs. (2) into Eq. (1), the total potential energy
in terms of the displacement gradients is derived. By con-
sidering the TWM as a plate assemblage, the total potential
energy @ is obtained by adding up all contributions from
single plates. Explicit expressions of second- and third-order



terms are furnished by
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where S is the middle surface of the TWM. Fourth-order
terms are not given, since it can be shown that, under suitable
assumptions, they are not essential to the evaluation of the
slope of the bifurcated paths.

If initial imperfections #,0,% are present, assuming the
plates to be stress free in the unloaded state, the total
potential energy @ is modified by the addition of the extra
contribution
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where only linear terms in the initial displacements have been
retained.

For the analysis of the postbuckling behavior of the perfect
structure, it is convenient to express the bifurcated path
v == () by a series expansion in terms of a parameter &:°

A=A 448+
v=0,{+50,87+ (6)

where v is a displacement vector measured from the
fundamental path. The critical load A, and the buckling mode
v, are determined by solving an eigenvalue problem, the
remaining coefficients of Eqgs. (6) being furnished by a
second-order perturbation equation. In the case of » buckling
modes v,; associated with the same value A, we have, for the
general solution to the eigenvalue problem, v, = vp,, where
the v, are arbitrary constants and the summation convention
with respect to repeated indices has been adopted. Without
any loss in generality, these modes can be orthonormalized
according to mheyvy, = J,, where §; is the Kronecker delta and
fc2 is the quadratic part of the elasttc energy ®. By requesting
nhw: = 1, the condition

vy = 1 (N
follows. The condition of solvability of the second-order

perturbation equations leads to the nonlinear algebraic system
in the unknowns v, and Ay

Agvy; + A Byv; =0 (i,7k =1..r) (8}

where
Ay = Qv 0 (9a)

By = Zd)’c'”u”lk (Sb)

a prime denoting a Frechet differentation and & =[do"/
d4],,. For the analysis of the imperfect structure, it is assumed
for the initial displacements # = £u*, where & is the amplitude
and #* denotes the shape of the imperfections that is selected
as #* = v¥y,, v¥ being the set of coefficients corresponding to
the postbuckling path of steepest descent of the perfect struc-
ture. In this case, by limiting ourselves to a third-order
analysis, the snapping load is furnished by -

A
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for ¥ >0 and p& < 0 or vice versa. In Eq. (10), 4F = max{4,}
is the largest slope coefficient, and

p =Tt )LD ,)? (1nH

where a tilde denotes differentiation with respect to @
For a TWM, under the assumption of free transverse
expansion, one obtains
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By eliminating & from Egs. {6), the equilibrium path

Ao =1+ wop/h) (13
is obtained where

#= (/AR [vER) (14)

vp being a displacement component of a selected point P of
the TWM, »f; the contribution to ¢, from the ith buckling
mode, and & a dimension of the cross section. The snapping
load, Eq. (10). reduces to
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where i, is a component of the displacement of the point P
due to initial imperfections.

[, Multiple Interaction

Let us consider the case of multiple interaction between one
overall mode, flexural (eulerian) or ﬁexural-wrsionah and m
local modes characterized by n,,1,,....0,, . longitudinal half-
waves with #n; > 1.The integers #; beiong to an interval with
middle point n, to which ccrresponds the lowest local eritical
stress oy, coinciding with the overall critical stress. In our
analysis, we assume that o, remains constant inside the
interval, so that the m + 1 buckling modes occur simulta-
neously. The system of Eq. (8) consists in this case of m + 1
nonlinear equations and m + 2 unknowns vi,¥a,...,%, 4 14y {0
which the normalization condition Eq. (7) must be added. A
great computational effort is generally required to find all
solutions of the system whose number is not known a priori,
and, therefore, a simplified analysis appears to be desirable.
To this end, we make a number of assumptions by distin-
guishing two approximation levels that permit us to achieve
our purpose.



A. First Approximation Level

Two basic assumptions are made:

1} In the overall mode, the TWM buckles as a shear
indeformable beam with free transverse expansion
(w,, +v, =00, = —vu,), and the displacement field for the
generic plate element is described by

w(x.y) = —a,Ui(n)f(x) (16a)
vi(x.y) = a Ui ()f(x) (16b)
wi(x.y) = & Wi(»)f(x) (16¢)

where a prime denotes differentiation of a function with
respect to the corresponding argument. Equations (16) are
valid for any boundary condition if the overall buckling mode
is Eulerian and only for particular boundary conditions for
the flexural-torsional mode of open TWM.

2) In the local buckling modes, joints do not translate, so
that only lateral displacements of the plate components are
possible. The jth buckling mode is therefore represented by

ufx,y) =0 (17a)
vix,y) =0 (17b)

wix.y) = a;W{ y) sinfnnx/f), (j=23,,.m+1) (170

Note that the displacement field of Eq. (17) is valid both for
long TWM and for members restrained at the ends by flexible
diaphragms inextensible in their own plane.

As a consequence of the first assumption, 4,;, =0, and of
the second, 4, = 0 for i,j,k > 1, since lateral displacements in
Eq. (4) are always coupled with in-plane displacements. Be-
sides, from assumptions 1) and 2) it follows that

A =J Et(uy w0, 4S, (k= 1,2,.m + 1) (18)
5

By replacing Egs. (16) and (17) into Eq. (18) one gets
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% being the cross-sectional middle line and
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According to previous results, Egs. (8) then simplify into

Ay ~ 24 fA v, =0 (21)
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By posing

n=A/vl. (23)
Egs. (22) read

(A — v, =0, (jk=23,.m+1) 24)

The system of Egs. (24) represents a linear eigenvalue
problem that furnishes m real eigenvalues, since matrix 4, is
real and symmetric. By denoting with #,, the Ath eigenvalue
and with v{ the corresponding eigenvector, the values of v{®

and A{Y can be obtained by solving Egs. (21) and (23):

v = 4 (252)
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The arbitrary constant of the eigenvector v{ is determined, to
within the sign, from the normalization condition Eq. (7),
and, therefore, the 2m solutions AP v, +vP,..., +v®_, are
obtained. Note that these solutions are independent of the
sign of APv{" furnished by Egs. (25), and, therefore, they
represent all bifurcated paths.

The coefficient v, furnished by Eqs. (25) shows that, along
any bifurcated path, 1/3 of the energy m5v? is associated with
the overall mode and 2/3 with the local modes, whatever the
number m is. This derives from the fact that the buckling
modes have been orthonormalized with respect to the
quadratic operator w5,

(25b)

B. Second Approximation Level

The previous analysis can be simplified if a further assump-
tion is introduced:

3) The shape of the local critical mode in the cross-
sectional plane is independent of the number of longitudinal
half-waves.

This is true when the TWM plate components are simply
supported along the longitudinal edges, and it is verified with
good approximation for long plates with different boundary
conditions and #, not too far from ny. Under this assumption,
it can be shown that, by using the normalization condition,
the amplitude a; of the local critical mode is proportional to
1/n;, according to

1 2
a? 2 (1fe Wi p)t dyy (26)
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where W, () is the cross-sectional lateral deflection of any of
the local modes. By virtue of Eq. (26), Eq. (19) can be written
as

Aljk =J"ijk 27
where
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By denoting with 7, = 2¢,,, the eigenvalue for single interac-
tion (m = 1), Eqgs. (24) can be rewritten as

(c ’lljik - n*éjk)vk =0 (29
where
n* = (302)
o
oty = M (30b)
Ci2z

In this analysis #, 5 0 is assumed. Both this case and #,=0
are treated in Ref. 18,

Equations (29) are independent of the geometrical and
mechanical properties of the structure, and their solution
depends on the boundary conditions and on the number m of
local buckling modes only. The analysis of the problem at
hand can therefore be carried out by determining 5, from the
problem of single interaction and multiplying the results by
the amplifying factor »*.

Within this approximation level, it can be shown!® that, for
a large number of interacting buckling modes, matrix c¢¥, is



Table 1 Coeflicients for eigenvalue problem, Eq. (29), for various boundary conditions
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ig. 1 Amplifying factor vs number of local buckling modes. < < ”
positive definite if /"(x) maintains its sign in [0,£], and it is V \/
indefinite if f”(x) changes sign. Consequently, the eigenvalues
n* are all positive in the first case and have both signs in the 7= 9
nr25

second case. By remembering that f7(x) is proportional to the
bending moment of the overall buckling, one may conclude
that if the bending moment is constant in sign, the beam
global displacement always occurs in the same direction,
whatever the shape of the local deformation; if the bending
moment changes sign, then the direction of the global dis-
placement depends on the local deformations.

IV. Effect of Boundary Conditions on Postbuckling

In a previous work,'* the effect of multiple interaction on
the postbuckling of a simply supported beam at first and
second approximation levels was investigated. In this section,
our attention is focused on the effect of boundary conditions
on the posteritical behavior of TWM within the framework of

Fig. 2 Simply supported beam: localization along path of steepest
descent.

the second approximation level. We shall consider three differ-
ent problems, namely, a simply supported beam, a fixed-free
beam, and a fixed-supported beam. Two more cases charac-
terized by no single interaction are treated in Ref. 18.

In Table 1, the coefficients ¢, 125, and ¢, defined by Egs.
(20) and (30b) are derived under the hypothesis that n,
n, > 1. Note that because of this simplifying assumption,
these coefficients are independent of the middle value of the
set of n;
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Fig. 3 Simply supported beam: localization along different bifurcated
paths.

For the three beams, Eq. (29) has been solved for increasing
values of m, and it is found that the eigenvalues of the first
two cases coincide. The values of n,, vs m have been plotted
in Fig. 1, where it is apparent that the amplifying effect due to
multiple interaction is much larger for the fixed-supported
beam in comparison with the other two. For increasing values
of m, n%,, rapidly approaches the asymptote z/2 for the first
two beams and 3.69 for the third. Correspondingly, nk,,
approaches zero and —3.60, respectively. For increasingly
large values of m, there is an infinite number of bifurcated
paths, with amplifying factors ranging between nf;, and 7%,,.
Note that the sign of n#* is in accordance with the sign of
f7(x), as was discussed at the end of the previous section.

Let us now consider the x dependence ¢(x) of the lateral
displacement due to local buckling. Figure 2 shows the local
deflection ¢(x) corresponding to the bifurcated path of steep-
est descent for the simply supported beam in correspondence
with different values of m. It is seen that for an increasing
number of interacting modes, the deformation tends to local-
ize at midspan. This phenomenon is known in the technical
literature as localization of buckling patterns and has been
observed experimentally in Ref. 15 and investigated analyti-
cally in Refs 16 and 17. In Fig. 3, the local deformations
relative to various bifurcated paths corresponding to #¥n¥n¥
have been represented for a fixed value of m. It is seen that for
decreasing values of n*, localization moves toward the ends of
the beam.

Pm

*
9 e

— Bt e V — X

M
\1

P
L%
N~
W Bl x
1S
ne=2S

Fig. 4 Fixed-supported beam: localization along paths of maximum
positive and negative slope,

Quite analogous is the behavior of the fixed-supported
beam. In Fig. 4, the localization is represented in correspon-
dence with ¥, and n¥,,. It is observed that for n* =n%,,,
the deformation is concentrated around the point of maxi-
mum bending moment (x/¢ = 0.601), and for n* =%, local-
ization occurs at the fixed end, where there is the largest
negative moment. For intermediate values of n*, one may
have a single localization for n* <0 or two localizations for
7*>0.

V. Continuum Representation for an Infinite Number
of Local Buckling Modes

Results so far obtained show that for a sufficiently large
number m of interacting local buckling modes, 1) n¥,, and
n*., approach an asymptote; 2) there are 2m bifurcated paths
with amplifying factors ranging between n¥%,, and nk,; and 3)
the local lateral displacement localizes in different sections of
the TWM according to the value of g*.

These results can be justified on the basis of a continuum
representation that consists of replacing the algebraic Egs.
(29) with a differential eigenvalue problem. To this end, let us
consider the differential equation

{/"® B0} =0 (31

where f(x) is the function defined by Egs. (16), ¢(x) is the
unknown function that must satisfy the boundary conditions

$(0) = d(¢) =0 (32)

and p is the eigenvalue. Let us solve the differential equation
by means of a Galerkin procedure by assuming for ¢(x) the
series expansion

m+ 1

$=3 < sinn,.f‘;- (33)

J=2 0
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Fig. 6 Stiffened panels: a) slender stiffeners; b) stocky stiffeners.

which satisfies the required boundary conditions for any value
of the arbitrary coefficients v,. By replacing Eq. (33) into the
variational principle

£
J (S —B¢Topdx=0 (34)
0
integrating by parts, and using Eqs. (20) and (30b} one gets

fe ’x’}k ~{(pe] 20222)5;‘1:}"1* = (35)

From comparison of the discrete eigenvalue problems of Egs.
(29) and (35), the relation

n* = (B [2¢12) (36)

is obtained. The result, Eq. (36), shows that, for m approach-
ing infinity, #* can be obtained from the solution # of the
continuous problem Eq. (31). Note that, according to Eq.
(33), function ¢(x) represents the local displacement.

The continuous problem allows infinite singular solutions
for frin = B = finax, which can be interpreted as localization of
the function ¢(x). For each value of f, one or more eigensolu-
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fixed-supported

.002 006 010 Wk

Fig. 7 Sensitivity to initial imperfections for panel with slender
stiffeners.

tions x = x; are obtained for f"(x,) = B. Figure 5 illustrates the
situation for a given f7(x).

From Eq. (36), the largest positive and negative slopes of
the bifurcated paths are obtained:

ﬂ:x?x = %if;ngx ({/[6122) (37)
min min

where nk.. (1%;.) is associated with fi., (fimi) fOr 2 positive
value of ¢;,,. From Egs. (37), the path of steepest descent can
be determined. The corresponding localization occurs at the
cross-section of the largest bending moment in the overall
buckling.

Equation (37) may be used for practical purposes for any
boundary condition simply by knowing the bending moment
function f7(x) due to overall buckling, without any need for
solving the linear eigenvalue problem, Eq. (29). Previous
results in Sec. IV can be explained in the light of the preceding
discussion. Details are given in Ref. 18.

V1. Numerical Results

As an application of the theory presented, we analyze the
postbuckling behavior of two stiffened panels with different
boundary conditions, the geometry of which is shown in Fig.
6. Pancls a and b are characterized by stiffeners with low and
high torsional rigidity, respectively. The dimensions are the
following: A= 10cm, b =30cm, and ¢ =02cm for both
cases; £, = 0.3 ¢m and £, = 715 cm for case a; and £, = 0.2cm,
¢=35cm, and £, =680 cm for case b, £, being the distance
between two consecutive nodal lines in the overall mode.

In the first case, it is assumed that in the local buckling,
single plates are simply supported at the joints and buckle
according to a sinusoidal law in the transverse direction, while
stiffeners rotate rigidly around the junction lines. In the
second case, it is assumed that stiffeners do not rotate, and,
therefore, plates are fixed along the longitudinal edges. The
geometry has been selected in such a way that Euler and local
buckling occur simultaneously.

In order to perform postbuckling analysis, we first note
that, due to the high value of the aspect ratio £y/b, lateral
deflection of a single plate in the local buckling is practically
independent of the number of longitudinal half-waves »; for
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both panels, and, therefore, the second approximation level of
the theory can be applied.

A. Panel with Slender Stiffeners

According to the selected geometry, it is found that the
critical stress A, is equal to 33.2 MPa. The lateral local dis-
placement is given by

WA(y) = sm’—‘lff (38a)
on the plate

W) =7y (38b)

on the stiffener. The overall longitudinal displacement is
furnished by

Uy =d (39a)

on the plate
U(y) =d-y (39b)
on the stiffener where d = 1.67 cm is the distance between the

panel centroid and the plate middle plane. By replacing Egs.
(38) and (39) into Eq. (28), the constant &/ is obtained:

_ Ea LR (2 W\ b 1 K

(40)

By using coefficients ¢;,, from Table 1, the values of
o= ¢y, can be determined, and then the slope p =y,
relative to the single interaction can be evaluated according to

o =h 1 (41)
@

Equation (41) has been obtained from Eqgs. (14) and (23) by
selecting as P a corner point (with no local displacement)

belonging to the cross section of largest deflection. The results
are gy = —0.259 for a panel simply supported at the ends,
e =0.259 for a fixed-free panel, and uy= —0.081 for a
fixed-sliding panel. By multiplying p, by the limit value of the
amplifying factor #%,,, the actual slope u corresponding to
multiple interaction is obtained. It is found that u = —0.407,
po=0407, and u = —0.299 for the three boundary conditions
examined. In accordance with the sign of u and with the fact
that in the three cases displacements v, in Eq. (13) are positive
if upward, it is found that the load along the equilibrium path
decreases for cross-sectional displacements associated with
stiffener compression. Figure 7 shows the dependence of the
snapping load, Eq. (15), on the initial geometric imperfections
amplitude W, /h, both for single (m = 1y and multiple interac-
tion (m = ), and describes the behavior of the simply sup-
ported (or fixed-free) and fixed-sliding panel. It is apparent
that in both cases, sensitivity to intitial imperfections, in
passing from single to multiple interaction, increases; the drop
of the snapping load for m = o0 and an initial imperfection
w,/h around 0.006 is of the order of 10% for the two panels.

B. Panel with Stocky Stiffeners

The critical stress is 4, = 57.8 MPa. Since stiffeners do not
undergo any lateral displacement or torsional rotation in local
buckling, we get, from Eq. (28),

2Ea,

o 7 d (42)
with d = 2.5 ¢cm, from which, by following previous steps, the
slope u, of the postbuckling path is obtained. It is found that
Ho =121, pg= —1.21, and py=037 for the three cases of
boundary conditions. From g, the values of y are derived by
multiplying by nk,,, and the results g = 1.90, u = —1.90, and
1 = 1.36 are determined. In accordance with the sign of g, the
load along the equilibrium path decreases for cross-sectional
displacements associated with panel compression. It is worth-
while to note that panels with stocky stiffeners are more
sensitive to initial imperfections than panels with slender
stiffeners. This is shown in Fig. 8, where the snapping load in
terms of initial imperfections has been plotted. For w,/h
around 0.006, there is a reduction of the critical load on the
order of 20% for all boundary conditions considered and
m = c0. Note that for both panels a and b, curves relative to
single interaction are far apart and tend to approach each
other for increasing m. This implies that the effect of
boundary conditions is softened by the simultaneous occur-
rence of many buckling modes.

VII. Conclusions

In this paper, the effect of the interaction between one
overall and several local buckling modes on the postbuckling
of long TWM with asymmetric behavior and various
boundary conditions has been analyzed by means of the
general theory of stability. Initial geometric imperfections are
taken into account.

Under suitable simplifying assumptions, the governing non-
linear equations are replaced by a linear eigenvalue problem
that depends on the boundary conditions only. The solution
to this problem furnishes the amplifying factor of the slope of
the postbuckling paths, which is found useful in applications.
Localization of the lateral deformation is verified whenever a
large number of local buckling modes occur simultancously.
All results are justified on the basis of a continuum represen-
tation where the algebraic eigenvalue problem is replaced by a
differential equation.

As a numerical example, the postbuckling behavior of two
stiffened panels with slender and stocky stiffeners and different
boundary conditions has been investigated. It is found that
the second type of panel is more sensitive to initial imperfec-
tions. Furthermore, for both panels, the snapping load vs
initial imperfections curves, relative to single interaction, are
far apart and tend to approach each other for an increasing



number of interacting modes. This implies that the effect of
boundary conditions is smoothed by the simultaneous occur-
rence of several buckling modes.
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