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Double Poisson Cohomology of Path Algebras of Quivers

In this note, we give a description of the graded Lie algebra of double derivations of a path algebra as a graded version of the necklace Lie algebra equipped with the Kontsevich bracket. Furthermore, we formally introduce the notion of double Poisson-Lichnerowicz cohomology for double Poisson algebras, and give some elementary properties. We introduce the notion of a linear double Poisson tensor on a quiver and show that it induces the structure of a finite dimensional algebra on the vector spaces V v generated by the loops in the vertex v. We show that the Hochschild cohomology of the associative algebra can be recovered from the double Poisson cohomology. Then, we use the description of the graded necklace Lie algebra to determine the low-dimensional double Poisson-Lichnerowicz cohomology groups for three types of (linear and non-linear) double Poisson brackets on the free algebra C x, y . This allows us to develop some useful techniques for the computation of the double Poisson-Lichnerowicz cohomology.

Introduction

Throughout this paper we will work over an algebraically closed field of characteristic 0 which we denote by C. Unadorned tensor products will be over C. We will use Sweedler notation to write down elements in the tensor product A ⊗ A for A an algebra over C.

A double Poisson algebra A is an associative unital algebra equipped with a linear map { {-, -} } : A ⊗ A → A ⊗ A that is a derivation in its second argument for the outer A-bimodule structure on A ⊗ A, where the outer action of A on A ⊗ A is defined as a.(a ′ ⊗ a ′′ ).b := (aa ′ ) ⊗ (a ′′ b). Furthermore, we must have that { {a, b} } = -{ {b, a} } o and that the double Jacobi identity holds for all a, b, c ∈ A:

{ {a, { {b, c} } ′ } } ⊗ { {b, c} } ′′ + { {c, a} } ′′ ⊗ { {b, { {c, a} } ′ } } + { {c, { {a, b} } ′ } } ′′ ⊗ { {a, b} } ′′ ⊗ { {c, { {a, b} } ′ } } ′ = 0,
where we used Sweedler notation, that is { {x, y} } = { {x, y} } ′ ⊗ { {x, y} } ′′ for all x, y ∈ A. Such a map is called a double Poisson bracket on A. Double Poisson algebras were introduced in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF] as a generalization of classical Poisson geometry to the setting of noncommutative geometry. More specifically, a double Poisson bracket on an algebra A induces a Poisson structure on all finite dimensional representation spaces rep n (A) of this algebra. Recall that the coordinate ring C[rep n (A)] is generated as a commutative algebra by the generators a ij for a ∈ A and 1 ≤ i, j ≤ n, subject to the relations j a ij b jk = (ab) ik . For each n, the Poisson bracket on the coordinate ring C[rep n (A)] of the variety of n-dimensional representations of A is defined as {a ij , b kℓ } := { {a, b} } ′ kj { {a, b} } ′′ iℓ . This bracket restricts to a Poisson bracket on C[rep n (A)] GLn , the coordinate ring of the quotient variety iss n (A) under the action of the natural symmetry group GL n of rep n (A).

In case the algebra is formally smooth (i.e. quasi-free in the sense of [START_REF] Cuntz | Algebra extensions and nonsingularity[END_REF]), double Poisson brackets are completely determined by double Poisson tensors, that is, degree two elements in the tensor algebra T A Der(A, A ⊗ A). For example, the classical double Poisson bracket on the double Q of a quiver Q is the bracket corresponding to the double Poisson tensor

P sym = a∈Q ∂ ∂a ∂ ∂a *
and its Poisson bracket corresponds to the symplectic form on the representation space of the double of a quiver used in the study of (deformed) preprojective algebras (see [START_REF] Crawley-Boevey | Geometry of the moment map for representations of quivers[END_REF] and references therein for further details on deformed preprojective algebras).

We will denote by Der(A) the space Der(A, A ⊗ A) of all derivations of A, with value in A ⊗ A, for the outer A-bimodule structure on A ⊗ A. This space Der(A) becomes a A-bimodule, by using the inner A-bimodule structure on A ⊗ A: if δ ∈ Der(A) and a, b, c ∈ A, then (aδb)(c) = δ(c) ′ b ⊗ aδ(c) ′′ .

As in the classical case, it is possible to define Poisson cohomology for a double Poisson bracket. This was briefly mentioned in [START_REF] Van De Weyer | Double Poisson structures on finite-dimensional semisimple algebras[END_REF] and will be formalized and illustrated in this note. More specifically, in Section 2, we will recall and formalize the definition of the double Poisson cohomology from [START_REF] Van De Weyer | Double Poisson structures on finite-dimensional semisimple algebras[END_REF]. We will then give, in Section 3, an explicit formulation of the Gerstenhaber algebra of poly-vectorfields and its noncommutative Schouten bracket for the path algebra of a quiver in terms of its graded necklace Lie algebra equipped with a graded version of the Kontsevich bracket. This description will first of all be used to define and classify linear double Poisson structures on path algebras and quivers in Section 4. On the free algebra in n variables, treated in Section 5, this classification becomes Proposition 1 (Prop. 10, Section 5) There is a one-to-one correspondence between linear double Poisson brackets on C x 1 , . . . , x n and associative algebra structures on V = Cx 1 ⊕ • • • ⊕ Cx n . Explicitly, consider the associative algebra structure on V determined by

x i x j := n i,j,k=1 c k ij x k ,
where c k ij ∈ C, for all 1 ≤ i, j, k ≤ n, then the corresponding double Poisson bracket is given by

{ {x i , x j } } = n k=1 (c k ij x k ⊗ 1 -c k ji 1 ⊗ x k ),
which corresponds to the Poisson tensor:

P = n i,j,k=1 c k ij x k ∂ ∂x i ∂ ∂x j .
Next we show there is a connection between the Hochschild cohomology of finite dimensional algebras and the double Poisson cohomology of linear double Poisson structures. We obtain Theorem 1 (Thm. 3, Section 5) Let A = Cx 1 ⊕• • •⊕Cx n be an n-dimensional vector space and let

P = n i,j,k=1 c k ij x k ∂ ∂x i ∂ ∂x j
be a linear double Poisson structure on T C A = C x 1 , . . . , x n . Consider A as an algebra through the product induced by the structure constants of P (the c k ij ∈ C) and let HH • (A) denote the Hochschild cohomology of this algebra, then (H • P (T C A)) 1 ∼ = HH • (A). Here the grading on (H • P (T C A)) is induced by the grading on

T T C A [T T C A ,T T C A ] i , which is defined through deg(x i ) = 1.
From the appendix in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF] we know that the double Poisson cohomology of a double Poisson bracket corresponding to a bi-symplectic form (as defined in [START_REF] Crawley-Boevey | Noncommutative geometry and quiver algebras[END_REF]) is equal to the noncommutative de Rham cohomology computed in [START_REF] Bocklandt | Necklace Lie algebras and noncommutative symplectic geometry[END_REF], which is a translation of a similar result in classical Poisson geometry. In general, little is known about the classical Poisson cohomology and it is known to be hard to compute. In Section 6, we will compute, using the description of the algebra of poly-vectorfields in Section 3, the low-dimensional double Poisson cohomology groups for the free algebra C x, y , equipped with three different types of non-symplectic double Poisson brackets. This will in particular allow us to develop some tools (including a noncommutative Euler formula, Proposition 12) and techniques, that seem to be useful for the determination of the double Poisson cohomology.
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Double Poisson Cohomology

In [START_REF] Lichnerowicz | Les variétés de Poisson et leurs algèbres de Lie associées[END_REF], Lichnerowicz observed that d π = {π, -} with π a Poisson tensor for a Poisson manifold M ({-, -} is the Schouten-Nijenhuis bracket) is a square zero differential of degree +1, which yields a complex

0 dπ → O(M) dπ → Der(O(M)) dπ → ∧ 2 Der(O(M)) dπ → . . . ,
the homology of which is called the Poisson-Lichnerowicz cohomology. In this section, we show there is an analogous cohomology on T A Der(A) that descends to the classical Poisson-Lichnerowicz cohomology on the quotient spaces of the representation spaces of the algebra.

In [12, §4], the notion of a differentiable double Poisson algebra was introduced. For an algebra A, the noncommutative analogue of the classical graded Lie algebra ( O(M ) Der(O(M)), {-, -}) of polyvector fields on a manifold M, where {-, -} is the Schouten-Nijenhuis bracket, is the graded Lie algebra In order to obtain the noncommutative analogue of the classical Poisson-Lichnerowicz cohomology, we observe that T A /[T A , T A ][1] is a graded Lie algebra, so it is a well-known fact that if P satisfies {P, P } = 0 the map

T A Der(A)/[T A Der(A), T A Der(A)][1]
d P := {P, -} : T A /[T A , T A ][1] → T A /[T A , T A ][1]
is a square zero differential of degree +1. This leads to Definition 2 Let A be a differentiable double Poisson algebra with double Poisson tensor P , then the homology H • P (A) of the complex

0 d P → T A /[T A , T A ][1] 0 d P → T A /[T A , T A ][1] 1 d P → T A /[T A , T A ][1] 2 d P → . . . is called the double Poisson-Lichnerowicz cohomology of A.
Analogous to the classical interpretation of the first Poisson cohomology groups, we have the following interpretation of the double Poisson cohomology groups: Let A be an associative algebra with unit. From [12, §7] we know that the Poisson bracket on rep n (A) and iss n (A) induced by a double Poisson tensor P corresponds to the Poisson tensor tr(P ). We furthermore know that the map tr :

H 0 P (A) = {double Casimir functions} := {a ∈ A | a mod [A, A] ∈ Z(A/[A, A])} H 1 P (A) =
T A /[T A , T A ][1] → Der(O(rep n (A)
) is a morphism of graded Lie algebras, so we have a morphism of complexes 

0 / / (T A /[T A , T A ]) 0 tr d P / / (T A /[T A , T A ]) 1 tr d P / / (T A /[T A , T A ])
{ {P, f g} } = f { {P, g} } + { {P, f } }g whence {P, f g} ∈ f [A, A] + [A, A]g ⊆ [A, A].
It is a natural and interesting question to ask whether the map from the double Poisson cohomology to the classical Poisson cohomology is onto or not. For finite-dimensional semi-simple algebras it is onto (see [START_REF] Van De Weyer | Double Poisson structures on finite-dimensional semisimple algebras[END_REF]), but for some of the double Poisson brackets considered in Section 6, the map is not onto.

NC Multivector Fields and the graded Necklace Lie Algebra

For a quiver Q, the necklace Lie algebra was introduced in [START_REF] Bocklandt | Necklace Lie algebras and noncommutative symplectic geometry[END_REF] in order to generalize the classical Karoubi-De Rham complex to noncommutative geometry.

• • A A A •r r r • • v v v • ! ! ! • A A A • r r r • • v v v ! ! ! u • • A A A •r r r • • v v v • ! ! ! • A A A • r r r • • v v v ! ! ! v ! ! ! ! ! a∈Q 1 w 1 w 2 a a * [ [ • • A A A •r r r • • v v v • ! ! ! • A A A • r r r • • v v v ! ! ! u • • A A A •r r r • • v v v • ! ! ! • A A A • r r r • • v v v ! ! ! v ! ! ! ! ! - w 2 w 1 a a * [ [ Fig. 1. Lie bracket [w 1 , w 2 ] in N Q .
We will briefly recall the notions from [START_REF] Bocklandt | Necklace Lie algebras and noncommutative symplectic geometry[END_REF] needed for the remainder of this section.

Definition 3 For a quiver Q, define its double quiver Q as the quiver obtained by adding for each arrow a in Q an arrow a * in the opposite direction of a to Q. Now recall that the necklace Lie algebra was defined as Definition 4 The necklace Lie algebra N Q is defined as N Q := CQ/[CQ, CQ] equipped with the Kontsevich bracket which is defined on two necklaces w 1 and w 2 as illustrated in Figure 2. That is, for each arrow a in w 1 , look for all occurrences of a * in w 2 , remove a from w 1 and a * from w 2 and connect the corresponding open ends of both necklaces. Next, sum all the necklaces thus obtained. Now repeat the process with the roles of w 1 and w 2 reversed and deduct this sum from the first. Now consider the following grading on CQ: arrows a in the original quiver are given degree 0 and the starred arrows a * in Q are given degree 1. We now can consider the graded necklace Lie algebra CQ/[CQ, CQ] super equipped with a graded version of the Kontsevich bracket, as introduced in [START_REF] Iuliu | On the non-commutative geometry of topological Dbranes[END_REF].

Definition 5

The graded necklace Lie algebra is defined as

n Q := CQ/[CQ, CQ] super
equipped with the graded Kontsevich bracket defined in Figure 3. Monomials in n Q are depicted as ornate necklaces, where the beads represent arrows in the necklace and where one bead is encased, indicating the starting point of the necklace. An example of an ornate necklace is

a∈Q 1 (-1) d 1 a • • • d d d d p 1 a w 1 • g g g g { { • q 1 a a • a * • Ð Ð Ð Ð p 2 a * q 2 a * d d d d w 2 • e e { { { { • • + (-1) d 2 a • • • d d d d p 2 a w 2 • g g g g { { • q 2 a a • a * • Ð Ð Ð Ð p 1 a * q 1 a * d d d d w 1 • e e { { { {
• g f Ó Ó Ó Y Y Y Y • Y Y Y Y Ó Ó Ó Ó • h
representing the element f δg∆h∆ if we let • represent δ and • represents ∆. The identities coming from dividing out supercommutators then look like

• g f Ó Ó Ó Y Y Y Y • Y Y Y Y Ó Ó Ó Ó • h = • g f Ó Ó Ó Y Y Y Y • Y Y Y Y Ó Ó Ó Ó • h .
This graded necklace Lie algebra is the noncommutative equivalent of the classical graded Lie algebra of multivector fields.

Theorem 1 Let Q be a quiver, then

T CQ Der(CQ)/[T CQ Der(CQ), T CQ Der(CQ)] ∼ = n Q
as graded Lie algebras.

Proof. From [START_REF] Van Den Bergh | Double Poisson algebras[END_REF] we know that the module of double derivations Der(CQ) is generated as a CQ-bimodule by the double derivations ∂ ∂a , a ∈ Q 1 , defined as

∂ ∂a (b) =      e t(a) ⊗ e h(a) b = a 0 b = a .
Now note that we may identify ∂ ∂a with an arrow a * in Q in the opposite direction of a: ∂ ∂a = e h(a)

∂ ∂a e t(a) , so T CQ Der(CQ) ∼ = CQ. The arrows a * correspond to the degree 1 elements in the tensor algebra and the original arrows to the degree 0 arrows. That is, supercommutators in the algebra on the left correspond to supercommutators in the algebra on the right. Now note that the NC Schouten bracket on a path in Q becomes

{ {a * , a 1 . . . . .a n } } = n-1 i=0 (-1) |a 1 |+•••+|a i | a 1 . . . a i { {a * , a i+1 } }a i+2 . . . a n = n i=0,a i+1 =a (-1) |a 1 |+•••+|a i | a 1 . . . a i ⊗ a i+2 . . . a n ,
where a 0 = t(a 1 ). But this is the graded version of the necklace Loday algebra considered in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF]. This becomes the graded necklace Lie algebra when restricting to closed paths and modding out commutators.

An immediate corollary of the Theorem above is

Corollary 6 A nonzero double bracket on the path algebra CQ is completely determined by a linear combination of necklaces of degree 2.

For the remainder of the paper, we will assume the brackets to be nonzero.

Linear Double Poisson Structures

In classical Poisson geometry, linear Poisson structures are defined on C n through a Poisson tensor of the form

π = c k ij x k ∂ ∂x i ∧ ∂ ∂x j ,
where we use Einstein notation, that is, we sum over repeated indices. For this expression to be a Poisson tensor, the constant factors c k ij must satisfy

c h jk c p hi + c h ki c p hj + c h ij c p hk = 0,
i.e. c k ij are the structure constants of an n-dimensional Lie algebra.

In order to translate this setting to NC Poisson geometry, we first of all note that the role of affine space is assumed by the representation spaces of quivers and the bivector ∂ ∂x i ∧ ∂ ∂x j is replaced by the degree 2 part of a necklace, ∂ ∂a ∂ ∂b , by Corollary 6. We define Definition 7 Let Q be a quiver. A linear double bracket on CQ is a double bracket determined by a double tensor of the form

P lin := a,b,c∈Q 1 a ∂ ∂b ∂ ∂c =0∈n Q c a bc a ∂ ∂b ∂ ∂c ,
with all c a bc ∈ C. Note that the condition a

∂ ∂b ∂ ∂c = 0 ∈ n Q means h(a) = h(b), t(b) = h(c) and t(c) = t(a).
We can characterize the linear double Poisson brackets as follows.

Theorem 2 A linear double bracket

P lin := a,b,c∈Q 1 a ∂ ∂b ∂ ∂c =0∈n Q c a bc a ∂ ∂b ∂ ∂c ,
is a double Poisson bracket on CQ if and only if for all p, q, r, s

∈ Q 1 such that p ∂ ∂q ∂ ∂r ∂ ∂s = 0 ∈ n Q we have x∈Q (p,q,rs) 1 c x rs c p qx - y∈Q (qr,p,s) 1 c p ys c y qr ,
where

Q (p,q,rs) 1 = {a ∈ Q 1 | a ∂ ∂r ∂ ∂s , p ∂ ∂q ∂ ∂a = 0 ∈ n Q } and Q (qr,p,s) 1 = {a ∈ Q 1 | a ∂ ∂q ∂ ∂r , p ∂ ∂a ∂ ∂s = 0 ∈ n Q }.
Proof. We have to verify when {P lin , P lin } = 0 modulo commutators. First of all observe that a straightforward computation yields that for any x, y, z, u, v, w ∈

Q 1 {x ∂ ∂y ∂ ∂z , u ∂ ∂v ∂ ∂w } = δ xw u ∂ ∂v ∂ ∂y ∂ ∂z + δ uz x ∂ ∂y ∂ ∂v ∂ ∂w -δ uy x ∂ ∂v ∂ ∂w ∂ ∂z -δ xv u ∂ ∂y ∂ ∂z ∂ ∂w modulo commutators.
Next, note that this equality implies that {P lin , P lin } lies in the subvector space of n Q that has as basis B all ornate necklaces of the form p ∂ ∂q ∂ ∂r

∂

∂s with p, q, r, s ∈ Q 1 and where p is the encased bead. We now write

{P lin , P lin } = x,y,z u,v,w {c x yz x ∂ ∂y ∂ ∂z , c u vw u ∂ ∂v ∂ ∂w } = x,y,z u,v c x yz c u vx u ∂ ∂v ∂ ∂y ∂ ∂z + v,w c x yz c z vw x ∂ ∂y ∂ ∂v ∂ ∂w - v,w c x yz c y vw x ∂ ∂v ∂ ∂w ∂ ∂z - u,w c x yz c u xw u ∂ ∂y ∂ ∂z ∂ ∂w ,
where in order to lighten notation, we do not explicitly write down the additional restrictions on x, y, z, u, v, w for a c x yz and c w uv to be defined. Regrouping this expression with respect to the basis p ∂ ∂q ∂ ∂r ∂ ∂s , we get

{P lin , P lin } = p ∂ ∂q ∂ ∂r ∂ ∂s ∈B 2    x∈Q (p,q,rs) 1 c x rs c p qx - y∈Q (qr,p,s) 1 c p ys c y qr    p ∂ ∂q ∂ ∂r ∂ ∂s ,
where the summation sets simply list which coefficients are defined. Equating this last expression to zero concludes the proof.

We have the following immediate corollary for the induced Poisson bracket on the representation and quotient spaces. Proof. This is immediate from the definition of the induced bracket.

Note that this proof immediately indicates that not all linear Poisson structures are induced by linear double Poisson structures, as the condition on the coefficients of the latter is more restrictive than the condition on the coefficients of the former. We even have Corollary 9 With notations as above, let P lin be a linear double Poisson bracket and v ∈ Q 0 , then P lin induces an associative algebra structure on the vector space generated by all loops in v.

Proof. It suffices to observe that the condition in Theorem 2 exactly determines the structure constants of an associative algebra structure on the loops in a vertex.

Cohomology of linear double Poisson brackets and Hochschild cohomology

In this section, we will first of all specialize the description of linear double Poisson brackets obtained in the previous section to the free algebra in n variables. Then, we will give a link between the double Poisson cohomology of such linear double Poisson brackets and the Hochschild cohomology of the corresponding associative algebra.

First of all observe that Corollary 9 becomes much stronger for the free algebra in n variables.

Proposition 10 There is a one-to-one correspondence between linear double Poisson brackets on C x 1 , . . . , x n and associative algebra structures on

V = Cx 1 ⊕ • • • ⊕ Cx n .
Explicitly, consider the associative algebra structure on V determined by

x i x j := n i,j,k=1 c k ij x k ,
then the corresponding double Poisson bracket is given by

{ {x i , x j } } = n i,j,k=1 (c k ij x k ⊗ 1 -c k ji 1 ⊗ x k ).
Proof. This holds because the free algebra in n variables is the path algebra of the quiver Q with one vertex and n loops, for which we have

Q (p,q,rs) 1 = Q (qr,p,s) 1 = Q 1 .
As a corollary we obtain for the noncommutative affine plane Corollary 11 Up to affine transformation, there are only 7 different linear double Poisson brackets on C x, y . Their double Poisson brackets are

P C×C lin = x ∂ ∂x ∂ ∂x + y ∂ ∂y ∂ ∂y P C×Cǫ 2 lin = x ∂ ∂x ∂ ∂x P C⊕Cǫ 2 lin = x ∂ ∂x ∂ ∂x + y ∂ ∂x ∂ ∂y + y ∂ ∂y ∂ ∂x P Cǫ⊕Cǫ 2 lin = y ∂ ∂x ∂ ∂x P B 1 2 lin = x ∂ ∂x ∂ ∂x + y ∂ ∂x ∂ ∂y P B 2 2 lin = x ∂ ∂x ∂ ∂y + y ∂ ∂y ∂ ∂y P Cǫ 2 ⊕Cǫ 2 lin = 0
Proof. This follows immediately from Proposition 10 and the classification of all (non-unital) 2-dimensional associative algebras obtained in [START_REF] Gabriel | Finite representation type is open[END_REF]. The upper indices of the brackets listed here correspond to the algebra structures they induce. Moreover, there is a direct connection between the Hochschild cohomology of the finite dimensional algebra and the double Poisson cohomology of the free algebra.

Theorem 3 Let A = Cx 1 ⊕ • • • ⊕ Cx n be
an n-dimensional vector space and let

P = n i,j,k=1 c k ij x k ∂ ∂x i ∂ ∂x j
be a linear double Poisson structure on T C A = C x 1 , . . . , x n . Consider A as an algebra through the product induced by the structure constants of P and let HH • (A) denote the Hochschild cohomology of this algebra, then

(H • P (T C A)) 1 ∼ = HH • (A).
Here the grading on (H • P (T C A)) is induced by the grading on

T T C A [T T C A ,T T C A ] i , which is defined through deg(x i ) = 1.
Proof. First of all observe that we have a basis for

T T C A [T T C A ,T T C A ] i,1
consisting of all possible elements of the form

∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i x ℓ .

Now consider the linear map

ϕ i : A * ⊗ A * ⊗ • • • ⊗ A * i factors ⊗A → T T C A [T T C A , T T C A ] i,1 defined as ϕ i (x * k 1 ⊗ x * k 2 ⊗ • • • ⊗ x * k i ⊗ x ℓ ) = ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i x ℓ , then ϕ := (ϕ i ) is a morphism of complexes 0 / / A d / / ϕ 0 A * ⊗ A d / / ϕ 1 A * ⊗ A * ⊗ A / / ϕ 2 . . . 0 / / T T C A [T T C A ,T T C A ] 0,1 d P / / T T C A [T T C A ,T T C A ] 1,1 d P / / T T C A [T T C A ,T T C A ] 2,1 / / . . .
where the upper complex is the Hochschild complex with d defined as

d(x * k 1 ⊗ x * k 2 ⊗ • • • ⊗ x * k i ⊗ x ℓ ) = n s,t=1 c t sℓ x * s ⊗ x * k 1 ⊗ x * k 2 ⊗ • • • ⊗ x * k i ⊗ x t + i-1 r=1 (-1) r n s,t=1 c kr st x * k 1 ⊗ • • • ⊗ x * s ⊗ x * t r-th factor ⊗ • • • ⊗ x * k i ⊗ x ℓ +(-1) i+1 n s,t=1 c t ℓs x * k 1 ⊗ x * k 2 ⊗ • • • ⊗ x * k i ⊗ x * s ⊗ x t .
In order to see ϕ is a morphism of complexes, we compute

{ {P, ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i x ℓ } } = (-1) i ∂ ∂x k 1 . . . ∂ ∂x k i { {P, x ℓ } } T 1 + { {P, ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i } }x ℓ T 2 .
The first term in this expression is mapped by the multiplication on the tensor algebra to

µ(T 1 ) = (-1) i ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i {P, x ℓ } = (-1) i ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i n r,s=1 c r sℓ x r ∂ ∂x s -c r ℓs ∂ ∂x s x r = n r,s=1 c r sℓ ∂ ∂x s ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i x r -(-1) i n r,s=1 c r ℓs ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i ∂ ∂x s x r
The second term in the expression is mapped to

µ(T 2 ) = i-1 r=0 (-1) r ∂ ∂x k 1 . . . ∂ ∂x kr {P, ∂ ∂x k r+1 } ∂ ∂x k r+2 . . . ∂ ∂x k i x ℓ = - i-1 r=0 (-1) r n s,t=1 c k r+1 st ∂ ∂x k 1 . . . ∂ ∂x kr ∂ ∂x s ∂ ∂x t ∂ ∂x k r+2 . . . ∂ ∂x k i x ℓ .
Adding these two expressions together indeed yields

d P ∂ ∂x k 1 ∂ ∂x k 2 . . . ∂ ∂x k i x ℓ = d P (ϕ i (x * k 1 ⊗ x * k 2 ⊗ • • • ⊗ x * k i ⊗ x ℓ )) = ϕ i (d(x * k 1 ⊗ x * k 2 ⊗ • • • ⊗ x * k i ⊗ x ℓ )),
so we have a morphism of complexes. It is easy to see this is an isomorphism when restricting to degree 1 terms in the lower complex, which finishes the proof.

Remark 2 Note that Theorem 3 can be seen as the noncommutative analogue of the fact that for a Lie-Poisson structure associated to a compact Lie group the Poisson cohomology can be written as the tensor product of the Lie algebra cohomology with the Casimir elements of the Poisson bracket.

The relation between higher degree components of the double Poisson cohomology and the Hochschild cohomology of the corresponding finite dimensional algebra is less obvious. However, we have Theorem 4 With notations as in the previous theorem, there is a canonical embedding

H 0 P (T C A) ֒→ C ⊕ k≥1 HH 0 (A, A ⊗k ),
where the action of A on A ⊗k is the inner action on the two outmost copies of A in the tensor product.

Proof. We have already shown in Theorem 3 that the Hochschild cohomology HH 0 (A) corresponds to the degree 1 terms in H 0 P (T C A). We will now show that (H 0 P (T C A)) k ֒→ HH 0 (A, A ⊗k ). Consider the map

ϕ 0 : T C A [T C A, T C A] → A ⊗k : x i 1 ⊗ • • • ⊗ x i k → k-1 ℓ=0 σ ℓ (1...k) x i 1 ⊗ • • • ⊗ x i k ,
where for s ∈ S k a permutation we define σ s (a

1 ⊗ • • • ⊗ a k ) := a s(1) ⊗ • • • ⊗ a s(k) .
It is easy to see that this map is well-defined. We will also need the map

ϕ 1 : T T C A [T T C A , T T C A ] 1,k → A * ⊗ A ⊗k defined as ϕ 1 ( ∂ ∂x i x j 1 . . . x j k ) = x * i ⊗ x j 1 ⊗ • • • ⊗ x j k ,
where we fixed a similar basis as in Theorem 3 for

T T C A [T T C A ,T T C A ] 1,k . Now compute for f = x i 1 . . . x i k (using Einstein notations) d P (f ) = c r pq ∂f ∂x q ′′ ∂f ∂x q ′ x r -c r qp x r ∂f ∂x q ′′ ∂f ∂x q ′ ∂ ∂x p = k-1 s=0 c r pq ∂x i s+1 ∂x q ′′ x i s+2 . . . x i k x i 1 . . . x is ∂x i s+1 ∂x q ′ x r -c r qp x r ∂x i s+1 ∂x q ′′ x i s+2 . . . x i k x i 1 . . . x is ∂x i s+1 ∂x q ′ ∂ ∂x p = k-1 s=0 c r pi s+1 x i s+2 . . . x i k x i 1 . . . x is x r -c r i s+1 p x r x i s+2 . . . x i k x i 1 . . . x is ∂ ∂x p This is mapped by ϕ 1 to k-1 s=0 (c r pi s+1 x * p ⊗ x i s+2 ⊗ • • • ⊗ x i k ⊗ x i 1 ⊗ • • • ⊗ x is ⊗ x r -c r i s+1 p x * p ⊗ x r ⊗ x i s+2 ⊗ • • • ⊗ x i k ⊗ x i 1 ⊗ • • • ⊗ x is ).
On the other hand, we have

dϕ 0 (f ) = k-1 s=0 d(x i s+1 ⊗ • • • ⊗ x i k ⊗ x i 1 ⊗ • • • ⊗ x is ) = k-1 s=0 c r pis x * p ⊗ x i s+1 ⊗ • • • ⊗ x i k ⊗ x i 1 ⊗ • • • ⊗ x i s-1 ⊗ x r -c r i s+1 p x * p ⊗ x r ⊗ x i s+2 ⊗ • • • ⊗ x i k ⊗ x i 1 ⊗ • • • ⊗ x is .
So, after reindexing the first term, we obtain d(ϕ 0 (f )) = ϕ 1 (d P (f )), which finishes the proof.

6 Examples of H 0 and H 1 for several double Poisson structures on C x, y

In this section, we will determine the double Poisson cohomology groups H 0 and H 1 , of three different double Poisson structures on the free algebra C x, y .

To do this, we will use some tools and techniques that could be useful to compute other double Poisson cohomology groups, associated to other double Poisson algebras.

In order to compute the double Poisson cohomology of C x, y with the different brackets we will introduce below, the following noncommutative version of the Euler formula will prove useful.

Proposition 12 (NC-Euler formula) Let Q be a quiver, p a path in Q and a an arrow of Q, then

µ • a ∂ ∂a (p) = (deg a (p)) p.
Whence

a∈Q 1 µ • a ∂ ∂a (p) = |p| p,
with |p| the length of the necklace.

Proof. From the definition of a d da , for any path in Q, of the form

a 1 •a 2 • • • a n-1 • a n (with n ∈ N * and
a 1 , a 2 , . . . , a n , some arrows of Q), we have:

∂ ∂a (a 1 • a 2 • • • a n-1 • a n ) = n i=1 a 1 • • • a i-1 • ∂a i ∂a • a i+1 • • • a n = n i=1 a=a i a 1 • • • a i-1 • e t(a i ) ⊗ e h(a i ) • a i+1 • • • a n = n i=1 a=a i a 1 • • • a i-1 ⊗ a i+1 • • • a n .
So that, by definition of the inner product, we obtain:

a ∂ ∂a (a 1 • a 2 • • • a n-1 • a n ) = n i=1 a=a i a 1 • • • a i-1 ⊗ a i • a i+1 • • • a n ,
proving the proposition.

The rest of this section will be devoted to the determination of the lowdimensional double Poisson cohomology groups H 0 and H 1 of the free algebra C x, y , equipped with the following (linear and non-linear) double Poisson tensors:

( Our aim, in this subsection, is to give an explicit basis of the double Poisson cohomology groups H 0 P 0 (C x, y ) and H 1 P 0 (C x, y ), associated to this double Poisson tensor P 0 .

First of all, let us consider the operator d 0 P 0 and the space H 0 P 0 (C x, y ).

Proposition 13 For f ∈ C x, y , we have

d P 0 (f ) = • df dx ′′ df dx ′ x -df dx ′′ df dx ′ x ,
where • represents d dx . Which leads to

H 0 P 0 (C x, y ) ≃ C[x] ⊕ C[y].
Proof. Let f ∈ C x, y and let recall that P 0 denotes the double Poisson tensor P 0 = x d dx d dx . Then, using the properties of the double Gerstenhaber bracket { {-, -} }, given in [12, §2.7], we compute the double Schouten-Nijenhuis bracket of f and P 0 :

{ {f, P 0 } } = { {f, x d dx d dx } } = -x d dx { {f, d dx } } + { {f, x d dx } } d dx = x d dx df dx ′′ ⊗ df dx ′ -x df dx ′′ ⊗ df dx ′ d dx ,
so that, computing modulo the commutators, we obtain exactly

d P 0 (f ) = µ ({ {P 0 , f } }) = df dx ′′ df dx ′ x -x df dx ′′ df dx ′ d dx .
Then, a 0-cocycle for the double Poisson cohomology, corresponding to P 0 is an element f ∈ C x, y satisfying d P 0 (f ) = 0, which means that

df dx ′′ df dx ′ x -x df dx ′′ df dx ′ = 0,
that is to say, the element df dx

′′ df dx ′ ∈ C x, y commutes with x, so is necessarily an element of C[x].
According to the NC-Euler Formula (Proposition 12), we have

deg x (f ) f = µ • x ∂ ∂x (f ) = df dx ′ x df dx ′′ ∈ df dx ′′ df dx ′ x + [C x, y , C x, y ],
so that, modulo commutators, we either have deg

x (f ) = 0 and hence f ∈ C[y], or f ∈ C[x].
But then

H 0 P 0 (C x, y ) ≃ C[x] ⊕ C[y].
Next, let us determine the first double Poisson cohomology group, related to P 0 . First of all, observe that an element of (T C x,y /[T C x,y , T C x,y ]) 1 can be uniquely written as f d dx + g d dy , with f, g ∈ C x, y . By a direct computation (analogous to what we did for d P 0 (f )), we obtain the value of the coboundary operator d P 0 on such an element. We obtain that

d P 0 f d dx + g d dy = Φ 1 (f ) + Φ 2 (g),
where the operators Φ 1 and Φ 2 from C x, y to (T C x,y /[T C x,y , T C x,y ]) 2 are defined, for f, g ∈ C x, y , by:

Φ 1 (f ) := - • f Ñ Ñ Ñ a a a 1 ``Ò Ò Ò • + • df dx ′ x | | | f f f df dx ′′ d d d ~~• - • df dx ′ Ð Ð Ð b b b x df dx ′′ h h h z z z • , (1) 
and

Φ 2 (g) := • dg dx ′ x | | | f f f dg dx ′′ d d d ~~• - • dg dx ′ Ð Ð Ð b b b x dg dx ′′ h h h z z z • , (2) 
where • represents d dx and • represents d dy . Now, to compute H 1 P 0 (C x, y ), we have to consider elements f, g ∈ C x, y , satisfying the two independent equations: Φ 1 (f ) = 0 and Φ 2 (g) = 0. We first consider the second equation, Φ 2 (g) = 0. We then have Proposition 14 The kernel of the linear map Φ 2 , from C x, y to

(T C x,y /[T C x,y , T C x,y ]) 2 is ker(Φ 2 ) = C[y].
Proof. Let g ∈ C x, y be polynomial in x and y, such that Φ 2 (g) = 0. Let us write g = xg 0 + yg 1 + a, where g 0 , g 1 ∈ C x, y and a ∈ C. Then, we have dg dx = 1 ⊗ g 0 + x dg 0 dx + y dg 1 dx and the equation Φ 2 (g) = 0 becomes:

0 = Φ 2 (g) = • x c c c g 0 f f f | | | • + • x dg 0 dx ′ x w w w w q q q q dg 0 dx ′′ f f f | | | • + • y dg 1 dx ′ x w w w w q q q q dg 1 dx ′′ f f f | | | • - • 1 Ð Ð Ð b b b xg 0 p p p p y y y y • - • x dg 0 dx ′ z z z h h h x dg 0 dx ′′ i i i i y y y y • - • y dg 1 dx ′ z z z h h h x dg 1 dx ′′ i i i i y y y y • .
Then, we see that the term So that, for each k ≥ 1, we must have Φ 2 (g k ) = 0. But we have seen above that this implies g k ∈ y C x, y + C, while we have assumed that

g k ∈ x C x, y + C, thus g k ∈ C, for all k ∈ N * . We then conclude that g ∈ C[y].
Now, let us study the first equation Φ 1 (f ) = 0. To do this, we will need the following

Lemma 1 Let s ∈ N * and (k 1 , k 2 , k 3 , . . . , k s ) ∈ (N * ) 2s . Let m = x k 1 y k 2 x k 3 • • • x k 2s-1 y k 2s ∈ C x, y . We have Φ 1 (m) = s i=1 • x k 1 • • • y k 2(i-1) x k (2i-1) j j j j j j j j y k 2i • • • y k 2s y y y y y o o o o o • - s i=2 • x k 1 • • • y k 2(i-1) m m m m m m x k (2i-1) y k 2i • • • y k 2s k k k k k k k • . (3) Next, let n = y k 1 x k 2 y k 3 • • • y k 2s-1 x k 2s ∈ C x, y , then Φ 1 (n) = - s i=1 • y k 1 • • • x k 2(i-1) y k (2i-1) j j j j j j j j x k 2i • • • x k 2s y y y y y y o o o o o o • + s i=2 • y k 1 • • • x k 2(i-1) m m m m m m y k (2i-1) x k 2i • • • x k 2s k k k k k k k • . (4) 
Proof. We will prove the first statement of the lemma. The proof of the second statement is completely analogous. 

Let m = x k 1 y k 2 x k 3 • • • x k 2s-1 y k 2s ∈ C x,
dm dx = s i=1 k (2i-1) -1 j=0 x k 1 • • • y k 2(i-1) x j ⊗ x (k (2i-1) -1-j) y k 2i • • • y k 2s .
Then, by definition of Φ 1 , we have

Φ 1 (m) = - • x k 1 . . . y k 2s p p p p p x x x x x 1 Y Y Y Y Ó Ó Ó Ó • + s i=1 k (2i-1) -1 j=0 • x k 1 • • • y k 2(i-1) x j+1 k k k k k k k k x (k (2i-1) -1-j) y k 2i • • • y k 2s i i i i i i i i i • - s i=1 k (2i-1) -1 j=0 • x k 1 • • • y k 2(i-1) x j l l l l l l l x (k (2i-1) -j) y k 2i • • • y k 2s i i i i i i i i • = - • x k 1 . . . y k 2s p p p p p x x x x x 1 Y Y Y Y Ó Ó Ó Ó • + s i=1 • x k 1 • • • y k 2(i-1) x k (2i-1) j j j j j j j j y k 2i • • • y k 2s y y y y y o o o o o • - s i=1 • x k 1 • • • y k 2(i-1) m m m m m m x k (2i-1) y k 2i • • • y k 2s k k k k k k k • ,
which yields the formula (3). We will also need the following formula that gives a nice interpretation of d P 0 (m), where m is a monomial like in the previous lemma.

Lemma 2 Let s ∈ N * and (k 1 , k 2 , k 3 , . . . , k s ) ∈ (N * ) 2s . We consider the monomial in C x, y , written as

m = x k 1 y k 2 x k 3 • • • x k 2s-1 y k 2s . Then, we have dm dx ′′ dm dx ′ x -x dm dx ′′ dm dx ′ = - s i=1 x k 2i-1 • • • x k 2s-1 y k 2s x k 1 y k 2 • • • y k 2(i-1) + s i=1 y k 2i • • • y k 2s x k 1 • • • y k 2(i-1) x k (2i-1) .
That is, d 0 P 0 (m) is obtained by considering all the cyclic permutations of the blocks x j and y j in m (together with the sign of the permutation) and multiplying the result by d dx .

Proof. Similar to the proof of the previous lemma, we have

dm dx = s i=1 k (2i-1) -1 j=0 x k 1 • • • y k 2(i-1) x j ⊗ x (k (2i-1) -1-j) y k 2i • • • y k 2s .
From this, it is straightforward to obtain equation [START_REF] Fuks | Cohomology of infinite-dimensional Lie algebras[END_REF].

We are now able to determine the first double Poisson cohomology group of the double Poisson algebra (C x, y , P 0 ).

Proposition 15 Let us consider the linear double Poisson tensor P 0 = x d dx d dx on C x, y . The first double Poisson cohomology space, associated to P 0 is given by:

H 1 P 0 ≃ C d dx ⊕ C[y] d dy .
Proof. Let f d dx + g d dy be a 1-cocycle of the double Poisson cohomology associated to the double Poisson algebra (C x, y , P 0 ). We have seen that the cocycle condition can be written as:

     Φ 1 (f ) = 0, Φ 2 (g) = 0,
where the operators Φ 1 and Φ 2 are defined in (1) and ( 2). According to Proposition 14, we know that g ∈ C[y]. As for any h ∈ C x, y , d P 0 (h) ∈ C x, y d dx , it is clear that the elements of C[y] d dy give non-trivial double Poisson cohomology classes in H 1 P 0 (C x, y ).

Remains to consider the equation Φ 1 (f ) = 0. First of all observe this equation implies f ∈ xC x, y y+yC x, y x+C. In fact, suppose that there is a monomial in f that can be written as xf 0 x, where f 0 ∈ C x, y . Then, we have

Φ 1 (xf 0 x) = • x Ò Ò Ò Ò `f0 x h h h z z z • + • x df 0 dx ′ x x x x x p p p p df 0 dx ′′ x i i i y y y • + • xf 0 x v v v v r r r r 1 ``Ò Ò Ò • - • x df 0 dx ′ { { { g g g
x df 0 dx ′′ x q q q q w w w w

• - • xf 0 z z z h h h x ```Ò Ò Ò Ò • .
But then Φ 1 (f ) = 0, implies that the term

• xf 0 x v v v v r r r r 1 ``Ò Ò Ò
• has to cancel itself, so that xf 0 x has to be zero. Now suppose a monomial of the form yf 0 y appears in f . We have

Φ 1 (yf 0 y) = - • yf 0 y w w w w q q q q 1 ``Ò Ò Ò • + • y df 0 dx ′ x x x x x p p p p df 0 dx ′′ y h h h z z z • - • y df 0 dx ′ { { { g g g
x df 0 dx ′′ y q q q q w w w w

•

.

The term

• yf 0 y w w w w q q q q 1 ``Ò Ò Ò
• cannot appear in Φ 1 (f ) in any other way and hence has to vanish, i.e. yf 0 y has to be zero.

But then we know that f can be written as f = s∈N * f 2s + a, where a ∈ C and

f 2s ∈ C x, y is of the form f 2s := K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K x k 1 y k 2 x k 3 • • • x k 2s-1 y k 2s - L=(ℓ 1 ,...,ℓ 2s ) ∈(N * ) 2s cL y ℓ 1 x ℓ 2 y ℓ 3 • • • y ℓ 2s-1 x ℓ 2s ,
where c K and cL are constants. According to Lemma 1, the equation Φ 1 (f ) = 0 implies that, for each s ∈ N * , Φ 1 (f 2s ) = 0 (i.e., Φ 1 (f 2s ) can not be cancelled by another Φ 1 (f 2s ′ )).

Let us then consider the equation Φ 1 (f 2s ) = 0. According to Lemma 1, by col-lecting the terms of the form

• x • • • x s s s s s u u u u u y • • • y u u u u s s s s
• and of the form

• x • • • y s s s s s u u u u u x • • • y u u u u u s s s s s
• (which have to be cancelled by terms of the same form), we get the three following equations: 

0 = K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K s i=1 • x k 1 • • • y k 2(i-1) x k (2i-1) j j j j j j j j y k 2i • • • y k 2s y y y y y o o o o o • + L=(ℓ 1 ,...,ℓ 2s ) ∈(N * ) 2s cL s i=1 • y k 1 • • • x k 2(i-1) y k (2i-1) j j j j j j j j x k 2i • • • x k 2s
∈(N * ) 2s c K s i=2 • x k 1 • • • y k 2(i-1) m m m m m m x k (2i-1) y k 2i • • • y k 2s k k k k k k k • . ( 6 
)
From Equation ( 5), we conclude, as the first sum cannot cancel itself, that, for each 1

≤ i ≤ s K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K • x k 1 • • • y k 2(i-1)
x k (2i-1) j j j j j j j j

y k 2i • • • y k 2s y y y y y o o o o o • = - K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K • y k 2i • • • y k 2s o o o o o y y y y y x k 1 • • • x k (2i-1) m m m m m m m • = - L=(ℓ 1 ,...,ℓ 2s ) ∈(N * ) 2s cL • y k 1 • • • x k 2(i-1) y k (2i-1) j j j j j j j j x k 2i • • • x k 2s y y y y y y o o o o o o
• and this can only happen if, for each 1 ≤ i ≤ s:

K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K y k 2i • • • y k 2s x k 1 • • • x k (2i-1) = L=(ℓ 1 ,...,ℓ 2s ) ∈(N * ) 2s cL y k 1 • • • x k 2s . ( 7 
)
Then, in the equation ( 6), the sum obtained for 2 ≤ i ≤ s has to be cancelled by the one obtained for the s -i + 2, i.e.,

K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K • x k 1 • • • y k 2(i-1) m m m m m m x k (2i-1) y k 2i • • • y k 2s k k k k k k k • = - K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K • x k (2i-1) y k 2i • • • y k 2s k k k k k k k x k 1 • • • y k 2(i-1) m m m m m m • = K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K • x k 1 • • • y k 2(s-i+1) l l l l l l l x k (2(s-i)+3) y k 2(s-i+2) • • • y k 2s h

h h h h h h h h h

• when written with exactly 2(s -i + 1) blocks of the form x j or y j in the box. This implies, for each 2 ≤ i ≤ s, that

- K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K x k (2i-1) • • • y k 2s x k 1 • • • y k 2(i-1) = K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K x k 1 • • • y k 2s . ( 8 
)
Now let

h 2s := K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K x k 1 • • • y k 2s ∈ C x, y .
According to Lemma 2, we have: 1) .

dh 2s dx ′′ dh 2s dx ′ x -x dh 2s dx ′′ dh 2s dx ′ = - s i=1 K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K x k 2i-1 • • • x k 2s-1 y k 2s x k 1 y k 2 • • • y k 2(i-1) + s i=1 K=(k 1 ,...,k 2s ) ∈(N * ) 2s c K y k 2i • • • y k 2s x k 1 • • • y k 2(i-1) x k (2i-
From equations ( 7) and ( 8), we obtain

dh 2s dx ′′ dh 2s dx ′ x -x dh 2s dx ′′ dh 2s dx ′ = -s f 2s .
According to Proposition 13, this yields

f d dx = s∈N * f 2s d dx + a d dx = d P 0 - 1 s h 2s + a d dx ,
and we conclude that

H 1 P 0 (C x, y ) ≃ C d dx ⊕ C[y] d dy .
An analogous proof shows that 

H 0 P0 (C x, y ) ≃ C[x] ⊕ C[y]
and the first double Poisson cohomology space, associated to P0 is given by:

H 1 P0 (C x, y ) ≃ C d dx ⊕ C d dy .
Remark We will determine the double Poisson cohomology groups H 0 P 1 (C x, y ) and

H 1 P 1 (C x,

y ). We begin by observing

Lemma 3 Let us consider the free algebra C x 1 , . . . , x n , associated to the quiver Q, with one vertex and n loops x 1 , . . . , x n . For each h ∈ C x 1 , . . . , x n , we have

n i=1 d dx i • x i (h) -x i • d dx i (h) = h ⊗ 1 -1 ⊗ h,
(where • denotes the inner multiplication). This can also be written as:

n i=1 dh dx i ′ x i ⊗ dh dx i ′′ - dh dx i ′ ⊗ x i dh dx i ′′ = h ⊗ 1 -1 ⊗ h.
Proof. This can easily be seen from the definition of the d dx i , but it is also a particular case of Proposition 6.2.2 of [START_REF] Van Den Bergh | Double Poisson algebras[END_REF], which states that the gauge element E of Q is given by E = Proposition 17 For f ∈ C x, y , we have

d 0 P 1 (f ) = • y df dy ′′ df dy ′ -• y df dx ′′ df dx ′ .
Which means that

H 0 P 1 (C x, y ) = C.
Proof. In fact, by computing d P 1 (f ) = {P 1 , f }, one obtains exactly:

d 0 P 1 (f ) = • df dx ′′ df dx ′ x -x df dx ′′ df dx ′ + df dy ′′ df dy ′ y -• y df dx ′′ df dx ′ .
According to Lemma 3, we have

df dx ′ x ⊗ df dx ′′ + df dy ′ y ⊗ df dy ′′ + 1 ⊗ f = df dx ′ ⊗ x df dx ′′ + df dy ′ ⊗ y df dy ′′ + f ⊗ 1.
Applying -op and µ, this last formula gives:

df dx ′′ df dx ′ x + df dy ′′ df dy ′ y = x df dx ′′ df dx ′ + y df dy ′′ df dy ′ ,
which leads to the expression for d P 1 (f ) given above.

Suppose now that f is a 0-cocycle, that is to say d P 1 (f ) = 0. This is equivalent to say that Using the NC-Euler Formula (Proposition 12), we can then write

f ∈ C ⊕ [C x, y , C x, y ].
Finally, H 0 P 1 (C x, y ) = ker(d 0 P 1 )/[C x, y , C x, y ] = C, which concludes the proof. Let us now determine H 1 P 1 (C x, y ). We will first use Lemma 3 to obtain a useful expression for the coboundary operator

d 1 P 1 . Lemma 4 Let f d dx + g d dy ∈ (T C x,y /[T C x,y , T C x,y ]) 1 , then d 1 P 1 f d dx + g d dy = - • 1 Ò Ò Ò `f a a a Ñ Ñ Ñ • + • df dy ′ Ñ Ñ Ñ a a a y df dy ′′ f f f | | | • - • 1 Ð Ð Ð b b b g b b b Ð Ð Ð • + • dg dy ′ Ñ Ñ Ñ a a a y dg dy ′′ f f f | | | • + • y df dx ′′ { { { g g g df dx ′ b b b Ð Ð Ð • - • dg dx ′ Ð Ð Ð b b b y dg dx ′′ . p p p p x x x x • Proof. First, by computing d P 1 f d dx + g d dy = {P 1 , f d dx + g d dy }
, one can write

d P 1 f d dx + g d dy = (A) + (B) + (C),
where 

(A) = - • f Ñ Ñ Ñ a a a 1 ``Ò Ò Ò • + • df dx ′ x | | | f f f df dx ′′ d d d ~~• - • df dx ′ Ð Ð Ð b b b x df dx ′′ h h h z z z • + • df dy ′ y } } } e e e df dy ′′ , f f f | | | • (B) = - • g Ð Ð Ð b b b 1 b b b Ð Ð Ð • + • dg dx ′ x | | | f f f dg dx ′′ d d d ~~• - • dg dx ′ Ð Ð Ð b b b x dg dx ′′ h h h z z z • + • dg dy ′ y } } } e e e

•

According to Lemma 3, we have

df dx ′ x ⊗ df dx ′′ + df dy ′ y ⊗ df dy ′′ + 1 ⊗ f = df dx ′ ⊗ x df dx ′′ + df dy ′ ⊗ y df dy ′′ + f ⊗ 1,
and the same for g. Applying -• d dx (where • means the right inner multiplication) and then the right (outer) multiplication by d dx , we obtain:

• df dx ′ x | | | f f f df dx ′′ d d d ~~• + • df dy ′ y } } } e e e df dy ′′ c c c • + • 1 Ò Ò Ò `f a a a Ñ Ñ Ñ • = • df dx ′ Ð Ð Ð b b b x df dx ′′ h h h z z z • + • df dy ′ Ñ Ñ Ñ a a a y df dy ′′ f f f | | | • + • f Ñ Ñ Ñ a a a 1 , d d d ~~• whence (A) = - • 1 Ò Ò Ò `f a a a Ñ Ñ Ñ • + • df dy ′ Ñ Ñ Ñ a a a y df dy ′′ .
i i i i y y y y

•

A similar argument for g (applying -• d dx and then the right multiplication by d dy ) yields

(B) = - • 1 Ð Ð Ð b b b g b b b Ð Ð Ð • + • dg dy ′ Ñ Ñ Ñ a a a y dg dy ′′ f f f | | | • + • y df dx ′′ { { { g g g df dx ′ . f f f | | | •
Adding the expressions obtained for (A), (B) and (C), leads to the expression of d 

(A) = - • 1 Ò Ò Ò `f a a a Ñ Ñ Ñ • + • df dy ′ Ñ Ñ Ñ a a a y df dy ′′ f f f | | | • = 0, (9) 
(B) = - • 1 Ð Ð Ð b b b g b b b Ð Ð Ð • + • dg dy ′ Ñ Ñ Ñ a a a y dg dy ′′ f f f | | | • + • y df dx ′′ { { { g g g df dx ′ b b b Ð Ð Ð • = 0 (10) 
and

(C) = - • dg dx ′ Ð Ð Ð b b b y dg dx ′′ g g g { { { • = 0. (11) 
Equation ( 9) yields f = y f + a, with a ∈ C and f ∈ C x, y . Indeed, write For this equality to hold, the first term has to cancel itself, so that h has to be zero and f = y f + a.

f = y f + x h + a, with f , h ∈ C x,
A similar argument for Equation [START_REF] Roger | Poisson cohomology of the affine plane[END_REF] shows that g = yg, with g ∈ C x, y (but, in contrast with f , g can not be a constant because

• 1 Ð Ð Ð b b b 1 b b b Ð Ð Ð • = 0). Now, Equation (11) becomes (C) = - • y dg dx ′ | | | f f f y dg dx ′′ g g g { { { • = 0, so that dg dx = m ′ ⊗ m ′′ + m ′′ ⊗ m ′ ,
with m ′ , m ′′ ∈ C x, y (using Sweedler notation). Using the NC-Euler Formula (Proposition 12), we can now write

g = 1 deg x (m ′ m ′′ ) + 1 (m ′ xm ′′ + m ′′ xm ′ ) + p(y), (12) 
where p ∈ C y . Then, computing dg dx again, we get

m ′ ⊗ m ′′ + m ′′ ⊗ m ′ = 1 deg x (m ′ m ′′ ) + 1 dm ′ dx xm ′′ + m ′ ⊗ m ′′ + m ′ x dm ′′ dx + dm ′′ dx xm ′ + m ′′ ⊗ m ′ + m ′′ x dm ′ dx ,
that is to say . First, we have

(deg x (m ′ m ′′ )) (m ′ ⊗ m ′′ + m ′′ ⊗ m ′ ) = dm ′ dx xm ′′ + m ′ x dm ′′ dx + dm ′′ dx xm ′ + m ′′ x dm ′ dx . (13) 
dh dx = - dm ′′ dx xm ′ x -m ′′ ⊗ m ′ x -m ′′ x dm ′ dx x -m ′′ xm ′ ⊗ 1 - dm ′ dx xm ′′ x -m ′ ⊗ m ′′ x -m ′ x dm ′′ dx x -m ′ xm ′′ ⊗ 1, dk dx = -p ⊗ 1, so that -y dh dx ′′ dh dx ′ = 2 y dm ′′ dx ′′ xm ′ x dm ′′ dx ′ + 2 ym ′ xm ′′ + 2 y dm ′ dx ′′ xm ′′ x dm ′ dx ′ + 2 ym ′′ xm ′ , -y dk dx ′′ dk dx ′ = yp(y).
But, applying the left outer multiplication by x, -op and µ to Equation (13), we obtain

(deg x (m ′ m ′′ )) (m ′′ xm ′ + m ′ xm ′′ ) = 2 dm ′ dx ′′ xm ′′ x dm ′ dx ′ + 2 dm ′′ dx ′′ xm ′ x dm ′′ dx ′ .
This implies, -y dh dx

′′ dh dx ′ = (deg x (m ′ m ′′ ) + 2) (ym ′ xm ′′ + ym ′′ xm ′ ) .
In combination with [START_REF] Van Den Bergh | Double Poisson algebras[END_REF] we obtain

g = yg = -1 (deg x (m ′ m ′′ ) + 1)(deg x (m ′ m ′′ ) + 2) y dh dx ′′ dh dx ′ -y dk dx ′′ dk dx ′ .
Now, we want to write f in terms of dh dy and dk dy . To do this, we will use the Equation [START_REF] Roger | Poisson cohomology of the affine plane[END_REF]. Using f = y f + a and g = yg, this equation can be written as follows:

(B) = Using this expression and the NC-Euler Formula (Proposition 12), we get: So that, if Let us now consider the (classical) Poisson bracket on C[x, y], associated to P 1 , that is tr(P 1 ) = π 1 = y d dx ∧ d dy . According to [START_REF] Monnier | Poisson cohomology in dimension two[END_REF] or [START_REF] Roger | Poisson cohomology of the affine plane[END_REF], or by a direct computation, we have

f = 1 deg x d f dx ′ d f dx ′′ + 1 d f dx ′ x d f dx ′′ + l(y) = -
= -2 (deg x (m ′ m ′′ ) + 2) (deg x (m ′ m ′′ ) + 1) dm ′ dy ′′ xm ′′ x dm ′ dy ′ - 2 (deg x (m ′′ m ′ ) + 2) (deg x (m ′ m ′′ ) + 1) dm ′′ dy ′′ xm ′ x dm ′′ dy ′ - dp dy ′′ x dp dy ′ + l(y) = 1 (deg x (m ′′ m ′ ) + 2) (deg x (m ′ m ′′ ) + 1)
L = 1 (deg x (m ′′ m ′ ) + 2) (deg x (m ′ m ′′ ) + 1) h + k = -1 (deg x (m ′′ m ′ ) + 2) (deg x (m ′ m ′′ ) + 1) (m ′′ xm ′ x + m ′ xm ′′
H 0 π 1 (C[x, y]) = C, H 1 π 1 (C[x, y]) = C d dx , H i π 1 (C[x, y]) = 0, for all i ≥ 2.
So that the map tr : x.

H i P 1 (C x, y ) → H i π 1 (C[x, y]) is bijective, for i = 0, 1.
{ { {

•

The NC-Schouten bracket of P with itself now becomes For the remainder of this section, P will be the double Poisson tensor x d dx x d dy . First of all, observe that Proposition 19 For f ∈ C x, y , we have

d P (f ) = • x df dy ′′ df dy ′ x -• x df dx ′′ df dx ′ x .
Which means that

H 0 P (C x, y ) = C.
Proof. The computation of d P (f ) was already done in greater generality in Section 1. To compute H 0 P (C x, y ), note that 

• x df dy ′′ df dy ′ x -• x df dx ′′ df dx ′ x = 0.
d P f d dx + g d dy = - • x Ò Ò Ò Ò `f a a a Ñ Ñ Ñ • - • f Ñ Ñ Ñ a a a x ```Ò Ò Ò Ò • + • df dy ′ x } } } e e e
x df dy ′′ g g g

| | | • + • x df dx ′′ z z z h h h df dx ′ x f f f | | | • + • dg dy ′ x } } } e e e
x dg dy ′′ g g g

| | | • - • dg dx ′ x | | | f f f x dg dx ′′ h h h z z z • .
We will denote this expression by ( * ).

Proof. Straightforward.

Using this lemma, we can determine the kernel of d 

df dy = xm ′ f ⊗ m ′′ f x + xm ′′ f ⊗ m ′ f x + n ′ f ⊗ n ′′ f x + xn ′′ f ⊗ n ′ f + c f 1 ⊗ 1 with m ′ f , m ′′ f , n ′′ f ∈ C x, y , c f , n ′ f ∈ C and dg dx = xm ′ g ⊗ m ′′ g x + xm ′′ g ⊗ m ′ g x + n ′ g ⊗ n ′′ g x + xn ′′ g ⊗ n ′ g + c g 1 ⊗ 1 with m ′ g , m ′′ g , n ′′ g ∈ C x, y , c g , n ′ g ∈ C.
Using the NC-Euler formula (Proposition 12), this implies

f = 1 deg y (m ′ f m ′′ f ) + 1 x(m ′ f ym ′′ f + m ′′ f ym ′ f )x + 1 deg y (n ′′ f ) + 1 (n ′ f yn ′′ f x + xn ′′ f yn ′ f ) + p(x) + c f y and g = 1 deg x (m ′ g m ′′ g ) + 3 x(m ′ g xm ′′ g + m ′′ g xm ′ g )x + 2n ′ g deg x (n ′′ g ) + 2
xn ′′ g x + q(y) + c g x. Now note that for c f y, the first two terms of ( * ) yield

-c f • x c c c y b b b Ð Ð Ð • -c f • y Ð Ð Ð b b b x c c c • .
Because of the degree in x of the remaining terms, these terms cannot vanish unless c f = 0.

Using this last remark and the expression for f above to compute df dy again, we obtain

df dy = 1 deg y (m ′ f m ′′ f ) + 1 x dm ′ f dy ym ′′ f + m ′ f ⊗ m ′′ f + m ′ f y dm ′′ f dy + dm ′′ f dy ym ′ f +m ′′ f ⊗ m ′ f + m ′′ f y dm ′ f dy x + 1 deg y (n ′′ f ) + 1 (n ′ f ⊗ n ′′ f x + n ′ f y dn ′′ f dy x + x dn ′′ f dy yn ′ f + xn ′′ f ⊗ n ′ f ).
This expression should be equal to the first expression found for df dy . That is,

xm ′ f ⊗ m ′′ f x + xm ′′ f ⊗ m ′ f x + n ′ f ⊗ n ′′ f x + xn ′′ f ⊗ n ′ f = 1 deg y (m ′ f m ′′ f ) + 1 x dm ′ f dy ym ′′ f + m ′ f ⊗ m ′′ f + m ′ f y dm ′′ f dy + dm ′′ f dy ym ′ f + m ′′ f ⊗ m ′ f + m ′′ f y dm ′ f dy x + 1 deg y (n ′′ f ) + 1 (n ′ f ⊗ n ′′ f x + n ′ f y dn ′′ f dy x + x dn ′′ f dy yn ′ f + xn ′′ f ⊗ n ′ f ),
whence, by comparing elements of the form x . . . x we obtain

deg y (m ′ f m ′′ f )(m ′ f ⊗m ′′ f +m ′′ f ⊗m ′ f ) = dm ′ f dy ym ′′ f +m ′ f y dm ′′ f dy + dm ′′ f dy ym ′ f +m ′′ f y dm ′ f dy and n ′′ f ∈ C[x].
Letting y act on the equality obtained in the previous paragraph by the left outer action, we obtain

deg y (m ′ f m ′′ f )(ym ′ f ⊗ m ′′ f + ym ′′ f ⊗ m ′ f ) = y dm ′ f dy ym ′′ f + ym ′ f y dm ′′ f dy + y dm ′′ f dy ym ′ f + ym ′′ f y dm ′ f dy .
Which yields, using -op and µ, the equality

deg y (m ′ f m ′′ f )(m ′′ f ym ′ f + m ′ f ym ′′ f ) = 2 dm ′ f dy ′′ ym ′′ f y dm ′ f dy ′ + dm ′′ f dy ′′ ym ′ f y dm ′′ f dy ′ . Now let h = 2 (deg y (m ′ f m ′′ f )+2) (deg y (m ′ f m ′′ f )+1) m ′′ f ym ′ f y, then x dh dy ′′ dh dy ′ x = 1 deg y (m ′ f m ′′ f ) + 1 (xm ′ f ym ′′ f x + xm ′′ f ym ′ f x) and x dh dx ′′ dh dx ′ x = 2 (deg y (m ′ f m ′′ f ) + 2)(deg y (m ′ f m ′′ f ) + 1) x dm ′′ f dx ′′ ym ′ f y dm ′′ f dx ′ + dm ′ f dx ′′ ym ′′ f y dm ′ f dx ′ x.
So, writing

f 1 := f -x dh dy ′′ dh dy ′ x := yp 1 (x) + p 1 (x)y + p(x)
with p 1 := n i=1 a i x i and p = m i=0 b i x i and

g 1 := g + x dh dx ′′ dh dx ′ x,
we again obtain an element f 1 d dx + g 1 d dy in ker(d 1 P ) by Proposition 19. Observe moreover that x i for i ≥ 2 can be written as x dh i dy ′′ dh i dy ′ x with h i = x i-2 y, so we may assume (modifying f and g by the image of a suitable h) p(x) = b 1 x + b 0 . Now note that b 0 has to be equal to zero as only the first two terms of ( * ) contain b 0 and these do not cancel each other. That is, we may assume p(x) = b 1 x.

The image under d 1 P of this element becomes

d P f 1 d dx + g 1 d dy = - n i=1 a i • yx i | | | f f f x ```Ò Ò Ò Ò • - n i=1 a i • x Ò Ò Ò Ò `xi y f f f | | | • + n i=2 a i i-1 j=1 • x i-j+1 u u u u u s s s s s yx j g g g { { { • + n i=2 a i i j=2 • x i-j+1 y s s s s s u u u u u x j c c c • -b 1 • x } } } e e e
x • However, the first term in this expression can only be zero if dg 3 dy = 0, so g 3 ∈ C[x]. Finally, observe that in g 3 , we can cancel all monomials x i with i ≥ 2 using h = x i-1 (which does not modify f in any way).

But then we have shown that Theorem 5 For P as above, we have that According to [START_REF] Roger | Poisson cohomology of the affine plane[END_REF], as the polynomial x 2 is not square-free, the first Poisson cohomology space H 1 π (C[x, y]) is infinite dimensional, so that

Corollary 20

The map H 1 P (C x, y ) → H 1 tr(P ) (C[x, y]) is not onto.

Let us give an explicit basis for this vector space H 1 π (C[x, y]), in order to make explicit this map.

First of all, we recall that the Poisson coboundary operator is given by: d .

It is clear that the coboundary operator d k π is an homogeneous operator, for example, if f and g are homogeneous polynomial of same degree d ∈ N, then d 1 π (f d dx + g d dy ) is given by an homogeneous polynomial of degree d + 1, in factor of d dx ∧ d dy . This implies that we can work "degree by degree" and consider only homogeneous polynomials. We recall the (commutative) Euler formula, for an homogeneous polynomial q ∈ C[x, y]: We have obtained that, if d ≥ 2, then x 2 (f 1 

x

  with graded Lie bracket {-, -} := µ A •{ {-, -} } where µ A is the multiplication map on A and { {-, -} } is the double Schouten bracket defined in [12, §3.2]. The classical notion of a Poisson tensor in this new setting becomes Proposition 1 ([12, §4.4]) Let P ∈ (T A Der(A)) 2 such that {P, P } = 0, then P determines a double Poisson bracket on A. We call such elements double Poisson tensors. In case A is formally smooth (for example if A is a path algebra of a quiver), there is a one-to-one correspondence between double Poisson tensors on A and double Poisson brackets on A. For a double Poisson tensor P = δ∆, the corresponding double Poisson bracket is, for a, b ∈ A, determined by { {a, b} } P = δ(a) ′ ∆δ(a) ′′ (b) -∆(a) ′ δ∆(a) ′′ (b).

  {double Poisson vector fields}/{double Hamiltonian vector fields}, where in analogy to the classical definitions, a double Poisson vector field is a degree 1 element δ ∈ T A /[T A , T A ] satisfying {P, δ} = 0 and a double Hamiltonian vector field is a degree 1 element of the form {P, f } with f ∈ A/[A, A]. Indeed, let us illustrate the first claim. We have for a ∈ A that {δ∆, a} = +∆(a) ′ δ∆(a) ′′ -δ(a) ′ ∆δ(a) ′′ whence for any P ∈ (T A Der(A)) 2 we get {P, a}(b) = -{ {a, b} } P so if P is a double Poisson tensor and this expression is zero modulo commutators then a mod [A, A] is indeed a central element of the Lie algebra (A/[A, A], {-, -} P ).

Corollary 8

 8 Let P lin be a linear double Poisson bracket, then the induced bracket tr(P lin ) on rep n (CQ) and on iss n (CQ) is a linear Poisson bracket.

1 )

 1 the linear double Poisson brackets P 0 = x which the corresponding Poisson bracket on rep 1 (C x, y ) = C[x, y] is zero; (2) the linear double Poisson brackets P 1 = x Poisson bracket obtained with the trace on rep 1 (C x, y ) is a non-trivial Poisson bracket;(3) the quadratic double Poisson bracket P = x d dx x d dy , which induces a quadratic (non-trivial) Poisson bracket on rep 1 (C x, y ).6.1 The linear double Poisson tensors xLet us first consider the linear double Poisson tensor, given by P 0 := P C×Cǫ 2

•y k Φ 2

 2 has to cancel itself, which means thatxg 0 = 0 and g = yg 1 + a ∈ y C x, y + C.Now, we know that we can write g = a + k≥1 y k g k with, for any k ≥ 1, g k ∈ x C x, y + C. We then have dg dx (g k ).

  1 ,...,k 2s )

Proposition 16

 16 Let us consider the linear double Poisson tensor P0 := P C×C lin C x, y . Then, we have:

6. 2

 2 The linear double Poisson tensors x

  us first consider the double Poisson cohomology space H 0 P 1 (C x, y ).

  x, y , C x, y ],

  y and a ∈ C. Then, as

  Now let h = -(m ′′ xm ′ x + m ′ xm ′′ x) and k = -p(y)x and let us compute

+ 1 P 1 (Remark 4

 114 y l(y) + a. Finally, as for every n ∈ N * , y n = y dq dy ′′ dq dy ′ , with q = 1 n y n ∈ C y , the element y l(y) is of the form y dQ dy ′′ dQ dy ′ , with Q ∈ C y (and in particular y dQ dx Imd 0 P 1 , we have shown Proposition 18 The first double Poisson cohomology group of C x, y , associated to the double Poisson tensor P 1 C x, y ) ≃ C d dx . If we consider the double Poisson tensor a similar fashion to the computations above for P 1 = P

6. 3 Lemma 5

 35 The nonlinear double Poisson tensor P = x d dx x d dy We conclude this section with the determination of the first two double Poisson cohomology groups of a nonlinear double Poisson bracket on the free algebra in two variables. The double bracket { {-, -} } defined on C x, y as { {x, x} } = { {y, y} } = 0 and { {x, y} } = x ⊗ x is a double Poisson bracket. Proof. First of all note that this bracket is defined by the double Poisson tensor x d dx x d dy . Representing d dx by • and d dy by •, this double Poisson bracket corresponds to the necklace P depicted as •

Remark 5

 5 To stress the difference between double Poisson brackets and ordinary Poisson brackets, note that y d dx y d dy is also a double Poisson tensor. However, taking higher degree monomials in x or y no longer yields double Poisson tensors. Whereas, of course, for C[x, y], any polynomial ψ in x and y defines a Poisson bracket ψ d dx ∧ d dy .

6

 6 x, y , C x, y ], which by the NC-Euler formula (Proposition 12) implies that f ∈ C ⊕ [C x, y , C x, y ]. Now H 0 P (C x, y ) = ker(d 0 P )/[C x, y , C x, y ], finishing the proof. Next, we can state that Lemma Let f d dx + g d dy ∈ (T C x,y /[T C x,y , T C x,y ]) 1 , then

•can only be cancelled if g 1 = g 2 +•

 12 against the similar terms obtained in the second row of ( * ) for j = i in the first sum and j = 1 in the second sum. Now observe that for n ≥ 2, the terms in the second row of the expression above cannot be eliminated by any other term because of the location of the y factor, whence a i = 0 for i ≥ 2. That is, f 1 = a(xy + yx) + p(x). Moreover, if a = 0, the expression ay 2 . That is, the image becomes d Now if b 1 = 0, this expression can only be zero if g 2 = g 3 + b 1 y, and we get d

H 1 P

 1 (C x, y ) ≃ {(a(xy + yx) + bx) d dx + ay 2 + by + cx + d d dy | a, b, c, d ∈ C}, so in particular dim H 1 P (C x, y ) = 4 Let us now consider the Poisson bracket that corresponds to the double Poisson tensor P = x d dx x d dy . We then obtain the Poisson algebra (C[x, y], π), where π = tr(P ) = x 2 d dx ∧ d dy .

  k π = {π, -} : k Der(C[x, y]) → k+1 Der(C[x, y]), where {-, -} denotes the (classical) Schouten-Nijenhuis bracket and Der(C[x, y]) denotes the C[x, y]module of the derivations of the commutative algebra C[x, y].We have , for f, g, h ∈ C[x, y],d 0 π (h) = x 2 -[x, y]) ≃ h ∈ C[x, y] | dh dy = dh dx = 0 ≃ C, H 1 π (C[x, y]) ≃ (f, g) ∈ C[x, y] 2 | x 2 df dx + C[x, y]

d dx + g 1 d

 1 dy ) = d 0 π (-h). Moreover, g 3 is an homogeneous polynomial of degree d, in C[y], so that g 3 = c 3 y d , with c 3 ∈ C. We have also seen that f 3 = 0, f 2 = dg 3 dy = c 3 d y d-1 and g 2 = c 2 ∈ C. It remains to consider the cases where d = 1 and d = 0. First, if d = 0, i.e., f, g ∈ C, then the 1-cocycle condition is equivalent to f = 0, second, if d = 1, we have (f, g) = (ax + by, cx + dy), with a, b, c, d ∈ C and the 1-cocycle condition says that a = d and b = 0. We finally have obtain the following Proposition 21 The first Poisson cohomology space associated to the Poisson algebra (C[x, y], π = x 2 d dx ∧ d dy) is given by:H 1 π (C[x, y]) ≃ k∈N C k y k-1 x, y k ⊕ C(0, x).The image of the double Poisson cohomology under the canonical trace map in the classical cohomology now becomesCorollary 22 For the double Poisson tensor P = x d dx x d dy we haveH 1 tr(P ) (C[x, y]) = k≥3 C ky k-1 x, y k ⊕ tr(H 1 P (C x, y )),that is tr(H 1 P (C x, y )) = C 2yx, y 2 ⊕ C(x, y) ⊕ C(0, x) ⊕ C(0, 1).

3

  On rep 1 (C x, y ), the double Poisson tensors P 0 = P C×Cǫ 2 Poisson bracket. However, on rep n (C x, y ) (n ≥ 2) the double Poisson tensor P C×C lin is mapped (by the trace map) to the canonical linear Poisson structure on the product gl * n ×gl * n . For the Lie algebra gl n , we know [5] that the Lie algebra cohomology space H 1 L (gl n ; C) is of dimension 1. To obtain the first Poisson cohomology group of gl * n × gl * n , we have to consider the tensor product of H 1 L (gl n × gl n ; C) which is of dimension two and the algebra of the Casimirs of gl * n × gl * n , which is an infinite dimensional vector space. That is, the trace map from H 1

	P0 = P C×C lin	induce the trivial	lin	and

P0 (C x, y ) to H 1 tr( P0 ) (rep n (C x, y )) is not onto.

  Let us consider (f, g) ∈ C[x, y] 2 , two homogeneous polynomials of same degree d ∈ N, satisfying the 1-cocycle condition x 2 df We divide f and g by x 2 and obtain:f = x 2 f 1 + xf 2 + f 3 , g = x 2 g 1 + xg 2 + g 3 , with f 1 , g 1 ∈ C[x, y] and f 2 , f 3 , g 2 , g 3 ∈ C[y], homogeneous polynomials. Then the 1-cocycle condition becomes:x x 2 df 1 dx + f 2 + x 2 dg 1 that leads to f 3 = 0 (because f 3 ∈ C[y]) and ≥ 2 and let us consider the polynomial h := yf 1 -xg 1 . We have, using the Euler formula (15) and the last equation above,

											dx	+	dg dy	= 2xf , equivalent to
	x	df dx	+	dg dy	= 2f . dy	+ x	dg 2 dy	+	dg 3 dy	= 2xf 2 + 2f 3 ,
							x 2 1 dx	+ f 2 + x 2 dg 1 dy	+ x	dg 2 dy	+	dg 3 dy	= 2f 2 .
	We then have also f 2 = implies that dg 2 dy = 0, i.e., g 2 ∈ C and also dg 3 dy and x df 1 dx + x dg 1 dy df 1 + dx d dh dx = y df 1 dx -g 1 -x dg 1 dx = -y dg 1 dy -g 1 -x dg 1 dg 2 dy = -= 0. This equation then dg 1 . Suppose now that dy dx = -(d -1)g 1 ,
		dh dy	= f 1 + y	df 1 dy	-x	dg 1 dy	= f 1 + y	df 1 dy	+ x	df 1 dx	= (d -1)f 1 .
										dq dx	+ y	dq dy	= deg(q) q.	(15)
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