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POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIESANNE PICHEREAUAbstrat. To eah polynomial ' 2 F[x; y; z℄ is assoiated a Poisson strutureon F3, a surfae and a Poisson struture on this surfae. When ' is weight ho-mogeneous with an isolated singularity, we determine the Poisson ohomologyand homology of the two Poisson varieties obtained.Contents1. Introdution 12. The Poisson ohomology omplex assoiated to a polynomial 53. Isolated singularities and the Koszul omplex 84. Poisson ohomology assoiated to a weight homogeneous polynomialwith an isolated singularity 115. Poisson ohomology of the singular surfae 166. Poisson homology assoiated to a weight homogeneous polynomial withan isolated singularity 21Referenes 261. IntrodutionThe �rst Poisson strutures appeared in lassial mehanis. In 1809, D. Poissonintrodued a braket of funtions, given by:ff; gg = rXi=1 � �f�qi �g�pi � �f�pi �g�qi� ;(1)for two smooth funtions f; g on R2r. It permits one to write the Hamilton'sequations as di�erential equations, where positions (qi) and impulsions (pi) playsymmetri roles. Indeed, denoting by H the total energy of the system, theseequations beome: _qi = fqi; Hg ;_pi = fpi; Hg ; 1 � i � r:D. Poisson also pointed out that if f and g are onstants of motion, then ff; gg isalso a onstant of motion and this phenomenon was explained in 1839 by C. Jaobi,who proved that (1) satis�es what is now alled the Jaobi identity:fff; gg ; hg+ ffg; hg ; fg+ ffh; fg ; gg = 0:(2)2000 Mathematis Subjet Classi�ation. 17B55, 17B63.Key words and phrases. Poisson ohomology, Poisson homology, isolated singularities.1



2 ANNE PICHEREAUThis important identity leads to the de�nition of a Poisson algebra as an algebraB equipped with a skew-symmetri biderivation f� ; �g, satisfying (2), for all f; g; h,elements of B. Said di�erently, a Poisson algebra is a Lie algebra (B; f� ; �g), wheref� ; �g sati�es the Leibniz rule ffg; hg = f fg; hg+ ff; hg g, for all f; g; h 2 B. Onetalks about a Poisson variety, when its algebra of funtions is equipped with aPoisson struture. This notion generalizes the notion of sympleti manifold.For a given Poisson algebra (B; f� ; �g), one de�nes a ohomology, alled Poissonohomology, introdued by A. Lihnerowiz in [12℄; see also [9℄ for an algebraiapproah. The ohains are the skew-symmetri multiderivations of A and theoboundary operator is � [�; �℄S , where � := f� ; �g is the Poisson braket and [� ; �℄Sis the Shouten braket. The resulting Poisson omplex, de�ned in detail in Setion2.1, an be viewed as the ontravariant version of the de Rham omplex. Its oho-mology gives very interesting information about the Poisson struture, as for smallk, the k-th Poisson ohomology spae Hk(B; �) has the following interpretation:H0(B; �) = fCasimir funtionsg := ff 2 B j ff; � g = 0g;H1(B; �) = fPoisson derivationsgfHamiltonian derivationsg ;H2(B; �) = fskew-symmetri biderivations ompatible with �gfLie derivatives of �g ;H3(B; �) = fObstrutions to deformations of Poisson struturesg:Moreover, H2(B; �) is fundamental in the study of normal forms of Poisson stru-tures (see [4℄). We also denote by Cas(B; �) the spae of all Casimir funtionsof (B; f� ; �g) (that is to say H0(B; �)) and we point out that eah Hk(B; �) is aCas(B; �)-module in a natural way.To determine the Poisson ohomology of a given Poisson algebra expliitly is, ingeneral, diÆult. One of the reasons seems to be that Poisson ohomology is nota funtor: a morphism � : A1 ! A2 between Poisson algebras does not lead to amorphism between their ohains (multiderivations), nor between their orrespond-ing Poisson ohomology groups. In a few spei� ases, Poisson ohomology hasbeen determined. For a sympleti manifold, there exists a natural isomorphismbetween Poisson and de Rham ohomology (see [12℄). In [20℄ and [23℄, one �ndssome partial results about the ase of regular Poisson manifolds, while, for Poisson-Lie groups, one an refer to [7℄. Finally, the Poisson ohomology in dimension twowas omputed in the germi�ed and algebrai ases in [14℄ and [17℄.Our purpose is to determine the Poisson ohomology of two lasses of Poissonvarieties, intimately linked. The �rst lass is omposed of the singular surfaesF' : f' = 0g in F3 (F is a �eld of harateristi zero) that are de�ned by the zerosof polynomials ' 2 F[x; y; z℄ and the seond one is the lass of the Poisson varietiesthat are the ambient spae F3, equipped with Poisson strutures assoiated toeah '. It means that we onsider Poisson strutures on the algebras of regularfuntions on F' and F3, given by A' := F[x; y; z℄=h'i and A := F[x; y; z℄ and thatwe determine the Poisson ohomology of the Poisson algebras obtained.We point out that the dimension three is the �rst one in whih there is a realondition for a biderivation to be a Poisson biderivation. The Jaobi identity is



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 3indeed trivial in dimension two and every polynomial  2 F[x; y℄ leads to a Poissonstruture on the aÆne spae F[x; y℄, given by  ��x ^ ��y . One an onsider thesingular lous of suh a struture, given by � : f = 0g. In [17℄, the authorsdetermine the dimensions of the Poisson ohomology spaes, when  is a homoge-neous polynomial. They observe that these dimensions are linked to the type ofthe singularity of � . Conversely, in our ontext, we onsider a surfae F', with asingularity, and a Poisson braket that do not bring other singularities. That is tosay, this Poisson struture is sympleti everywhere exept on the singularities ofF'. In fat, it will be the restrition of a Poisson struture f� ; �g' on F3, whih isompletely de�ned by the brakets:fx; yg' = �'�z ; fy; zg' = �'�x ; fz; xg' = �'�y ; (' 2 A):(3)We suppose that F' has only one weight homogeneous isolated singularity (at theorigin). In fat, the hypothesis is that ' is a weight homogeneous polynomial withan isolated singularity.An other way to approah our ontext is to onsider the Poisson strutures onA that admit a weight homogeneous Casimir and a singular lous redued to theorigin. That leads to study the Poisson strutures of the form f� ; �g', with ' weighthomogeneous with an isolated singularity. As ' is a Casimir for this struture, h'iis a Poisson ideal of the Poisson algebra (A; f� ; �g'). This implies that f� ; �g' goesdown to the quotient algebra A' = F[x; y; z℄=h'i. The singular surfae F' is thenthe union of a sympleti leave of f� ; �g' and the origin.For eah ' 2 A weight homogeneous with an isolated singularity, what we de-termine is the Poisson ohomology of both the Poisson algebras introdued. More-over, we turn these results to good aount to give the Poisson homology of thesealgebras. The Poisson ohomology spaes are respetively denoted by Hk(A; ')for (A; f� ; �g') and Hk(A') for the singular surfae, while the Poisson homologyspaes are denoted by Hk(A; ') and Hk(A').To develop a �rst idea about our results, one may think of ' as a homogeneouspolynomial, of degree denoted by $('), suh that its three partial derivatives haveonly one ommon zero that is the origin. This implies thatAsing := A=h�'�x ; �'�y ; �'�z iis a �nite dimensional F-vetor spae. Its dimension is the so-alled Milnor num-ber � (see [13℄). This spae gives information about the (isolated) singularity ofthe surfae F' (like multipliity, see also [3℄) as it is exatly the algebra of regularfuntions on this singularity. It plays an important role in the Poisson ohomologyof the algebra (A; f� ; �g'), so that this Poisson ohomology is losely related tothe type of the singularity of F'. We onsider a family u0 = 1; u1; : : : ; u��1 ofhomogeneous elements of A, whose images in Asing give a F-basis of this F-vetorspae.The algebra of Casimir funtions of the algebra (A; f� ; �g') is given in Proposition4.2 and is simply the algebra generated by ', that is to say Cas(A; ') = H0(A; ') 'Li2NF'i. In Proposition 4.5, we see that the �rst Poisson ohomology spae ofA is equal to zero if the degree of ', $('), is equal to 3 and otherwise H1(A; ') is



4 ANNE PICHEREAUthe Cas(A; ')-module given byH1(A; ') ' Cas(A; ')~e;where ~e := (x; y; z) orresponds to the Euler derivation x ��x + y ��y + z ��z . Notiethat the ubi polynomials play a speial role here; in the weight homogeneousase, this role is played by the polynomials of degree the sum of the weights ofthe three variables x; y; z. Moreover, with Proposition 4.8, we see that the ase$(') = 3 is also the unique ase where the biderivation f� ; �g' is not an exatPoisson struture, i.e. f� ; �g', whih is a 2-oyle of the Poisson ohomology of(A; f� ; �g'), is not a 2-oboundary (see [9℄). Proposition 4.8 aÆrms indeed that theseond Poisson ohomology spae is exatlyH2(A; ') ' Mj�1$(uj )6=$(')�3Cas(A; ')~ruj � M$(uj )=$(')�3Cas(A; ')uj ~r'� Mj�1$(uj)=$(')�3F~ruj :This writing has been obtained from the third Poisson ohomology spae, whih isdetermined in Proposition 4.7, and is exatly the free Cas(A; ')-moduleH3(A; ') ' Cas(A; ')
F Asing :It may be remarked that H2(A; ') is the unique Poisson ohomology spae of(A; f� ; �g') whih is not always a free module over the algebra of Casimirs.In Chapter 5, we give the Poisson ohomology spaes of the singular surfae F',by onsidering the algebra A'. For this Poisson algebra, the Casimirs are simplythe elements of F and, aording to Propositions 5.5 and 5.6, we have:H1(A') ' M$(uj )=$(')�3Fuj ~e ; H2(A') ' M$(uj )=$(')�3Fuj ~r':Finally, in Chapter 6, we determine the Poisson homology of the algebra (F3; f� ; �g')and of the singular surfae F'. We explain �rst, in Proposition 6.1, that we haveisomorphisms Hk(A; ') ' H3�k(A; '); for all k = 0; 1; 2; 3:Then, using the results about Poisson ohomology of (A; f� ; �g'), we ompute thePoisson homology spaes of F' and we obtain, in Proposition 6.5,H0(A') ' H2(A') ' Asing ; H1(A') ' ��1Mj=1 F ~ruj :Sine the oboundary operator is a weight homogeneous operator (see Setion2.2), all our arguments remain true if we replae the algebra A = F[x; y; z℄ by thealgebra of all formal power series �A := F[[x; y; z℄℄, still equipped with the Poissonstruture f� ; �g', with ' a weight homogeneous element of A. It suÆes to replaeCas(A; ') = F['℄ by Cas( �A; ') = F[['℄℄, the algebra of formal power series in '.I would like to take the opportunity to thank my thesis advisor, Pol Vanhaeke,for suggesting to me this interesting problem and for his availability all along thisprojet. I am also indebted to Claude Quitt�e, whose knowledge of regular sequenes



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 5was preious for me, and Camille Laurent for his explanations about the modularlass.I �nally would like to thank Prof. M. van den Bergh. After writing this paper,he pointed out to me that, in his artile \Nonommutative homology of some three-dimensional quantum spaes" (see [21℄), he omputed the Poisson homology spaesof the Poisson algebra (A; f� ; �g'), for ' = q13 (x3 + y3 + z3) + 2p1xyz, where p1and q1 are parameters. This ase is a partiular one of the Poisson homology thatI determine, and the method is very similar.2. The Poisson ohomology omplex assoiated to a polynomial2.1. Poisson strutures on A = F[x; y; z℄ and their ohomology. Let A bethe polynomial algebra A = F[x; y; z℄, where F is a �eld of harateristi zero andlet ' 2 A. A Poisson struture on A is de�ned by the brakets:fx; yg' = �'�z ; fy; zg' = �'�x ; fz; xg' = �'�y :(4)Reall that a Poisson braket on an assoiative and ommutative algebra B is askew-symmetri bilinear map f� ; �g, from B2 to B (element of Hom(^2B;B)), whihis a derivation in eah of its arguments and whih satis�es the Jaobi identity:fff; gg ; hg+ ffg; hg ; fg+ ffh; fg ; gg = 0;(5)for eah f; g; h 2 B. In the partiular ase of A, the brakets of the generators x; y; zde�ne totally the Poisson braket, in view of the derivation property, and moreoverthe Jaobi identity is satis�ed for all f; g; h 2 A if and only if it is satis�ed for x; y; z(see [22℄). Here, an easy omputation shows that this ondition is satis�ed by thebraket f� ; �g' so that it equips A with a Poisson struture, expliitly given by:f� ; �g' = �'�z ��x ^ ��y + �'�x ��y ^ ��z + �'�y ��z ^ ��x:(6)Our �rst purpose is to determine the Poisson ohomology of this Poisson al-gebra (A; f� ; �g'), when ' is a weight homogeneous polynomial with an isolatedsingularity at the origin.We reall that the Poisson omplex is onstruted in the following way (see [4℄and [11℄ for details). First, the k-ohains of the Poisson omplex of (A; f� ; �g')are the skew-symmetri k-derivations of A (i.e. the skew-symmetri k-linear mapsAk ! A that are derivations in eah of their arguments). We denote by Xk(A)the A-module of all skew-symmetri k-derivations of A and the elements of theA-module X�(A) = Lk2N Xk(A) are alled skew-symmetri multi-derivations ofA. By onvention, the A-module of the 0-derivations of A is X0(A) = A.The Poisson oboundary operator Æk' : Xk(A) ! Xk+1(A) is de�ned, for anelement Q 2 Xk(A), by:(7) Æk'(Q)(f0; : : : ; fk) := kXi=0(�1)i nfi; Q(f0; : : : ; bfi; : : : ; fk)o'+ X0�i<j�k(�1)i+jQ(ffi; fjg' ; f0; : : : ; bfi; : : : ; bfj ; : : : ; fk);where the symbol bfi means that we omit the term fi. It is easy to see that Æk'(Q)is indeed a skew-symmetri (k + 1)-derivation while the fat that Æk+1' Æ Æk' = 0 is



6 ANNE PICHEREAUan easy onsequene of the Jaobi identity (5). The ohomology of this omplex isalled the Poisson ohomology of (A; f� ; �g'). We denote by Zk(A; '), respetivelyBk(A; '), the vetor spae of all k-oyles, respetively of all k-oboundaries, andwe denote by Hk(A; ') := Zk(A; ')=Bk(A; '), the k-th ohomology spae. As thespae H0(A; ') is exatly the F-vetor spae of the Casimirs of f� ; �g' (i.e. theelements that belong to the enter of this braket), we will also denote this spaeby Cas(A; '). Notie that, if  2 Cas(A; ') , the operator Æ' ommutes withthe multipliation by  . This implies that eah of the Poisson ohomology spaesHk(A; ') is a Cas(A; ')-module.In the ase of the polynomial algebra A = F[x; y; z℄, we have:X0(A) ' X3(A) ' A; X1(A) ' X2(A) ' A3;(8)and Xk(A) ' f0g, for k � 4. We hoose these natural isomorphisms as follows:X1(A) �! A3V 7�! (V [x℄; V [y℄; V [z℄); X2(A) �! A3V 7�! (V [y; z℄; V [z; x℄; V [x; y℄);and X3(A) �! A : V 7�! (V [x; y; z℄).The elements of A3 are viewed as vetor-valued funtions on A, so we denotethem with an arrow, like ~f 2 A3. Sometimes, it will be important to distinguishA3 ' X1(A) from A3 ' X2(A); then we will rather write ~f 2 X1(A) or ~f 2 X2(A).In A3, let �, � denote respetively the usual inner and ross produts, while ~r, ~r�,Div denote respetively the gradient, the url and the divergene operators. Forexample, with these notations and the above isomorphisms, the skew-symmetribiderivation f� ; �g' (de�ned in (6)) is identi�ed with the element ~r' of A3.Eah of the Poisson oboundary operators Æk', given in (7), an now be writtenin a ompat form:(9) Æ0'(f) = ~rf � ~r'; for f 2 A ' X0(A);Æ1'(~f) = �~r(~f � ~r') + Div(~f)~r'; for ~f 2 A3 ' X1(A);Æ2'(~f) = �~r' � (~r� ~f) = �Div(~f � ~r'); for ~f 2 A3 ' X2(A);and the Poisson ohomology spaes of (A; f� ; �g') take the following formsH0(A; ') = Cas(A; ') ' ff 2 A j ~rf � ~r' = ~0g;H1(A; ') ' f~f 2 A3 j �~r(~f � ~r') + Div(~f)~r' = ~0gf~rf � ~r' j f 2 Ag ;H2(A; ') ' f~f 2 A3 j ~r' � (~r� ~f) = 0gf�~r(~f � ~r') + Div(~f)~r' j ~f 2 A3g ;H3(A; ') ' Af~r' � (~r� ~f) j ~f 2 A3g :



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 7In order to ompute these ohomology spaes, we will often use, for ~f;~g;~h 2 A3and f 2 A, the following formulas, well-known from vetor alulus in R3:~r� (f~g) = ~rf � ~g + f(~r� ~g);(10) Div(f~g) = ~rf � ~g + f Div(~g);(11) Div(~f � ~g) = (~r� ~f) � ~g � ~f � (~r� ~g):(12)2.2. Weight homogeneous multi-derivations. As we said, our results onernweight homogeneous Poisson strutures on A. A non-zero multi-derivation P 2X�(A) is said to be weight homogeneous of (weighted) degree r 2 Z, if there existpositive integers $1; $2; $3 2 N� (the weights of the variables x; y; z), withouta ommon divisor, suh that L~e$ [P ℄ = rP; where L~e$ is the Lie derivative withrespet to the (weight homogeneous) Euler derivation ~e$ = $1 x ��x + $2 y ��y +$3 z ��z . The degree of a weight homogeneous multi-derivation P 2 X�(A) is alsodenoted by $(P ) 2 Z. For f 2 A, it amounts to the usual (weighted) degree of apolynomial. Notie that the degree of a non-zero k-derivation may be negative fork > 0. By onvention, the zero k-derivation is weight homogeneous of degree �1.The Euler derivation ~e$ is identi�ed, with the isomorphisms given in Setion 2.1,to the element ~e$ = ($1 x;$2 y;$3 z) 2 A3. We denote by j$j the sum of theweights $1 +$2 +$3, so that j$j = Div(~e$). Euler's formula for a weight homo-geneous f 2 A,(13) ~rf � ~e$ = $(f)f;then yields, using (11):(14) Div(f~e$) = ($(f) + j$j)f:Fixing weights $1; $2; $3 2 N�, it is lear that A = Li2NAi, where A0 = Fand for i 2 N�, Ai is the F-vetor spae generated by all weight homogeneouspolynomials of degree i. Denoting by Xk(A)i the F-vetor spae given by Xk(A)i :=fP 2 Xk(A) j $(P ) = ig [ f0g, we have the following isomorphisms:(15) X0(A)i ' Ai;X1(A)i ' Ai+$1 �Ai+$2 �Ai+$3 ;X2(A)i ' Ai+$2+$3 �Ai+$1+$3 �Ai+$1+$2 ;X3(A)i ' Ai+$1+$2+$3 :Notie that even if X1(A) ' X2(A) and X0(A) ' X3(A), these isomorphisms donot respet the weight deompositions (15).One of our purposes is to determine the Poisson ohomology of (A; f� ; �g') when' 2 A is weight homogeneous with an isolated singularity. The weight homogeneityof ' will be essential for the omputation of these spaes. It implies indeed, amongother things, that eah of the oboundary operators Æk' is weight homogeneous ofthe same degree N$ := $(') � j$j, as an be seen from (9). That is to say, wehave: P 2 Xk(A)i ) Æk'(P ) 2 Xk+1(A)i+N$ :If P 2 Xk(A) is a oyle, then eah of its weight homogeneous omponents willbe a oyle. In the same way, if P 2 Xk(A) is a oboundary then eah of itsweight homogeneous omponents will be a oboundary. Moreover, if P 2 Xk(A) is



8 ANNE PICHEREAUa weight homogeneous oboundary, it is the oboundary of a weight homogeneouselement in Xk�1(A).3. Isolated singularities and the Koszul omplexIn the next hapters, we will study the Poisson ohomology assoiated to aweight homogeneous polynomial ' 2 A = F[x; y; z℄ (with har(F) = 0). As ' willbe supposed to have isolated singularities, we will, in this part, reall some resultsabout this notion, see [19℄ and [18℄ for proofs.Algebraially, we say that a weight homogeneous element ' of F[x; y; z℄ has anisolated singularity (at the origin) ifAsing := F[x; y; z℄=h�'�x ; �'�y ; �'�z i(16)is �nite-dimensional, as a F-vetor spae. The dimension of Asing is then alled theMilnor number of the singular point. When F = C, this amounts, geometrially,to saying that the surfae F' : f' = 0g has a singular point only at the origin.Remark 3.1. By de�nition, Asing is exatly the F-algebra of regular funtions ofthe aÆne variety n �'�x = �'�y = �'�z = 0o whih is the singular lous of the Poissonstruture f� ; �g' (as an be seen from (4)). This algebraAsing will play an importantrole in the Poisson ohomology of the algebras (A; f� ; �g') and (A'; f� ; �gA').Now, with the Cohen-Maaulay theorem, we will see that, if ' 2 A is a weight ho-mogeneous polynomial with an isolated singularity (what we will denote by w.h.i.s.),then the sequene of its partial derivatives �'�x ; �'�y ; �'�z will be a regular sequeneof A. In order to explain that, we �rst have to write down the de�nition of ahomogeneous system of parameters of an algebra.De�nition 3.2. Let A be an assoiative and ommutative graded F-algebra. Asystem of homogeneous elements F1; : : : ; Fd in A, where d is the Krull dimension ofA, is alled a homogeneous system of parameters of A (h.s.o.p.) if A=hF1; : : : ; Fdiis a �nite dimensional F-vetor spae.For example, if we onsider the F-algebra A = F[x; y; z℄, whih is graded by theweighted degree, we have a natural h.s.o.p. given by the system x; y; z. Moreover,we have seen above that a weight homogeneous element ' 2 A has an isolatedsingularity (that is to say is w.h.i.s.) if and only if the three partial derivatives�'�x ; �'�y ; �'�z give a h.s.o.p. of A.In order to understand the following theorem, that we will need, we still have togive the de�nition of a regular sequene.De�nition 3.3. A sequene a1; : : : ; an in a ommutative assoiative algebra A issaid to be a A-regular sequene if ha1; : : : ; ani 6= A and ai is not a zero divisor ofA=ha1; : : : ; ai�1i for i = 1; 2; : : : ; n.For example, it is lear that the sequene x; y; z is a regular sequene in F[x; y; z℄.But, what about �'�x ; �'�y ; �'�z , when ' is w.h.i.s. ?Theorem 3.4 (Cohen-Maaulay). Let A be a Noetherian graded F-algebra. IfA has a h.s.o.p. whih is a regular sequene, then any h.s.o.p. in A is a regularsequene.



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 9Thus, when ' 2 F[x; y; z℄ is w.h.i.s., then �'�x ; �'�y ; �'�z is a regular sequene. Thisis the key fat whih leads to the following proposition, that will play a fundamentalrole in our omputations of Poisson ohomology, assoiated to a polynomial.Proposition 3.5. For any ' 2 A the following diagramF A A30 A A3 A3 AA A3 A3 AA A3 A3 A
? ?~r ?~r�- ?~r -~r' -�~r'?~r� -�~r'?Div-~r'?~r -�~r'?~r� -�~r'?Div-~r' -�~r' -�~r'is ommutative and has exat olumns. If ' is w.h.i.s. then the rows of this diagramare also exat.Remark 3.6. If ' 2 A is weight homogeneous, then, as maps from Xk(A) toXk�1(A), eah of the vertial arrows is weight homogeneous of degree zero, whileeah of the horizontal arrows is weight homogeneous of degree $('), the (weighted)degree of ', leading to: X3(A)r X2(A)r+$(')X3(A)r�$(') X2(A)r X1(A)r+$(') X0(A)r+2$(')X2(A)r�$(') X1(A)r X0(A)r+$(')
-~r'?~r ?~r�?~r -~r' -�~r'?~r� -�~r'?Div-�~r' -�~r'Proof. Eah olumn of this diagram is easily interpreted as the de Rham omplexof A. The lassial argument of exatness of the de Rham omplex of C1(Rn)is easily adapted to the algebrai ase: if ~f = (f1; f2; f3) 2 A3 is omposed ofthree homogeneous polynomials of degree d then Div(~f) = 0 implies that the �rstomponent of ~r� (~f � ~e) is equal to �~r� (~f � ~e)�1 = 2f1 + ~rf1 � ~e� xDiv(~f) =(d+ 2)f1, in view of Euler's Formula (13) (~e is the Euler derivation (x; y; z) 2 A3,that is to say ~e$, with $1 = $2 = $3 = 1), so that ~f = 1d+2 ~r� (~f �~e). Similarly,~r � ~f = ~0 implies that �~r(~f � ~e)�1 = f1 + ~rf1 � ~e = (d + 1)f1, that lieds to~f = 1d+1 ~r(~f � ~e), aording again to Euler's Formula.Eah of the rows of the diagram represents (part of) the so-alled Koszul omplex.Let us prove that the Koszul omplex, assoiated to ' 2 A is exat, when ' isw.h.i.s. If ~f = (f1; f2; f3) 2 A3 satis�es the equation ~f � ~r' = ~0, then we havethree equalities like f1 �'�y � f2 �'�x = 0. Sine the partial derivatives of ' form aregular sequene, �'�y is not a zero divisor in A=h�'�x i, so there exists � 2 A suh



10 ANNE PICHEREAUthat f1 = ��'�x and then f2 = ��'�y . The other equations imply that f3 = ��'�z , thatis to say ~f = �~r'. For the seond part of the exatitude of the Koszul omplex,the reasoning is exatly of the same kind. �Remark 3.7. If ' 2 A is a weight homogeneous polynomial without square fatorthen the �rst part of the Koszul omplex A ~r'�! A3 �~r'�! A3 is exat, but theseond part A3 �~r'�! A3 �~r'�! A need not be exat if ' is not w.h.i.s. For example,let ' = xyz 2 A. The polynomial ' is square free but the origin is not an isolatedsingularity for '. Then, the element ~f = (x; y;�2z) 2 A satis�es the equation~f � ~r' = ~0 but, by an argument of degree, there is no element ~g 2 A3 suh that~f = ~g � ~r'.We will often apply Proposition 3.5 diretly but sometimes, we will use it interms of the following orollary.Corollary 3.8. Let ' 2 A be w.h.i.s. and let ~h 2 A3. If (~r � ~h) � ~r' = 0 thenthere exist f; g 2 A suh that ~h = ~rf + g~r'.Proof. Aording to the diagram in Remark 3.6, the operator ~h 7! (~r � ~h) � ~r',onsidered as a map between X2(A) and X0(A), is a weight homogeneous operatorof degree $('). Therefore, it suÆes to prove the result for an element ~h 2 X2(A)r,with r 2 Z. If (~r� ~h) � ~r' = 0 then, by Proposition 3.5, there exists ~k 2 A3 suhthat ~r � ~h = ~k � ~r'. In view of Remark 3.6, ~k an be hosen in X2(A)r�$(').Summarizing, we have to prove that an equation of the type:~r� ~h = ~k � ~r'; ~h 2 X2(A)r ; ~k 2 X2(A)r�$(')(17)implies that ~h = ~rf + g~r', with f; g 2 A.We will do this by indution on r 2 Z, by proving the result diretly for allr < $(') � $[2℄, with $[2℄ := maxf$1 + $2; $1 + $3; $2 + $3g, where theintegers $1; $2; $3 are the weights of the variables x; y; z.If r < $(')�$[2℄ then, aording to the deompositions in (15), X2(A)r�$(') =f0g so that the equality (17) leads to ~r�~h = ~0. Using Proposition 3.5, we obtain~h = ~rf , with f 2 A as required.Let r0 � $(') �$[2℄ and assume that (17) implies, for all r < r0, the existeneof f; g 2 A suh that ~h = ~rf + g~r'. Let us suppose that an element ~l 2 X2(A)r0satis�es an equation like in (17), namely, suppose that there exists ~h 2 X2(A)r0�$(')suh that ~r�~l = ~h� ~r':(18)Then, ~h satis�es (17), with r = r0 � $('). Indeed, omputing the divergene ofboth summands of (18) gives (~r�~h) � ~r' = 0 and using Proposition 3.5 one againleads to the existene of ~k 2 X2(A)r0�2$(') suh that we have ~r�~h = ~k� ~r'. Byindution hypothesis, there exist f; g 2 A suh that ~h = ~rf + g~r'. Then, usingFormula (10), we obtain ~r�~l = ~h� ~r' = ~rf � ~r' = ~r� (f ~r').We an now onlude with Proposition 3.5 that there exists f 0 2 A suh that~l� f ~r' = ~rf 0. Hene the result. �



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 11Remark 3.9. As Z2(A; ') = f~h 2 A3 j (~r� ~h) � ~r' = 0g, Corollary 3.8 leads tothe equality Z2(A; ') = f~rf + g~r' j f; g 2 Ag:This identity will be useful when we will determine H2(A; ') in Setion 4.4.4. Poisson ohomology assoiated to a weight homogeneouspolynomial with an isolated singularityLet us onsider the polynomial algebra A = F[x; y; z℄ (har(F) = 0), equippedwith the Poisson struture f� ; �g', where ' 2 A is w.h.i.s. (weight homogeneouspolynomial with an isolated singularity). We determine the Poisson ohomologyspaes of the Poisson algebra (A; f� ; �g').Remark 4.1. If ' 2 A is w.h.i.s. then $(') �$i > 0, for i = 1; 2; 3 (where $(')is still the (weighted) degree of ' and $1; $2; $3 are the weights of the variablesx; y; z), and in partiular, $(') > 1.4.1. The spae H0(A; '). A preise desription of the 0-th Poisson ohomologyspae, whih is also the algebra of the Casimirs, is given in the following proposition.Proposition 4.2. If ' 2 A is w.h.i.s. then the zeroth Poisson ohomology spae of(A; f� ; �g') is given by H0(A; ') = Cas(A; ') 'Mi2NF'i:Proof. Let f 2 A�f0g be a weight homogeneous 0-oyle, thus satisfying Æ0'(f) =~rf � ~r' = ~0. Write f as f = h'r, where r 2 N and where h 2 A � f0g is apolynomial that is not divisible by '. We have ~rf = 'r ~rh + rh'r�1~r', so~rh� ~r' = ~0. Proposition 3.5 implies the existene of g 2 A suh that ~rh = g~r'.Sine h and ' are weight homogeneous and in view of Euler's Formula (13),$(h)h = ~rh � ~e$ = g~r' � ~e$ = $(') g';so $(h) = 0, as h is not divisible by '. Thus h 2 F and f = h'r 2 Li2NF'i.Conversely, it is lear that Æ0'('r) = ~r('r)� ~r' = ~0, for any r 2 N. �Remark 4.3. Aording to Remark 3.7, if ' 2 A is a weight homogeneous poly-nomial without square fator but ' is not neessarly w.h.i.s., then the �rst partof the Koszul omplex is still exat, so Proposition 4.2 is also valid for this moregeneral lass of polynomials. However, if ' has a square fator, the result is nottrue anymore. For example, if ' =  r with r � 2 and  2 A a weight homogeneouspolynomial without square fator, then H0(A; ') ' H0(A;  ) 'Li2NF i so thatH0(A; ') 6'Li2NF'i.4.2. The spae H1(A; '). We �rst prove a result whih will be useful to determineH1(A; ').Lemma 4.4. Let ' 2 A be w.h.i.s. and ~g 2 A3. Suppose that there exist r 2 Nand � 2 F suh that � ~g � ~r' = 0;Div(~g) = �'r:(19)Then � = 0 (equivalently Div(~g) = 0).



12 ANNE PICHEREAUProof. Aording to Remark 3.6, the operator ~g 7! (~g � ~r';Div(~g)) (from A3 to A2)restrits for any d 2 Z to an operator between X1(A)d and X0(A)d+$(')�X0(A)d.Therefore it suÆes to prove the lemma for an element ~g 2 X1(A)d, with d 2 Z.Suppose that suh an element ~g sati�es (19), then, aording to Proposition 3.5,the �rst equation implies that there exists ~k 2 X2(A)d�$('), suh that ~g = ~k� ~r'.We will apply indution on r 2 N. First, if r = 0, then, aording to Formula (12),� = Div(~g) = Div(~k � ~r') = (~r� ~k) � ~r', so that � = 0, for degree reasons.Assume now that for some �xed r � 0, any ~g that satis�es (19) is divergenefree. Suppose that ~h 2 A3 satis�es ~h � ~r' = 0 and Div(~h) = �0'r+1, for some�0 2 F. Writing ~h = ~k � ~r', the Formulas (12), (13) and (14) show that ~g :=~r � ~k � �0$(')'r~e$ satis�es (19), with � = ��0($(')r + j$j)=$('), so that, byindution hypothesis, 0 = � = ��0($(')r+ j$j)=$('). It follows that �0 = 0. �Now, we an give the main result of this Setion. We reall that j$j is the sumof the weights of the three variables x; y; z.Proposition 4.5. If ' 2 A is w.h.i.s., then the �rst Poisson ohomology spae of(A; f� ; �g') is a free module over Cas(A; '), given by:H1(A; ') ' ( f0g if $(') 6= j$j;Cas(A; ')~e$ = Li2NF'i ~e$ if $(') = j$j:Proof. Let ~f 2 X1(A) be a non zero element of Z1(A; '), that is to say, ~f 2 A3satis�es the equation: ~r(~f � ~r') = Div(~f) ~r':(20)Aording to Remark 3.6, we suppose that ~f is weight homogeneous. Our purposeis to write ~f = ~rk � ~r' + $(')'r~e$ 2 B1(A; ') +Li2N F'i ~e$, where  = 0if $(') 6= j$j and  need not be 0 otherwise. Our proof will be divided in threeparts.1: First, using oyle ondition (20), we �nd an element ~g 2 A3 whih satis�esthe equations (19). This equality implies indeed that Æ0'(~f �~r') = ~r(~f �~r')�~r' =~0, so that the weight homogeneous element ~f � ~r' of A is a Casimir. Aordingto Proposition 4.2, there exist  2 F and r 2 N suh that ~f � ~r' = 'r+1.Using Equation (20) one more, we obtain Div(~f) = (r + 1)'r. Letting ~g := ~f �$(')'r~e$, Formulas (13) and (14) imply that ~g satis�es (19), where � = (1� j$j$(')).Lemma 4.4 leads to ( Div(~g) = 0; ~g � ~r' = 0;0 = �1� j$j$(')� :2: Now, we will show that if ~g 2 A3 satis�es Div(~g) = 0 and ~g � ~r' = 0, then~g 2 B1(A; '). Let ~g be a suh element. As ~g � ~r' = 0, Proposition 3.5 implies theexistene of an element ~h 2 A3 suh that ~g = ~h� ~r'. Moreover, we have0 = Div(~g) = Div(~h� ~r') = (~r� ~h) � ~r':Corollary 3.8 leads now to the existene of elements k; l 2 A suh that ~h = ~rk+l~r',so that ~g = ~rk � ~r' = Æ0'(k) 2 B1(A; ').



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 133: The �rst two parts of this proof lead to the existene of k 2 A and  2 Fsuh that ( ~f = ~rk � ~r'+ $(')'r~e$;0 = �1� j$j$(')� :(21)Now, we have to onsider two ases: $(') 6= j$j and $(') = j$j.� If $(') 6= j$j then  = 0 and ~f = ~rk � ~r' = Æ0'(k) 2 B1(A; '). Thus, when$(') 6= j$j, then H1(A; ') ' f0g.� Now, suppose that $(') = j$j, then (21) leads to Z1(A; ') � B1(A; ') +Li2NF'i~e$. Conversely, for any i 2 N, Formulas (13) and (14) lead to Æ1'('i~e$) =(j$j �$('))'i ~r' = 0. So thatZ1(A; ') = B1(A; ') +Mi2NF'i~e$:Let us show that this sum is a diret one. It suÆes to onsider a weight homoge-neous element �'i~e$ 2 B1(A; '), � 2 F, i 2 N. It means that there exists k 2 Asuh that �'i~e$ = ~rk � ~r'. Then (12) and (14) lead to0 = Div(~rk � ~r') = Div(�'i~e$) = �j$j(i+ 1)'i;therefore � = 0 and the sum B1(A; ') � Li2NF'i~e$ is diret. Thus, when$(') = j$j, then H1(A; ') 'Li2N F'i~e$. �Remark 4.6. We see that the ase $(') = j$j is partiular. When ' is homoge-neous (i.e. weight homogeneous with $1 = $2 = $3 = 1), it is the ase where thedegree of ' is three, that is to say, where ' is a ubi polynomial.4.3. The spae H3(A; '). Now, we give the third Poisson ohomology spae of(A; f� ; �g'), where ' 2 A = F[x; y; z℄ is w.h.i.s. Reall that, in this ase,Asing = F[x; y; z℄=h�'�x ; �'�y ; �'�z iis a �nite dimensional F-vetor spae, whose dimension is the Milnor number,denoted by �. Let u0 = 1; u1; : : : ; u��1 be weight homogeneous elements of A, suhthat their images in Asing give a F-basis of Asing .Proposition 4.7. If ' 2 A = F[x; y; z℄ is w.h.i.s. then the third ohomology spaeH3(A; ') is the free Cas(A; ')-module:H3(A; ') ' ��1Mj=0 Cas(A; ') uj ' Cas(A; ')
F Asing :Proof. Let f 2 A ' X3(A) be a weight homogeneous polynomial of degree d 2 N.1: We �rst show that there exist ~g 2 A3, N 2 N and elements �i;j 2 F, where0 � i � N and 0 � j � �� 1, suh that:f = ~r' � (~r� ~g) + NXi=0 ��1Xj=0 �i;j'iuj 2 B3(A; ') + Xk2N0�j���1F'kuj :(22)Let $[1℄ := max($1; $2; $3). We apply indution on d, proving diretly the resultfor d � $(')�$[1℄ (this is not an empty ase, as an be seen from Remark 4.1, for



14 ANNE PICHEREAUexample, it ontains the ase f 2 F). By de�nition of the elements u0; : : : ; u��1,we have: f = ~r' �~l + ��1Xj=0 �juj ;(23)where ~l 2 X1(A)d�$(') and �0; : : : ; ���1 2 F.If d � $(') � $[1℄ then the orrespondenes (15) imply that ~l is an element(a; b; ) of F3 so that f is indeed of the form (22), with ~g = (bz; x; ay), N = 0 and�0;j = �j .Now, suppose that d > $(')�$[1℄ and that any weight homogeneous polynomialof degree at most d� 1 is of the form (22). Let us onsider the deomposition (23)for f of degree d. Proposition 3.5 implies that there exists ~g 2 A3 suh that:~l � Div(~l)d�$(') + j$j~e$ = ~r� ~g;(24)sine Div�~l� Div(~l)d�$(')+j$j~e$� = 0, as follows from $(Div(~l)) = d�$(') and (14).Using the indution hypothesis on Div(~l), we onlude that (23), with ~l givenby (24), is indeed of the form (22) (one uses that, aording to Formula (10),'(~r� ~k) � ~r' = (~r� ('~k)) � ~r', for ~k 2 A3).2: So, we have already obtained that(25) A = f~r' � (~r�~l) j ~l 2 A3g+ ��1Xj=0 Cas(A; ')uj= B3(A; ') + ��1Xj=0 Cas(A; ')uj :and it suÆes to show that this sum is diret in A ' X3(A).We suppose the ontrary. This allows us to onsider the smallest integer N0 2 Nsuh that we have an equation of the form:NXi=N0 ��1Xj=0 �i;j'iuj = ~r' � (~r� ~g) = �Æ2'(~g);(26)with ~g 2 A3, N � N0 and �i;j 2 F (for N0 � i � N and 0 � j � � � 1) and�N0;j0 6= 0, for some 0 � j0 � � � 1. We will show that this hypothesis leads to aontradition.First, suppose that N0 = 0, then the de�nition of the uj , Euler's Formula (13)and (26) imply that �0;j = 0 for all 0 � j � ��1, whih ontradits the hypothesis�N0;j0 6= 0.So we suppose that N0 > 0, using Euler's Formula (13), the equation (26) anbe written as ~r' � PNi=N0P��1j=0 �i;j$(')'i�1uj~e$! = ~r' � (~r�~g). Proposition 3.5implies that there exists ~h 2 A3 suh that:NXi=N0 ��1Xj=0 �i;j$(')'i�1uj~e$ = ~r� ~g + ~h� ~r':



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 15The divergene of both sides of this equality and Formula (14) give:NXi=N1 ��1Xj=0 �0i;j'iuj = (~r� ~h) � ~r' = �Æ2'(~h);where �0i;j = �i+1;j$(') ($(')i +$(uj) + j$j) and N1 = N0 � 1. So, we have obtainedan equation of the form (26), with N1 < N0 and �0N1;j0 6= 0. This fat ontraditsthe hypothesis and we onlude that the sum (25) is diret. The desription ofH3(A; ') follows. �4.4. The spae H2(A; '). Finally, using Proposition 4.7 (and in fat the writ-ing of H3(A; ')), we obtain the seond Poisson ohomology spae of the algebra(A; f� ; �g'), when ' 2 A = F[x; y; z℄ is w.h.i.s.Proposition 4.8. If ' 2 A = F[x; y; z℄ is w.h.i.s. then the seond Poisson oho-mology spae of the algebra (A; f� ; �g') is the Cas(A; ')-module:H2(A; ') ' ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj )=$(')�j$jCas(A; ')uj ~r'� ��1Mj=1$(uj)=$(')�j$jF~ruj ;where the �rst row gives the free part.In partiular, we have: H2(A; ') ' L��1j=1 Cas(A; ')~ruj , if $(') < j$j andH2(A; ') 'L��1j=1 Cas(A; ')~ruj � Cas(A; ')~r', when $(') = j$j.Remark 4.9. We see that the Poisson struture f� ; �g' will be exat (that is tosay a 2-oboundary) if and only if $(') 6= j$j. This fat omes from the equalityÆ1'(~e$) = �($(') � j$j)~r', a onsequene of Formulas (13) and (14).Remark 4.10. Contrary to the other ohomology spaes, H2(A; ') is generallynot a free Cas(A; ')-module. In fat, using Formulas (13) and (14), we get:Æ1' �'iuj~e$� = ($(uj)�$(') + j$j)'iuj ~r'�$(')'i+1 ~ruj :(27)This equality, whih will be also useful later, explains that we have to distinguish,in the expression of H2(A; '), the uj satisfying $(uj) = $(')�j$j from the otherones. If j is suh that $(uj) = $(')�j$j then (27) yields that 'k ~ruj 2 B2(A; '),for all k � 1, but this is not true when $(uj) 6= $(')�j$j. This is the reason whyH2(A; ') is not always a free module over Cas(A; ').Moreover, for all j satisfying $(uj) 6= $(') � j$j, (27) implies that 'iuj ~r',i � 0, an be written as 'i+1~ruj + Æ1' �0'iuj~e$�, with ; 0 2 F� f0g.



16 ANNE PICHEREAUProof. First, let us show that:(28) Z2(A; ') ' B2(A; ') + ��1Xj=1$(uj)6=$(')�j$jCas(A; ')~ruj+ ��1Xj=0$(uj)=$(')�j$jCas(A; ')uj ~r'+ ��1Xj=1$(uj)=$(')�j$jF~ruj :Let ~f 2 Z2(A; '). Aording to Remark 3.9, there exists g; h 2 A suh that~f = ~rg + h~r':(29)Moreover, Proposition 4.7 implies the existene of ~g1;~h1 2 A3, N 2 N and ofelements �i;j ; Æi;j 2 F, with 0 � i � N and 0 � j � �� 1, suh that:g = Æ2'(~g1) + NXi=0 ��1Xj=0 �i;j'iuj ; h = Æ2'(~h1) + NXi=0 ��1Xj=0 Æi;j'iuj ;(30)while we have the 2-oboundaries:~r(Æ2'(~g1)) = �~r((~r� ~g1) � ~r') = Æ1'(~r� ~g1) 2 B2(A; ');Æ2'(~h1) ~r' = �(~r� ~h1) � ~r'� ~r' = Æ1'(~h1 � ~r') 2 B2(A; '):Using this fat, (29) and (30), we obtain~f 2 B2(A; ') + ��1Xj=1 Cas(A; ')~ruj + ��1Xj=0 Cas(A; ')uj ~r':Remark 4.10 then implies that ~f an be deomposed as in the right hand sideof (28). On the other hand, all elements of the right hand side of (28) are 2-oyles,yielding equality in (28). (Indeed, using Formula (10), we have, for all f; g 2 A,Æ2'('~rf) = �~r' � (~r� ('~rf)) = 0 and Æ2'(g~r') = �~r' � (~r� (g~r')) = 0).For the proof that the sum in (28) is a diret one, one uses the de�nition of theuj and applies Propositions 3.5, 4.2 (expression of H0(A; ')) and 4.7 (writing ofH3(A; ')) as in the proofs of Propositions 4.5 and 4.7. �Remark 4.11. Using Euler's Formula (13) and the writings of the Poisson o-homology spaes H1(A; ') and H2(A; ') given in Propositions 4.5 and 4.8, wean make the ring struture on the spae H�(A; ') := L3k=0Hk(A; '); induedby the wedge produt, expliit. One obtains, for example, that ^ : H1(A; ') �H2(A; ') �! H3(A; ') is surjetive when $(') = j$j.5. Poisson ohomology of the singular surfaeIn this hapter, we still onsider an element ' 2 A = F[x; y; z℄ (har(F) = 0),whih is w.h.i.s. (weight homogeneous with an isolated singularity) and we restritthe Poisson struture f� ; �g' to the singular surfae F' : f' = 0g and ompute theohomology of the Poisson algebra obtained.



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 175.1. The Poisson omplex of the singular surfae F'. The algebra of regularfuntions on the surfae F' is the quotient algebra:A' := F[x; y; z℄h'i :Beause ' is a Casimir, h'i is a Poisson ideal for (A; f� ; �g') and the Poissonstruture f� ; �g' restrits naturally to F', that is to say goes down to the quotientA'. That leads to a Poisson struture on A', denoted by f� ; �gA' . Let us denoteby � the natural projetion map A ! A', then, for eah f; g 2 A, we havef�(f); �(g)gA' = � �ff; gg'� (that is to say, � is a Poisson morphism between Aand A').De�nition 5.1. We say that P 2 Xk(A) and Q 2 Xk(A') are �-related and wewrite Q = ��(P ) if �(P [f1; � � � ; fk℄) = Q[�(f1); � � � ; �(fk)℄;(31)for all f1; � � � ; fk 2 A.In the following proposition, we give the Poisson ohomology spaes of the al-gebra (A'; f� ; �gA'). That leads to onsider the skew-symmetri multi-derivationsof the algebra A' and the Poisson oboundary operators, assoiated to f� ; �gA' .The previous de�nition will be useful in this disussion. By a slight abuse of no-tations we will, for an element ~f = (f1; f2; f3) 2 A3, denote by �(~f), the element(�(f1); �(f2); �(f3)) 2 A3'.Proposition 5.2. If ' 2 A is w.h.i.s., the Poisson ohomology spaes of the algebra(A'; f� ; �gA'), denoted by Hk(A'), are given by:Cas(A') = H0(A') ' n�(f) 2 A' j ~rf � ~r' 2 h'io ;H1(A') ' n��~f� 2 A3' j ~f � ~r' 2 h'i and � ~r(~f � ~r') + Div(~f) ~r' 2 h'ion��~rf � ~r'� j f 2 Ao ;H2(A') ' n��~f� 2 A3' j ~f � ~r' 2 h'ion���~r(~f � ~r') + Div(~f) ~r'� j ~f 2 A3; ~f � ~r' 2 h'io ;and H3(A') ' f0g.Subsequently, we denote by Zk(A') (respetively Bk(A')) the spae of all k-oyles (respetively k-oboundaries) of A'.Proof. We �rst have to determine the skew-symmetri multi-derivations of A'.Let us point out that any P 2 Xk(A) is �-related to a Q 2 Xk(A') if and only ifP ['; f2; : : : ; fk℄ 2 h'i, for all f2; : : : ; fk 2 A. In this ase, the equality (31) de�nesindeed an element Q of Xk(A'), in view of the skew-symmetry and the derivationproperties of P . Moreover, every Q 2 Xk(A') is obtained in this way. Let usonsider, for example, the ase k = 1.



18 ANNE PICHEREAULet Q 2 X1(A') and let us hoose ~f = (f1; f2; f3) 2 A3 suh that Q[�(x)℄ =�(f1), Q[�(y)℄ = �(f2) and Q[�(z)℄ = �(f3). Then, we get Q = ��(P ), withP = f1 ��x + f2 ��y + f3 ��z 2 X1(A) and P ['℄ = f1 �'�x + f2 �'�y + f3 �'�z = ~f � ~r' 2 h'i.Conversely, eah of �(~f ) 2 A3' satisfying the equation ~f � ~r' 2 h'i gives anelement of X1(A'), de�ned by �� �f1 ��x + f2 ��y + f3 ��z�. Thus,X1(A') ' f�(~f) 2 A3' j ~f � ~r' 2 h'ig:With the same reasoning, we obtainX2(A') ' f�(~f) 2 A3' j ~f � ~r' 2 h'ig:As it is lear that X0(A') ' A' and Xk(A') ' f0g, for k � 4, let us now onsiderthe spae X3(A'). In the same way that above, we get X3(A') = f�(f) 2 A' jf ~r' 2 h'ig. However, if f 2 A satis�es f ~r' = '~g, with ~g 2 A3, then we have~g� ~r' = ~0 and Proposition 3.5 implies the existene of an element h 2 A satifying~g = h~r' so that f = h' 2 h'i. That leads to X3(A') ' f0g:Now, let us onsider the Poisson oboundary operators of the Poisson algebra(A'; f� ; �gA'), denoted by ÆkA' . Using the de�nition of ÆkA' (similarly as (7)), weobtain, for all P 2 Xk(A), ÆkA'(��(P )) = ��(Æk'(P )). That leads to:Æ0A'(�(f)) = � �~rf � ~r'� ; for �(f) 2 A' ' X0(A');Æ1A'(�(~f )) = � ��~r(~f � ~r') + Div(~f)~r'� ;for �(~f) 2 f�(~g) 2 A3' j ~g � ~r' 2 h'ig ' X1(A');Æ2A'(�(~f )) = 0; for �(~f) 2 f�(~g) 2 A3' j ~g � ~r' 2 h'ig ' X2(A');while the writing of the Poisson ohomology spaes follows. �5.2. The spae H0(A'). In this Setion, we onsider still ' 2 A w.h.i.s. andthe Poisson struture on A', denoted by f� ; �gA' . We desribe the zeroth Poissonohomology spae, that is to say the spae of the Casimirs of (A'; f� ; �gA') in thefollowing Proposition.Proposition 5.3. If ' 2 A = F[x; y; z℄ is w.h.i.s., the zeroth Poisson ohomologyspae of the singular surfae de�ned by this polynomial is given byH0(A') = Cas(A') ' F:Proof. Let f 2 A be a weight homogeneous polynomial suh that �(f) 2 H0(A').Then ~rf � ~r' 2 h'i i.e., there exists ~g 2 A3 satifying ~rf � ~r' = '~g. It followsthat ~g � ~r' = 0 and Proposition 3.5 implies the existene of an element ~h 2 A3 suhthat ~g = ~h� ~r'. Summing up, (~rf�'~h)� ~r' = ~0, and we an apply Proposition3.5 again to obtain a k 2 A satifying ~rf = '~h+ k ~r'. Euler's Formula (13) gives$(f) f = ~rf � ~e$ = '(~h � ~e$ +$(') k):So, f 2 h'i unless $(f), the (weighted) degree of f , is zero, thus H0(A') ' F. �



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 195.3. The spae H1(A'). This setion is devoted to the determination of the �rstPoisson ohomology spae of (A'; f� ; �gA'), where ' 2 A = F[x; y; z℄ is w.h.i.s.Remark 5.4. Using Proposition 5.3, we an simplify the writing of Z1(A'). Letindeed ~f 2 A3 be an element satisfying: �~r(~f � ~r') + Div(~f) ~r' 2 h'i. Then�~r(~f � ~r') � ~r' 2 h'i, that is to say �(~f � ~r') 2 H0(A') ' F, aording toProposition 5.3. For degree reasons, this leads to ~f � ~r' 2 h'i. So, we an simplywrite Z1(A') = n�(~f) 2 A3' j �~r(~f � ~r') + Div(~f) ~r' 2 h'ioNow, let us give the main result of this setion (we reall that j$j is the sum ofthe weights $1; $2; $3 of the variables x; y; z and that the family fujg is an F-basisof Asing and is de�ned in Setion 4.3).Proposition 5.5. If ' 2 A = F[x; y; z℄ is w.h.i.s. then the �rst Poisson ohomologyspae of the singular surfae f' = 0g is given byH1(A') ' ��1Mj=0$(uj)=$(')�j$jF�(uj ~e$):In partiular, if $(') < j$j then H1(A') ' f0g.Proof. Let ~f 2 A3 satisfy ��~f� 2 Z1(A'), it means that there exists ~k 2 A3 satis-fying Æ1'(~f) = '~k. Then 0 = Æ2'('~k) = ' Æ2'(~k), beause, as we said in Setion 2.1,the operator Æ2' ommutes with the multipliation by '. So '~k 2 B2(A; ') and~k 2 Z2(A; '). Aording to Proposition 4.8,~k 2 B2(A; ') � ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj� ��1Mk=0$(uk)=$(')�j$jCas(A; ')uk ~r'� ��1Ml=1$(ul)=$(')�j$jF~rul:Eah of the �rst three summands is stable by multipliation by ', while Remark4.10 gives ��1Ml=1$(ul)=$(')�j$j'F~rul � B2(A; '):As a onsequene, sine '~k 2 B2(A; '),~k 2 B2(A; ') � ��1Ml=1$(ul)=$(')�j$jF~rul:So there exist ~h 2 A3 and elements �l 2 F, with l satisfying $(ul) = $(') � j$j,suh that ~k = Æ1'(~h) + ��1Xl=1$(ul)=$(')�j$j�l~rul:



20 ANNE PICHEREAUFor all 1 � l � ��1 suh that$(ul) = $(')�j$j, we have '~rul = �Æ1' � 1$(')ul ~e$�,so that Æ1'(~f) = '~k = Æ1'0BB�'~h� ��1Xl=1$(ul)=$(')�j$j �l$(')ul ~e$1CCA :This implies ~f � '~h+ ��1Xl=1$(ul)=$(')�j$j �l$(')ul ~e$ 2 Z1(A; '):(32)� If $(') 6= j$j, then Proposition 4.5 implies that (32) belongs to B1(A; '), sothat �(~f ) 2 ��1Xl=1$(ul)=$(')�j$jF�(ul ~e$) +B1(A'):� If $(') = j$j then (32) is simply the equation ~f�'~h 2 Z1(A; ') ' B1(A; ')+Cas(A; ')~e$ , aording to Proposition 4.5. So, we have �(~f) 2 F�(~e$)+B1(A').As we have $(ul) � 1, if 1 � l � �� 1, the result of both ases an be summarizedas follows: Z1(A') � B1(A') + ��1Xl=0$(ul)=$(')�j$jF�(ul ~e$):Euler's Formula (13) implies that �(ul ~e$) 2 Z1(A') (Æ1'(ul ~e$) 2 h'i), when$(ul) = $(')�j$j, so that the other inlusion holds too. It also allows us to showthat the above sum is a diret one. Hene the result about H1(A'). �5.4. The spae H2(A'). We now ompute the seond Poisson ohomology spaeof (A'; f� ; �gA'), where ' 2 A = F[x; y; z℄ is w.h.i.s.Proposition 5.6. If ' 2 A = F[x; y; z℄ is w.h.i.s. then H2(A') is given byH2(A') ' ��1Mj=0$(uj)=$(')�j$jF�(uj ~r'):Remark 5.7. It follows from Propositions 5.5 and 5.6 that there is a naturalisomorphism between H1(A') and H2(A'), that maps the element uj ~e$ (with$(uj) = $(') � j$j) to the element uj ~r' of H2(A').Proof. First, we show that the family n�(uj ~r') j $(uj) = $(')� j$jo generatesthe F-vetor spae H2(A'). Let ~h 2 A3 suh that �(~h) 2 Z2(A'), that is to say,suh that there exists ~g 2 A3 satisfying ~h � ~r' = '~g. Aording to Remark 3.6,we may suppose ~h 2 X2(A)d and ~g 2 X1(A)d, with d 2 Z. Sine ~g � ~r' = 0,Proposition 3.5 implies that ~g = ~k� ~r' and ~h = '~k+f ~r', with f 2 X3(A)d�$(')and ~k 2 X2(A)d�$(').If d < $(')�j$j then f = 0 and ~h 2 h'i; otherwise �(~h) = �(f ~r'), while, usingFormulas (13) and (14), we get Æ1'(f~e$) = (d� 2$(') + 2j$j) f ~r' �$(')'~rf .



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 21That leads, in the ase d 6= 2($(')�j$j), to �(~h) = �(f ~r') 2 B2(A'). Therefore,let us suppose that d = 2($(') � j$j), so that $(f) = $(') � j$j. For degreereasons, the projetion map A ! Asing = A=h�'�x ; �'�y ; �'�z i restrits to an injetivemap A$(')�j$j ! Asing , so that f is a F-linear ombination of the uj satisfying$(uj) = $(') � j$j, that leads to�(~h) 2 ��1Xj=0$(uj)=$(')�j$jF�(uj ~r');and for all j, uj ~r' 2 Z2(A').It suÆes now to show that this family is F-free, modulo B2(A'). It is empty if$(') < j$j, so we suppose $(') � j$j. Let �j be elements of F with j suh that$(uj) = $(') � j$j and let ~l;~| 2 A3 satisfying(33) ��1Xj=0$(uj)=$(')�j$j�juj ~r' = �~r(~l � ~r') + Div(~l)~r'+ '~|= Æ1'(~l) + '~|;where the right hand side is an arbitrary representative of an element of B2(A').As the left hand side belongs to the spae X2(A)2$(')�2j$j, we may suppose that~l 2 X1(A)$(')�j$j and ~| 2 X2(A)$(')�2j$j.The equation (33) implies ~r(~l�~r')�~r' 2 h'i, so that ��~l�~r'� 2 Cas(A'). Fordegree reasons, Proposition 5.3 leads to the existene of g 2 A of degree $(')�j$jsuh that ~l � ~r' = 'g = (g~e$ � ~r')=$('). Then Proposition 3.5 implies that$(')~l = g~e$ and Æ1'(~l) = �'~rg, so that��1Xj=0$(uj)=$(')�j$j�juj ~r' = �'~rg + '~| = '~F ;(34)where ~F = �~rg+~| 2 X2(A)$(')�2j$j. We get ~F � ~r' = ~0, but for degree reasons,Proposition 3.5 leads to ~F = ~0 so that, for all j, �j = 0, sine the family fujg ifF-free in A. �6. Poisson homology assoiated to a weight homogeneous polynomialwith an isolated singularityIn this last hapter, we onsider the algebras A = F[x; y; z℄ (with har(F) = 0)and A' = A=h'i, where ' 2 A is weight homogeneous with an isolated singularity(w.h.i.s.). These algebras are still respetively equipped with the Poisson struturesf� ; �g' and f� ; �gA' . We use the Poisson ohomology of these Poisson algebras(A; f� ; �g') and (A'; f� ; �gA'), given in the previous hapters 4 and 5, to determinetheir Poisson homology.6.1. The Poisson homology of A.



22 ANNE PICHEREAU6.1.1. De�nitions. We reall the onstrution of the Poisson homology omplex as-soiated to a Poisson algebra (B; f� ; �g). First, the k-hains of this omplex are theso-alled K�ahler di�erential k-forms (see [5℄ for details), whose spae is denotedby 
k(B). We reall that 
k(B) = ^k
1(B) while 
�(B) := Lk2N 
k(B) is theB-module of all (K�ahler) di�erential forms, with, by onvention, 
0(B) = B. We de-note by d the exterior di�erential. The boundary operator, Æk : 
k(B)! 
k�1(B),alled the Brylinsky or Koszul di�erential, is given by (see [2℄):(35) Æk(f0 df1 ^ � � � ^ dfk) = kXi=1(�1)i+1 ff0; fig df1 ^ � � � ^ dfi ^ � � � ^ dfk+ X1�i<j�k(�1)i+jf0 d ffi; fjg ^ df1 ^ � � � ^ dfi ^ � � � ^ddfj ^ � � � ^ dfk;where the symbol dfi means that we omit the term dfi. It is easy to see that thisoperator satis�es Æk Æ Æk+1 = 0. The homology of this omplex is alled the Poissonhomology of (B; f� ; �g).The boundary operators of the algebras (A; f� ; �g') and (A'; f� ; �gA') are re-spetively denoted by Æ'k and ÆA'k , while the Poisson homology spaes are denotedby Hk(A; ') and Hk(A'). As for the Poisson ohomology, the boundary operatorÆk ommutes with the multipliation by a Casimir, so that the Poisson homologyspaes are modules over the spaes of the Casimirs.6.1.2. The Poisson homology omplex of A. In the partiular ase of our polynomialalgebraA = F[x; y; z℄, it is lear that 
�(A) is theA-module generated by the wedgeproduts of the 1-di�erential forms dx; dy; dz and that we have 
i(A) = f0g, forall i � 4. As for the multi-derivations of A, we have the isomorphisms (with thesame hoies as in Chapter 2.1)
0(A) ' 
3(A) ' A; 
1(A) ' 
2(A) ' A3;(36)whih allows us to use the same notations and formulas than in the previous hap-ters, when we talk about di�erential forms. For example, the 1-di�erential form d'orresponds, with these notations, to the element ~r' of A3 (as the biderivationf� ; �g').Proposition 6.1. If ' 2 A is w.h.i.s., the homology spaes of (A; f� ; �g') are givenby: Hk(A; ') ' H3�k(A; '); for all k = 0; 1; 2; 3:Proof. We have already seen in (36) that 
k(A) ' X3�k(A). In fat, for example, a1-form f dx 2 
1(A) orresponds to the biderivation f ��y ^ ��z 2 X2(A). Moreover,under the previous identi�ations, we get easily Æ'k = (�1)kÆ3�k' , that leads to theresult. �Remark 6.2. There exists a more general result that gives, in ertain ases, iso-morphisms between Poisson ohomology and homology spaes, using the modularlass of a Poisson algebra (see [24℄ and [8℄ for details).6.2. The Poisson homology of A'.



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 236.2.1. The Poisson homology omplex of A'. Now, let us determine the Poissonhomology omplex of the singular surfae F'. For the quotient algebra A' =F[x; y; z℄=h'i, the spae 
�(A') is obtained by subjeting the A'-module gener-ated by the wedge produts of dx; dy; dz to the relations ' = 0, d' = 0 andd' ^ dx = 0, et. We reall the natural surjetive map � : A ! A', whih is aPoisson morphism. This map indues another surjetive map �℄ : 
k(A)! 
k(A')between the spaes of all k-hains, whih allows us to see the di�erential k-forms ofA' as images of di�erential k-forms of A. Thus, as the di�erential forms of A areidenti�ed to elements of A or A3, as an be seen in (36), we an write the spaesof all di�erential k-forms of A' as quotients of A' and A3' and then as quotientsof A and A3. We obtain, while 
0(A') ' A',
1(A') ' A3'ff ~r' j f 2 Ag ' A3ff ~r'+ '~g j f 2 A; ~g 2 A3g ;
2(A') ' A3'f~r'� ~f j ~f 2 A3g ' A3f~r'� ~f + '~g j ~f;~g 2 A3g ;
3(A') ' A'f~r' � ~f j ~f 2 A3g ' Ah�'�x ; �'�y ; �'�z i = Asing :Remark 6.3. Unlike for A, there is no isomorphisms between the spaes of skew-symmetri multi-derivations and di�erential forms on A'. For example, 
0(A') 'A' while X3(A') ' f0g and X2(A') � A3'. Observe also that 
3(A') 6' f0g,although F' is an aÆne variety of dimension two.In view of De�nition (35), the operator Æ'k indues an operator 
k(A') !
k�1(A'), that is exatly ÆA'k , so that the Poisson homology spaes of A' aregiven byH0(A') ' Af~r' � (~r� ~f) + 'g j g 2 A; ~f 2 A3g ;H1(A') ' f~f 2 A3 j ~r' � (~r� ~f) 2 h'igf�~r(~f � ~r') + Div(~f) ~r'+ g~r'+ '~h j g 2 A; ~f ;~h 2 A3g ;H2(A') ' f~f 2 A3 j �~r(~f � ~r') + Div(~f) ~r' 2 I'gf~r'� ~h+ '~k j ~h;~k 2 A3g ;where I' := ff ~r'+ '~g j f 2 A; ~g 2 A3g;H3(A') ' Asing :Remark 6.4. In view of the writing of the Poisson homology groups of A and A',we an desribe expliitly the map indued by � between these groups. In fat, thismap is exatly the redution modulo ' between the spaes Hk(A) and Hk(A'),for k 6= 1, and it is the redution modulo I', for k = 1. This phenomenon will beillustrated in the determination of the Poisson homology groups of A'.6.2.2. The Poisson homology spaes of the singular surfae F'. In this Setion,' 2 A = F[x; y; z℄ is still w.h.i.s. and we determine these spaes.



24 ANNE PICHEREAUProposition 6.5. If ' 2 A is w.h.i.s. then the homology spaes of the singularsurfae are given by:H0(A') ' ��1Mj=0 Fuj ' Asing ; H1(A') ' ��1Mj=1 F~ruj ;H2(A') ' ��1Mj=0 Fuj ~e$ ' Asing :Remark 6.6. The fat that H0(A') ' Asing was already proved by J. Alev andT. Lambre, with other methods, in [1℄. Their result is more general as they onlysuppose that ' is a weight homogeneous polynomial, not neessarly with an isolatedsingularity.Remark 6.7. The multipliation by ~e$ gives a natural isomorphism betweenH0(A') and H2(A'), while the operator of gradient ~r gives a surjetive map fromH0(A') to H1(A').Proof. 1: We �rst determine H0(A'). Aording to Proposition 4.7 (i.e., thewriting of H3(A; ')), we have:A = f~r' � (~r� ~f) j ~f 2 A3g+ ��1Xj=0i2NF'iuj ;= f~r' � (~r� ~f) + 'g j g 2 A; ~f 2 A3g+ ��1Mj=0 Fuj :Moreover this last sum is a diret one, as follows from the de�nition of the uj (inSetion 4.3) and the inlusion f~r' � (~r� ~f) +'g j g 2 A; ~f 2 A3g � h�'�x ; �'�y ; �'�z i,easily obtained with Euler's Formula (13). That leads to H0(A') 'L��1j=0 Fuj .2: Now, we use the result we obtained for H2(A; ') to determine the �rstPoisson homology spae of A'. Let ~f 2 A3 satisfying ~r' � (~r � ~f) 2 h'i, thus,there exists g 2 A with �Æ2'(~f) = ~r' � (~r� ~f) = 'g.Aording to Proposition 4.7, g 2 B3(A; ')�L��1j=0 Cas(A; ')uj . As both of thesummands of this sum are stable by multipliation by ' and beause 'g 2 B3(A; '),we have g 2 B3(A; '), i.e. there exists ~k 2 A3 satisfying g = ~r' � (~r� ~k). Thus,~f � '~k 2 Z2(A; ') together with Proposition 4.8 imply that~f 2 ��1Xj=1 F ~ruj + fÆ1'(~l) + g~r'+ '~h j g 2 A;~l;~h 2 A3g;so that f~ruj j 1 � j � ��1g generates the F-vetor spaeH1(A') and it suÆes toprove that ~ru1; : : : ; ~ru��1 are linearly independent elements of H1(A'). Assumetherefore that there exist elements �j of F (1 � j � � � 1), ~k;~l 2 A3 and g 2 Asuh that ��1Xj=1 �j ~ruj = �~r(~l � ~r') + Div(~l) ~r'+ g~r'+ '~h:



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 25Then, as the uj are weight homogeneous, Euler's Formula (13) leads to��1Xj=1 �j$(uj)uj 2 h�'�x ; �'�y ; �'�z iand the de�nition of the uj implies �j = 0, for 1 � j � �� 1.3: Finally, we ompute the seond Poisson homology spae of A'. Let ~f 2 A3satisfying Æ1(~f) 2 I', i.e. there exist l 2 A, ~g 2 A3 suh that Æ1(~f) = l~r'+ '~g.� Let us study the term '~g. We �rst point out that l~r' 2 Z2(A; '), so that'~g = Æ1(~f) � l~r' 2 Z2(A; '). Using Proposition 4.8, Formula (27) and the fatthat Æ1' ommutes with ', we obtain the existene of ~h 2 A3 and j 2 F, suh that:(37) '~g 2 Æ1'0BB�'~h+ ��1Xj=1$(uj)=$(')�j$j juj ~e$1CCA+ ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj)=$(')�j$jCas(A; ')uj ~r';� Next, we onsider the term l~r'. Aording to Proposition 4.7, there exists ~k 2A3 suh that l 2 Æ2'(~k)+Cas(A; ')
FAsing . The equality Æ2'(~k) ~r' = Æ1'(~k� ~r')and Formula (27) lead to:(38) l~r' 2 Æ1'0BB�~k � ~r'+ ��1Xj=0$(uj )6=$(')�j$jCj uj ~e$1CCA+ ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj)=$(')�j$jCas(A; ')uj ~r';where Cj 2 Cas(A; ').The equalities (37) and (38) give:Æ1'0BB�~f � '~h� ��1Xj=1$(uj)=$(')�j$j juj ~e$ � ~k � ~r'� ��1Xj=0$(uj )6=$(')�j$jCj uj ~e$1CCA2 ��1Mj=1$(uj )6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj)=$(')�j$jCas(A; ')uj ~r':Using Proposition 4.8 one more, we obtain~f � '~h� ��1Xj=1$(uj )=$(')�j$j juj ~e$ � ~k � ~r'� ��1Xj=0$(uj)6=$(')�j$jCj uj ~e$ 2 Z1(A; '):
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