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POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES

ANNE PICHEREAU

ABSTRACT. To each polynomial ¢ € F[z,y, 2] is associated a Poisson structure
on F3 a surface and a Poisson structure on this surface. When ¢ is weight ho-
mogeneous with an isolated singularity, we determine the Poisson cohomology
and homology of the two Poisson varieties obtained.
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1. INTRODUCTION

The first Poisson structures appeared in classical mechanics. In 1809, D. Poisson
introduced a bracket of functions, given by:

" of 0 of 0
0 {f,g}zz:(a—;ia—;i—a—;aj),

i=1

for two smooth functions f,g on R?". It permits one to write the Hamilton’s
equations as differential equations, where positions (¢;) and impulsions (p;) play
symmetric roles. Indeed, denoting by H the total energy of the system, these
equations become:

(ji = {Qu H} )
pi = {pza H} ;
D. Poisson also pointed out that if f and g are constants of motion, then {f, g} is

also a constant of motion and this phenomenon was explained in 1839 by C. Jacobi,
who proved that (1) satisfies what is now called the Jacobi identity:

2) {79} hy +{{g,h}, f} + {{h, f},9} = 0.
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This important identity leads to the definition of a Poisson algebra as an algebra
B equipped with a skew-symmetric biderivation {-,-}, satisfying (2), for all f, g, h,
elements of B. Said differently, a Poisson algebra is a Lie algebra (B, {-,-}), where
{-,-} satifies the Leibniz rule {fg,h} = f{g,h} + {f,h} g, for all f,g,h € B. One
talks about a Poisson variety, when its algebra of functions is equipped with a
Poisson structure. This notion generalizes the notion of symplectic manifold.

For a given Poisson algebra (B,{-,}), one defines a cohomology, called Poisson
cohomology, introduced by A. Lichnerowicz in [12]; see also [9] for an algebraic
approach. The cochains are the skew-symmetric multiderivations of A and the
coboundary operator is — [, -], where m := {-,-} is the Poisson bracket and [-, |4
is the Schouten bracket. The resulting Poisson complex, defined in detail in Section
2.1, can be viewed as the contravariant version of the de Rham complex. Its coho-
mology gives very interesting information about the Poisson structure, as for small
k, the k-th Poisson cohomology space H*(B, ) has the following interpretation:

H°(B,7) = {Casimir functions}:= {f € B|{f, -} =0},

{Poisson derivations}

H'(B =
(B,) {Hamiltonian derivations}’
5 {skew-symmetric biderivations compatible with 7}
H (B,?T) - p . . )
{Lie derivatives of 7}
H3(B,7) = {Obstructions to deformations of Poisson structures}.

Moreover, H?(B, ) is fundamental in the study of normal forms of Poisson struc-

tures (see [4]). We also denote by Cas(B,w) the space of all Casimir functions
of (B,{-,-}) (that is to say H°(B, 7)) and we point out that each H*(B,r) is a
Cas(B, m)-module in a natural way.

To determine the Poisson cohomology of a given Poisson algebra explicitly is, in
general, difficult. One of the reasons seems to be that Poisson cohomology is not
a functor: a morphism 7 : A1 — Ay between Poisson algebras does not lead to a
morphism between their cochains (multiderivations), nor between their correspond-
ing Poisson cohomology groups. In a few specific cases, Poisson cohomology has
been determined. For a symplectic manifold, there exists a natural isomorphism
between Poisson and de Rham cohomology (see [12]). In [20] and [23], one finds
some partial results about the case of regular Poisson manifolds, while, for Poisson-
Lie groups, one can refer to [7]. Finally, the Poisson cohomology in dimension two
was computed in the germified and algebraic cases in [14] and [17].

Our purpose is to determine the Poisson cohomology of two classes of Poisson
varieties, intimately linked. The first class is composed of the singular surfaces
Fy:{p=0}in F? (F is a field of characteristic zero) that are defined by the zeros
of polynomials ¢ € F[z,y, z] and the second one is the class of the Poisson varieties
that are the ambient space F?, equipped with Poisson structures associated to
each ¢. It means that we consider Poisson structures on the algebras of regular
functions on F, and F?, given by A, := F[z,y,2]/(¢) and A := F|z,y, z] and that
we determine the Poisson cohomology of the Poisson algebras obtained.

We point out that the dimension three is the first one in which there is a real
condition for a biderivation to be a Poisson biderivation. The Jacobi identity is
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indeed trivial in dimension two and every polynomial ¢ € F[z, y] leads to a Poisson
structure on the affine space F[z,y], given by g[}a% A 3%. One can consider the
singular locus of such a structure, given by I'y : {4 = 0}. In [17], the authors
determine the dimensions of the Poisson cohomology spaces, when v is a homoge-
neous polynomial. They observe that these dimensions are linked to the type of
the singularity of I'y,. Conversely, in our context, we consider a surface F,, with a
singularity, and a Poisson bracket that do not bring other singularities. That is to
say, this Poisson structure is symplectic everywhere except on the singularities of
Fo- In fact, it will be the restriction of a Poisson structure {-, }  on F3, which is
completely defined by the brackets:

_ 9% _ o _ %
®  Amul=gh al=5h mal,=5l (e

We suppose that F, has only one weight homogeneous isolated singularity (at the
origin). In fact, the hypothesis is that ¢ is a weight homogeneous polynomial with
an isolated singularity.

An other way to approach our context is to consider the Poisson structures on
A that admit a weight homogeneous Casimir and a singular locus reduced to the
origin. That leads to study the Poisson structures of the form {-,-} »» With ¢ weight
homogeneous with an isolated singularity. As ¢ is a Casimir for this structure, ()
is a Poisson ideal of the Poisson algebra (A, {-,-},). This implies that {-,-}  goes
down to the quotient algebra A, = F[z,y, z]/{(¢). The singular surface F, is then
the union of a symplectic leave of {-, '}w and the origin.

For each ¢ € A weight homogeneous with an isolated singularity, what we de-
termine is the Poisson cohomology of both the Poisson algebras introduced. More-
over, we turn these results to good account to give the Poisson homology of these
algebras. The Poisson cohomology spaces are respectively denoted by H*(A, )
for (4,{-,-},) and H ¥(A,) for the singular surface, while the Poisson homology
spaces are denoted by Hy (A, ) and Hi(A,).

To develop a first idea about our results, one may think of ¢ as a homogeneous
polynomial, of degree denoted by w@(¢), such that its three partial derivatives have
only one common zero that is the origin. This implies that

Op Op Op

Asing = A/(%a B_y’ $>

is a finite dimensional F-vector space. Its dimension is the so-called Milnor num-
ber u (see [13]). This space gives information about the (isolated) singularity of
the surface F,, (like multiplicity, see also [3]) as it is exactly the algebra of regular
functions on this singularity. It plays an important role in the Poisson cohomology
of the algebra (A, {-,-},), so that this Poisson cohomology is closely related to
the type of the singularity of F,. We consider a family uwy = 1,uy,...,u,—1 of
homogeneous elements of A, whose images in A,y give a F-basis of this F-vector
space.

The algebra of Casimir functions of the algebra (A, {-, -} ) is given in Proposition
4.2 and is simply the algebra generated by ¢, that is to say Cas(A, ¢) = H(A, ¢) ~
Dicn Fy'. In Proposition 4.5, we see that the first Poisson cohomology space of
A is equal to zero if the degree of ¢, @(y), is equal to 3 and otherwise H' (A, ¢) is
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the Cas(A, ¢)-module given by
H'(A, p) ~ Cas(4,p)é,

where € := (z,y, z) corresponds to the Euler derivation a:a% + ya% + z%. Notice
that the cubic polynomials play a special role here; in the weight homogeneous
case, this role is played by the polynomials of degree the sum of the weights of
the three variables z,y,z. Moreover, with Proposition 4.8, we see that the case
w(p) = 3 is also the unique case where the biderivation {-,-}  is not an exact
Poisson structure, i.e. {-, -}W which is a 2-cocycle of the Poisson cohomology of
(A, {-,},), is not a 2-coboundary (see [9]). Proposition 4.8 affirms indeed that the
second Poisson cohomology space is exactly

H*(A,p) ~ @ Cas(A, cp)ﬁuj P @ Cas(A, @)Ujﬁﬁp
() Ew () -3

® @ Fﬁu]'.
i>1
@ (uj)=w(p)-3
This writing has been obtained from the third Poisson cohomology space, which is
determined in Proposition 4.7, and is exactly the free Cas(.A, ¢)-module

H3 (Aa QO) =~ Cas(A, 90) QF Asing-

It may be remarked that H?(A, ) is the unique Poisson cohomology space of
(A, {-,-},) which is not always a free module over the algebra of Casimirs.

In Chapter 5, we give the Poisson cohomology spaces of the singular surface F,,
by considering the algebra A,. For this Poisson algebra, the Casimirs are simply
the elements of F and, according to Propositions 5.5 and 5.6, we have:

H'(A)~ P Fuye, HMUA)= P FuyVe

@(uj)=w(p)-3 @ (uj)=w ()3

Finally, in Chapter 6, we determine the Poisson homology of the algebra (F?, {-,-} o)
and of the singular surface F,. We explain first, in Proposition 6.1, that we have
isomorphisms

Hi (A, @) ~ H>*(A, ), for all k=0,1,2,3.
Then, using the results about Poisson cohomology of (A, {-, -}<p), we compute the
Poisson homology spaces of F,, and we obtain, in Proposition 6.5,

p—1
Ho(Ayp) ~ Hy(Ayp) ~ Asing ;. Hi(Ay) ~ @ F Vu,.
j=1

Since the coboundary operator is a weight homogeneous operator (see Section
2.2), all our arguments remain true if we replace the algebra A = Flx,y, 2] by the

algebra of all formal power series A := F[[z,y, z]], still equipped with the Poisson
structure {-, -} " with ¢ a weight homogeneous element of A. Tt suffices to replace

Cas(A, p) = Fyp] by Cas(A, ¢) = F[[¢]], the algebra of formal power series in ¢.

I would like to take the opportunity to thank my thesis advisor, Pol Vanhaecke,
for suggesting to me this interesting problem and for his availability all along this
project. T am also indebted to Claude Quitté, whose knowledge of regular sequences
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was precious for me, and Camille Laurent for his explanations about the modular
class.

I finally would like to thank Prof. M. van den Bergh. After writing this paper,
he pointed out to me that, in his article “Noncommutative homology of some three-
dimensional quantum spaces” (see [21]), he computed the Poisson homology spaces
of the Poisson algebra (A, {-,-},), for o = Z(z* + y® + 2°) + 2p1zyz, where py
and ¢g; are parameters. This case is a particular one of the Poisson homology that
I determine, and the method is very similar.

2. THE POISSON COHOMOLOGY COMPLEX ASSOCIATED TO A POLYNOMIAL

2.1. Poisson structures on A = F[z,y, 2] and their cohomology. Let A be
the polynomial algebra A = F[z,y, z], where F is a field of characteristic zero and
let p € A. A Poisson structure on A is defined by the brackets:

_ 9 _ 9 _ 9
(4) {xay}w - 82” {y,Z}g’ - 8(1}', {Z7x}¢: - ay

Recall that a Poisson bracket on an associative and commutative algebra B is a
skew-symmetric bilinear map {-, -}, from B? to B (element of Hom(A%B, B)), which
is a derivation in each of its arguments and which satisfies the Jacobi identity:

(5) {f. g3,y +{{g,h}, f} +{{h, f},9} =0,

for each f, g, h € B. In the particular case of A, the brackets of the generators z, y, z
define totally the Poisson bracket, in view of the derivation property, and moreover
the Jacobi identity is satisfied for all f, g, h € A if and only if it is satisfied for z, y, 2
(see [22]). Here, an easy computation shows that this condition is satisfied by the
bracket {-,-} , SO that it equips A with a Poisson structure, explicitly given by:

dp 0 0 Op 0 9 Op 0 0
(©6) {’}@_82Bx/\ay+6x8y/\82+6yaz/\8x'

Our first purpose is to determine the Poisson cohomology of this Poisson al-
gebra (A, {-, '}w)’ when ¢ is a weight homogeneous polynomial with an isolated
singularity at the origin.

We recall that the Poisson complex is constructed in the following way (see [4]
and [11] for details). First, the k-cochains of the Poisson complex of (A, {-,} )
are the skew-symmetric k-derivations of A (i.e. the skew-symmetric k-linear maps
AF — A that are derivations in each of their arguments). We denote by X*(A)
the A-module of all skew-symmetric k-derivations of A and the elements of the
A-module X*(A) = @,n X*(A) are called skew-symmetric multi-derivations of
A. By convention, the A-module of the 0-derivations of A is X°(A) = A.

The Poisson coboundary operator 0% : X*(A) — XF+1(A) is defined, for an
element ) € XF(A), by:

k
(@) (fon-- S1) = 3 (D { £ QUor- - For - T
(7) =0 S
+ Z (_1)Z+jQ({fiafj}w7f0)'"7fi7"'7fj7"'7fk)7

0<i<j<k

where the symbol ﬁ means that we omit the term f;. It is easy to see that 512 (@)
is indeed a skew-symmetric (k + 1)-derivation while the fact that 05t! o 6% =0 is
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an easy consequence of the Jacobi identity (5). The cohomology of this complex is
called the Poisson cohomology of (A, {-,-},). We denote by Z k(A, o), respectively
B¥(A, ), the vector space of all k-cocycles, respectively of all k-coboundaries, and
we denote by H*(A, @) :== Z¥(A,¢)/B*(A, ), the k-th cohomology space. As the
space H(A, ) is exactly the F-vector space of the Casimirs of {, -}@ (i.e. the
elements that belong to the center of this bracket), we will also denote this space
by Cas(A,¢). Notice that, if ¢ € Cas(A,¢) , the operator d, commutes with
the multiplication by . This implies that each of the Poisson cohomology spaces
HF(A, ) is a Cas(A, p)-module.
In the case of the polynomial algebra A = F[z,y, 2], we have:

(8) X0(A) ~ X3(A) ~ A4, XN(A) ~ X2(A) = A3,
and X¥(A) ~ {0}, for k > 4. We choose these natural isomorphisms as follows:

X(4) — AP 204) — A3
Vv — (V[CU],V[y],V[Z]); Vv — (V[y,z],V[z,az],V[az,y]);

and X3(A) — A:V — (V]z,y,2]).

The elements of A? are viewed as vector-valued functions on 4, so we denote
them with an arrow, like f € A3. Sometimes, it will be important to distinguish
A3 ~ X' (A) from A% ~ X2(A); then we will rather write f € X'(A4) or f € X2(A).
In A3, let -, x denote respectively the usual inner and cross products, while 6, ﬁx,
Div denote respectively the gradient, the curl and the divergence operators. For
example, with these notations and the above isomorphisms, the skew-symmetric
biderivation {-,-}, (defined in (6)) is identified with the element Vi of A3

Each of the Poisson coboundary operators 612, given in (7), can now be written
in a compact form:

08(f) = VixVe, forfeAdx2(A),
(f) = =V(f Vo) +Div(f)lVep, for fe 4> ~x!(A),

9 s
82 (f) Vo (V

—Vg-(Vxf)=-Div(fx Vo), for fe A3~ x2(A),

and the Poisson cohomology spaces of (A, {-,-} ) take the following forms

HO(A,9) = Cas(A ) ~{feA|VfxVyp=0},

HY (A, p) ~ S

, N {fe A Vp-(Vx f) =0}
AR = 57 e 1 Div(Ve | Te A7)
HYA9) ~ —=— 5
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In order to compute these cohomology spaces, we will often use, for f: g, he A3
and f € A, the following formulas, well-known from vector calculus in R?:

(10) Vx(ff) = Vfxg+f(Vxq),
(11) Div(f§) = Vf-§+ fDiv(g),
(12) Div(fxg) = (Vxf)-g—F (Vxg.

2.2. Weight homogeneous multi-derivations. As we said, our results concern
weight homogeneous Poisson structures on A. A non-zero multi-derivation P €
X*(A) is said to be weight homogeneous of (weighted) degree r € Z, if there exist
positive integers tw;,wq, w3 € N* (the weights of the variables z,y, z), without
a common divisor, such that Lz_[P] = rP, where Lz_ is the Lie derivative with
respect to the (weight homogeneous) Euler derivation &, = w; z 8% + way 8% +

w3 2 %. The degree of a weight homogeneous multi-derivation P € X*(A) is also
denoted by w(P) € Z. For f € A, it amounts to the usual (weighted) degree of a
polynomial. Notice that the degree of a non-zero k-derivation may be negative for
k > 0. By convention, the zero k-derivation is weight homogeneous of degree —oo.

The Euler derivation € is identified, with the isomorphisms given in Section 2.1,
to the element €, = (w) 2, w2y, ws2) € A*. We denote by |w| the sum of the
weights w; + @y + w3, so that |w| = Div(€y). Euler’s formula for a weight homo-
geneous f € A,

(13) Vfée =],
then yields, using (11):
(14) Div(féz) = (@w(f) + |=])f.

Fixing weights @), ws, s € N*, it is clear that A = @, n Ai, where Ag = F
and for i € N*, A; is the F-vector space generated by all weight homogeneous
polynomials of degree i. Denoting by X*(A); the F-vector space given by X*(A); :=
{P € x¥(A) | @(P) =i} U {0}, we have the following isomorphisms:

xO(A)i ~ A,
xlAi ~ AiwleingAiw7
(15) (A) + + +3
x2("4)l = Ai+w2+w3 X Ai+w1+w3 X Ai+w1+w27

B(A)i = Aito oo

Notice that even if X!(A) ~ ¥2(A) and X°(A) ~ X3(A), these isomorphisms do
not respect the weight decompositions (15).

One of our purposes is to determine the Poisson cohomology of (A, {-,-},) when
¢ € A is weight homogeneous with an isolated singularity. The weight homogeneity
of ¢ will be essential for the computation of these spaces. It implies indeed, among
other things, that each of the coboundary operators 512 is weight homogeneous of
the same degree Ny := w(yp) — ||, as can be seen from (9). That is to say, we
have:

Pe %k(A)z = (S{;(P) € %k+1(A)i+Nw.

If P € X*(A) is a cocycle, then each of its weight homogeneous components will
be a cocycle. In the same way, if P € ¥*(A) is a coboundary then each of its
weight homogeneous components will be a coboundary. Moreover, if P € X%(A) is
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a weight homogeneous coboundary, it is the coboundary of a weight homogeneous
element in XF~1(A).

3. ISOLATED SINGULARITIES AND THE KOSZUL COMPLEX

In the next chapters, we will study the Poisson cohomology associated to a
weight homogeneous polynomial ¢ € A = F[z,y, z] (with char(F) = 0). As ¢ will
be supposed to have isolated singularities, we will, in this part, recall some results
about this notion, see [19] and [18] for proofs.

Algebraically, we say that a weight homogeneous element ¢ of F[z,y, z] has an
isolated singularity (at the origin) if

Op Op Op
16 sin, =F s Yy a.°Aa ) a_
(16) Asing =Pl 2/ (5. 52, )
is finite-dimensional, as a F-vector space. The dimension of A4 is then called the

Milnor number of the singular point. When F = C, this amounts, geometrically,
to saying that the surface 7, : {¢ = 0} has a singular point only at the origin.

Remark 3.1. By definition, Asn, is exactly the F-algebra of regular functions of

Bx Oy Oz
structure {-, -} , (as can be seen from (4)). This algebra A,y will play an important
role in the Poisson cohomology of the algebras (A, {-,-},) and (Ag, {-,-} 4 ).

the affine variety {8” =00 — 9o _ 0} which is the singular locus of the Poisson

Now, with the Cohen-Macaulay theorem, we will see that, if ¢ € A is a weight ho-
mogeneous polynomial with an isolated singularity (what we will denote by w.h.i.s.),
then the sequence of its partial derivatives g—ﬁ, g—‘;, g—f will be a regular sequence
of A. In order to explain that, we first have to write down the definition of a

homogeneous system of parameters of an algebra.

Definition 3.2. Let A be an associative and commutative graded F-algebra. A
system of homogeneous elements Fi, ..., Fy in A, where d is the Krull dimension of
A, is called a homogeneous system of parameters of A (h.s.o.p.) it A/(Fy,..., Fy)
is a finite dimensional F-vector space.

For example, if we consider the F-algebra A = F|z,y, 2], which is graded by the
weighted degree, we have a natural h.s.o.p. given by the system z,y, z. Moreover,
we have seen above that a weight homogeneous element ¢ € A has an isolated
singularity (that is to say is w.h.i.s.) if and only if the three partial derivatives
g—f, g—‘;, g—f give a h.s.o.p. of A.

In order to understand the following theorem, that we will need, we still have to
give the definition of a regular sequence.

Definition 3.3. A sequence aq,...,a, in a commutative associative algebra A is
said to be a A-regular sequence if {(ai,...,a,) # A and a; is not a zero divisor of
A/{at, ... a;—1) fori=1,2,...,n.

For example, it is clear that the sequence z,y, z is a regular sequence in F[z,y, z].

B¢ B¢ d¢ i ig. ?
But, what about 3=, By 95 when ¢ is w.h.i.s. 7

Theorem 3.4 (Cohen-Macaulay). Let A be a Noetherian graded F-algebra. If

A has a h.s.o.p. which is a reqular sequence, then any h.s.o.p. in A is a reqular
sequence.
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Thus, when ¢ € F[z,y, z] is w.h.i.s., then g—f, g—ﬁ, g—f is a regular sequence. This

is the key fact which leads to the following proposition, that will play a fundamental
role in our computations of Poisson cohomology, associated to a polynomial.

Proposition 3.5. For any ¢ € A the following diagram
F A A®

is commutative and has exact columns. If p is w.h.i.s. then the rows of this diagram
are also ezxact.

Remark 3.6. If ¢ € A is weight homogeneous, then, as maps from X*(A) to
Xk=1(A), each of the vertical arrows is weight homogeneous of degree zero, while
each of the horizontal arrows is weight homogeneous of degree (), the (weighted)
degree of ¢, leading to:

-

\v4
X3 (A), L X2(A)ytm(e)
lﬁ lﬁx
\v \v4 v/
EHA) () — X2(A)r —— X A)pr (o) — X2(A)rr2m(e)

lﬁ lﬁx lDiv
v Av
x2 (A)T—w(w) ahikd xl (A)r z xo(A)r—i-w(Lp)

Proof. Each column of this diagram is easily interpreted as the de Rham complex
of A. The classical argument of exactness of the de Rham complex of C*(R"™)
is easily adapted to the algebraic case: if f = (f1, f2, f3) € A? is composed of
three homogeneous polynomials of degree d then Div( f) = 0 implies that the first

component of V x (fx €) is equal to (ﬁ X (fx é’))1 =2f1 +ﬁf1 -é’—a:Div(f) =
(d + 2)f1, in view of Euler’s Formula (13) (€ is the Euler derivation (z,y,z) € A3,

that is to say €., with @, = @ = ws = 1), so that f = ﬁﬁ x (f x &). Similarly,

V x f = 0 implies that (ﬁ(fé’))l = fi+Vfi-&= (d+ 1)f, that lieds to

f: ﬁﬁ(f €), according again to Euler’s Formula.

Each of the rows of the diagram represents (part of)) the so-called Koszul complex.
Let us prove that the Koszul complex, associated to ¢ € A is exact, when ¢ is
whis. If f = (f1, f2, f3) € A? satisfies the equation fx Vi =0, then we have
three equalities like flg—z — ﬁg—f = 0. Since the partial derivatives of ¢ form a
regular sequence, g—i is not a zero divisor in A/(g—f), so there exists a € A such
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that f1 = « a@ and then f, = ale a . The other equations imply that f3 = ale 5>, that

is to say f = aVap. For the second part of the exactitude of the Koszul complex,
the reasoning is exactly of the same kind. d

Remark 3.7. If p € A is a weight homogeneous polynomlal without square factor
then the first part of the Koszul complex A ALGYL X—f A? is exact, but the

second part A> X—f A3 '—> A need not be exact if ¢ is not w.h.i.s. For example,
let o = zyz € A. The polynomial ¢ is square free but the origin is not an isolated
singularity for . Then, the element f = (z,y,—2z) € A satisfies the equation
f : 690 = 0 but, by an argument of degree, there is no element § € A3 such that

—

f=GxVe.
We will often apply Proposition 3.5 directly but sometimes, we will use it in
terms of the following corollary.

Corollary 3.8. Let ¢ € A be w.h.i.s. and let h € A3. If (V x i_i) Vo =0 then
there exist f,g € A such that h = 6f + gﬁgo.

Proof. According to the diagram in Remark 3.6, the operator s (6 X i_i) . ﬁcp,
considered as a map between X?(A) and X°(A), is a weight homogeneous operator
of degree w(y). Therefore, it suffices to prove the result for an element i € X2(A),,
with r € Z. If (6 X f_i) -ﬁcp = 0 then, by Proposition 3.5, there exists k € A3 such
that V x i = k x V. In view of Remark 3.6, k can be chosen in X2(A)r—w(y)-
Summarizing, we have to prove that an equation of the type:

(17) Vxh=kxVp, heX2(A), ke X*(A)_n

implies that h = Vf + gV, with f,g € A.

We will do this by induction on r € Z, by proving the result directly for all
r < wlp) — w2, with =l = max{w; + ws, w1 + w3, w2 + w3}, where the
integers wy, o, w3 are the weights of the variables z,y, 2.

If r < w(yp)—w? then, according to the decompositions in (15), X%(A),_m(y) =
{0} so that the equality (17) leads to V x i = 0. Using Proposition 3.5, we obtain
h= ﬁf, with f € A as required.

Let r' > w(p) — w!? and assume that (17) implies, for all r < 7/, the existence

of f,g € Asuch that h = Vf + gVe. Let us suppose that an element | € X2(A),
satisfies an equation like in (17), namely, suppose that there exists he x? (A)r —=(0)
such that
(18) V x[=hxVe.
Then, h satisfies (17), with » = r' — @(y). Indeed, computing the divergence of
both summands of (18) gives (V x k) -V = 0 and using Proposition 3.5 once again
leads to the existence of k € X2 (A)r—2 () such that we have Vxh=kx 6(,0 By
induction hypothesis, there ex1st f, g€ A such that h = V f+ chp Then, using
Formula (10), we obtain V x [ = hx Vo = Vf x Ve =V x (fVy).

We can now conclude with Proposition 3.5 that there exists f' € A such that
[— fﬁap = ﬁf’. Hence the result. O
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Remark 3.9. As Z2(A,p) = {h € A* | (V x k) - Vi = 0}, Corollary 3.8 leads to
the equality . .

Z(A,0) ={Vf +gVep | fg € A}.
This identity will be useful when we will determine H?(A, ¢) in Section 4.4.

4. POISSON COHOMOLOGY ASSOCIATED TO A WEIGHT HOMOGENEOUS
POLYNOMIAL WITH AN ISOLATED SINGULARITY

Let us consider the polynomial algebra A = F|z,y, z] (char(F) = 0), equipped
with the Poisson structure {-, -}, where ¢ € A is w.h.is. (weight homogeneous
polynomial with an isolated singularity). We determine the Poisson cohomology
spaces of the Poisson algebra (A, {-, -}w).

Remark 4.1. If ¢ € A is w.h.i.s. then w(p) —w; > 0, for ¢ = 1,2,3 (where w(p)
is still the (weighted) degree of ¢ and w;, w2, ws are the weights of the variables
x,y, z), and in particular, @w(p) > 1.

4.1. The space H°(A, ). A precise description of the 0-th Poisson cohomology
space, which is also the algebra of the Casimirs, is given in the following proposition.

Proposition 4.2. If p € A is w.h.i.s. then the zeroth Poisson cohomology space of
(A, {-,},) is given by

HO(A, o) = Cas(A @ Fo'.
iEN
Proof. Let f € A—{0} be a weight homogeneous 0-cocycle, thus satisfying 63( f)=
VfxVe =0 Write f as f = ho", where r € N and where h € A — {O}isa
polynomlal that is not divisible by ¢. We have Vf = <p7”Vh + rhgo’” 1V<p, SO
Vh x ch = 0. Proposition 3.5 implies the existence of g € A such that Vh = chp
Since h and ¢ are weight homogeneous and in view of Euler’s Formula (13),

w(h)h=Vh &y =gVp- &y =m(p) gp,
so w(h) = 0, as h is not divisible by . Thus h € F and f = h¢" € @;cn F
Conversely, it is clear that d) (") = V(g") x Vi =0, for any r € N. O

Remark 4.3. According to Remark 3.7, if ¢ € A is a weight homogeneous poly-
nomial without square factor but ¢ is not necessarly w.h.i.s., then the first part
of the Koszul complex is still exact, so Proposition 4.2 is also valid for this more
general class of polynomials. However, if ¢ has a square factor, the result is not
true anymore. For example, if ¢ =" with r > 2 and ¢ € A a weight homogeneous
polynomial without square factor, then HO(A, p) ~ H(A, ) ~ @, F1' so that

HO(Aa o) £ @ieN Fo!

4.2. The space H!(A, ). We first prove a result which will be useful to determine
H'(A, ).

Lemma 4.4. Let ¢ € A be w.h.i.s. and § € A>. Suppose that there exist r € N
and o € F such that

j-Ve =0,
(19) {Toe Z 0,
7 =

~

iv(g ap’.
0).

Then o =0 (equivalently Div(g
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Proof. According to Remark 3.6, the operator § — (§- Ve, Div(§)) (from A3 to A2?)
restricts for any d € Z to an operator between X' (A)q and X°(A) 14w (p) X X°(A)a-
Therefore it suffices to prove the lemma for an element § € X*(A)q4, with d € Z.
Suppose that such an element § satifies (19), then, according to Proposition 3.5,
the first equation implies that there exists k € X2(A) d—w(p), such that § = kEx V.
We will apply induction on r € N. First, if » = 0, then, according to Formula (12),
a = Div(§) = Div(k x V) = (V x k) - Vi, so that a = 0, for degree reasons.
Assume now that for some fixed » > 0, any § that satisfies (19) is divergence
free. Suppose that h € A® satisfies i - Vo = 0 and Div(h) = o/¢" !, for some
o € F. Writing i = k x Vi, the Formulas (12), (13) and (14) show that § :=

Vx k- %(p*é’w satisfies (19), with a = —a'(w(p)r + |w|)/w(¢), so that, by

induction hypothesis, 0 = a = —a'(w(p)r + |w|)/w(p). It follows that o' =0. O

Now, we can give the main result of this Section. We recall that |w| is the sum
of the weights of the three variables z,y, z.

Proposition 4.5. If ¢ € A is w.h.i.s., then the first Poisson cohomology space of
(A, {-,},) is a free module over Cas(A, ¢), given by:

1 o i =) £l
H (A, 9) =\ Cas(A, p)éw = D Fp'en if wlp)=|m]|
iEN
Proof. Let f € X'(A) be a non zero element of Z'(A, ), that is to say, f € A3
satisfies the equation:

(20) V(f- V) = Div(f) V.

According to Remark 3.6, we suppose that f is weight homogeneous. Our purpose
is to write f = Vk x Vo + w(cw) ¢ és € BY(A, @) + @en Fo' €, where ¢ = 0
if w(p) # |w| and ¢ need not be 0 otherwise. Our proof will be divided in three
parts.

1. First, using cocycle condition (20), we find an element § € A® which satisfies
the equations (19). This equality implies indeed that 63(1?-690) =V(f-Ve)xVp =
0, so that the weight homogeneous element f : 6(,0 of A is a Casimir. According
to Proposition 4.2, there exist ¢ € F and r € N such that f ﬁcp = cp"tl.
Using Equation (20) once more, we obtain Div(f) = c(r 4+ 1)¢". Letting §:= f —

c ||

ch"é’w, Formulas (13) and (14) imply that § satisfies (19), where a = ¢( W)‘

Lemma 4.4 leads to

{ Div(7) =0, 7- Ve =0,
— _ =]
O=c¢ ( w(@)) .
2. Now, we will show that if § € A3 satisfies Div(§) = 0 and §- Vi = 0, then
G € B(A,p). Let § be a such element. As §- Vi = 0, Proposition 3.5 implies the
existence of an element h € A% such that § = h x ﬁ(p. Moreover, we have
0 = Div(§) = Div(h x V) = (V x ) - Vep.

Corollary 3.8 leads now to the existence of elements k,l € A such that h= ﬁk-l—lﬁcp,
so that § = Vk x Vo =00 (k) € B' (A, ¢).
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3. The first two parts of this proof lead to the existence of k € 4 and c € F
such that

(21) { J=VEXVY e

Ozc(l—%)

Now, we have to consider two cases: w( ) # |w| and w(p) = |w|.

o If w(p) # |@| then ¢ =0 and f = Vk x Vi = 69(k) € B'(A, ). Thus, when

@(p) # ||, then H' (A, ) ~ {0}.

e Now, suppose that w@(p) = |w|, then (21) leads to Z'(A,p) C B'(A,p) +
Dicn Fcpié'w. Conversely, for any i € N, Formulas (13) and (14) lead to 8, (¢'€x) =
(|w| — @w(9))p' Ve = 0. So that

Z'(A,p) = B'(A,¢) + P Fyies.
ieN
Let us show that this sum is a direct one. It suffices to consider a weight homoge-
neous element a<p ' € B! (A ), a € F, i € N. It means that there exists k € A
such that ap'€y, = Vk X V. Then (12) and (14) lead to

0 = Div(Vk x Vi) = Div(ap'es) = a|m|(i + 1)¢',
therefore @ = 0 and the sum B'(A,¢) & @,;on Fo'és is direct. Thus, when
w(p) = ||, then HY(A, ) ~ Dien Fo'n. O

Remark 4.6. We see that the case w(y) = |w| is particular. When ¢ is homoge-
neous (i.e. weight homogeneous with @ = ws = w3 = 1), it is the case where the
degree of ¢ is three, that is to say, where ¢ is a cubic polynomial.

4.3. The space H3(A, ). Now, we give the third Poisson cohomology space of
(A, {-,-},); where p € A =F[z,y,2] is w.h.i.s. Recall that, in this case,

&p 8<p Op

Asing =F , —
is a finite dimensional F-vector space, whose dimension is the Milnor number,
denoted by p. Let ug = 1,u1,...,u,—1 be weight homogeneous elements of A, such

that their images in Aying give a F-basis of Aging.
Proposition 4.7. If p € A= F[z,y, 2] is w.h.i.s. then the third cohomology space
H3(A, p) is the free Cas(A, p)-module:
n—1
H*(A, p) = €D Cas(A, ) u; = Cas(A, ) @ Aging-
§=0

Proof. Let f € A~ X3(A) be a weight homogeneous polynomial of degree d € N.
1. We first show that there exist § € A*, N € N and elements \; ; € F, where
0<i<Nand 0<j<pu—1,such that:

N p—1
22) f=Ve - (Vx@+ Y. > Nijpu; €BA Z Fo'u,;.
e OSJSM*I
Let ol := max (o1, w2, ws). We apply induction on d, proving directly the result

for d < w(yp) —wl (this is not an empty case, as can be seen from Remark 4.1, for
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example, it contains the case f € F). By definition of the elements g, ..., u,—1,
we have:

pn—1
(23) F=Ve T+ aju;,

7=0

where '€ xl(A)d_w(w) and o, ..., 1 €F.

If d < w(p) — @ then the correspondences (15) imply that [ is an element
(a,b,c) of F3 so that f is indeed of the form (22), with § = (bz,cx,ay), N = 0 and
/\O,j = Q.

Now, suppose that d > w(p) —wl' and that any weight homogeneous polynomial
of degree at most d — 1 is of the form (22). Let us consider the decomposition (23)
for f of degree d. Proposition 3.5 implies that there exists § € A% such that:

= Div ([

(24) _m ﬁx g,

since Div(i— —2Y0__ & ) — 0, as follows from w(Div(l)) = d — w(y) an :
ince Div ([~ 720 0, as follows f Div(l}) = d d (14

Using the induction hypothesis on Div(l), we conclude that (23), with [ given
by (24), is indeed of the form (22) (one uses that, according to Formula (10),
o(V x k) - Vi = (V x (pk)) - Ve, for k € A3).

2. So, we have already obtained that

—

p—1
A (Vo (VxI)|Te A+ Cas(A,p)u;
(25) =
B3(A,9) + Y Cas(A,p)u,
j=0

and it suffices to show that this sum is direct in A ~ X3(A).
We suppose the contrary. This allows us to consider the smallest integer Ny € N
such that we have an equation of the form:

N p—1
(26) DD Al =V (VX g) = —6,(3),
i=Np j=0
with § € A*>, N > Ny and \;; € F (for Ny <i < Nand 0 < j < pu—1) and
ANo,jo 7 0, for some 0 < jo < pp— 1. We will show that this hypothesis leads to a
contradiction.

First, suppose that Np = 0, then the definition of the u;, Euler’s Formula (13)
and (26) imply that Ao ; = 0 for all 0 < j < pp—1, which contradicts the hypothesis
ANO,J’O # 0.

So we suppose that Ny > 0, using Euler’s Formula (13), the equation (26) can

p—1 A =

be written as Vo - (Zl No 25=0 = () @ 1uj€w> =V (V x §). Proposition 3.5

implies that there exists / € A3 such that:

ZNO]0
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The divergence of both sides of this equality and Formula (14) give:

Z ZA,W]— (V x h) - Vo = 8% (h),

2N1]0

where A} ; = i‘;g—%(w(go)z + w(u;) + |w|) and Ny = Ng — 1. So, we have obtained
an equation of the form (26), with N1 < Np and Ay, ; # 0. This fact contradicts

the hypothesis and we conclude that the sum (25) 1s dlrect The description of
H3(A, o) follows. O

4.4. The space H%(A,y). Finally, using Proposition 4.7 (and in fact the writ-
ing of H3(A, ¢)), we obtain the second Poisson cohomology space of the algebra
(A,{-,-},), when o € A =F[z,y,2]is w.his.

Proposition 4.8. If p € A = F[z,y, 2] is w.h.i.s. then the second Poisson coho-
mology space of the algebra (A,{-,-},) is the Cas(A, p)-module:

p—1 p—1
H*(A,p) ~ @ Cas(A, w)ﬁuj ® @ Cas(A, w)ujﬁcp
()7 (9)— ] o (u;) = ()]
p—1

D @ Fﬁu]',

j=1
@(uj)=w=(p)—|=|

where the first row gives the free part.
In particular, we have: H*(A,¢) ~ @“ 1Cas( A, 0)Vu;, if w(p) < |w| and

H2 (A, ) = @)=} Cas(A, 9)¥u; & Cas(A, 9)Vep, when w(p) = |-

Remark 4.9. We see that the Poisson structure {-,-} , will be exact (that is to
say a 2-coboundary) if and only if w(yp) # |w|. This fact comes from the equality
05(fm) = —(w(p) — |@|)V, a consequence of Formulas (13) and (14).

Remark 4.10. Contrary to the other cohomology spaces, H?(A, ) is generally
not a free Cas(A, ¢)-module. In fact, using Formulas (13) and (14), we get:

27) 0L (¢'uién) = (wluy) — @(p) + @) ¢'u; Vo — w(9)p ™ V.

This equality, which will be also useful later, explains that we have to distinguish,
in the expression of H?(A,¢), the u; satisfying @(u;) = @w(y¢) — || from the other
ones. If j is such that w(u;) = w(y) —|w| then (27) yields that cpkﬁuj € B%(A, ),
for all k > 1, but this is not true when w(u;) # w(p) —|w|. This is the reason why
H?(A, ) is not always a free module over Cas(A, ¢).

Moreover, for all j satisfying w(u;) # w(p) — ||, (27) implies that @iujﬁcp,
i >0, can be written as cp™! Vu; + 8], (¢'p'u;8s), with ¢, ¢’ € F — {0}.
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Proof. First, let us show that:

p—1

Z(Ap) = B(A)+ Y Cas(4)Vy

j=1
(28) st w(“j)?éw(#’)—‘iﬂ ot
+ Z Cas(A, cp)ujﬁgo + Z Fﬁu]’.
o ()= () ] o (u5) = (o) ||

Let f € Z%(A, ¢). According to Remark 3.9, there exists g, h € A such that
(29) F=Vg+hVe.

Moreover, Proposition 4.7 implies the existence of gl,ﬁl € A%, N € N and of
elements A; ;j,d;; € F, with 0 <7 < N and 0 < j < p — 1, such that:

N p—1 N p—1
(30)  g=02@) + DD Aigeluy, h=du(h) Y0y ity
i=0 j=0 i=0 j=0

while we have the 2-coboundaries:

ﬁ(5?0@’1)) = —ﬁ((ﬁ X gh) -

6 X _‘1) GBQ(AaQO)a
2(h) Ve = ((Vxh)- Vo) Vp=

(
30(51 x V) € B2(A, p).

Using this fact, (29) and (30), we obtain

n—1 p—1

Fe B A, ) + Z Cas(A, cp)ﬁuj + Z Cas(A, w)ujﬁcp.

j=1 =0

Remark 4.10 then implies that f can be decomposed as in the right hand side
of (28). On the other hand, all elements of the right hand side of (28) are 2-cocycles,
yielding equality in (28). (Indeed, using Formula (10), we have, for all f,g € A,
32(pVf) ==V (V x (pVf)) =0 and 62(gVe) = Ve - (V x (gV)) = 0).

For the proof that the sum in (28) is a direct one, one uses the definition of the
u; and applies Propositions 3.5, 4.2 (expression of H°(A,¢)) and 4.7 (writing of
H3(A,p)) as in the proofs of Propositions 4.5 and 4.7. O

Remark 4.11. Using Euler’s Formula (13) and the writings of the Poisson co-
homology spaces H'(A,p) and H?(A,p) given in Propositions 4.5 and 4.8, we
can make the ring structure on the space H*(A,¢) := @2:0 H%(A, ), induced
by the wedge product, explicit. One obtains, for example, that A : H'(A,¢) x
H?(A,p) — H?(A, ) is surjective when w(p) = |w|.

5. POISSON COHOMOLOGY OF THE SINGULAR SURFACE

In this chapter, we still consider an element ¢ € A = F[z,y, 2] (char(F) = 0),
which is w.h.i.s. (weight homogeneous with an isolated singularity) and we restrict
the Poisson structure {-,-}  to the singular surface F, : {¢ = 0} and compute the
cohomology of the Poisson algebra obtained.
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5.1. The Poisson complex of the singular surface F,. The algebra of regular
functions on the surface F,, is the quotient algebra:

Flz,y, 2]
(o)

Because ¢ is a Casimir, (p) is a Poisson ideal for (A, {-,-},) and the Poisson
structure {-, -}, restricts naturally to F, that is to say goes down to the quotient
Ay, That leads to a Poisson structure on A, denoted by {-,-}, . Let us denote
by 7 the natural projection map A — Ay, then, for each f,g € A, we have

A, =

{W(f),ﬂ'(g)}Aw =7 ({f,g}¢) (that is to say, 7 is a Poisson morphism between A
and A).

Definition 5.1. We say that P € X*(A4) and Q € X*(A,) are m-related and we
write QQ = m.(P) if

(31) m(Plfr, - fi]) = QIr(f1), -+, 7(fi)],

for all f1,---, fr € A.

In the following proposition, we give the Poisson cohomology spaces of the al-
gebra (Ay, {-,-} 4, )- That leads to consider the skew-symmetric multi-derivations
of the algebra A, and the Poisson coboundary operators, associated to {-,-} A,
The previous definition will be useful in this discussion. By a slight abuse of no-

tations we will, for an element f = (f1, f2, f3) € A3, denote by 7r(f), the element
(m(f1), m(f2), (f3)) € A2.

Proposition 5.2. If p € A is w.h.i.s., the Poisson cohomology spaces of the algebra
(Ap, {5} 4,), denoted by H*(A,), are given by:

Cas(Ay) = HO(A,) = {m(f) € A, |V x Vo e (o)},

{7(F) e 4% 17V e g} and —V(F- Vi) + Din(f) Vo € () |

i) = ((37%%%) 17 4) ’
R Ll
T {w(—ﬁ(f ﬁcp + Div(f <p)| feA:. f-v 44,06(4;3)}’

and H?*(A,) ~ {0}.

Subsequently, we denote by Z*(A,) (respectively B¥(A,)) the space of all k-
cocycles (respectively k-coboundaries) of A,.

Proof. We first have to determine the skew-symmetric multi-derivations of A,.
Let us point out that any P € X¥(A) is w-related to a Q € X*(A,) if and only if
Plp, fa, .-, fr] € (@), for all fo,..., fr € A. In this case, the equality (31) defines
indeed an element @ of X*(A,), in view of the skew-symmetry and the derivation
properties of P. Moreover, every @ € X¥(A,) is obtained in this way. Let us
consider, for example, the case k = 1.
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Let Q € X'(A,) and let us choose f = (fi, fa, f3) € A% such that Q[x(z)] =
w(f1), Q[n(y)] = 7(f2) and Q[n(z)] = 7w (f3). Then, we get Q@ = *(_’P), with
P=fiZ+foik+ fsds € X'(A) and Plp] = 132 + 252 + fs 52 = f-Vy e (p).

Conversely, each of W(f) € A?, satisfying the equation f-voe (p) gives an
element of X! (A,), defined by m, (fla% + fga% + fg%). Thus,

X' (Ap) = {n(f) € A2 | F- Vi € (p)}.
With the same reasoning, we obtain
X2(Ap) ~ {m(f) € AL | Fx Vo € (p)}.

As it is clear that X°(A,) ~ A, and X*(A,) ~ {0}, for k > 4, let us now consider
the space X*(A,). In the same way that above, we get x3(A o) = {n(f) € A, |
fVyp e (p)}. However, if f € A satisfies Vo = p§, with § € A3, then we have
g % §<p = 0 and Proposition 3.5 implies the existence of an element h € A satifying
G =hVy so that f = hy € (¢). That leads to X3(A,) ~ {0}.

Now, let us consider the Poisson coboundary operators of the Poisson algebra
(Ap,{-5-}4,), denoted by 5’“ . Using the definition of 62@ (similarly as (7)), we
obtain, for all P € X*(A), 5A¢ (7« (P)) = m.(6%(P)). That leads to:

O, () = 7(VfxVe), forn(f) €A, ~X(A,),

—

(%)
§>H
A
e
!
I
3
|
<
y
<l
S
+
S
=
<l
S
—_— N

5 13- Vo€ (o)} =X (Ayp),
0%, @(f) = 0, form(f) € {n(d) € A} |G x Vo € (0)} = X2(Ay),
while the writing of the Poisson cohomology spaces follows. O

5.2. The space H°(A,). In this Section, we consider still ¢ € A w.h.i.s. and
the Poisson structure on A, denoted by {-, -}A‘P. We describe the zeroth Poisson

cohomology space, that is to say the space of the Casimirs of (A, {-, '}A¢) in the
following Proposition.

Proposition 5.3. If p € A = F[z,y, z] is w.h.i.s., the zeroth Poisson cohomology
space of the singular surface defined by this polynomial is given by

H°(A,) = Cas(A,) ~F.

Proof. Let f € A be a weight homogeneous polynomial such that 7(f) € H(A,).
Then ﬁf X ﬁ(p € (p) i.e., there exists § € A? satifying ﬁf X ﬁ(p = g. It follows
that g- ﬁcp = 0 and Proposition 3.5 implies the existence of an element i € A3 such
that § = h x V. Summing up, (Vf- cpﬁ) x Vi = 0, and we can apply Proposition
3.5 again to obtain a k € A satifying V f = ph + k V. Euler’s Formula (13) gives

w(f) f =V & =plh-ex+wlo)k).
So, f € (p) unless w(f), the (weighted) degree of f, is zero, thus H°(A,) ~F. O
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5.3. The space H'(A,). This section is devoted to the determination of the first
Poisson cohomology space of (A, {-, -}AW), where p € A= Flz,y,2] is w.h.is.
Remark 5.4. Using Proposition 5.3, we can simplify the writing of Z'(A,). Let
indeed f € A3 be an element satisfying: —V (f - V) + Div(f) Ve € (). Then
—V(f- V) x Vo € (p), that is to say 7(f - Vi) € H°(A,) ~ F, according to
Proposition 5.3. For degree reasons, this leads to f ﬁ(p € (p). So, we can simply
write

Z4(Ap) = {r(f) € A% | =V(f- V) + Div(f) Vo € (o)}

Now, let us give the main result of this section (we recall that || is the sum of
the weights w1, wa, w3 of the variables z, y, z and that the family {u;} is an F-basis
of Asing and is defined in Section 4.3).

Proposition 5.5. If p € A = F[z,y, 2] is w.h.i.s. then the first Poisson cohomology
space of the singular surface {¢@ = 0} is given by
p—1
H'(Ap) ~ @ Fr(u; €s).

w(us)=w (%) ||
In particular, if w(p) < |w| then H'(A,) ~ {0}.
Proof. Let f € A? satisfy ﬂ(f) € Z'(A,), it means that there exists k€ A3 satis-
fying 5&7(]?) = k. Then 0 = 63(4,013) = 4,0657(13), because, as we said in Section 2.1,
the operator &, commutes with the multiplication by ¢. So ok € B2(A, ) and
ke Z%(A, ¢). According to Proposition 4.8,

pn—1

E € B*A,p)® 69 Cas(A,cp)ﬁuj

o (uy) (o)~

n—1 p—1
@ @ Cas(A, @)up Ve ® @ FVu,.
w(ur) = ()~ || w(u)=w(p)— ||

Each of the first three summands is stable by multiplication by ¢, while Remark

4.10 gives
pn—1

69 ©FVu, C B(A, ).
w(ur) =2 () ~ <]

As a consequence, since <pl_é € B2(A, p),

ke BX(A,¢) @ P FVu,.

So there exist € A% and elements A, € F, with [ satisfying @ (u;) = @w(p) — |@|,
such that
n—1
k= 6;(h) + Z V.
= (un)=(e) ||
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Forall1 <1< p—1such that @(u) = @(p)—|wm|, we have pVu; = -, (ﬁul é'w),
so that

- - o — N
1 _ _ <1 N
5w(f) —9019—5@ oh — Zl mulew
w(w)=w(p)—|=|
This implies
p—1 )\

32 F— oh + L owés € ZV (A, ).
(32) F-o > G (4,9)

@ (u)=w(p)—|w|

e If w(yp) # |w|, then Proposition 4.5 implies that (32) belongs to B*(A,¢), so
that

wfle Y Fr(wés)+B'(A,)

=1
@(w)=w(p)—|=|

o If w(y) = || then (32) is simply the equation f—ph € Zl(A ) ~ BY (A, p)+
Cas(A, ¢) €, according to Proposition 4.5. So, we have 7(f) € F () + B! (A,).

As we have w(u;) > 1,if 1 <1 < p—1, the result of both cases can be summarized

as follows:
p—1

Z'A)CB A+ Y Fr(wés).

=0
@ (u)=w(p)—|=|
Euler’s Formula (13) implies that m(u; &5) € Z'(Ay) (0,(wé5) € (¢)), when
w(u) = w(p) —|wl, so that the other inclusion holds too. It also allows us to show
that the above sum is a direct one. Hence the result about H'(A,). O

5.4. The space H?*(A,). We now compute the second Poisson cohomology space
of (Ap,{-,-}4,), where p € A=F[z,y,z] is whis.

Proposition 5.6. If o € A = F|z,y, 2] is w.h.i.s. then H*(A,) is given by
n—1
H*(A,) ~ @ Fr(u;Vo).
()= (0)— ||

Remark 5.7. It follows from Propositions 5.5 and 5.6 that there is a natural
isomorphism between H'(A,) and H?(A,), that maps the element u; €y (with

w(uj) = w(p) — |w|) to the element u; Ve of H?(A,).

Proof. First, we show that the family {W(ujﬁcp) | w(uj) = w(p) — |w|} generates
the F-vector space H?(A,). Let h € A% such that =(h) € Z?(A,), that is to say,
such that there exists § € A® satisfying h x ﬁ(p @ g. According to Remark 3.6,
we may suppose i € X2(A)q and g € %1(A)d, with d € Z. Since §- V¢ = 0,
Proposmon 3.5 implies that § = k x Vi and hr = pk+ fVe, with f € X3(A),_ =()
and k € X2(A) d—o(p)-

If d < w(p)—|w| then f = 0 and h € (); otherwise m(h) = 7r(ngo) while, using
Formulas (13) and (14), we get 0., (féx) = (d — 2w(p) + 2|w|) FVe — w(p) oV f.
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That leads, in the case d # 2(w(p) —|@|), to 7(h) = 7(fV) € B?(A,). Therefore,
let us suppose that d = 2(w(p) — |w|), so that w(f) = w(p) — |w|. For degree
reasons, the projection map A — Aging = A/(g—f, g—“;, g—f) restricts to an injective
map A (4)—|w| =+ Asing, 50 that f is a F-linear combination of the u; satisfying
w(uj) = w(p) — |w|, that leads to

pn—1
w(hye Y Fr(uVy)
w(uj)=w(¢)-I|
and for all j, u; Vo € Z2(Ay).
It suffices now to show that this family is F-free, modulo B*(A,). It is empty if
w(p) < |wl|, so we suppose w(p) > |w|. Let A; be elements of F with j such that
w(u;) = w(p) — || and let [, 7€ A3 satisfying

p—1
Z )\jujﬁcp = —V(-Vo)+Div(l)Ve + ¢
(33)

()= (0) ]

SL{) + ¢,
where the right hand side is an arbitrary representative of an element of B?(A,).
As the left hand side belongs to the space X2 (A)2ew(p)—2|w|, We may suppose that
fE xl(A)w(w),‘w| and je 362(A)w(w),2|w‘.

The equation (33) implies V(I-V)x Ve € (¢), so that w(fﬁ(p) € Cas(A,). For
degree reasons, Proposition 5.3 leads to the existence of g € A of degree w(y) — ||

such that I - Vo = pg = (gé - V¢)/w@(p). Then Proposition 3.5 implies that
w(p)l = gés and 6}, (1) = —¢Vg, so that

pn—1
(34) Yo NuVe = —pVg+ef= ¢F,

j=0
@ (uj)=w(p)—|=|

where F = —ﬁg +7€ x2(A)w(¢)_2‘w|. We get F x 64,0 = 0, but for degree reasons,
Proposition 3.5 leads to F =0so that, for all j, A; = 0, since the family {u;} if
F-free in A. O

6. POISSON HOMOLOGY ASSOCIATED TO A WEIGHT HOMOGENEOUS POLYNOMIAL
WITH AN ISOLATED SINGULARITY

In this last chapter, we consider the algebras A = F[z,y, z] (with char(F) = 0)
and A, = A/(p), where ¢ € A is weight homogeneous with an isolated singularity
(w.h.i.s.). These algebras are still respectively equipped with the Poisson structures
{-.-}, and {-,-}, - We use the Poisson cohomology of these Poisson algebras
(A {,-},) and (Ay, {-, '}-Acp)’ given in the previous chapters 4 and 5, to determine
their Poisson homology.

6.1. The Poisson homology of A.



22 ANNE PICHEREAU

6.1.1. Definitions. We recall the construction of the Poisson homology complex as-
sociated to a Poisson algebra (B, {-,-}). First, the k-chains of this complex are the
so-called Kéhler differential k-forms (see [5] for details), whose space is denoted
by Q%(B). We recall that Q%(B) = A*Q*(B) while Q*(B) := @,cn 2¥(B) is the
B-module of all (Kéhler) differential forms, with, by convention, Q°(B) = B. We de-
note by d the exterior differential. The boundary operator, & : Q*¥(B) — Q¥~1(B),
called the Brylinsky or Koszul differential, is given by (see [2]):

k
Sk(fodfi Ave Adfi) =D (1) {fo, fi} dfs Ao Adfi Ao Adfy
(35) i=1 . -
+ Y () fod{fi AAfL A AAfi A Adf A A,
1<i<j<k

where the symbol cfﬁ means that we omit the term df;. It is easy to see that this
operator satisfies dx o dx+1 = 0. The homology of this complex is called the Poisson
homology of (B, {-,}).

The boundary operators of the algebras (A,{-,-},) and (Ay,{-,-}, ) are re-

spectively denoted by 47 and 5,?“’, while the Poisson homology spaces are denoted
by Hi(A,¢) and Hy(A,). As for the Poisson cohomology, the boundary operator
0 commutes with the multiplication by a Casimir, so that the Poisson homology
spaces are modules over the spaces of the Casimirs.

6.1.2. The Poisson homology complex of A. In the particular case of our polynomial
algebra A = F[z,y, 2], it is clear that 2*(A) is the A-module generated by the wedge
products of the 1-differential forms dx,dy,dz and that we have Q(A) = {0}, for
all i > 4. As for the multi-derivations of A, we have the isomorphisms (with the
same choices as in Chapter 2.1)

(36) Q°(A) ~ QP (A) ~ A, Q' (A) ~ Q2 (A) ~ A3,

which allows us to use the same notations and formulas than in the previous chap-
ters, when we talk about differential forms. For example, the 1-differential form dy
corresponds, with these notations, to the element V¢ of A? (as the biderivation

{' Y }Lp)
Proposition 6.1. If ¢ € A is w.h.i.s., the homology spaces of (A,{-,-},) are given
by:

Hy (A, @) ~ H> %A, ), forall k=0,1,2,3.
Proof. We have already seen in (36) that QF(A) ~ ¥3~*(A). In fact, for example, a
1-form f dx € Q' (A) corresponds to the biderivation f a% AL € x*(A). Moreover,

under the previous identifications, we get easily 0} = (—1)’“53”“, that leads to the
result. O

Remark 6.2. There exists a more general result that gives, in certain cases, iso-
morphisms between Poisson cohomology and homology spaces, using the modular
class of a Poisson algebra (see [24] and [8] for details).

6.2. The Poisson homology of A,.
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6.2.1. The Poisson homology complex of A,. Now, let us determine the Poisson
homology complex of the singular surface F,. For the quotient algebra A, =
Flz,y,2]/{(p), the space Q*(A,) is obtained by subjecting the A, ,-module gener-
ated by the wedge products of dz,dy,dz to the relations ¢ = 0, dp = 0 and
de A dz =0, etc. We recall the natural surjective map = : 4 — A, which is a
Poisson morphism. This map induces another surjective map 7# : Q% (A4) — QF(A,)
between the spaces of all k-chains, which allows us to see the differential k-forms of
A, as images of differential k-forms of A. Thus, as the differential forms of A are
identified to elements of A or A3, as can be seen in (36), we can write the spaces
of all differential k-forms of A, as quotients of A, and Ai and then as quotients
of A and A*. We obtain, while Q°(A,) ~ A,

A3 A3
Ql(A¢) ~ p—y 2 ~ = )
{fVeol|lfeAt {fVo+eilfeA ge A}
02(.4) ~ Ai ~ AS
T {VexfIfeAy {(Voxf+eilfige Ay
BA) ~ e A
(Vo - fIfeasy Qe 9 Op,
Oz’ Oy’ 0z

Remark 6.3. Unlike for A, there is no isomorphisms between the spaces of skew-
symmetric multi-derivations and differential forms on A,. For example, Q°(A,) ~
A, while X°(A,) ~ {0} and X?(A,) C A2. Observe also that Q*(A,) # {0},
although F,, is an affine variety of dimension two.

In view of Definition (35), the operator §; induces an operator QF(A,) —

QF1(Ay), that is exactly 6,;4"’, so that the Poisson homology spaces of A, are
given by
A
(Vo - (Vx+pglge A fe A}
H1(A) ~ {f_‘eA3|6kp'(ﬁX]‘T‘)€<(‘0>}
: {~V(f-Vo) +Div(f) Vo + gV +oh| g€ A, f,h e A%}
{f € A% | -V(f-V¢) + Div(f) Vp € T,.}
Hy(4,) = L ,
{Voxh+ok|h ke A}

where 7, := {fVp + ¢ | f € A,§ € A%},

12

HO(AW)

i

H3 (ALP) ~ Asing-

Remark 6.4. In view of the writing of the Poisson homology groups of A and A,
we can describe explicitly the map induced by 7 between these groups. In fact, this
map is exactly the reduction modulo ¢ between the spaces Hy(A) and Hy(A,),
for k # 1, and it is the reduction modulo Z,,, for £ = 1. This phenomenon will be
illustrated in the determination of the Poisson homology groups of A,,.

6.2.2. The Poisson homology spaces of the singular surface F,. In this Section,
p € A=F[z,y, 2] is still w.h.i.s. and we determine these spaces.
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Proposition 6.5. If ¢ € A is w.h.i.s. then the homology spaces of the singular
surface are given by:

pu—1 n—
Ho(ALp) >~ @ FU,]' >~ Asinga Hl(A¢) >~ @ FVU]',
Jj=0 j=
p—1
Hy(Ayp) ~ @D Fu; € ~ Aging.
j=0

Remark 6.6. The fact that Ho(Ay) ~ Aging was already proved by J. Alev and
T. Lambre, with other methods, in [1]. Their result is more general as they only
suppose that ¢ is a weight homogeneous polynomial, not necessarly with an isolated
singularity.

Remark 6.7. The multiplication by €, gives a natural isomorphism between
Hy(A,) and Hy(A,), while the operator of gradient V gives a surjective map from
Ho(A¢) to Hl(A¢).

Proof. 1. We first determine Hy(A,). According to Proposition 4.7 (i.e., the
writing of H?(A, ¢)), we have:

p—1
A = (Vo (Vx| fe A+ Foluy,
EN
n—1
= (Vo-(Vxf+eglge A fe A+ PFu;.
7j=0

Moreover this last sum is a direct one, as follows from the definition of the u; (in
Section 4.3) and the inclusion {Vy - (V x f)+¢g | g€ A, fe A3} C (8‘;’, g‘;’, %)
easily obtained with Euler’s Formula (13). That leads to Ho(A,) ~ @ Fu]

2. Now, we use the result we obtained for H?(A, ) to determine the first
Poisson homology space of A,. Let fe s satisfying Vo - (V x f) € (p), thus,
there exists g € A with —§2 (f) =Ve- (Vx f=

According to Proposition 4.7, g € B3(A, @) ® @“ 1 Cas( ,) uj. As both of the
summands of this sum are stable by multiplication by ¢ and because pg € B3(A, ¢),
we have g € B3(A, ), i.e. there exists ke A3 satisfying g = ﬁcp - (6 X E) Thus,
f—pkez? (A, ) together with Proposition 4.8 imply that

fe ZFwﬂL{a () +gVe+ph|ge Al ke A%,
j=1
so that {ﬁuj | 1 < j < p—1} generates the F-vector space Hq(A,) and it suffices to
prove that ﬁul, RPN ﬁuu,l are linearly independent elements of H;(A,). Assume

therefore that there exist elements \; of F (1 < j < p—1), ke A% and g € A
such that

Z A\jVu; = V(I V) + Div(l) Vo + gV + ph.
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Then, as the u; are weight homogeneous, Euler’s Formula (13) leads to

p—1

Op Op 0O
Z/\jw(uj)ujﬁa_i’a_j’a_?

i=1
and the definition of the u; implies A\; =0, for 1 <j < p—1.

3. Finally, we compute the second Poisson homology space of A,. Let f € A?
satisfying 61 (f) € Z,,, i.e. there exist [ € A, § € A® such that 6*(f) = IV + ¢ 7.
e Let us study the term ¢ §. We first point out that [Vy € Z2(A, ), so that
0j=0"(f) —INVyp € Z2(A, ). Using Proposition 4.8, Formula (27) and the fact
that 6}, commutes with ¢, we obtain the existence of h e A® and ¢; € F, such that:

pn—1
QO,J € 6&; ph+ Z CjUjgw
(37) ()= (p)~ ||
p—1 p—1
+ D CsApVuye D Cas(AeuVe,
o (u) () ] w(us) = ()]

e Next, we consider the term lﬁtp. According to Proposition 4.7, there exists ke
A? such that I € 63 (k) + Cas(A, ¢) @F Asing- The equality 07 (k) Vo = 0., (k x Vi)
and Formula (27) lead to:

n—1

Vo € 68, |kxVe+ > Ciujém

(38) () E o)~ ||
p—1 p—1
+ D CsApVue D Cas(AouVe,
() £ (0) ] ()= (0) ]

where C; € Cas(A, ).

The equalities (37) and (38) give:

pn—1 p—1
55, f—oh- Z cjujéw—ﬁxﬁw— Z Cjuj €
w(uj)=m () || o (ug) A (0) ||
p—1 n—1
€ @ Cas(A,p)Vu; & @ Cas(A, ¢)u; V.
o (us) (o)~ || ()= (0) ||

Using Proposition 4.8 once more, we obtain

p—1 p—1
f—oph- Z cjujé'w—lzxﬁcp— Z Cijujém € Z' (A Q).
()= (p)~ ] () £ (o)~ ||
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It suffices now to use Proposition 4.5 to conclude that

n—1
fe ZFujé'w+{§<pr+<pﬁ|ﬁ,E€A3}.

=0

Finally, using Euler’s Formula (13) and the definition of the w;, it is easy the see

that this sum is a direct one in A%. Hence the result for Ha(A,). O
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