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POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIESANNE PICHEREAUAbstra
t. To ea
h polynomial ' 2 F[x; y; z℄ is asso
iated a Poisson stru
tureon F3, a surfa
e and a Poisson stru
ture on this surfa
e. When ' is weight ho-mogeneous with an isolated singularity, we determine the Poisson 
ohomologyand homology of the two Poisson varieties obtained.Contents1. Introdu
tion 12. The Poisson 
ohomology 
omplex asso
iated to a polynomial 53. Isolated singularities and the Koszul 
omplex 84. Poisson 
ohomology asso
iated to a weight homogeneous polynomialwith an isolated singularity 115. Poisson 
ohomology of the singular surfa
e 166. Poisson homology asso
iated to a weight homogeneous polynomial withan isolated singularity 21Referen
es 261. Introdu
tionThe �rst Poisson stru
tures appeared in 
lassi
al me
hani
s. In 1809, D. Poissonintrodu
ed a bra
ket of fun
tions, given by:ff; gg = rXi=1 � �f�qi �g�pi � �f�pi �g�qi� ;(1)for two smooth fun
tions f; g on R2r. It permits one to write the Hamilton'sequations as di�erential equations, where positions (qi) and impulsions (pi) playsymmetri
 roles. Indeed, denoting by H the total energy of the system, theseequations be
ome: _qi = fqi; Hg ;_pi = fpi; Hg ; 1 � i � r:D. Poisson also pointed out that if f and g are 
onstants of motion, then ff; gg isalso a 
onstant of motion and this phenomenon was explained in 1839 by C. Ja
obi,who proved that (1) satis�es what is now 
alled the Ja
obi identity:fff; gg ; hg+ ffg; hg ; fg+ ffh; fg ; gg = 0:(2)2000 Mathemati
s Subje
t Classi�
ation. 17B55, 17B63.Key words and phrases. Poisson 
ohomology, Poisson homology, isolated singularities.1



2 ANNE PICHEREAUThis important identity leads to the de�nition of a Poisson algebra as an algebraB equipped with a skew-symmetri
 biderivation f� ; �g, satisfying (2), for all f; g; h,elements of B. Said di�erently, a Poisson algebra is a Lie algebra (B; f� ; �g), wheref� ; �g sati�es the Leibniz rule ffg; hg = f fg; hg+ ff; hg g, for all f; g; h 2 B. Onetalks about a Poisson variety, when its algebra of fun
tions is equipped with aPoisson stru
ture. This notion generalizes the notion of symple
ti
 manifold.For a given Poisson algebra (B; f� ; �g), one de�nes a 
ohomology, 
alled Poisson
ohomology, introdu
ed by A. Li
hnerowi
z in [12℄; see also [9℄ for an algebrai
approa
h. The 
o
hains are the skew-symmetri
 multiderivations of A and the
oboundary operator is � [�; �℄S , where � := f� ; �g is the Poisson bra
ket and [� ; �℄Sis the S
houten bra
ket. The resulting Poisson 
omplex, de�ned in detail in Se
tion2.1, 
an be viewed as the 
ontravariant version of the de Rham 
omplex. Its 
oho-mology gives very interesting information about the Poisson stru
ture, as for smallk, the k-th Poisson 
ohomology spa
e Hk(B; �) has the following interpretation:H0(B; �) = fCasimir fun
tionsg := ff 2 B j ff; � g = 0g;H1(B; �) = fPoisson derivationsgfHamiltonian derivationsg ;H2(B; �) = fskew-symmetri
 biderivations 
ompatible with �gfLie derivatives of �g ;H3(B; �) = fObstru
tions to deformations of Poisson stru
turesg:Moreover, H2(B; �) is fundamental in the study of normal forms of Poisson stru
-tures (see [4℄). We also denote by Cas(B; �) the spa
e of all Casimir fun
tionsof (B; f� ; �g) (that is to say H0(B; �)) and we point out that ea
h Hk(B; �) is aCas(B; �)-module in a natural way.To determine the Poisson 
ohomology of a given Poisson algebra expli
itly is, ingeneral, diÆ
ult. One of the reasons seems to be that Poisson 
ohomology is nota fun
tor: a morphism � : A1 ! A2 between Poisson algebras does not lead to amorphism between their 
o
hains (multiderivations), nor between their 
orrespond-ing Poisson 
ohomology groups. In a few spe
i�
 
ases, Poisson 
ohomology hasbeen determined. For a symple
ti
 manifold, there exists a natural isomorphismbetween Poisson and de Rham 
ohomology (see [12℄). In [20℄ and [23℄, one �ndssome partial results about the 
ase of regular Poisson manifolds, while, for Poisson-Lie groups, one 
an refer to [7℄. Finally, the Poisson 
ohomology in dimension twowas 
omputed in the germi�ed and algebrai
 
ases in [14℄ and [17℄.Our purpose is to determine the Poisson 
ohomology of two 
lasses of Poissonvarieties, intimately linked. The �rst 
lass is 
omposed of the singular surfa
esF' : f' = 0g in F3 (F is a �eld of 
hara
teristi
 zero) that are de�ned by the zerosof polynomials ' 2 F[x; y; z℄ and the se
ond one is the 
lass of the Poisson varietiesthat are the ambient spa
e F3, equipped with Poisson stru
tures asso
iated toea
h '. It means that we 
onsider Poisson stru
tures on the algebras of regularfun
tions on F' and F3, given by A' := F[x; y; z℄=h'i and A := F[x; y; z℄ and thatwe determine the Poisson 
ohomology of the Poisson algebras obtained.We point out that the dimension three is the �rst one in whi
h there is a real
ondition for a biderivation to be a Poisson biderivation. The Ja
obi identity is



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 3indeed trivial in dimension two and every polynomial  2 F[x; y℄ leads to a Poissonstru
ture on the aÆne spa
e F[x; y℄, given by  ��x ^ ��y . One 
an 
onsider thesingular lo
us of su
h a stru
ture, given by � : f = 0g. In [17℄, the authorsdetermine the dimensions of the Poisson 
ohomology spa
es, when  is a homoge-neous polynomial. They observe that these dimensions are linked to the type ofthe singularity of � . Conversely, in our 
ontext, we 
onsider a surfa
e F', with asingularity, and a Poisson bra
ket that do not bring other singularities. That is tosay, this Poisson stru
ture is symple
ti
 everywhere ex
ept on the singularities ofF'. In fa
t, it will be the restri
tion of a Poisson stru
ture f� ; �g' on F3, whi
h is
ompletely de�ned by the bra
kets:fx; yg' = �'�z ; fy; zg' = �'�x ; fz; xg' = �'�y ; (' 2 A):(3)We suppose that F' has only one weight homogeneous isolated singularity (at theorigin). In fa
t, the hypothesis is that ' is a weight homogeneous polynomial withan isolated singularity.An other way to approa
h our 
ontext is to 
onsider the Poisson stru
tures onA that admit a weight homogeneous Casimir and a singular lo
us redu
ed to theorigin. That leads to study the Poisson stru
tures of the form f� ; �g', with ' weighthomogeneous with an isolated singularity. As ' is a Casimir for this stru
ture, h'iis a Poisson ideal of the Poisson algebra (A; f� ; �g'). This implies that f� ; �g' goesdown to the quotient algebra A' = F[x; y; z℄=h'i. The singular surfa
e F' is thenthe union of a symple
ti
 leave of f� ; �g' and the origin.For ea
h ' 2 A weight homogeneous with an isolated singularity, what we de-termine is the Poisson 
ohomology of both the Poisson algebras introdu
ed. More-over, we turn these results to good a

ount to give the Poisson homology of thesealgebras. The Poisson 
ohomology spa
es are respe
tively denoted by Hk(A; ')for (A; f� ; �g') and Hk(A') for the singular surfa
e, while the Poisson homologyspa
es are denoted by Hk(A; ') and Hk(A').To develop a �rst idea about our results, one may think of ' as a homogeneouspolynomial, of degree denoted by $('), su
h that its three partial derivatives haveonly one 
ommon zero that is the origin. This implies thatAsing := A=h�'�x ; �'�y ; �'�z iis a �nite dimensional F-ve
tor spa
e. Its dimension is the so-
alled Milnor num-ber � (see [13℄). This spa
e gives information about the (isolated) singularity ofthe surfa
e F' (like multipli
ity, see also [3℄) as it is exa
tly the algebra of regularfun
tions on this singularity. It plays an important role in the Poisson 
ohomologyof the algebra (A; f� ; �g'), so that this Poisson 
ohomology is 
losely related tothe type of the singularity of F'. We 
onsider a family u0 = 1; u1; : : : ; u��1 ofhomogeneous elements of A, whose images in Asing give a F-basis of this F-ve
torspa
e.The algebra of Casimir fun
tions of the algebra (A; f� ; �g') is given in Proposition4.2 and is simply the algebra generated by ', that is to say Cas(A; ') = H0(A; ') 'Li2NF'i. In Proposition 4.5, we see that the �rst Poisson 
ohomology spa
e ofA is equal to zero if the degree of ', $('), is equal to 3 and otherwise H1(A; ') is



4 ANNE PICHEREAUthe Cas(A; ')-module given byH1(A; ') ' Cas(A; ')~e;where ~e := (x; y; z) 
orresponds to the Euler derivation x ��x + y ��y + z ��z . Noti
ethat the 
ubi
 polynomials play a spe
ial role here; in the weight homogeneous
ase, this role is played by the polynomials of degree the sum of the weights ofthe three variables x; y; z. Moreover, with Proposition 4.8, we see that the 
ase$(') = 3 is also the unique 
ase where the biderivation f� ; �g' is not an exa
tPoisson stru
ture, i.e. f� ; �g', whi
h is a 2-
o
y
le of the Poisson 
ohomology of(A; f� ; �g'), is not a 2-
oboundary (see [9℄). Proposition 4.8 aÆrms indeed that these
ond Poisson 
ohomology spa
e is exa
tlyH2(A; ') ' Mj�1$(uj )6=$(')�3Cas(A; ')~ruj � M$(uj )=$(')�3Cas(A; ')uj ~r'� Mj�1$(uj)=$(')�3F~ruj :This writing has been obtained from the third Poisson 
ohomology spa
e, whi
h isdetermined in Proposition 4.7, and is exa
tly the free Cas(A; ')-moduleH3(A; ') ' Cas(A; ')
F Asing :It may be remarked that H2(A; ') is the unique Poisson 
ohomology spa
e of(A; f� ; �g') whi
h is not always a free module over the algebra of Casimirs.In Chapter 5, we give the Poisson 
ohomology spa
es of the singular surfa
e F',by 
onsidering the algebra A'. For this Poisson algebra, the Casimirs are simplythe elements of F and, a

ording to Propositions 5.5 and 5.6, we have:H1(A') ' M$(uj )=$(')�3Fuj ~e ; H2(A') ' M$(uj )=$(')�3Fuj ~r':Finally, in Chapter 6, we determine the Poisson homology of the algebra (F3; f� ; �g')and of the singular surfa
e F'. We explain �rst, in Proposition 6.1, that we haveisomorphisms Hk(A; ') ' H3�k(A; '); for all k = 0; 1; 2; 3:Then, using the results about Poisson 
ohomology of (A; f� ; �g'), we 
ompute thePoisson homology spa
es of F' and we obtain, in Proposition 6.5,H0(A') ' H2(A') ' Asing ; H1(A') ' ��1Mj=1 F ~ruj :Sin
e the 
oboundary operator is a weight homogeneous operator (see Se
tion2.2), all our arguments remain true if we repla
e the algebra A = F[x; y; z℄ by thealgebra of all formal power series �A := F[[x; y; z℄℄, still equipped with the Poissonstru
ture f� ; �g', with ' a weight homogeneous element of A. It suÆ
es to repla
eCas(A; ') = F['℄ by Cas( �A; ') = F[['℄℄, the algebra of formal power series in '.I would like to take the opportunity to thank my thesis advisor, Pol Vanhae
ke,for suggesting to me this interesting problem and for his availability all along thisproje
t. I am also indebted to Claude Quitt�e, whose knowledge of regular sequen
es



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 5was pre
ious for me, and Camille Laurent for his explanations about the modular
lass.I �nally would like to thank Prof. M. van den Bergh. After writing this paper,he pointed out to me that, in his arti
le \Non
ommutative homology of some three-dimensional quantum spa
es" (see [21℄), he 
omputed the Poisson homology spa
esof the Poisson algebra (A; f� ; �g'), for ' = q13 (x3 + y3 + z3) + 2p1xyz, where p1and q1 are parameters. This 
ase is a parti
ular one of the Poisson homology thatI determine, and the method is very similar.2. The Poisson 
ohomology 
omplex asso
iated to a polynomial2.1. Poisson stru
tures on A = F[x; y; z℄ and their 
ohomology. Let A bethe polynomial algebra A = F[x; y; z℄, where F is a �eld of 
hara
teristi
 zero andlet ' 2 A. A Poisson stru
ture on A is de�ned by the bra
kets:fx; yg' = �'�z ; fy; zg' = �'�x ; fz; xg' = �'�y :(4)Re
all that a Poisson bra
ket on an asso
iative and 
ommutative algebra B is askew-symmetri
 bilinear map f� ; �g, from B2 to B (element of Hom(^2B;B)), whi
his a derivation in ea
h of its arguments and whi
h satis�es the Ja
obi identity:fff; gg ; hg+ ffg; hg ; fg+ ffh; fg ; gg = 0;(5)for ea
h f; g; h 2 B. In the parti
ular 
ase of A, the bra
kets of the generators x; y; zde�ne totally the Poisson bra
ket, in view of the derivation property, and moreoverthe Ja
obi identity is satis�ed for all f; g; h 2 A if and only if it is satis�ed for x; y; z(see [22℄). Here, an easy 
omputation shows that this 
ondition is satis�ed by thebra
ket f� ; �g' so that it equips A with a Poisson stru
ture, expli
itly given by:f� ; �g' = �'�z ��x ^ ��y + �'�x ��y ^ ��z + �'�y ��z ^ ��x:(6)Our �rst purpose is to determine the Poisson 
ohomology of this Poisson al-gebra (A; f� ; �g'), when ' is a weight homogeneous polynomial with an isolatedsingularity at the origin.We re
all that the Poisson 
omplex is 
onstru
ted in the following way (see [4℄and [11℄ for details). First, the k-
o
hains of the Poisson 
omplex of (A; f� ; �g')are the skew-symmetri
 k-derivations of A (i.e. the skew-symmetri
 k-linear mapsAk ! A that are derivations in ea
h of their arguments). We denote by Xk(A)the A-module of all skew-symmetri
 k-derivations of A and the elements of theA-module X�(A) = Lk2N Xk(A) are 
alled skew-symmetri
 multi-derivations ofA. By 
onvention, the A-module of the 0-derivations of A is X0(A) = A.The Poisson 
oboundary operator Æk' : Xk(A) ! Xk+1(A) is de�ned, for anelement Q 2 Xk(A), by:(7) Æk'(Q)(f0; : : : ; fk) := kXi=0(�1)i nfi; Q(f0; : : : ; bfi; : : : ; fk)o'+ X0�i<j�k(�1)i+jQ(ffi; fjg' ; f0; : : : ; bfi; : : : ; bfj ; : : : ; fk);where the symbol bfi means that we omit the term fi. It is easy to see that Æk'(Q)is indeed a skew-symmetri
 (k + 1)-derivation while the fa
t that Æk+1' Æ Æk' = 0 is



6 ANNE PICHEREAUan easy 
onsequen
e of the Ja
obi identity (5). The 
ohomology of this 
omplex is
alled the Poisson 
ohomology of (A; f� ; �g'). We denote by Zk(A; '), respe
tivelyBk(A; '), the ve
tor spa
e of all k-
o
y
les, respe
tively of all k-
oboundaries, andwe denote by Hk(A; ') := Zk(A; ')=Bk(A; '), the k-th 
ohomology spa
e. As thespa
e H0(A; ') is exa
tly the F-ve
tor spa
e of the Casimirs of f� ; �g' (i.e. theelements that belong to the 
enter of this bra
ket), we will also denote this spa
eby Cas(A; '). Noti
e that, if  2 Cas(A; ') , the operator Æ' 
ommutes withthe multipli
ation by  . This implies that ea
h of the Poisson 
ohomology spa
esHk(A; ') is a Cas(A; ')-module.In the 
ase of the polynomial algebra A = F[x; y; z℄, we have:X0(A) ' X3(A) ' A; X1(A) ' X2(A) ' A3;(8)and Xk(A) ' f0g, for k � 4. We 
hoose these natural isomorphisms as follows:X1(A) �! A3V 7�! (V [x℄; V [y℄; V [z℄); X2(A) �! A3V 7�! (V [y; z℄; V [z; x℄; V [x; y℄);and X3(A) �! A : V 7�! (V [x; y; z℄).The elements of A3 are viewed as ve
tor-valued fun
tions on A, so we denotethem with an arrow, like ~f 2 A3. Sometimes, it will be important to distinguishA3 ' X1(A) from A3 ' X2(A); then we will rather write ~f 2 X1(A) or ~f 2 X2(A).In A3, let �, � denote respe
tively the usual inner and 
ross produ
ts, while ~r, ~r�,Div denote respe
tively the gradient, the 
url and the divergen
e operators. Forexample, with these notations and the above isomorphisms, the skew-symmetri
biderivation f� ; �g' (de�ned in (6)) is identi�ed with the element ~r' of A3.Ea
h of the Poisson 
oboundary operators Æk', given in (7), 
an now be writtenin a 
ompa
t form:(9) Æ0'(f) = ~rf � ~r'; for f 2 A ' X0(A);Æ1'(~f) = �~r(~f � ~r') + Div(~f)~r'; for ~f 2 A3 ' X1(A);Æ2'(~f) = �~r' � (~r� ~f) = �Div(~f � ~r'); for ~f 2 A3 ' X2(A);and the Poisson 
ohomology spa
es of (A; f� ; �g') take the following formsH0(A; ') = Cas(A; ') ' ff 2 A j ~rf � ~r' = ~0g;H1(A; ') ' f~f 2 A3 j �~r(~f � ~r') + Div(~f)~r' = ~0gf~rf � ~r' j f 2 Ag ;H2(A; ') ' f~f 2 A3 j ~r' � (~r� ~f) = 0gf�~r(~f � ~r') + Div(~f)~r' j ~f 2 A3g ;H3(A; ') ' Af~r' � (~r� ~f) j ~f 2 A3g :



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 7In order to 
ompute these 
ohomology spa
es, we will often use, for ~f;~g;~h 2 A3and f 2 A, the following formulas, well-known from ve
tor 
al
ulus in R3:~r� (f~g) = ~rf � ~g + f(~r� ~g);(10) Div(f~g) = ~rf � ~g + f Div(~g);(11) Div(~f � ~g) = (~r� ~f) � ~g � ~f � (~r� ~g):(12)2.2. Weight homogeneous multi-derivations. As we said, our results 
on
ernweight homogeneous Poisson stru
tures on A. A non-zero multi-derivation P 2X�(A) is said to be weight homogeneous of (weighted) degree r 2 Z, if there existpositive integers $1; $2; $3 2 N� (the weights of the variables x; y; z), withouta 
ommon divisor, su
h that L~e$ [P ℄ = rP; where L~e$ is the Lie derivative withrespe
t to the (weight homogeneous) Euler derivation ~e$ = $1 x ��x + $2 y ��y +$3 z ��z . The degree of a weight homogeneous multi-derivation P 2 X�(A) is alsodenoted by $(P ) 2 Z. For f 2 A, it amounts to the usual (weighted) degree of apolynomial. Noti
e that the degree of a non-zero k-derivation may be negative fork > 0. By 
onvention, the zero k-derivation is weight homogeneous of degree �1.The Euler derivation ~e$ is identi�ed, with the isomorphisms given in Se
tion 2.1,to the element ~e$ = ($1 x;$2 y;$3 z) 2 A3. We denote by j$j the sum of theweights $1 +$2 +$3, so that j$j = Div(~e$). Euler's formula for a weight homo-geneous f 2 A,(13) ~rf � ~e$ = $(f)f;then yields, using (11):(14) Div(f~e$) = ($(f) + j$j)f:Fixing weights $1; $2; $3 2 N�, it is 
lear that A = Li2NAi, where A0 = Fand for i 2 N�, Ai is the F-ve
tor spa
e generated by all weight homogeneouspolynomials of degree i. Denoting by Xk(A)i the F-ve
tor spa
e given by Xk(A)i :=fP 2 Xk(A) j $(P ) = ig [ f0g, we have the following isomorphisms:(15) X0(A)i ' Ai;X1(A)i ' Ai+$1 �Ai+$2 �Ai+$3 ;X2(A)i ' Ai+$2+$3 �Ai+$1+$3 �Ai+$1+$2 ;X3(A)i ' Ai+$1+$2+$3 :Noti
e that even if X1(A) ' X2(A) and X0(A) ' X3(A), these isomorphisms donot respe
t the weight de
ompositions (15).One of our purposes is to determine the Poisson 
ohomology of (A; f� ; �g') when' 2 A is weight homogeneous with an isolated singularity. The weight homogeneityof ' will be essential for the 
omputation of these spa
es. It implies indeed, amongother things, that ea
h of the 
oboundary operators Æk' is weight homogeneous ofthe same degree N$ := $(') � j$j, as 
an be seen from (9). That is to say, wehave: P 2 Xk(A)i ) Æk'(P ) 2 Xk+1(A)i+N$ :If P 2 Xk(A) is a 
o
y
le, then ea
h of its weight homogeneous 
omponents willbe a 
o
y
le. In the same way, if P 2 Xk(A) is a 
oboundary then ea
h of itsweight homogeneous 
omponents will be a 
oboundary. Moreover, if P 2 Xk(A) is



8 ANNE PICHEREAUa weight homogeneous 
oboundary, it is the 
oboundary of a weight homogeneouselement in Xk�1(A).3. Isolated singularities and the Koszul 
omplexIn the next 
hapters, we will study the Poisson 
ohomology asso
iated to aweight homogeneous polynomial ' 2 A = F[x; y; z℄ (with 
har(F) = 0). As ' willbe supposed to have isolated singularities, we will, in this part, re
all some resultsabout this notion, see [19℄ and [18℄ for proofs.Algebrai
ally, we say that a weight homogeneous element ' of F[x; y; z℄ has anisolated singularity (at the origin) ifAsing := F[x; y; z℄=h�'�x ; �'�y ; �'�z i(16)is �nite-dimensional, as a F-ve
tor spa
e. The dimension of Asing is then 
alled theMilnor number of the singular point. When F = C, this amounts, geometri
ally,to saying that the surfa
e F' : f' = 0g has a singular point only at the origin.Remark 3.1. By de�nition, Asing is exa
tly the F-algebra of regular fun
tions ofthe aÆne variety n �'�x = �'�y = �'�z = 0o whi
h is the singular lo
us of the Poissonstru
ture f� ; �g' (as 
an be seen from (4)). This algebraAsing will play an importantrole in the Poisson 
ohomology of the algebras (A; f� ; �g') and (A'; f� ; �gA').Now, with the Cohen-Ma
aulay theorem, we will see that, if ' 2 A is a weight ho-mogeneous polynomial with an isolated singularity (what we will denote by w.h.i.s.),then the sequen
e of its partial derivatives �'�x ; �'�y ; �'�z will be a regular sequen
eof A. In order to explain that, we �rst have to write down the de�nition of ahomogeneous system of parameters of an algebra.De�nition 3.2. Let A be an asso
iative and 
ommutative graded F-algebra. Asystem of homogeneous elements F1; : : : ; Fd in A, where d is the Krull dimension ofA, is 
alled a homogeneous system of parameters of A (h.s.o.p.) if A=hF1; : : : ; Fdiis a �nite dimensional F-ve
tor spa
e.For example, if we 
onsider the F-algebra A = F[x; y; z℄, whi
h is graded by theweighted degree, we have a natural h.s.o.p. given by the system x; y; z. Moreover,we have seen above that a weight homogeneous element ' 2 A has an isolatedsingularity (that is to say is w.h.i.s.) if and only if the three partial derivatives�'�x ; �'�y ; �'�z give a h.s.o.p. of A.In order to understand the following theorem, that we will need, we still have togive the de�nition of a regular sequen
e.De�nition 3.3. A sequen
e a1; : : : ; an in a 
ommutative asso
iative algebra A issaid to be a A-regular sequen
e if ha1; : : : ; ani 6= A and ai is not a zero divisor ofA=ha1; : : : ; ai�1i for i = 1; 2; : : : ; n.For example, it is 
lear that the sequen
e x; y; z is a regular sequen
e in F[x; y; z℄.But, what about �'�x ; �'�y ; �'�z , when ' is w.h.i.s. ?Theorem 3.4 (Cohen-Ma
aulay). Let A be a Noetherian graded F-algebra. IfA has a h.s.o.p. whi
h is a regular sequen
e, then any h.s.o.p. in A is a regularsequen
e.



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 9Thus, when ' 2 F[x; y; z℄ is w.h.i.s., then �'�x ; �'�y ; �'�z is a regular sequen
e. Thisis the key fa
t whi
h leads to the following proposition, that will play a fundamentalrole in our 
omputations of Poisson 
ohomology, asso
iated to a polynomial.Proposition 3.5. For any ' 2 A the following diagramF A A30 A A3 A3 AA A3 A3 AA A3 A3 A
? ?~r ?~r�- ?~r -~r' -�~r'?~r� -�~r'?Div-~r'?~r -�~r'?~r� -�~r'?Div-~r' -�~r' -�~r'is 
ommutative and has exa
t 
olumns. If ' is w.h.i.s. then the rows of this diagramare also exa
t.Remark 3.6. If ' 2 A is weight homogeneous, then, as maps from Xk(A) toXk�1(A), ea
h of the verti
al arrows is weight homogeneous of degree zero, whileea
h of the horizontal arrows is weight homogeneous of degree $('), the (weighted)degree of ', leading to: X3(A)r X2(A)r+$(')X3(A)r�$(') X2(A)r X1(A)r+$(') X0(A)r+2$(')X2(A)r�$(') X1(A)r X0(A)r+$(')
-~r'?~r ?~r�?~r -~r' -�~r'?~r� -�~r'?Div-�~r' -�~r'Proof. Ea
h 
olumn of this diagram is easily interpreted as the de Rham 
omplexof A. The 
lassi
al argument of exa
tness of the de Rham 
omplex of C1(Rn)is easily adapted to the algebrai
 
ase: if ~f = (f1; f2; f3) 2 A3 is 
omposed ofthree homogeneous polynomials of degree d then Div(~f) = 0 implies that the �rst
omponent of ~r� (~f � ~e) is equal to �~r� (~f � ~e)�1 = 2f1 + ~rf1 � ~e� xDiv(~f) =(d+ 2)f1, in view of Euler's Formula (13) (~e is the Euler derivation (x; y; z) 2 A3,that is to say ~e$, with $1 = $2 = $3 = 1), so that ~f = 1d+2 ~r� (~f �~e). Similarly,~r � ~f = ~0 implies that �~r(~f � ~e)�1 = f1 + ~rf1 � ~e = (d + 1)f1, that lieds to~f = 1d+1 ~r(~f � ~e), a

ording again to Euler's Formula.Ea
h of the rows of the diagram represents (part of) the so-
alled Koszul 
omplex.Let us prove that the Koszul 
omplex, asso
iated to ' 2 A is exa
t, when ' isw.h.i.s. If ~f = (f1; f2; f3) 2 A3 satis�es the equation ~f � ~r' = ~0, then we havethree equalities like f1 �'�y � f2 �'�x = 0. Sin
e the partial derivatives of ' form aregular sequen
e, �'�y is not a zero divisor in A=h�'�x i, so there exists � 2 A su
h



10 ANNE PICHEREAUthat f1 = ��'�x and then f2 = ��'�y . The other equations imply that f3 = ��'�z , thatis to say ~f = �~r'. For the se
ond part of the exa
titude of the Koszul 
omplex,the reasoning is exa
tly of the same kind. �Remark 3.7. If ' 2 A is a weight homogeneous polynomial without square fa
torthen the �rst part of the Koszul 
omplex A ~r'�! A3 �~r'�! A3 is exa
t, but these
ond part A3 �~r'�! A3 �~r'�! A need not be exa
t if ' is not w.h.i.s. For example,let ' = xyz 2 A. The polynomial ' is square free but the origin is not an isolatedsingularity for '. Then, the element ~f = (x; y;�2z) 2 A satis�es the equation~f � ~r' = ~0 but, by an argument of degree, there is no element ~g 2 A3 su
h that~f = ~g � ~r'.We will often apply Proposition 3.5 dire
tly but sometimes, we will use it interms of the following 
orollary.Corollary 3.8. Let ' 2 A be w.h.i.s. and let ~h 2 A3. If (~r � ~h) � ~r' = 0 thenthere exist f; g 2 A su
h that ~h = ~rf + g~r'.Proof. A

ording to the diagram in Remark 3.6, the operator ~h 7! (~r � ~h) � ~r',
onsidered as a map between X2(A) and X0(A), is a weight homogeneous operatorof degree $('). Therefore, it suÆ
es to prove the result for an element ~h 2 X2(A)r,with r 2 Z. If (~r� ~h) � ~r' = 0 then, by Proposition 3.5, there exists ~k 2 A3 su
hthat ~r � ~h = ~k � ~r'. In view of Remark 3.6, ~k 
an be 
hosen in X2(A)r�$(').Summarizing, we have to prove that an equation of the type:~r� ~h = ~k � ~r'; ~h 2 X2(A)r ; ~k 2 X2(A)r�$(')(17)implies that ~h = ~rf + g~r', with f; g 2 A.We will do this by indu
tion on r 2 Z, by proving the result dire
tly for allr < $(') � $[2℄, with $[2℄ := maxf$1 + $2; $1 + $3; $2 + $3g, where theintegers $1; $2; $3 are the weights of the variables x; y; z.If r < $(')�$[2℄ then, a

ording to the de
ompositions in (15), X2(A)r�$(') =f0g so that the equality (17) leads to ~r�~h = ~0. Using Proposition 3.5, we obtain~h = ~rf , with f 2 A as required.Let r0 � $(') �$[2℄ and assume that (17) implies, for all r < r0, the existen
eof f; g 2 A su
h that ~h = ~rf + g~r'. Let us suppose that an element ~l 2 X2(A)r0satis�es an equation like in (17), namely, suppose that there exists ~h 2 X2(A)r0�$(')su
h that ~r�~l = ~h� ~r':(18)Then, ~h satis�es (17), with r = r0 � $('). Indeed, 
omputing the divergen
e ofboth summands of (18) gives (~r�~h) � ~r' = 0 and using Proposition 3.5 on
e againleads to the existen
e of ~k 2 X2(A)r0�2$(') su
h that we have ~r�~h = ~k� ~r'. Byindu
tion hypothesis, there exist f; g 2 A su
h that ~h = ~rf + g~r'. Then, usingFormula (10), we obtain ~r�~l = ~h� ~r' = ~rf � ~r' = ~r� (f ~r').We 
an now 
on
lude with Proposition 3.5 that there exists f 0 2 A su
h that~l� f ~r' = ~rf 0. Hen
e the result. �



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 11Remark 3.9. As Z2(A; ') = f~h 2 A3 j (~r� ~h) � ~r' = 0g, Corollary 3.8 leads tothe equality Z2(A; ') = f~rf + g~r' j f; g 2 Ag:This identity will be useful when we will determine H2(A; ') in Se
tion 4.4.4. Poisson 
ohomology asso
iated to a weight homogeneouspolynomial with an isolated singularityLet us 
onsider the polynomial algebra A = F[x; y; z℄ (
har(F) = 0), equippedwith the Poisson stru
ture f� ; �g', where ' 2 A is w.h.i.s. (weight homogeneouspolynomial with an isolated singularity). We determine the Poisson 
ohomologyspa
es of the Poisson algebra (A; f� ; �g').Remark 4.1. If ' 2 A is w.h.i.s. then $(') �$i > 0, for i = 1; 2; 3 (where $(')is still the (weighted) degree of ' and $1; $2; $3 are the weights of the variablesx; y; z), and in parti
ular, $(') > 1.4.1. The spa
e H0(A; '). A pre
ise des
ription of the 0-th Poisson 
ohomologyspa
e, whi
h is also the algebra of the Casimirs, is given in the following proposition.Proposition 4.2. If ' 2 A is w.h.i.s. then the zeroth Poisson 
ohomology spa
e of(A; f� ; �g') is given by H0(A; ') = Cas(A; ') 'Mi2NF'i:Proof. Let f 2 A�f0g be a weight homogeneous 0-
o
y
le, thus satisfying Æ0'(f) =~rf � ~r' = ~0. Write f as f = h'r, where r 2 N and where h 2 A � f0g is apolynomial that is not divisible by '. We have ~rf = 'r ~rh + rh'r�1~r', so~rh� ~r' = ~0. Proposition 3.5 implies the existen
e of g 2 A su
h that ~rh = g~r'.Sin
e h and ' are weight homogeneous and in view of Euler's Formula (13),$(h)h = ~rh � ~e$ = g~r' � ~e$ = $(') g';so $(h) = 0, as h is not divisible by '. Thus h 2 F and f = h'r 2 Li2NF'i.Conversely, it is 
lear that Æ0'('r) = ~r('r)� ~r' = ~0, for any r 2 N. �Remark 4.3. A

ording to Remark 3.7, if ' 2 A is a weight homogeneous poly-nomial without square fa
tor but ' is not ne
essarly w.h.i.s., then the �rst partof the Koszul 
omplex is still exa
t, so Proposition 4.2 is also valid for this moregeneral 
lass of polynomials. However, if ' has a square fa
tor, the result is nottrue anymore. For example, if ' =  r with r � 2 and  2 A a weight homogeneouspolynomial without square fa
tor, then H0(A; ') ' H0(A;  ) 'Li2NF i so thatH0(A; ') 6'Li2NF'i.4.2. The spa
e H1(A; '). We �rst prove a result whi
h will be useful to determineH1(A; ').Lemma 4.4. Let ' 2 A be w.h.i.s. and ~g 2 A3. Suppose that there exist r 2 Nand � 2 F su
h that � ~g � ~r' = 0;Div(~g) = �'r:(19)Then � = 0 (equivalently Div(~g) = 0).



12 ANNE PICHEREAUProof. A

ording to Remark 3.6, the operator ~g 7! (~g � ~r';Div(~g)) (from A3 to A2)restri
ts for any d 2 Z to an operator between X1(A)d and X0(A)d+$(')�X0(A)d.Therefore it suÆ
es to prove the lemma for an element ~g 2 X1(A)d, with d 2 Z.Suppose that su
h an element ~g sati�es (19), then, a

ording to Proposition 3.5,the �rst equation implies that there exists ~k 2 X2(A)d�$('), su
h that ~g = ~k� ~r'.We will apply indu
tion on r 2 N. First, if r = 0, then, a

ording to Formula (12),� = Div(~g) = Div(~k � ~r') = (~r� ~k) � ~r', so that � = 0, for degree reasons.Assume now that for some �xed r � 0, any ~g that satis�es (19) is divergen
efree. Suppose that ~h 2 A3 satis�es ~h � ~r' = 0 and Div(~h) = �0'r+1, for some�0 2 F. Writing ~h = ~k � ~r', the Formulas (12), (13) and (14) show that ~g :=~r � ~k � �0$(')'r~e$ satis�es (19), with � = ��0($(')r + j$j)=$('), so that, byindu
tion hypothesis, 0 = � = ��0($(')r+ j$j)=$('). It follows that �0 = 0. �Now, we 
an give the main result of this Se
tion. We re
all that j$j is the sumof the weights of the three variables x; y; z.Proposition 4.5. If ' 2 A is w.h.i.s., then the �rst Poisson 
ohomology spa
e of(A; f� ; �g') is a free module over Cas(A; '), given by:H1(A; ') ' ( f0g if $(') 6= j$j;Cas(A; ')~e$ = Li2NF'i ~e$ if $(') = j$j:Proof. Let ~f 2 X1(A) be a non zero element of Z1(A; '), that is to say, ~f 2 A3satis�es the equation: ~r(~f � ~r') = Div(~f) ~r':(20)A

ording to Remark 3.6, we suppose that ~f is weight homogeneous. Our purposeis to write ~f = ~rk � ~r' + 
$(')'r~e$ 2 B1(A; ') +Li2N F'i ~e$, where 
 = 0if $(') 6= j$j and 
 need not be 0 otherwise. Our proof will be divided in threeparts.1: First, using 
o
y
le 
ondition (20), we �nd an element ~g 2 A3 whi
h satis�esthe equations (19). This equality implies indeed that Æ0'(~f �~r') = ~r(~f �~r')�~r' =~0, so that the weight homogeneous element ~f � ~r' of A is a Casimir. A

ordingto Proposition 4.2, there exist 
 2 F and r 2 N su
h that ~f � ~r' = 
'r+1.Using Equation (20) on
e more, we obtain Div(~f) = 
(r + 1)'r. Letting ~g := ~f �
$(')'r~e$, Formulas (13) and (14) imply that ~g satis�es (19), where � = 
(1� j$j$(')).Lemma 4.4 leads to ( Div(~g) = 0; ~g � ~r' = 0;0 = 
�1� j$j$(')� :2: Now, we will show that if ~g 2 A3 satis�es Div(~g) = 0 and ~g � ~r' = 0, then~g 2 B1(A; '). Let ~g be a su
h element. As ~g � ~r' = 0, Proposition 3.5 implies theexisten
e of an element ~h 2 A3 su
h that ~g = ~h� ~r'. Moreover, we have0 = Div(~g) = Div(~h� ~r') = (~r� ~h) � ~r':Corollary 3.8 leads now to the existen
e of elements k; l 2 A su
h that ~h = ~rk+l~r',so that ~g = ~rk � ~r' = Æ0'(k) 2 B1(A; ').



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 133: The �rst two parts of this proof lead to the existen
e of k 2 A and 
 2 Fsu
h that ( ~f = ~rk � ~r'+ 
$(')'r~e$;0 = 
�1� j$j$(')� :(21)Now, we have to 
onsider two 
ases: $(') 6= j$j and $(') = j$j.� If $(') 6= j$j then 
 = 0 and ~f = ~rk � ~r' = Æ0'(k) 2 B1(A; '). Thus, when$(') 6= j$j, then H1(A; ') ' f0g.� Now, suppose that $(') = j$j, then (21) leads to Z1(A; ') � B1(A; ') +Li2NF'i~e$. Conversely, for any i 2 N, Formulas (13) and (14) lead to Æ1'('i~e$) =(j$j �$('))'i ~r' = 0. So thatZ1(A; ') = B1(A; ') +Mi2NF'i~e$:Let us show that this sum is a dire
t one. It suÆ
es to 
onsider a weight homoge-neous element �'i~e$ 2 B1(A; '), � 2 F, i 2 N. It means that there exists k 2 Asu
h that �'i~e$ = ~rk � ~r'. Then (12) and (14) lead to0 = Div(~rk � ~r') = Div(�'i~e$) = �j$j(i+ 1)'i;therefore � = 0 and the sum B1(A; ') � Li2NF'i~e$ is dire
t. Thus, when$(') = j$j, then H1(A; ') 'Li2N F'i~e$. �Remark 4.6. We see that the 
ase $(') = j$j is parti
ular. When ' is homoge-neous (i.e. weight homogeneous with $1 = $2 = $3 = 1), it is the 
ase where thedegree of ' is three, that is to say, where ' is a 
ubi
 polynomial.4.3. The spa
e H3(A; '). Now, we give the third Poisson 
ohomology spa
e of(A; f� ; �g'), where ' 2 A = F[x; y; z℄ is w.h.i.s. Re
all that, in this 
ase,Asing = F[x; y; z℄=h�'�x ; �'�y ; �'�z iis a �nite dimensional F-ve
tor spa
e, whose dimension is the Milnor number,denoted by �. Let u0 = 1; u1; : : : ; u��1 be weight homogeneous elements of A, su
hthat their images in Asing give a F-basis of Asing .Proposition 4.7. If ' 2 A = F[x; y; z℄ is w.h.i.s. then the third 
ohomology spa
eH3(A; ') is the free Cas(A; ')-module:H3(A; ') ' ��1Mj=0 Cas(A; ') uj ' Cas(A; ')
F Asing :Proof. Let f 2 A ' X3(A) be a weight homogeneous polynomial of degree d 2 N.1: We �rst show that there exist ~g 2 A3, N 2 N and elements �i;j 2 F, where0 � i � N and 0 � j � �� 1, su
h that:f = ~r' � (~r� ~g) + NXi=0 ��1Xj=0 �i;j'iuj 2 B3(A; ') + Xk2N0�j���1F'kuj :(22)Let $[1℄ := max($1; $2; $3). We apply indu
tion on d, proving dire
tly the resultfor d � $(')�$[1℄ (this is not an empty 
ase, as 
an be seen from Remark 4.1, for



14 ANNE PICHEREAUexample, it 
ontains the 
ase f 2 F). By de�nition of the elements u0; : : : ; u��1,we have: f = ~r' �~l + ��1Xj=0 �juj ;(23)where ~l 2 X1(A)d�$(') and �0; : : : ; ���1 2 F.If d � $(') � $[1℄ then the 
orresponden
es (15) imply that ~l is an element(a; b; 
) of F3 so that f is indeed of the form (22), with ~g = (bz; 
x; ay), N = 0 and�0;j = �j .Now, suppose that d > $(')�$[1℄ and that any weight homogeneous polynomialof degree at most d� 1 is of the form (22). Let us 
onsider the de
omposition (23)for f of degree d. Proposition 3.5 implies that there exists ~g 2 A3 su
h that:~l � Div(~l)d�$(') + j$j~e$ = ~r� ~g;(24)sin
e Div�~l� Div(~l)d�$(')+j$j~e$� = 0, as follows from $(Div(~l)) = d�$(') and (14).Using the indu
tion hypothesis on Div(~l), we 
on
lude that (23), with ~l givenby (24), is indeed of the form (22) (one uses that, a

ording to Formula (10),'(~r� ~k) � ~r' = (~r� ('~k)) � ~r', for ~k 2 A3).2: So, we have already obtained that(25) A = f~r' � (~r�~l) j ~l 2 A3g+ ��1Xj=0 Cas(A; ')uj= B3(A; ') + ��1Xj=0 Cas(A; ')uj :and it suÆ
es to show that this sum is dire
t in A ' X3(A).We suppose the 
ontrary. This allows us to 
onsider the smallest integer N0 2 Nsu
h that we have an equation of the form:NXi=N0 ��1Xj=0 �i;j'iuj = ~r' � (~r� ~g) = �Æ2'(~g);(26)with ~g 2 A3, N � N0 and �i;j 2 F (for N0 � i � N and 0 � j � � � 1) and�N0;j0 6= 0, for some 0 � j0 � � � 1. We will show that this hypothesis leads to a
ontradi
tion.First, suppose that N0 = 0, then the de�nition of the uj , Euler's Formula (13)and (26) imply that �0;j = 0 for all 0 � j � ��1, whi
h 
ontradi
ts the hypothesis�N0;j0 6= 0.So we suppose that N0 > 0, using Euler's Formula (13), the equation (26) 
anbe written as ~r' � PNi=N0P��1j=0 �i;j$(')'i�1uj~e$! = ~r' � (~r�~g). Proposition 3.5implies that there exists ~h 2 A3 su
h that:NXi=N0 ��1Xj=0 �i;j$(')'i�1uj~e$ = ~r� ~g + ~h� ~r':



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 15The divergen
e of both sides of this equality and Formula (14) give:NXi=N1 ��1Xj=0 �0i;j'iuj = (~r� ~h) � ~r' = �Æ2'(~h);where �0i;j = �i+1;j$(') ($(')i +$(uj) + j$j) and N1 = N0 � 1. So, we have obtainedan equation of the form (26), with N1 < N0 and �0N1;j0 6= 0. This fa
t 
ontradi
tsthe hypothesis and we 
on
lude that the sum (25) is dire
t. The des
ription ofH3(A; ') follows. �4.4. The spa
e H2(A; '). Finally, using Proposition 4.7 (and in fa
t the writ-ing of H3(A; ')), we obtain the se
ond Poisson 
ohomology spa
e of the algebra(A; f� ; �g'), when ' 2 A = F[x; y; z℄ is w.h.i.s.Proposition 4.8. If ' 2 A = F[x; y; z℄ is w.h.i.s. then the se
ond Poisson 
oho-mology spa
e of the algebra (A; f� ; �g') is the Cas(A; ')-module:H2(A; ') ' ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj )=$(')�j$jCas(A; ')uj ~r'� ��1Mj=1$(uj)=$(')�j$jF~ruj ;where the �rst row gives the free part.In parti
ular, we have: H2(A; ') ' L��1j=1 Cas(A; ')~ruj , if $(') < j$j andH2(A; ') 'L��1j=1 Cas(A; ')~ruj � Cas(A; ')~r', when $(') = j$j.Remark 4.9. We see that the Poisson stru
ture f� ; �g' will be exa
t (that is tosay a 2-
oboundary) if and only if $(') 6= j$j. This fa
t 
omes from the equalityÆ1'(~e$) = �($(') � j$j)~r', a 
onsequen
e of Formulas (13) and (14).Remark 4.10. Contrary to the other 
ohomology spa
es, H2(A; ') is generallynot a free Cas(A; ')-module. In fa
t, using Formulas (13) and (14), we get:Æ1' �'iuj~e$� = ($(uj)�$(') + j$j)'iuj ~r'�$(')'i+1 ~ruj :(27)This equality, whi
h will be also useful later, explains that we have to distinguish,in the expression of H2(A; '), the uj satisfying $(uj) = $(')�j$j from the otherones. If j is su
h that $(uj) = $(')�j$j then (27) yields that 'k ~ruj 2 B2(A; '),for all k � 1, but this is not true when $(uj) 6= $(')�j$j. This is the reason whyH2(A; ') is not always a free module over Cas(A; ').Moreover, for all j satisfying $(uj) 6= $(') � j$j, (27) implies that 'iuj ~r',i � 0, 
an be written as 
'i+1~ruj + Æ1' �
0'iuj~e$�, with 
; 
0 2 F� f0g.



16 ANNE PICHEREAUProof. First, let us show that:(28) Z2(A; ') ' B2(A; ') + ��1Xj=1$(uj)6=$(')�j$jCas(A; ')~ruj+ ��1Xj=0$(uj)=$(')�j$jCas(A; ')uj ~r'+ ��1Xj=1$(uj)=$(')�j$jF~ruj :Let ~f 2 Z2(A; '). A

ording to Remark 3.9, there exists g; h 2 A su
h that~f = ~rg + h~r':(29)Moreover, Proposition 4.7 implies the existen
e of ~g1;~h1 2 A3, N 2 N and ofelements �i;j ; Æi;j 2 F, with 0 � i � N and 0 � j � �� 1, su
h that:g = Æ2'(~g1) + NXi=0 ��1Xj=0 �i;j'iuj ; h = Æ2'(~h1) + NXi=0 ��1Xj=0 Æi;j'iuj ;(30)while we have the 2-
oboundaries:~r(Æ2'(~g1)) = �~r((~r� ~g1) � ~r') = Æ1'(~r� ~g1) 2 B2(A; ');Æ2'(~h1) ~r' = �(~r� ~h1) � ~r'� ~r' = Æ1'(~h1 � ~r') 2 B2(A; '):Using this fa
t, (29) and (30), we obtain~f 2 B2(A; ') + ��1Xj=1 Cas(A; ')~ruj + ��1Xj=0 Cas(A; ')uj ~r':Remark 4.10 then implies that ~f 
an be de
omposed as in the right hand sideof (28). On the other hand, all elements of the right hand side of (28) are 2-
o
y
les,yielding equality in (28). (Indeed, using Formula (10), we have, for all f; g 2 A,Æ2'('~rf) = �~r' � (~r� ('~rf)) = 0 and Æ2'(g~r') = �~r' � (~r� (g~r')) = 0).For the proof that the sum in (28) is a dire
t one, one uses the de�nition of theuj and applies Propositions 3.5, 4.2 (expression of H0(A; ')) and 4.7 (writing ofH3(A; ')) as in the proofs of Propositions 4.5 and 4.7. �Remark 4.11. Using Euler's Formula (13) and the writings of the Poisson 
o-homology spa
es H1(A; ') and H2(A; ') given in Propositions 4.5 and 4.8, we
an make the ring stru
ture on the spa
e H�(A; ') := L3k=0Hk(A; '); indu
edby the wedge produ
t, expli
it. One obtains, for example, that ^ : H1(A; ') �H2(A; ') �! H3(A; ') is surje
tive when $(') = j$j.5. Poisson 
ohomology of the singular surfa
eIn this 
hapter, we still 
onsider an element ' 2 A = F[x; y; z℄ (
har(F) = 0),whi
h is w.h.i.s. (weight homogeneous with an isolated singularity) and we restri
tthe Poisson stru
ture f� ; �g' to the singular surfa
e F' : f' = 0g and 
ompute the
ohomology of the Poisson algebra obtained.



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 175.1. The Poisson 
omplex of the singular surfa
e F'. The algebra of regularfun
tions on the surfa
e F' is the quotient algebra:A' := F[x; y; z℄h'i :Be
ause ' is a Casimir, h'i is a Poisson ideal for (A; f� ; �g') and the Poissonstru
ture f� ; �g' restri
ts naturally to F', that is to say goes down to the quotientA'. That leads to a Poisson stru
ture on A', denoted by f� ; �gA' . Let us denoteby � the natural proje
tion map A ! A', then, for ea
h f; g 2 A, we havef�(f); �(g)gA' = � �ff; gg'� (that is to say, � is a Poisson morphism between Aand A').De�nition 5.1. We say that P 2 Xk(A) and Q 2 Xk(A') are �-related and wewrite Q = ��(P ) if �(P [f1; � � � ; fk℄) = Q[�(f1); � � � ; �(fk)℄;(31)for all f1; � � � ; fk 2 A.In the following proposition, we give the Poisson 
ohomology spa
es of the al-gebra (A'; f� ; �gA'). That leads to 
onsider the skew-symmetri
 multi-derivationsof the algebra A' and the Poisson 
oboundary operators, asso
iated to f� ; �gA' .The previous de�nition will be useful in this dis
ussion. By a slight abuse of no-tations we will, for an element ~f = (f1; f2; f3) 2 A3, denote by �(~f), the element(�(f1); �(f2); �(f3)) 2 A3'.Proposition 5.2. If ' 2 A is w.h.i.s., the Poisson 
ohomology spa
es of the algebra(A'; f� ; �gA'), denoted by Hk(A'), are given by:Cas(A') = H0(A') ' n�(f) 2 A' j ~rf � ~r' 2 h'io ;H1(A') ' n��~f� 2 A3' j ~f � ~r' 2 h'i and � ~r(~f � ~r') + Div(~f) ~r' 2 h'ion��~rf � ~r'� j f 2 Ao ;H2(A') ' n��~f� 2 A3' j ~f � ~r' 2 h'ion���~r(~f � ~r') + Div(~f) ~r'� j ~f 2 A3; ~f � ~r' 2 h'io ;and H3(A') ' f0g.Subsequently, we denote by Zk(A') (respe
tively Bk(A')) the spa
e of all k-
o
y
les (respe
tively k-
oboundaries) of A'.Proof. We �rst have to determine the skew-symmetri
 multi-derivations of A'.Let us point out that any P 2 Xk(A) is �-related to a Q 2 Xk(A') if and only ifP ['; f2; : : : ; fk℄ 2 h'i, for all f2; : : : ; fk 2 A. In this 
ase, the equality (31) de�nesindeed an element Q of Xk(A'), in view of the skew-symmetry and the derivationproperties of P . Moreover, every Q 2 Xk(A') is obtained in this way. Let us
onsider, for example, the 
ase k = 1.



18 ANNE PICHEREAULet Q 2 X1(A') and let us 
hoose ~f = (f1; f2; f3) 2 A3 su
h that Q[�(x)℄ =�(f1), Q[�(y)℄ = �(f2) and Q[�(z)℄ = �(f3). Then, we get Q = ��(P ), withP = f1 ��x + f2 ��y + f3 ��z 2 X1(A) and P ['℄ = f1 �'�x + f2 �'�y + f3 �'�z = ~f � ~r' 2 h'i.Conversely, ea
h of �(~f ) 2 A3' satisfying the equation ~f � ~r' 2 h'i gives anelement of X1(A'), de�ned by �� �f1 ��x + f2 ��y + f3 ��z�. Thus,X1(A') ' f�(~f) 2 A3' j ~f � ~r' 2 h'ig:With the same reasoning, we obtainX2(A') ' f�(~f) 2 A3' j ~f � ~r' 2 h'ig:As it is 
lear that X0(A') ' A' and Xk(A') ' f0g, for k � 4, let us now 
onsiderthe spa
e X3(A'). In the same way that above, we get X3(A') = f�(f) 2 A' jf ~r' 2 h'ig. However, if f 2 A satis�es f ~r' = '~g, with ~g 2 A3, then we have~g� ~r' = ~0 and Proposition 3.5 implies the existen
e of an element h 2 A satifying~g = h~r' so that f = h' 2 h'i. That leads to X3(A') ' f0g:Now, let us 
onsider the Poisson 
oboundary operators of the Poisson algebra(A'; f� ; �gA'), denoted by ÆkA' . Using the de�nition of ÆkA' (similarly as (7)), weobtain, for all P 2 Xk(A), ÆkA'(��(P )) = ��(Æk'(P )). That leads to:Æ0A'(�(f)) = � �~rf � ~r'� ; for �(f) 2 A' ' X0(A');Æ1A'(�(~f )) = � ��~r(~f � ~r') + Div(~f)~r'� ;for �(~f) 2 f�(~g) 2 A3' j ~g � ~r' 2 h'ig ' X1(A');Æ2A'(�(~f )) = 0; for �(~f) 2 f�(~g) 2 A3' j ~g � ~r' 2 h'ig ' X2(A');while the writing of the Poisson 
ohomology spa
es follows. �5.2. The spa
e H0(A'). In this Se
tion, we 
onsider still ' 2 A w.h.i.s. andthe Poisson stru
ture on A', denoted by f� ; �gA' . We des
ribe the zeroth Poisson
ohomology spa
e, that is to say the spa
e of the Casimirs of (A'; f� ; �gA') in thefollowing Proposition.Proposition 5.3. If ' 2 A = F[x; y; z℄ is w.h.i.s., the zeroth Poisson 
ohomologyspa
e of the singular surfa
e de�ned by this polynomial is given byH0(A') = Cas(A') ' F:Proof. Let f 2 A be a weight homogeneous polynomial su
h that �(f) 2 H0(A').Then ~rf � ~r' 2 h'i i.e., there exists ~g 2 A3 satifying ~rf � ~r' = '~g. It followsthat ~g � ~r' = 0 and Proposition 3.5 implies the existen
e of an element ~h 2 A3 su
hthat ~g = ~h� ~r'. Summing up, (~rf�'~h)� ~r' = ~0, and we 
an apply Proposition3.5 again to obtain a k 2 A satifying ~rf = '~h+ k ~r'. Euler's Formula (13) gives$(f) f = ~rf � ~e$ = '(~h � ~e$ +$(') k):So, f 2 h'i unless $(f), the (weighted) degree of f , is zero, thus H0(A') ' F. �
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e H1(A'). This se
tion is devoted to the determination of the �rstPoisson 
ohomology spa
e of (A'; f� ; �gA'), where ' 2 A = F[x; y; z℄ is w.h.i.s.Remark 5.4. Using Proposition 5.3, we 
an simplify the writing of Z1(A'). Letindeed ~f 2 A3 be an element satisfying: �~r(~f � ~r') + Div(~f) ~r' 2 h'i. Then�~r(~f � ~r') � ~r' 2 h'i, that is to say �(~f � ~r') 2 H0(A') ' F, a

ording toProposition 5.3. For degree reasons, this leads to ~f � ~r' 2 h'i. So, we 
an simplywrite Z1(A') = n�(~f) 2 A3' j �~r(~f � ~r') + Div(~f) ~r' 2 h'ioNow, let us give the main result of this se
tion (we re
all that j$j is the sum ofthe weights $1; $2; $3 of the variables x; y; z and that the family fujg is an F-basisof Asing and is de�ned in Se
tion 4.3).Proposition 5.5. If ' 2 A = F[x; y; z℄ is w.h.i.s. then the �rst Poisson 
ohomologyspa
e of the singular surfa
e f' = 0g is given byH1(A') ' ��1Mj=0$(uj)=$(')�j$jF�(uj ~e$):In parti
ular, if $(') < j$j then H1(A') ' f0g.Proof. Let ~f 2 A3 satisfy ��~f� 2 Z1(A'), it means that there exists ~k 2 A3 satis-fying Æ1'(~f) = '~k. Then 0 = Æ2'('~k) = ' Æ2'(~k), be
ause, as we said in Se
tion 2.1,the operator Æ2' 
ommutes with the multipli
ation by '. So '~k 2 B2(A; ') and~k 2 Z2(A; '). A

ording to Proposition 4.8,~k 2 B2(A; ') � ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj� ��1Mk=0$(uk)=$(')�j$jCas(A; ')uk ~r'� ��1Ml=1$(ul)=$(')�j$jF~rul:Ea
h of the �rst three summands is stable by multipli
ation by ', while Remark4.10 gives ��1Ml=1$(ul)=$(')�j$j'F~rul � B2(A; '):As a 
onsequen
e, sin
e '~k 2 B2(A; '),~k 2 B2(A; ') � ��1Ml=1$(ul)=$(')�j$jF~rul:So there exist ~h 2 A3 and elements �l 2 F, with l satisfying $(ul) = $(') � j$j,su
h that ~k = Æ1'(~h) + ��1Xl=1$(ul)=$(')�j$j�l~rul:



20 ANNE PICHEREAUFor all 1 � l � ��1 su
h that$(ul) = $(')�j$j, we have '~rul = �Æ1' � 1$(')ul ~e$�,so that Æ1'(~f) = '~k = Æ1'0BB�'~h� ��1Xl=1$(ul)=$(')�j$j �l$(')ul ~e$1CCA :This implies ~f � '~h+ ��1Xl=1$(ul)=$(')�j$j �l$(')ul ~e$ 2 Z1(A; '):(32)� If $(') 6= j$j, then Proposition 4.5 implies that (32) belongs to B1(A; '), sothat �(~f ) 2 ��1Xl=1$(ul)=$(')�j$jF�(ul ~e$) +B1(A'):� If $(') = j$j then (32) is simply the equation ~f�'~h 2 Z1(A; ') ' B1(A; ')+Cas(A; ')~e$ , a

ording to Proposition 4.5. So, we have �(~f) 2 F�(~e$)+B1(A').As we have $(ul) � 1, if 1 � l � �� 1, the result of both 
ases 
an be summarizedas follows: Z1(A') � B1(A') + ��1Xl=0$(ul)=$(')�j$jF�(ul ~e$):Euler's Formula (13) implies that �(ul ~e$) 2 Z1(A') (Æ1'(ul ~e$) 2 h'i), when$(ul) = $(')�j$j, so that the other in
lusion holds too. It also allows us to showthat the above sum is a dire
t one. Hen
e the result about H1(A'). �5.4. The spa
e H2(A'). We now 
ompute the se
ond Poisson 
ohomology spa
eof (A'; f� ; �gA'), where ' 2 A = F[x; y; z℄ is w.h.i.s.Proposition 5.6. If ' 2 A = F[x; y; z℄ is w.h.i.s. then H2(A') is given byH2(A') ' ��1Mj=0$(uj)=$(')�j$jF�(uj ~r'):Remark 5.7. It follows from Propositions 5.5 and 5.6 that there is a naturalisomorphism between H1(A') and H2(A'), that maps the element uj ~e$ (with$(uj) = $(') � j$j) to the element uj ~r' of H2(A').Proof. First, we show that the family n�(uj ~r') j $(uj) = $(')� j$jo generatesthe F-ve
tor spa
e H2(A'). Let ~h 2 A3 su
h that �(~h) 2 Z2(A'), that is to say,su
h that there exists ~g 2 A3 satisfying ~h � ~r' = '~g. A

ording to Remark 3.6,we may suppose ~h 2 X2(A)d and ~g 2 X1(A)d, with d 2 Z. Sin
e ~g � ~r' = 0,Proposition 3.5 implies that ~g = ~k� ~r' and ~h = '~k+f ~r', with f 2 X3(A)d�$(')and ~k 2 X2(A)d�$(').If d < $(')�j$j then f = 0 and ~h 2 h'i; otherwise �(~h) = �(f ~r'), while, usingFormulas (13) and (14), we get Æ1'(f~e$) = (d� 2$(') + 2j$j) f ~r' �$(')'~rf .



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 21That leads, in the 
ase d 6= 2($(')�j$j), to �(~h) = �(f ~r') 2 B2(A'). Therefore,let us suppose that d = 2($(') � j$j), so that $(f) = $(') � j$j. For degreereasons, the proje
tion map A ! Asing = A=h�'�x ; �'�y ; �'�z i restri
ts to an inje
tivemap A$(')�j$j ! Asing , so that f is a F-linear 
ombination of the uj satisfying$(uj) = $(') � j$j, that leads to�(~h) 2 ��1Xj=0$(uj)=$(')�j$jF�(uj ~r');and for all j, uj ~r' 2 Z2(A').It suÆ
es now to show that this family is F-free, modulo B2(A'). It is empty if$(') < j$j, so we suppose $(') � j$j. Let �j be elements of F with j su
h that$(uj) = $(') � j$j and let ~l;~| 2 A3 satisfying(33) ��1Xj=0$(uj)=$(')�j$j�juj ~r' = �~r(~l � ~r') + Div(~l)~r'+ '~|= Æ1'(~l) + '~|;where the right hand side is an arbitrary representative of an element of B2(A').As the left hand side belongs to the spa
e X2(A)2$(')�2j$j, we may suppose that~l 2 X1(A)$(')�j$j and ~| 2 X2(A)$(')�2j$j.The equation (33) implies ~r(~l�~r')�~r' 2 h'i, so that ��~l�~r'� 2 Cas(A'). Fordegree reasons, Proposition 5.3 leads to the existen
e of g 2 A of degree $(')�j$jsu
h that ~l � ~r' = 'g = (g~e$ � ~r')=$('). Then Proposition 3.5 implies that$(')~l = g~e$ and Æ1'(~l) = �'~rg, so that��1Xj=0$(uj)=$(')�j$j�juj ~r' = �'~rg + '~| = '~F ;(34)where ~F = �~rg+~| 2 X2(A)$(')�2j$j. We get ~F � ~r' = ~0, but for degree reasons,Proposition 3.5 leads to ~F = ~0 so that, for all j, �j = 0, sin
e the family fujg ifF-free in A. �6. Poisson homology asso
iated to a weight homogeneous polynomialwith an isolated singularityIn this last 
hapter, we 
onsider the algebras A = F[x; y; z℄ (with 
har(F) = 0)and A' = A=h'i, where ' 2 A is weight homogeneous with an isolated singularity(w.h.i.s.). These algebras are still respe
tively equipped with the Poisson stru
turesf� ; �g' and f� ; �gA' . We use the Poisson 
ohomology of these Poisson algebras(A; f� ; �g') and (A'; f� ; �gA'), given in the previous 
hapters 4 and 5, to determinetheir Poisson homology.6.1. The Poisson homology of A.



22 ANNE PICHEREAU6.1.1. De�nitions. We re
all the 
onstru
tion of the Poisson homology 
omplex as-so
iated to a Poisson algebra (B; f� ; �g). First, the k-
hains of this 
omplex are theso-
alled K�ahler di�erential k-forms (see [5℄ for details), whose spa
e is denotedby 
k(B). We re
all that 
k(B) = ^k
1(B) while 
�(B) := Lk2N 
k(B) is theB-module of all (K�ahler) di�erential forms, with, by 
onvention, 
0(B) = B. We de-note by d the exterior di�erential. The boundary operator, Æk : 
k(B)! 
k�1(B),
alled the Brylinsky or Koszul di�erential, is given by (see [2℄):(35) Æk(f0 df1 ^ � � � ^ dfk) = kXi=1(�1)i+1 ff0; fig df1 ^ � � � ^ 
dfi ^ � � � ^ dfk+ X1�i<j�k(�1)i+jf0 d ffi; fjg ^ df1 ^ � � � ^ 
dfi ^ � � � ^ddfj ^ � � � ^ dfk;where the symbol 
dfi means that we omit the term dfi. It is easy to see that thisoperator satis�es Æk Æ Æk+1 = 0. The homology of this 
omplex is 
alled the Poissonhomology of (B; f� ; �g).The boundary operators of the algebras (A; f� ; �g') and (A'; f� ; �gA') are re-spe
tively denoted by Æ'k and ÆA'k , while the Poisson homology spa
es are denotedby Hk(A; ') and Hk(A'). As for the Poisson 
ohomology, the boundary operatorÆk 
ommutes with the multipli
ation by a Casimir, so that the Poisson homologyspa
es are modules over the spa
es of the Casimirs.6.1.2. The Poisson homology 
omplex of A. In the parti
ular 
ase of our polynomialalgebraA = F[x; y; z℄, it is 
lear that 
�(A) is theA-module generated by the wedgeprodu
ts of the 1-di�erential forms dx; dy; dz and that we have 
i(A) = f0g, forall i � 4. As for the multi-derivations of A, we have the isomorphisms (with thesame 
hoi
es as in Chapter 2.1)
0(A) ' 
3(A) ' A; 
1(A) ' 
2(A) ' A3;(36)whi
h allows us to use the same notations and formulas than in the previous 
hap-ters, when we talk about di�erential forms. For example, the 1-di�erential form d'
orresponds, with these notations, to the element ~r' of A3 (as the biderivationf� ; �g').Proposition 6.1. If ' 2 A is w.h.i.s., the homology spa
es of (A; f� ; �g') are givenby: Hk(A; ') ' H3�k(A; '); for all k = 0; 1; 2; 3:Proof. We have already seen in (36) that 
k(A) ' X3�k(A). In fa
t, for example, a1-form f dx 2 
1(A) 
orresponds to the biderivation f ��y ^ ��z 2 X2(A). Moreover,under the previous identi�
ations, we get easily Æ'k = (�1)kÆ3�k' , that leads to theresult. �Remark 6.2. There exists a more general result that gives, in 
ertain 
ases, iso-morphisms between Poisson 
ohomology and homology spa
es, using the modular
lass of a Poisson algebra (see [24℄ and [8℄ for details).6.2. The Poisson homology of A'.
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omplex of A'. Now, let us determine the Poissonhomology 
omplex of the singular surfa
e F'. For the quotient algebra A' =F[x; y; z℄=h'i, the spa
e 
�(A') is obtained by subje
ting the A'-module gener-ated by the wedge produ
ts of dx; dy; dz to the relations ' = 0, d' = 0 andd' ^ dx = 0, et
. We re
all the natural surje
tive map � : A ! A', whi
h is aPoisson morphism. This map indu
es another surje
tive map �℄ : 
k(A)! 
k(A')between the spa
es of all k-
hains, whi
h allows us to see the di�erential k-forms ofA' as images of di�erential k-forms of A. Thus, as the di�erential forms of A areidenti�ed to elements of A or A3, as 
an be seen in (36), we 
an write the spa
esof all di�erential k-forms of A' as quotients of A' and A3' and then as quotientsof A and A3. We obtain, while 
0(A') ' A',
1(A') ' A3'ff ~r' j f 2 Ag ' A3ff ~r'+ '~g j f 2 A; ~g 2 A3g ;
2(A') ' A3'f~r'� ~f j ~f 2 A3g ' A3f~r'� ~f + '~g j ~f;~g 2 A3g ;
3(A') ' A'f~r' � ~f j ~f 2 A3g ' Ah�'�x ; �'�y ; �'�z i = Asing :Remark 6.3. Unlike for A, there is no isomorphisms between the spa
es of skew-symmetri
 multi-derivations and di�erential forms on A'. For example, 
0(A') 'A' while X3(A') ' f0g and X2(A') � A3'. Observe also that 
3(A') 6' f0g,although F' is an aÆne variety of dimension two.In view of De�nition (35), the operator Æ'k indu
es an operator 
k(A') !
k�1(A'), that is exa
tly ÆA'k , so that the Poisson homology spa
es of A' aregiven byH0(A') ' Af~r' � (~r� ~f) + 'g j g 2 A; ~f 2 A3g ;H1(A') ' f~f 2 A3 j ~r' � (~r� ~f) 2 h'igf�~r(~f � ~r') + Div(~f) ~r'+ g~r'+ '~h j g 2 A; ~f ;~h 2 A3g ;H2(A') ' f~f 2 A3 j �~r(~f � ~r') + Div(~f) ~r' 2 I'gf~r'� ~h+ '~k j ~h;~k 2 A3g ;where I' := ff ~r'+ '~g j f 2 A; ~g 2 A3g;H3(A') ' Asing :Remark 6.4. In view of the writing of the Poisson homology groups of A and A',we 
an des
ribe expli
itly the map indu
ed by � between these groups. In fa
t, thismap is exa
tly the redu
tion modulo ' between the spa
es Hk(A) and Hk(A'),for k 6= 1, and it is the redu
tion modulo I', for k = 1. This phenomenon will beillustrated in the determination of the Poisson homology groups of A'.6.2.2. The Poisson homology spa
es of the singular surfa
e F'. In this Se
tion,' 2 A = F[x; y; z℄ is still w.h.i.s. and we determine these spa
es.



24 ANNE PICHEREAUProposition 6.5. If ' 2 A is w.h.i.s. then the homology spa
es of the singularsurfa
e are given by:H0(A') ' ��1Mj=0 Fuj ' Asing ; H1(A') ' ��1Mj=1 F~ruj ;H2(A') ' ��1Mj=0 Fuj ~e$ ' Asing :Remark 6.6. The fa
t that H0(A') ' Asing was already proved by J. Alev andT. Lambre, with other methods, in [1℄. Their result is more general as they onlysuppose that ' is a weight homogeneous polynomial, not ne
essarly with an isolatedsingularity.Remark 6.7. The multipli
ation by ~e$ gives a natural isomorphism betweenH0(A') and H2(A'), while the operator of gradient ~r gives a surje
tive map fromH0(A') to H1(A').Proof. 1: We �rst determine H0(A'). A

ording to Proposition 4.7 (i.e., thewriting of H3(A; ')), we have:A = f~r' � (~r� ~f) j ~f 2 A3g+ ��1Xj=0i2NF'iuj ;= f~r' � (~r� ~f) + 'g j g 2 A; ~f 2 A3g+ ��1Mj=0 Fuj :Moreover this last sum is a dire
t one, as follows from the de�nition of the uj (inSe
tion 4.3) and the in
lusion f~r' � (~r� ~f) +'g j g 2 A; ~f 2 A3g � h�'�x ; �'�y ; �'�z i,easily obtained with Euler's Formula (13). That leads to H0(A') 'L��1j=0 Fuj .2: Now, we use the result we obtained for H2(A; ') to determine the �rstPoisson homology spa
e of A'. Let ~f 2 A3 satisfying ~r' � (~r � ~f) 2 h'i, thus,there exists g 2 A with �Æ2'(~f) = ~r' � (~r� ~f) = 'g.A

ording to Proposition 4.7, g 2 B3(A; ')�L��1j=0 Cas(A; ')uj . As both of thesummands of this sum are stable by multipli
ation by ' and be
ause 'g 2 B3(A; '),we have g 2 B3(A; '), i.e. there exists ~k 2 A3 satisfying g = ~r' � (~r� ~k). Thus,~f � '~k 2 Z2(A; ') together with Proposition 4.8 imply that~f 2 ��1Xj=1 F ~ruj + fÆ1'(~l) + g~r'+ '~h j g 2 A;~l;~h 2 A3g;so that f~ruj j 1 � j � ��1g generates the F-ve
tor spa
eH1(A') and it suÆ
es toprove that ~ru1; : : : ; ~ru��1 are linearly independent elements of H1(A'). Assumetherefore that there exist elements �j of F (1 � j � � � 1), ~k;~l 2 A3 and g 2 Asu
h that ��1Xj=1 �j ~ruj = �~r(~l � ~r') + Div(~l) ~r'+ g~r'+ '~h:



POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES 25Then, as the uj are weight homogeneous, Euler's Formula (13) leads to��1Xj=1 �j$(uj)uj 2 h�'�x ; �'�y ; �'�z iand the de�nition of the uj implies �j = 0, for 1 � j � �� 1.3: Finally, we 
ompute the se
ond Poisson homology spa
e of A'. Let ~f 2 A3satisfying Æ1(~f) 2 I', i.e. there exist l 2 A, ~g 2 A3 su
h that Æ1(~f) = l~r'+ '~g.� Let us study the term '~g. We �rst point out that l~r' 2 Z2(A; '), so that'~g = Æ1(~f) � l~r' 2 Z2(A; '). Using Proposition 4.8, Formula (27) and the fa
tthat Æ1' 
ommutes with ', we obtain the existen
e of ~h 2 A3 and 
j 2 F, su
h that:(37) '~g 2 Æ1'0BB�'~h+ ��1Xj=1$(uj)=$(')�j$j 
juj ~e$1CCA+ ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj)=$(')�j$jCas(A; ')uj ~r';� Next, we 
onsider the term l~r'. A

ording to Proposition 4.7, there exists ~k 2A3 su
h that l 2 Æ2'(~k)+Cas(A; ')
FAsing . The equality Æ2'(~k) ~r' = Æ1'(~k� ~r')and Formula (27) lead to:(38) l~r' 2 Æ1'0BB�~k � ~r'+ ��1Xj=0$(uj )6=$(')�j$jCj uj ~e$1CCA+ ��1Mj=1$(uj)6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj)=$(')�j$jCas(A; ')uj ~r';where Cj 2 Cas(A; ').The equalities (37) and (38) give:Æ1'0BB�~f � '~h� ��1Xj=1$(uj)=$(')�j$j 
juj ~e$ � ~k � ~r'� ��1Xj=0$(uj )6=$(')�j$jCj uj ~e$1CCA2 ��1Mj=1$(uj )6=$(')�j$jCas(A; ')~ruj � ��1Mj=0$(uj)=$(')�j$jCas(A; ')uj ~r':Using Proposition 4.8 on
e more, we obtain~f � '~h� ��1Xj=1$(uj )=$(')�j$j 
juj ~e$ � ~k � ~r'� ��1Xj=0$(uj)6=$(')�j$jCj uj ~e$ 2 Z1(A; '):



26 ANNE PICHEREAUIt suÆ
es now to use Proposition 4.5 to 
on
lude that~f 2 ��1Xj=0 Fuj ~e$ + f~r'� ~k + '~h j ~h;~k 2 A3g:Finally, using Euler's Formula (13) and the de�nition of the uj , it is easy the seethat this sum is a dire
t one in A3. Hen
e the result for H2(A'). �Referen
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