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We generalize to all rank one p-adic differential equations over R the theorem 2.3.1 of [Ch-Ch] which provides the existence of a Frobenius structure of order h for soluble rank one operators of the form

It follows a generalization of a theorem of Matsuda which asserts that the Robba's exponential exp( m i=0 π m-i x p i /p i ) has a Frobenius structure. Namely our theorem works in the case p = 2. In the appendix we describe the variation of the radius of convergence of a differential module by pull-back by a Kummer ramification.

Notations

Let K be a complete field with respect to an ultra-metric absolute value | • |.

Let O K = {x ∈ K | |x| ≤ 1} be the ring of integers of K, and let D(0, 1 -) = {x ∈ K | |x| < 1} be its maximal ideal. Let k be its residue field which will be supposed to be a perfect field of characteristic p > 0. Let K be an algebraic closure of K.

Let E (resp. E ρ ) be the completion of K(x) for the Gauss norm (resp. the norm |.| ρ defined by | i a i x i | ρ := sup i |a i |ρ i ).

Let E be the Amice's ring. The elements of E are bounded series f = i∈Z a i x i , a i ∈ K, |a i | → 0 for i → -∞, for which there exists a constant M (f ) ∈ R such that |a i | ≤ M (f ) for all i ∈ Z. The topology of E is defined by the Gauss norm and E is a complete ring. We have a canonical isometric embedding K(x) ⊂ E ⊂ E.

Let I ⊆ R ≥0 be an interval. Let C(I) := {x ∈ K | |x| ∈ I}. Let A(I) be the ring of analytic functions over C(I), the elements of A(I) are power series f = i∈Z a i x i , a i ∈ K, such that lim i→±∞ |a i |ρ i = 0, for all ρ ∈ I. A(I) is complete for the topology defined by the family of absolute values {|.| ρ } ρ∈I , where

|f | ρ := sup i∈Z |a i |ρ i .
Let R be the Robba's Ring. The elements f of R are germs of convergent analytic functions at the edge of D(0, 1 -), namely (1.0.1)

R = ∪ 0<ε<1 A(]1 -ε, 1[).
In other words R is the inductive limit of the sequence A(r 1 , 1) ⊂ A(r 2 , 1), 0 < r 1 < r 2 < 1 and it is equipped with the limit topology.

All the rings E ρ , E, A(I), R are differential rings with respect to the continue derivation d dx .

1.1. Berkovich spaces and p-adic differential equations. Let M (A(I)) be the analytic space (in the sense of Berkovich [Ber] 1.2) attached to the affinoïd algebra A(I) ([Ber] 2.1.1). The Berkovich's point defined by the norm |.| ρ can be (and will be) identified with the Dwork's generic point t ρ of radius ρ ([Ch-Ro], 9.1.2). Following this identification let M be the differential module defined by

d dx + G(x), G(x) ∈ M n (A(I)), then the radius of convergence of M at the point |.| ρ is defined as (1.1.1) Ray(M, |.| ρ ) := inf lim inf s |G s (x)| ρ |s!| -1/s , ρ
where 

G s ∈ M n (A(I)) is defined by the recursion formula (1.1.2) G s+1 = d dx (G s ) + G s • G , G 1 := G.
Ray(M, |.| t ) := inf lim inf s |G s (x)| t |s!| -1/s , ρ(|.| t ) . Remark 1.1. Observe that the function ρ : M (A(I)) → [0, sup I], |.| t → ρ(|.| t ) is semi-continuous in the sense that the set ρ -1 ([0, r[) is open in M (A(I)) 1 , but ρ is not continuous. Indeed for all a ∈ K such that |a| ∈ I we define |.| a as the semi-norm given by f → |f (a)|. It is clear that ρ(|.| a ) = 0. Now let I := [0, 1] and let |.| 1 be the semi-norm attached to the unit disk |f | 1 := sup |a|≤1,a∈K (|f (a)|). 2 Let K = K. We choose a sequence {a n } n , a n ∈ K, such that āi = āj ∈ k, ∀i = j, then we have lim n |.| an = |.| 1 in M (A(I)), but ρ(|.| 1 ) = 1.
This results from the fact that every function f ∈ A(I) has only a finite number of zeros in C([0, 1]).

However let γ : I → M (A(I)) be a continue section of ρ. Then the function r → Ray(M, γ(r)) is a continuous function ([Ch-Dw]).

Definition 1.2 ([Astx]). A differential module M over E (resp. over E) is called soluble if Ray(M, 1) = 1. A differential module M over A(I) is called soluble at ρ ∈ I if Ray(M, ρ) = ρ. A differential module M over R is called soluble if (1.1.5) lim ρ→1 - Ray(M, ρ) = 1.
1.1.2. The radius of convergence at |.| c,r ∈ M (A(I)) of a differential module M can be viewed as the smallest radius of convergence of the solutions of M at some "incarnation" t c,r of |.| c,r (cf. 5.1.1). Observe that a function of A(I) has no poles and no zeros in the generic disk D Ω (t c,r , r -). Hence all points of D Ω (t c,r , r -) are non singular for all differential modules. 1.2. Frobenius structure. Let A be one of the rings E ρ , E, A(I) or R and let A p be one of the rings E ρ p , E, A(I p ) or R rispectively. Let σ : K → K be an automorphism of K such that |a σ -a p | < 1, for all a ∈ O K . For all functions f (x) = i a i x i ∈ A p we set f σ (x) := i a σ i x i ∈ A. We define a Frobenius map ϕ :

A p → A by ϕ(f (x)) := f σ (x p ).
This morphism defines an functor, called ϕ * (cf. [Astx]), from the category of A p -differential modules into the category of A-differential modules. Let M be the A p -differential module, defined by d dx + G(x), G(x) ∈ M n (A p ). The Frobenius functor sends M into the module ϕ * (M ) defined by d dx + px p-1 G σ (x p ). In the appendix (cf. Corollary 5.7) we show that

Ray(ϕ * (M ), |.| c,r ) = min Ray(M, |.| c p ,r ) 1/p , |p| -1 sup(|c|, r) 1-p Ray(M, |.| c p ,r )
where r = max(r p , |p||c| p-1 r) (cf. equation 5.2.3).

Definition 1.3 (Frobenius structure). Let A be one of the rings E, E or R. Let M be the differential module defined by d dx + G(x), G(x) ∈ M n (A) over A. We will say that M has a Frobenius structure of order h over A if there exists an

A-isomorphism M ∼ → ϕ * h (M )
, where ϕ * h (M ) is the differential module defined by

d dx + p h x p h -1 G σ h (x p h ).
In other words there exists an invertible matrix H(x) ∈ GL n (A) such that

p h x p h -1 G σ h (x p h ) = H(x)G(x)H -1 (x) + H(x) H -1 (x).
Theorem 1.4 ( [Ro] 5.3). Let L := d dx + g(x), g(x) ∈ K(x) be a soluble differential operator. By the Mittag-Leffler decomposition we may write g

(x) = g + (x) + -n≤i≤-1 a i x i , a i ∈ K, where g + (x) ∈ K(x) has no poles in D(0, 1 -). Then L is isomorphic over the ring A([0, 1])[1/x] to the operator d dx + -n≤i≤-1 a i x i . Theorem 1.5 ([Ch-Ch] 2.3.1). Let k be perfect. Let L = d dx + -n≤i≤-1 a i x i , a i ∈ K, be a soluble first order differential operator such that a -1 ∈ Z (p)
. Then L has a Frobenius structure over R. In other words there exist some h > 0 and an invertible function f (x) ∈ R × for which the following equality holds

f (x) f (x) = ( -n≤i≤-1 a i x i ) -(p h x p h -1 -n≤i≤-1 a σ h i x ip h )

Robba's exponentials

In this section z = x -1 . Let {ξ m } m≥0 be a sequence of (primitive) p m+1 -roots of 1 such that ξ p j m = ξ m-j , j ≥ 0 and such that ξ 0 is a non trivial p-th root of 1. Let π m := ξ m -1.

Theorem 2.1. For all m ≥ 0 the function

(2.0.1) E m (z) := exp(π m z + π m-1 z p p + • • • + π 0 z p m p m ) ∈ K[[z]]
has radius of convergence equal to 1.

Proof: Let E(z) = exp(z + z p p + z p 2 p 2 + • • • ) be the Artin-Hasse exponential. If (λ 0 , λ 1 , . . .) ∈ W (O K ), then by a straightforward computation ([Bou] exercice 58-b) one shows that i≥0 E(λ i z p i ) = exp(φ 0 z + φ 1 z p p + φ 2 z p 2 p 2 • • • )
where

φ k = λ p k 0 + pλ p k-1 1 + • • • + p k λ k are the phantom components of (λ 0 , λ 1 , . . .). Since |λ i | ≤ 1, hence this infinite product defines a bounded analytic function on D(0, 1 -). If (λ 0 , λ 1 , . . .) = (ξ m , 0, . . .) -(1, 0, . . .), then φ i = π m-i .
The fact that the radius of convergence of E m (z) is exactly 1 will be a consequence of the fact that the operator

d dx + E m (z -1 ) /E m (z -1 ) = d dx -(π m z -2 + π m-1 z -p-1 + • • • + π 0 z -p m -1 )
is soluble3 and its radius of convergence, for ρ close to 0, is ρ p m +1 (cf. Corollary 3.1). Then, by the log -concavity property of the radius of convergence, we have that this operator has radius of covegence equal to ρ p m +1 , for all ρ < 1. p m and exp(y) does not exist. The precedent theorem asserts that the formal composition, after resommation, has radius of convergence equal to 1.

Remark 2.3. Observe that in the formal case (cf. [Man]) a logarithmic derivative of a formal Laurent series has always an x-adic valuation ≥ -1. But in the p-adic case the Robba-Matsuda's exponentials give an example of logaritmic derivatives of negative x-adic valuation. Then the definitions of p-adic irregularity and formal (x-adic) irregularity must be different (cf. [Ro]).

Theorem 2.4 ([Ma]). Let p = 2. Then the exponential E σ m (z p )/E m (z) is overconvergent. In other words, if p is different from 2, the differential operator d dx + E m (x -1 )/E m (x -1 ) = d dx -(π m x -2 + π m-1 x -p-1 + • • • + π 0 x -p m -1 )
has a Frobenius structure of order 1.

Formal slopes and p-adic slopes

Lemma 3.1 (Young, cf. [Astx]). Let L := r s=0 g s (x)( d dx ) s be a differential operator such that g r (x) = 1, g s ∈ E ρ , s = 0, . . . , r -1. Let ρ ∈ I, then R(M, ρ) < |π 0 |ρ if and only if |g s | ρ > ρ s-r for some s < r, and in this case we have:

R(M, |.| ρ ) = |π 0 | min 0≤s<r (|g s | -1/r-s ρ )
Let M be a soluble p-adic differential module over R. Then there exist 0 < ε < 1 and a rational number β ≥ 0 such that Ray(M, ρ) = ρ β+1 for all ρ ∈]1 -ε, 1[ (cf. [Astx]). If M is defined in some basis by the operator

d dx + G(x), with G(x) ∈ M n (A([0, 1[)[1/x]
), then it is easy to show that there exist 0 < δ < 1 and a rational number α ≥ 0 such that Ray(M, ρ) = ρ α+1 for ρ ∈]0, δ[. By log -concavity we have α ≥ β.

Definition 3.2. The number β is called the p-adic slope of M . We set pt(M ) := β. If M is defined by the operator

d dx + G(x), G(x) ∈ A([0, 1[)[1/x]
we set pt F (M ) := α and we will call pt F (M ) the formal slope. We have pt(M ) ≤ pt F (M ).

Remark 3.3. The precedent definition is justified by the fact that if M is defined by a linear differential operator

L := r s=0 g s (x)( d dx ) s , g r (x) = 1, such that g s (x) ∈ A([0, 1[)[1/x] ⊂ R, then pt F (M ) is the usual formal slope defined by (3.0.2) pt F (L) = max 0, max s ( s -r -v(g s ) r -s )
where v(g s ) is the x-adic valuation of g s (x). The formal slope is the largest slope of the Formal Newton polygon of L. 4 This follows from lemma 3.1 and some continuity and convexity arguments. Indeed, as M is soluble, observe that, for ρ close to 0, by continuity and log -concavity we have only two cases: Ray(M, ρ) = ρ or Ray(M, ρ) < |π 0 |ρ.

Lemma 3.4. Let L = d dx + i≥-d a i x i , a -d = 0, d ≥ 1 be a soluble rank one differential operator with i≥-d a i x i ∈ R. Then we have that Ray(L, ρ) = |π 0 ||a -d | -1 ρ d . 4. Frobenius structure over R 4.1. Reduction to a K[x, x -1 ]-lattice. Let L := d dx +g(x), g(x) = i a i x i ∈ R
, be a rank one soluble differential operator. In this section we show that L is isomorphic over R to the operator L = d dx + -d≤i≤-1 a i x i for a suitable d ≥ 1 (cf. Theorem 4.7). Moreover, if K = K, then d can be choosed equal to pt(L) + 1.

Lemma 4.1. The operator

L := d dx + g(x), g(x) = i a i x i ∈ R is isomorphic over R to the operator L := d dx + -d≤i≤∞ a i x i for a suitable d ≥ 1. Proof:
Let d ≥ 1 be an integer such that sup(| ai i+1 |ρ i+1 ) < |π 0 |, for all i < -d. Such an integer exists because g(x) ∈ R. Then the series f (x) := exp(-i<-d ai i+1 x i+1 ) lies in R and then L is isomorphic over R to the operator L = d dx + g(x) + f (x) /f (x).

4 We recall that the formal Newton polygon is the convex hull of the set formed by the points of the form (s, v(as) -s) and the two additional points (-∞, 0), (0, +∞). In particular we observe that in our case the last point is (r, -r).

Lemma 4.2. Let L := d dx + g(x), g(x) = -d≤i≤∞ a i x i , d ≥ 2 be a soluble differential operator over R. Then |a -d | ≤ |π 0 |.

Proof: Let g s (x) = g s-1 (x) + g s (x)g(x) be as in the equation 1.1.2. An explicit computation shows that g s (x) = a s -d x -sd + {terms of degree ≥ -sd + 1}. So the equation 1.1.1 shows that Ray(L, ρ)

≤ |π0|ρ d |a -d | . The solubility implies 1 ≤ |π 0 |/|a -d |. Lemma 4.3 ([Ch-Ro] 11.2.4). Let L = d dx + a -1 x -1 be a differential equation. Then L is soluble if and only if a -1 ∈ Z p . Lemma 4.4 ([Ch-Ro] 18.4.4). Let L = d dx + a -1 x -1 be a differential equation. Then L has a Frobenius structure if and only if a -1 ∈ Z (p) . Lemma 4.5. Let L = d dx + a -1 x -1 . Let α(a -1 ) := lim sup n (|a -1 (a -1 -1)(a -1 -2) • • • (a -1 -n + 1)| 1 n ).
Then for all ρ > 0 we have Ray(L, ρ)

= |π0| α(a-1) • ρ. Proof: A computation shows that g n (x) = α n (a -1 )x -n , where α n (a -1 ) := a -1 (a -1 -1) • • • (a -1 -n + 1). So Ray(L, ρ) = lim inf n (|α n (a -1 )| -1/n )|π 0 |ρ. Lemma 4.6. Let L = d dx +g(x), g(x) = i≥-1 a i x i ∈ R be a soluble differential equation. Then a -1 ∈ Z p . Moreover there exists an analytic function f (x) ∈ A([0, 1[) such that f (x)/f (x) = i≥0 a i x i . In other words L is isomorphic to d dx + a -1 x -1 . Proof:
We proceed by absurd. L is the tensor product of L 1 := d dx + a -1 x -1 and L 2 := d dx + i≥0 a i x i . As L 2 has a convergent solution in 0, we have Ray(L 2 , ρ) = ρ, for ρ sufficiently close to 0. On the other hand, by the lemma 4.5 we have Ray(L 1 , ρ) = |π0| α(a-1) • ρ for all ρ > 0. The radius of the tensor product of two operators with different radius is the minimum of the radius.5 So, if L 1 is not soluble, then Ray(L 1 , 1) = Ray(L 2 , 1) = R < 1. Then Ray(L 1 , ρ) = R for all ρ > 0. But in this case, by convexity, Ray(L 2 , ρ) > R for ρ < 1. Then if ρ < 1 we would get Ray(L, ρ) = min(Ray(L 1 , ρ), Ray(L 2 , ρ)) = R. Since L is soluble, hence by continuity of Ray(L, ρ) we get a contraddiction.

We have shown that Ray(L 1 , ρ) = Ray(L 2 , ρ) = Ray(L, ρ) = 1, for all 0 < ρ ≤ 1. Now by transfert theorem ([Ch-Ro] 9.3.2) there exists a convergent solution f (x) of L 2 in the disk D(0, 1 -). In particular f ∈ R and f (x)/f (x) = i≥0 a i x i . Theorem 4.7. Let L := d dx + g(x), g(x) = i a i x i ∈ R be a rank one soluble differential operator. Then a -1 ∈ Z p and there exists a

d ≥ max(1, pt(M ) + 1) such that L is isomorphic, over R, to d dx + -d1≤i≤-1 a i x i , for all d 1 ≥ d. Moreover (x -1)(x -1) -1 = 1
, so in this case the radius of 1 is not equal to the minimum of the other two radius. This depends on the definition of "radius". In general let

L 1 = d dx + g(x), L 2 = d dx + f (x) be two differential operators. Suppose that g, f ∈ A(I). Let s i (x) be a power series solution of L i at a ∈ C(I). Let r = inf(|a -b|, b ∈ K -C K (I)).
Then for all ρ ≤ r we have the equality min(Ray(s 1 • s 2 ), ρ) = min(min(Ray(s 1 ), ρ) , min(Ray(s 2 ), ρ)).

for all -pt(M ) -

1 ≤ i ≤ -2, there exist b i ∈ K such that L is isomorphic, over R K , to d dx + -pt(M )-1≤i≤-2 b i x i + a -1 x -1 , and |b -pt(M )-1 | = |π 0 |.
Proof: By the lemma 4.1 we can suppose that L = d dx + -d≤i≤∞ a i x i , with d ≥ 1. By the lemma 4.6 we can suppose that d ≥ 2. The theorem will be proved applying the lemma 4.6. To apply this lemma we need that the operator d dx + i≥-1 a i x i is soluble. The solubility is invariant by extension of the field of constants and then we can actually suppose that

K = K. Let d -1 = n • p m , (n, p) = 1 and let ( a -d n•π0 ) 1/p m be a p m -th root of a -d n•π0
. Let us introduce the following analytic function:

f d (x) := E m a -d n • π 0 1/p m x -n = exp(π m ( a -d n • π 0 ) 1/p m x -n + • • • + a -d x -(d-1) d -1 ).
By the lemma 4.2 we have |a

-d | ≤ |π 0 |. Then, as |n| = 1, f d is an analytic function in C(]1, ∞[). The logarithmic derivative f d /f d = -a -d x -d + • • • + (-n) • π m ( a -d n•π0 ) 1/p m x -n-1 defines a differential operator L d := d dx + f d /f d which is soluble because its solution at infinity is f d (x).
We proceed now by induction on 

d ≥ 2. If |a -d | < |π 0 |, then f d is an element of R and then the operator d dx + g(x) is isomorphic to d dx + g(x) + f d /f d . Now the x-adic valuation of the function g(x) + f d /f d is strictly larger than -d. Otherwise, if |a -d | = |π 0 |,
g(x) = f d /f d + • • • + f 2 /f 2 + ( i≥-1 a i x i ).
Then d dx + i≥-1 a i x i is soluble. Observe that, as in the proof of lemma 4.6, if

|a -d | = |π 0 | we have Ray(L, ρ) = min i Ray(L i , ρ) = Ray(L d , ρ), then Ray(L, ρ) = Ray( d dx + f d /f d , ρ) = |π 0 ||a -d | -1 ρ d = ρ d , ∀ 0 < ρ < 1.
And in this case d = pt(M ) + 1. Moreover if d > pt(M ) + 1, then it must be |a -d | < |π 0 | and then f d ∈ R K . Iterating this process we can show that, over K, we can obtain d = max(1, pt(M ) + 1).

Remark 4.8. Observe that in the proof of the precedent lemma we show that, over K, L is isomorphic to the operator (4.1.1)

d dx + f d /f d + • • • + f 2 /f 2 + a -1 x -1 .
In other words L is the tensor product of the operators

L d := d dx + f d /f d , . . . , L 2 := d dx + f 2 /f 2 , and L -1 := d dx + a -1 x -1
, where f i (x) are functions obtained from a 6 Indeed if the operator L d is trivial over R then Ray(L d , ρ) = ρ for all ρ > 1 -ε, ∃ ε and by the transfert theorem the solution at infinity converges in the disk {|x| > 1 -ε}.

Robba's exponential by a substitution of the variable. Moreover L i is trivial or Ray(L i , ρ) = ρ i for all ρ < 1. Over K we can choose d = pt(M ) + 1. This is a kind of canonical form for rank one soluble differential equation over R K .

4.2. Frobenius structure over R.

Theorem 4.9. Let k be a perfect field of characteristic p > 0. Let L = d dx +g(x), g(x) = i a i x i ∈ R be a soluble differential equation. Then L has a Frobenius structure if and only if a -1 ∈ Z (p) .

Proof: The operator L is isomorphic to the operator d dx + -d≤i≤-1 a i x i . We can now apply the theorem of Christol-Chiarellotto 1.5.

Corollary 4.10. The Robba-Matsuda operator d dx +

E m (x -1 )

Em(x -1 ) (cf. equation 2.0.1) has a Frobenius structure for all m ≥ 0.

Proof: We must show that the formal series E σ h m (x -p h )/E m (x -1 ) defines a function of R for some h ≥ 1. Since the convergence does not change by extension of the field of constants, hence we can suppose K = K. We can actually apply the theorem 4.9.

Remark 4.11. The corollary 4.10 works for all p > 0. On the other hand, the proof of Matsuda (cf. Theorem 2.4) is a very strong computation and is stronger than our result because it shows that, if p = 2, the operator d dx +E m (x -1 ) /E m (x -1 ) has a Frobenius structure of order 1.

Appendix: Variation of Radius of convergence by ramifications.

In this section we precise some known (but not pubblished) facts about the variation of the radius of convergence of the pull-back of a module by a covering of the form x → x n . We study the ramification φ * n : f (x) → f (x n ) instead of ϕ, because the application f (x) → f σ (x) (cf. 1.2) defines an auto-equivalence of the category of differential modules which preserves the radius of convergence.

Scalar extension.

Let I be a (non empty) interval. Let L/K be an extension of valued fields. Let A L (I) denote the ring of analytic functions over I, with coefficients in L. Then we have the following diagram 

M (A K (I)) M (A L (I)) ψ L o o o o C K (I)

  The function ρ → Ray(M, |.| ρ ) is continuous and there exists a partition I = ∪ j∈Z I j , supI j = inf I j+1 , such that Ray(M, |.| ρ ) = α j ρ βj , for all ρ ∈ I j .For simplicity we will write Ray(M, ρ) instead of Ray(M, |.| ρ ). 1.1.1. More generally let |.| t ∈ M (A(I)) be a bounded multiplicative seminorm ([Ber] 1.2). We define the radius of the generic disk of center |.| t as (1.1.3) ρ(|.| t ) := inf(|x -a| t | a ∈ K)

  Remark 2.2. Observe that for |z| < 1 close to 1, we have |π m z +• • •+π 0 z p m p m | > |π 0 |. On the other hand, the analytic function exp(y) converges for |y| < |π 0 |, so the convergent composition of π m z + • • • + π 0 z p m

  then the operator L d is soluble and not trivial by the transfert theorem at infinity ([Ch-Ro] 9.3.2). 6 So the tensor product operator L ⊗ L d , defined by d dx + g(x) + f d /f d , is still soluble, and g(x) + f d /f d is of degree ≥ -d+1 and we can proceed by induction on d. Observe that f d /f d is a polynomial in x -2 K[x -1 ]. Iterating, we get that there exist functions f d , • • • , f 2 ∈ A K (]1, ∞[) which are analytic in C(]1, ∞[) and are such that

  inclusions are the canonical inclusions a → |.| a (cf. remark 1.1) and the map ψ L is the functorial morphism of analytic spaces corresponding to the inclusion A K (I) ⊆ A L (I). This diagram is commutative in the sense that the inclusion C K (I) ⊆ C L (I) is a section of the map ψ L .5.1.1. By[Ch-Ro] 9.1 there exists a field Ω such that ψ Ω (C Ω (I)) = M (A K (I)). In this sense all points |.| t of M (A K (I)) have an "incarnation" in a true point ofC Ω (I). If t ∈ C Ω (I) is an incarnation of the seminorm |.| t ∈ M (A K (I)) (i.e. ψ Ω (t) = |.| t ) we will say that D Ω (t, ρ(|.| t ) -) is a generic disk for |.| t (cf. 1.1.1).By the lemma 5.4 we have B(l/p, l, p) = 1 and B(l, l, p) = p l and then clearly supl/p≤i≤l |a i | • |B(i, l, p)| • |t c,r | ip-l ≥ sup(|a l/p |, |a l | • |p| l • |t c,r | l(p-1)). This fact and the lemma 5.5 show thatR ≤ lim inf l∈pZ sup(|a l/p |, |a l | • |p| l • |t c,r | l(p-1) ) -1 l = inf(R 1/p , R|p| -1 |t c,r | 1-p ).Recalling that |t c,r | = sup(|c|, r) (cf. remark 5.1), we can state the following Corollary 5.7. Let A be one of the rings E ρ , A(I), E or R. Let A p be the ring E p ρ , A(I p ), E or R.respectively. Let M be a differential module over A p , let φ * p (M ) be its pull-back over A by the morphism f (x) → f (x p ) : A p → A. Then we haveRay(φ * p (M ), |.| c,r ) = min Ray(M, |.| c p ,r ) 1/p , |p| -1 sup(|c|, r) 1-p Ray(M, |.| c p ,r )where r = max(r p , |p||c| p-1 r) (cf. equation 5.2.3).5.3.2. Ramification prime to p. Let (n, p) = 1. Following the same method of the precedent discussion we get that R = |t c,r | 1-n R, and the following Theorem 5.8. Let A be one of the rings E ρ , A(I), E or R. Let A n be one of the rings E n ρ , A(I n ), E or R. Let M be a differential module over A n , let φ * n (M ) be its pull-back over A. Then we have Ray(φ * n (M ), |.| c,r ) = sup(|c|, r) 1-n Ray(M, |.| c n ,r ) where r = max(r n , |c| n-1 r) (cf. equation 5.2.3).

The solubility of this operator is due to the fact that the convergent function Em(z -1 ) is a solution of this operator at infinity and Em(z -1 ) converges in the set {x ∈ K | |x| > 1}.

Observe that this fact depends on the definition given in the equation 1.1.1. For example

Ramifications and image of a point of Berkovich. Let φ *

n : A(I n ) → A(I) be the morphism i a i x i → i a i x ni . Let φ n : M (A(I)) → M (A(I n )) be the corresponding morphism of analytic spaces. In this section we compute the image of a point of M (A(I)) by the ramification φ n .

5.2.1. By a result of Berkovich ( [Ber] 1.4.4) we know that every point of M (A(I)) is a limit of points of the form

the seminorm attached to some disk, or |.| t is the seminorm attached to a totally ordered 7 sequence of disks. If K is spherically complete then all points are of the form |.| c,r and, since K is contained in some spherically complete and algebraically closed field K , hence we can suppose that all points of M (A(I)) and M (A(I n )) are of the form |.| c,r for a suitable c ∈ K . For simplicity we will suppose that K = K . 

On the other hand |x -a| c ,r = sup(r , |c -a|). Therefore c = c n and

(5.2.2)

We can compute r in some particular case:

(5.2.3)

This process can be applied to compute the image of |.| c,r under the action of an arbitrary polynomial map instead of φ n . To recover the value of r it is sufficient to look at the Taylor's development of this polinomial at c. 5.3. Variation of the radius of convergence by ramification. Let M be an A(I p )-differential module. In this section we compute the radius of convergence at |.| c,r of the pull-back A(I p )-differential module φ * n (M ). Observe that the radius of ϕ * (M ) and φ * p (M ) are equal (cf. 5). 5.3.1.

) i be its pull-back and R the radius of φ * p (s)(y) at t c,r . By composition we have (cf. corollary 5.2)

Then for all m ∈ Z we have:

Lemma 5.5. Let m ∈ N, m ≥ 1. Let {c l } l be a sequence in some ultrametric ring. Let R := lim inf l |c l | -1/l . If R > 0, then we have Theorem 5.6. We have R = min(R|p| -1 |t c,r | 1-p , R 1/p ).

Proof: We write y p -t p c,r = (y -t c,r + t c,r ) p -t p c,r . We have s(y p ) = i a i • ( p j=1 p j t p-j c,r y j ) i . After a resommation we get