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A UNIFIED APPROACH TO STRUCTURAL LIMITS

WITH APPLICATION TO THE STUDY OF LIMITS OF GRAPHS WITH

BOUNDED TREE-DEPTH

JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Abstract. In this paper we introduce a general framework for the study of
limits of relational structures in general and graphs in particular, which is

based on model theory and analysis. We show how the various approaches to
graph limits fit to this framework and that they naturally appear as “tractable

cases” of a general theory. As an outcome of our theory, we provide extensions

of known results and identify some new cases exhibiting specific properties
suggesting that their study could be more accessible than the full general

case. The second part of the paper is devoted to the study of such a case,

namely limits of graphs (and structures) with bounded diameter connected
components. We prove that in this case the convergence can be “almost”

studied component-wise. Eventually, we consider the specific case of limits of

graphs with bounded tree-depth, motivated by their role of elementary brick
these graphs play in decompositions of sparse graphs, and give an explicit

construction of a limit object in this case. This limit object is a graph built on a

standard probability space with the property that every first-order definable set
of tuples is measurable. This is an example of the general concept of modeling

we introduce here. It is also the first “intermediate class” with explicitly
defined limit structures.
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1. Introduction

To facilitate the study of the asymptotic properties of finite graphs in a sequence
G1, G2, . . . , Gn, . . ., it is natural to introduce notions of structural convergence. By
structural convergence, we mean that we are interested in the characteristics of a
typical vertex (or group of vertices) in the graph Gn, as n grows to infinity. This
convergence can, for instance, be expressed by the convergence of the properties’
distributions. It may also be the case that they can be obtained by sampling
either a measurable limit graph, or a random limit graph defined by means of edge
probabilities (or densities).

While the later case corresponds in particular to graphons (limit objects intro-
duced by Lovász et al. [11, 12, 46] to study extremal properties of dense graphs
based on subgraph statistics), the former case corresponds in particular to graph-
ing (limit objects for Benjamini-Schramm convergence of graphs with bounded
degrees [6, 23], which is based of vertex neighbourhood statistics). Both mod-
els are probabilistic in that they count statistics of subgraphs (or equivalently of
homomorphisms).

It seems that the existential approach typical for decision problems, structural
graph theory and model theory on the one side and the counting approach typical
for statistics and probabilistic approach on the other side have nothing much in
common and lead to different directions: on the one side to study, say, definability
of various classes and the properties of the homomorphism order and on the other
side properties of partition functions. It has been repeatedly stated that these
two extremes are somehow incompatible and lead to different area of study (see
e.g. [10, 34]).

In this paper we take a radically different approach: We propose a model which
is a mixture of the analytic, model theoretic and algebraic approach. It is also a
mixture of existential and probabilistic approach: typically what we count is the
probability of existential extension properties. Precisely, our approach is based on
the Stone pairing 〈φ,G〉 of a first-order formula φ (with set of free variables Fv(φ))
and a graph G, which is defined by following expression

〈φ,G〉 =
|{(v1, . . . , v|Fv(φ)|) ∈ G|Fv(φ)| : G |= φ(v1, . . . , v|Fv(φ)|)}|

|G||Fv(φ)| .

A sequence of graphs (Gn)n∈N is FO-convergent if, for every first order formula
φ (in the language of graphs), the values 〈φ,Gn〉 converge as n → ∞. In other
words, (Gn)n∈N is FO-convergent if the probability that a formula φ is satisfied
by the graph Gn with a random assignment of vertices of Gn to the free variables
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of φ converges as n grows to infinity. We also consider analogously defined X-
convergence, where X is a fragment of FO.

Our main result is that this model of FO-convergence is a suitable model for
the analysis of limits of graphs with bounded tree depth. This class of graphs
can be defined by logical terms as well as combinatorially in various ways. The
most concise definition is that a class of graphs has bounded tree depth if and only
if the maximal length of a path in every G in the class is bounded by a constant.
Tree depth is related to the quantifier depth of a formula and to other combinatorial
characteristics, see [50] and [61] for a full discussion. The convergence of graphs with
bounded tree depth is analysed in detail and this leads to explicit limits for those
sequences of graphs where all members of the sequence have uniformly bounded tree
depth (see Theorem 27). One may argue that this is a rather special class of graphs.
But we believe that this is not so and that there is here more than meets the eye.
Let us outline the reasons for this optimism: For graphs, and more generally for
finite structures, there is a class dichotomy: nowhere dense and somewhere dense
[55, 57]. Each class of graphs falls in one of these two categories. Somewhere dense
class C may be characterised by saying that there exists a (primitive positive) FO
interpretation of all graphs into them. Such class C is inherently a class of dense
graphs. On the other hand any nowhere dense class of structures may by covered by
a few subgraphs with small tree depth. This is called low tree-depth decomposition
and it found many applications in structural graphs theory, see e.g. [61] for more
information about this development. Thus graphs with bounded tree depth form
building blocks of graphs in a nowhere dense class. So in this setting the solution
of limits for graphs with bounded tree depth presents a step in solving the general
limits for sparse graphs.

To create a proper model for bounded height trees we have to introduce the
model in a greater generality and it appeared that our approach relates and in
most cases generalizes all existing models of graph limits.

Our unified framework to study structural limits of general relational structures
and limits of graphs (in particular) via X-convergence generalizes most instances
of graph limits considered previously. For instance, for the fragment X of all
existential first-order formulas, X-convergence means that the probability that a
structure has any given extension property converges. Our approach is encouraged
by the deep connections to four notions of convergence which have been proposed
to study graph limits in different contexts.

The first of these is the combinatorially motivated notion of convergence intro-
duced by Lovász and Szegedy [46] and further developed by Borgs, Chayes, Lovász,
Sós and Vesztergombi [11, 12]. This notion is established by equipping the space
of (unlabelled) graphs with a suitable metric, and by considering convergent se-
quences defined as Cauchy sequences in the completion of this metric space. In
this setting, a classic representation of the limit [46, 11] is a symmetric Lebesgue
measurable function W : [0, 1]2 → [0, 1] called graphon. Such a representation is of
course not unique, in the sense that different graphons may define the same graph
limit [8, 16]. A connection between graph limits and de Finetti’s theorem for ex-
changeable arrays (and the early works of Aldous [2], Hoover [37] and Kallenberg
[38]) has been established, see e.g. Diaconis and Janson [16]. This convergence
corresponds to X-convergence with respect to the fragment of all quantifier free
formulas (see Section 4.1).

A second approach to graph limits, which concerns specifically connected graphs
with bounded degrees, has been developed by Benjamini and Schramm [6] and
Aldous [3]. In this case, the limit of a convergent sequence is described as an
unimodular distribution of the space of rooted connected countable graphs with
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bounded degree (equipped with a suitable metric and the derived σ-algebra). A
representation of the limit is a measurable graphing (notion introduced by Adams [1]
in the context of Ergodic theory), that is a standard Borel space with a measure µ
and d measure preserving Borel involutions. The existence of such a representation
has been made explicit by Elek [23], and relies on the works of Benjamini [6] and
Gaboriau [29]. This convergence corresponds to X-convergence with respect to the
fragment of all local formulas (see Section 4.2).

A third (but earlier) theory of limits of structures, by means of elementary con-
vergence, derives from two important results in first-order logic, namely Gödel’s
completeness theorem and the compactness theorem. This notion of convergence,
based on the satisfaction of first-order sentences, can also be expressed by embed-
ding graphs in the space of complete theories (in the language of graphs) and by
equipping this space with an ultrametric derived from the quantifier rank. In this
setting, a limit is a complete theory, which can be represented by a model and, in
this case, the limit of a sequence of graphs can be represented by a countable graph.
This convergence corresponds to X-convergence with respect to the fragment of all
sentences (see Section 4.3).

Finally, a notion of limit developed by the authors has been introduced, which
is based on the existence of homomorphisms from small graphs [58, 61].

In this paper, we shed a new light on model theoretical constructions by an
approach inspired by functional analysis. The preliminary material and our frame-
work are introduced in Sections 2 and 3. The general approach presented in the
first sections of this paper leads to several new results. Some of them intuitively
motivate and, we believe, justify the introduction of first-order formulas. Let us
mention a sample of such results.

Graph limits (in the sense of Lovász et al.) — and more generally hypergraph
limits — have been studied by Elek and Szegedy [24] through the introduction of
a measure on the ultraproduct of the graphs in the sequence (via Loeb measure
construction, see [42]). The fundamental theorem of ultraproducts proved by  Loś
[43] implies that the ultralimit of a sequence of graphs is (as a measurable graph)
an FO-limit. Thus in this non-standard setting we get FO-limits (almost) for free.

Central to the theory of graph limits stand random graphs (in the Erdős-Rényi
model [25]): a sequence of random graphs with increasing order and edge proba-
bility 0 < p < 1 is almost surely convergent to the constant graphon p [46]. On
the other hand, it follows from the work of Erdős and Rényi [26] that such a se-
quence is almost surely elementarily convergent to an ultra-homogeneous graph,
called the Rado graph. We prove that these two facts, together with the quanti-
fier elimination property of ultra-homogeneous graphs, imply that a sequence of
random graphs with increasing order and edge probability 0 < p < 1 is almost
surely FO-convergent, see Section 5.3. (However, it is presently open whether a
representation of the limit exists, that would be as nice as a graphon.)

We shall also prove that a sequence of bounded degree graphs (Gn)n∈N with
|Gn| → ∞ is FO-convergent if and only if it is both convergent in the sense of
Benjamini-Schramm and in the sense of elementary convergence, and that the limit
can still be represented by a graphing, see Sections 4.2 and 7.4.

We prove that the limit of an FO-convergent sequence of graphs is a probability
measure on the Stone space of the Boolean algebra of first-order formulas, which
is invariant under the action of Sω on this space, see Section 3. Fine interplay of
these notions is depicted on Table 1.

One of the main issue of our general approach is to determine a representation
of FO-limits as measurable graphs. A natural limit object is a standard probability
space (V,Σ, µ) together with a graph with vertex set V and edge set E, with the
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Boolean algebra B(X) Stone Space S(B(X))

Formula φ Continuous function fφ

Vertex v “Type of vertex” T

Graph G statistics of types

=probability measure µG

〈φ,G〉
∫
fφ(T ) dµG(T )

X-convergent (Gn) weakly convergent µGn

Γ = Aut(B(X)) Γ-invariant measure

Table 1. Some correspondances

property that every first-order definable subset of a power of V is measurable.
This leads to the notions of relational sample space and modeling. Relying on our
general approach, we consider the problem of the representation of FO-convergent
sequences of graphs with bounded diameter connected components, and specifically
the representation of FO-convergent sequences of graphs with bounded tree-depth
[50]. This study is motivated by the structural simplicity of these graphs and the
central role they play in the context of sparse graph decompositions [51, 52, 53, 61]
and in first-order quantifier elimination schemes for bounded expansion classes of
graphs [20, 32]. The special case of FO-limits of graphs with bounded tree-depth
should be regarded as a first step toward a representation of FO-limits of graphs
belonging to arbitrary fixed bounded expansion class, like planar graphs, or graphs
excluding a topological minor. Combining low tree-depth decomposition techniques
with the results of this paper gives us a “road map” to attack the general classes
of sparse graphs (see remarks in the last section of this paper).

The class of graphs with bounded tree-depth is one of the first “intermediate
cases” [44, 45] for which one can explicitly describe a limit object. The only other
case we are aware is Lyons [47], which is concerned by a slight relaxation of the con-
dition to have bounded degree to the condition that — roughly speaking — large
degrees are far away from almost all other vertices (so that the asymptotic distri-
bution of rooted finite graphs found at a random vertex converges to a probability
distribution); this does not apply, for instance, for sequences of connected graphs
with bounded diameters. Also, the scaling limit of vertex transitive graphs with
sufficiently fast growing diameter has been characterized recently [5], but scaling
limits and structural limits are in some sense orthogonal concepts.

We believe that the approach taken in this paper is natural and that it enriches
the existing notions of limits. It also presents, for example via decomposition
techniques (low-tree depth decomposition, see [61]) a promising approach to more
general intermediate classes (see the final comments).

The outline of the paper is as follows:

• In Section 2 we introduce main definitions and results of the paper.
• In Section 3 we recall some relevant properties of Boolean algebras. To

each Boolean algebra B — considered as a algebra of sets — we associate
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the Banach space ba(B) of all bounded and finitely additive measures on
B. We note that ba(B) is isometrically isomorphic to the continuous dual
rca(S(B)) of the Banach C(S(B)) of the continuous real-valued functions
defined on the Stone space S(B) dual to B, and deduce that the space
additive functions on B (with pointwise convergence) is isomorphic to the
space of regular countably additive measures on S(B) (with weak-∗ conver-
gence). Then we show that if a notion of independence is introduced in B
together with a suitable group action, then we can deduce that pointwise
limits of symmetric normalized positive additive functions on B that are
multiplicative on independent elements correspond to symmetric probabil-
ities on the Stone space of B allowing particular disintegrations. Then we
recall some basics of model theory and introduce our unified framework for
structural limits. We introduce the pairing of a first-order formula and a
finite structure and the notion of X-convergence for a fragment X of FO
and we translate our results to this framework. Thus this correspondence
is an alternative and very general approach to measure theoretic aspects of
limits.
• In Section 4 we express the classical notions of limits in terms of conver-

gences controlled by proper fragments of FO and deduce the particular role
of elementary convergence. We further study the properties of the Stone
spaces associated to diverse fragments of FO. Under the assumption that
a sequence of connected graphs with degree at most D (with order tend-
ing to infinity) is elementary convergent, we prove that FO-convergence is
equivalent to Benjamini-Schramm convergence. Also, we prove that un-
der the assumption that a sequence of graphs is elementary convergent to
a countable ultra-homogeneous graph the FO-convergence is equivalent to
Lovász convergence. Note that this condition on the elementary limit is not
as strong as it may seem at first glance, as random graphs almost surely
converge elementarily to the Rado graph.
• In Section 5 we study how different fragments combine. For instance, we

study the FOp-hierarchy, and the particular roles of local formulas and
sentences.
• In Section 6 we consider a non-standard approach to construct a limit

object.
• In Section 7 we introduce the notions of relational sample space and of

modeling. We prove that in the particular case of graphs with bounded
degrees, the notion of modeling coincides with the notion of graphing, and
that every FO-convergent sequence admits a modeling as a limit.
• In Section 8 we study how modeling limits of FO-convergent sequences can

be merged into a modeling limit of the index-wise union of the sequences.
• In Section 9 we study limits of sequences of disconnected graphs and address

the problem of tracking the connected components till the limit.
• In Section 10 we focus on the the class of rooted colored trees with bounded

height. We give an explicit description of a relational sample space of a
modeling FO-limit for graphs in this class.
• In Section 11 we introduce the class of graphs with bounded tree-depth

and show how a proper encoding and the use of a basic interpretation
scheme can be used to reduce the problem of finding a modeling FO-limit
for FO-convergent sequences of graphs with uniformly bounded tree-depth
to a similar problem on vertex-colored rooted trees with uniformly bounded
height.
• Section 12 is devoted to concluding remarks and discussion.
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2. Main Definitions and Results

If we consider relational structures with signature λ, the symbols of the relations
and constants in λ define the non-logical symbols of the vocabulary of the first-order
language FO(λ) associated to λ-structures. Notice that if λ is at most countable
then FO(λ) is countable. The symbols of variables will be assumed to be taken
from a countable set {x1, . . . , xn, . . . } indexed by N. Let u1, . . . , uk be terms. The
set of used free variables of a formula φ will be denoted by Fv(φ) (by saying that a
variable xi is “used” in φ we mean that φ is not logically equivalent to a formula in
which xi does not appear). The formula φxi1 ,...,xik (u1, . . . , uk) denote the formula
obtained by substituting simultaneously the term uj to the free occurences of xij
for j = 1, . . . , k. In the sake of simplicity, we will denote by φ(u1, . . . , uk) the
substitution φx1,...,xk(u1, . . . , uk).

A relational structure A with signature λ is defined by its domain (or universe)
A and relations with names and arities as defined in λ. In the following we will
denote relational structures by bold face letters A,B, . . . and their domains by the
corresponding light face letters A,B, . . .

The key to our approach are the following two definitions.

Definition 1 (Stone pairing). Let λ be a signature, let φ ∈ FO(λ) be a first-order
formula with free variables x1, . . . , xp and let A be a finite λ-structure.

Let
Ωφ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}.

We define the Stone pairing of φ and A by

(1) 〈φ,A〉 =
|Ωφ(A)|
|A|p .

In other words, 〈φ,A〉 is the probability that φ is satisfied in A when we inter-
pret the p free variables of φ by p vertices of G chosen randomly, uniformly and
independently.

Note that in the case of a sentence φ (that is a formula with no free variables,
thus p = 0), the definition of the Stone pairing reduces to

〈φ,A〉 =

{
1, if A |= φ;

0, otherwise.

Definition 2 (FO-convergence). A sequence (An)n∈N of finite λ-structures is FO-
convergent if, for every formula φ ∈ FO(λ) the sequence (〈φ,An〉)n∈N is (Cauchy)
convergent.

In other words, a sequence (An)n∈N is FO-convergent if the sequence of mappings
〈 · ,An〉 : FO(λ)→ [0, 1] is pointwise-convergent.

The interpretation of the Stone pairing as a probability suggests to consider
finite λ-structures as particular probability spaces and to extend this view to more
general λ-structures.

Definition 3 (Relational sample space). A relational sample space is a relational
structure A (with signature λ) with extra structure: The domain A of A of a sample
model is a standard Borel space (with Borel σ-algebra ΣA) with the property that
every subset of Ap that is first-order definable in FO(λ) is measurable (in Ap with
respect to the product σ-algebra).
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In other words, if A is a relational sample space then for every integer p and
every φ ∈ FO(λ) with p free variables it holds Ωφ(A) ∈ ΣpA.

Definition 4 (Modeling). A modeling A is a relational sample space equipped with
a probability measure (denoted µA).

A modeling with signature λ is a λ-modeling.

Remark 1. We take time for some comments on the above definitions:

• According to Kuratowski’s isomorphism theorem, the domains of relational
sample spaces are isomorphic to either R, Z, or a finite space.
• Borel graphs (in the sense of Kechris et al. [39]) are generally not model-

ings (in our sense) as Borel graphs are only required to have a measurable
adjacency relation.

• By equipping its domain with the discrete σ-algebra, every finite λ-structure
defines with a relational sample space. Considering the uniform probability
measure on this space then canonically defines a weakly uniform modeling.

• It follows immediately from Definition 3 that any k-rooting of a relational
sample space is a relational sample space.

We extend the definition of Stone pairing to modelings as follows.

Definition 5 (Stone pairing). Let λ be a signature, let φ ∈ FO(λ) be a first-order
formula with free variables x1, . . . , xp and let A be a λ-modeling.

We define the Stone pairing of φ and A by

(2) 〈φ,A〉 =

∫

x∈Ap
1Ωφ(A)(x) dνpA(x).

Note that the definition of a modeling is simply forged to make the expres-
sion (2) meaningful. Based on this definition, modelings can sometimes be used as
a representation of the limit of an FO-convergent sequence of finite λ-structures.

Definition 6. A modeling L is a modeling FO-limit of an FO-convergent sequence
(An)n∈N of finite λ-structures if 〈 · ,An〉 converges pointwise to 〈 · ,L〉.

As we shall see in Lemma 17, a modeling FO-limit of an FO-convergent sequence
(An)n∈N of finite λ-structures is necessarily weakly uniform. It follows that if a
modeling L is a modeling FO-limit then L is either finite or uncountable.

It is not clear whether every FO-convergent sequence of finite relational struc-
tures admits a modeling FO-limit, and we strongly believe this is not the case.
However, we prove that modeling FO-limits exist in two particular cases.

Theorem 1. Let C be a integer.

(1) Every FO-convergent sequence of graphs with maximum degree at most C
has a modeling FO-limit;

(2) Every FO-convergent sequence of rooted trees with height at most C has a
modeling FO-limit.

While the first item will be derived from the graphing representation of limits
of Benjamini-Schramm convergent sequences of graphs with bounded maximum
degree with no major difficulties, the second item will be quite difficult to establish
and is the main result of this paper.
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As mentioned earlier, we do not know if a modeling FO-limit exists in general.
However, a non-standard approach allows to define a limit object by relaxing the
requirement that the domain of the limit structure is a standard probability space
and by replacing — in the definition of the Stone pairing — the integration the
product space by an iterated integration on the domain.

Theorem 2. Let (An)n∈N be an FO-convergent sequence of λ-structures. Then
there exists a λ-structure L such that the domain of L is a (non-separable) prob-
ability space with probability measure ν, such that for every first-order formula
φ ∈ FO(λ) with free variables x1, . . . , xp it holds:

lim
n→∞

〈φ,An〉 =

∫
· · ·
∫

A

1Ωφ(A)(x1, . . . , xp) dν(x1) . . . dν(xp).

This kind of limit object is however not completely satisfactory, and we shall
usually prefer to have a general representation of the limit of an FO-convergent
sequence of λ-structures by means of a probability distribution on a compact Polish
space Sλ defined from FO(λ) using Stone duality. In this context we have the
following result:

Theorem 3. Let λ be a fixed finite or countable signature. Then there exist two
mappings A 7→ µA and φ 7→ K(φ) such that

• A 7→ µA is an injective mapping from the class of finite λ-structures to the
space of regular probability measures on Sλ,
• φ 7→ K(φ) is a mapping from FO(λ) to the set of the clopen subsets of Sλ,

such that for every finite λ-structure A and every first-order formula φ ∈ FO(λ) it
holds:

〈φ,A〉 =

∫

Sλ

1K(φ) dµA.

(To prevent risks of notational ambiguity, we shall use µ as root symbol for
measures on Stone spaces and keep ν for measures on modelings.)

Consider an FO-convergent sequence (An)n∈N. Then the pointwise convergence
of 〈 · ,An〉 translates as a weak ∗-convergence of the measures µAn

and we get:

Theorem 4. If (An)n∈N is an FO-convergent sequence of finite λ-structures there
exists a unique regular probability measure µ on Sλ such that for every first-order
formula φ ∈ FO(λ) it holds:

lim
n→∞

〈φ,An〉 =

∫

Sλ

1K(φ) dµ.

3. Limits as Measures on Stone Spaces

In order to prove the representation theorems Theorem 3 and Theorem 4, we first
need to prove a general representation for additive functions on Boolean algebras.

3.1. Representation of Additive Functions. Recall that a Boolean algebra B =
(B,∧,∨,¬, 0, 1) is an algebra with two binary operations ∨ and ∧, a unary operation
¬ and two elements 0 and 1, such that (B,∨,∧) is a complemented distributive
lattice with minimum 0 and maximum 1. The two-elements Boolean algebra is
denoted 2.
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To a Boolean algebra B is associated a topological space, denoted S(B), whose
points are the ultrafilters on B (or equivalently the homomorphisms B → 2). The
topology on S(B) is generated by a sub-basis consisting of all sets

KB(b) = {x ∈ S(B) : b ∈ x},
where b ∈ B. When the considered Boolean algebra will be clear from context we
shall omit the subscript and write K(b) instead of KB(b).

A topological space is a Stone space if it is Hausdorff, compact, and has a basis
of clopen subsets. Boolean spaces and Stone spaces are equivalent as formalized
by Stone representation theorem [64], which states (in the language of category
theory) that there is a duality between the category of Boolean algebras (with
homomorphisms) and the category of Stone spaces (with continuous functions).
This justifies to call S(B) the Stone space of the Boolean algebra B. The two
contravariant functors defining this duality are denoted by S and Ω and defined as
follows:

For every homomorphism h : A→ B between two Boolean algebra, we define the
map S(h) : S(B) → S(A) by S(h)(g) = g ◦ h (where points of S(B) are identified
with homomorphisms g : B → 2). Then for every homomorphism h : A → B, the
map S(h) : S(B)→ S(A) is a continuous function.

Conversely, for every continuous function f : X → Y between two Stone spaces,
define the map Ω(f) : Ω(Y ) → Ω(X) by Ω(f)(U) = f−1(U) (where elements
of Ω(X) are identified with clopen sets of X). Then for every continuous function
f : X → Y , the map Ω(f) : Ω(Y )→ Ω(X) is a homomorphism of Boolean algebras.

We denote by K = Ω ◦ S one of the two natural isomorphisms defined by the
duality. Hence, for a Boolean algebra B, K(B) is the set algebra {KB(b) : b ∈ B},
and this algebra is isomorphic to B.

An ultrafilter of a Boolean algebra B can be considered as a finitely additive
measure, for which every subset has either measure 0 or 1. Because of the equiv-
alence of the notions of Boolean algebra and of set algebra, we define the space
ba(B) as the space of all bounded additive functions f : B → R. Recall that a
function f : B → R is additive if for all x, y ∈ B it holds

x ∧ y = 0 =⇒ f(x ∨ y) = f(x) + f(y).

The space ba(B) is a Banach space for the norm

‖f‖ba(B) = sup
x∈B

f(x)− inf
x∈B

f(x).

(Recall that the ba space of an algebra of sets Σ is the Banach space consisting of
all bounded and finitely additive measures on Σ with the total variation norm.)

Let V (B) be the normed vector space (of so-called simple functions) generated
by the indicator functions of the clopen sets (equipped with supremum norm). The
indicator function of clopen set K(b) (for some b ∈ B) is denoted by 1K(b).

Lemma 1. The space ba(B) is the topological dual of V (B)

Proof. One can identify ba(B) with the space ba(K(B)) of finitely additive measure
defined on the set algebra K(B). As a vector space, ba(B) ≈ ba(K(B)) is then
clearly the (algebraic) dual of the normed vector space V (B).

The pairing of a function f ∈ ba(B) and a vector X =
∑n
i=1 ai1K(bi) is defined

by

[f,X] =

n∑

i=1

aif(bi).

That [f,X] does not depend on a particular choice of a decomposition of X follows
from the additivity of f . We include a short proof for completeness: Assume
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∑
i αi1K(bi) =

∑
i βi1K(bi). As for every b, b′ ∈ B it holds f(b) = f(b∧b′)+f(b∧¬b′)

and 1K(b) = 1K(b∧b′) + 1K(b∧¬b′) we can express the two sums as
∑
j α
′
j1K(b′j)

=∑
j β
′
j1K(b′j)

(where b′i ∧ b′j = 0 for every i 6= j), with
∑
i αif(bi) =

∑
j α
′
jf(b′j) and∑

i βif(bi) =
∑
j β
′
jf(b′j). As b′i ∧ b′j = 0 for every i 6= j, for x ∈ K(b′j) it holds

α′j = X(x) = β′j . Hence α′j = β′j for every j. Thus
∑
i αif(bi) =

∑
i βif(bi).

Note that X 7→ [f,X] is indeed continuous. Thus ba(B) is the topological dual
of V (B). � �

Lemma 2. The vector space V (B) is dense in C(S(B)) (with the uniform norm).

Proof. Let f ∈ C(S(B)) and let ε > 0. For z ∈ f(S(B)) let Uz be the preimage
by f of the open ball Bε/2(z) of R centered in z. As f is continuous, Uz is a open
set of S(B). As {K(b) : b ∈ B} is a basis of the topology of S(B), Uz can be
expressed as a union

⋃
b∈F(Uz)K(b). It follows that

⋃
z∈f(S(B))

⋃
b∈F(Uz)K(b) is

a covering of S(B) by open sets. As S(B) is compact, there exists a finite subset
F of

⋃
z∈f(S(B)) F(Uz) that covers S(B). Moreover, as for every b, b′ ∈ B it holds

K(b) ∩ K(b′) = K(b ∧ b′) and K(b) \ K(b′) = K(b ∧ ¬b′) it follows that we can
assume that there exists a finite family F ′ such that S(B) is covered by open sets
K(b) (for b ∈ F ′) and such that for every b ∈ F ′ there exists b′ ∈ F such that
K(b) ⊆ K(b′). In particular, it follows that for every b ∈ F ′, f(K(b)) is included
in an open ball of radius ε/2 of R. For each b ∈ F ′ choose a point xb ∈ S(B) such
that b ∈ xb. Now define

f̂ =
∑

b∈F ′
f(xb)1K(b)

Let x ∈ S(B). Then there exists b ∈ F ′ such that x ∈ K(b). Thus

|f(x)− f̂(x)| = |f(x)− f(xb)| < ε.

Hence ‖f − f̂‖∞ < ε. � �

Lemma 3. Let B be a Boolean algebra, let ba(B) be the Banach space of bounded
additive real-valued functions equipped with the norm ‖f‖ = supb∈B f(b)−infb∈B f(b),
let S(B) be the Stone space associated to B by Stone representation theorem, and let
rca(S(B)) be the Banach space of the regular countably additive measure on S(B)
equipped with the total variation norm.

Then the mapping CK : rca(S(B)) → ba(B) defined by CK(µ) = µ ◦ K is an
isometric isomorphism. In other words, CK is defined by

CK(µ)(b) = µ({x ∈ S(B) : b ∈ x})
(considering that the points of S(B) are the ultrafilters on B).

Proof. According to Lemma 1, the Banach space ba(B) is the topological dual of
V (B) and as V (B) is dense in C(S(B)) (according to Lemma 2) we deduce that
ba(B) can be identified with the continuous dual of C(S(B)). By Riesz represen-
tation theorem, the topological dual of C(S(B)) is the space rca(S(B)) of regular
countably additive measures on S(B). From these observations follows the equiva-
lence of ba(B) and rca(S(B)).

This equivalence is easily made explicit, leading to the conclusion that the map-
ping CK : rca(S(B)) → ba(B) defined by CK(µ) = µ ◦K is an isometric isomor-
phism. � �

Note also that, similarly, the restriction of CK to the space Pr(S(B)) of all
(regular) probability measures on S(B) is an isometric isomorphism of Pr(S(B))
and the subset ba1(B) of ba(B) of all positive additive functions f on B such that
f(1) = 1.
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Recall that given a measurable function f : X → Y (where X and Y are mea-
surable spaces), the pushforward f∗(µ) of a measure µ on X is the measure on Y
defined by f∗(µ)(A) = µ(f−1(A)) (for every measurable set A of Y ). Note that if
f is a continuous function and if µ is a regular measure on X, then the pushfor-
ward measure f∗(µ) is a regular measure on Y . By similarity with the definition of
Ω(f) : Ω(Y )→ Ω(X) (see above definition) we denote by Ω∗(f) the mapping from
rca(X) to rca(Y ) defined by (Ω∗(f))(µ) = f∗(µ).

All the functors defined above are consistent in the sense that if h : A→ B is a
homomorphism and f ∈ ba(B) then

Ω∗(S(h))(µf ) ◦KA = f ◦ h = τh(f).

A standard notion of convergence in rca(S(B)) (as the continuous dual of C(S(B)))
is the weak ∗-convergence: a sequence (µn)n∈N of measures is convergent if, for ev-
ery f ∈ C(S(B)) the sequence

∫
f(x) dµn(x) is convergent. Thanks to the density

of V (B) this convergence translates as pointwise convergence in ba(B) as follows:
a sequence (gn)n∈N of functions in ba(B) is convergent if, for every b ∈ B the se-
quence (gn(b))n∈N is convergent. As rca(S(B)) is complete, so is rca(B). Moreover,
it is easily checked that ba1(B) is closed in ba(B).

In a more concise way, we can write, for a sequence (fn)n∈N of functions in ba(B)
and for the corresponding sequence (µfn)n∈N of regular measures on S(B):

lim
n→∞

fn pointwise ⇐⇒ µfn ⇒ µf .

3.2. Basics of Model Theory and Lindenbaum-Tarski Algebras. We denote
by B(FO(λ)) the equivalence classes of FO(λ) defined by logical equivalence. The
(class of) unsatisfiable formulas (resp. of tautologies) will be designated by 0 (resp.
1). Then, B(FO(λ)) gets a natural structure of Boolean algebra (with minimum 0,
maximum 1, infimum ∧, supremum ∨, and complement ¬). This algbera is called
the Lindenbaum-Tarski algebra of FO(λ). Notice that all the Boolean algebras
FO(λ) for countable λ are isomorphic, as there exists only one countable atomless
Boolean algebra up to isomorphism (apparently proved by Tarski; see also [35]).

For an integer p ≥ 1, the fragment FOp(λ) of FO(λ) contains first-order formulas
φ such that Fv(φ) ⊆ {x1, . . . , xp}. The fragment FO0(λ) of FO(λ) contains first-
order formulas without free variables (that is sentences).

We check that the permutation group Sp on [p] acts on FOp(λ) by σ · φ =
φ(xσ(1), . . . , xσ(p)) and that each permutation indeed define an automorphism of
B(FOp(λ)). Similarly, the group Sω of permutation on N with finite support acts
on FO(λ) and B(FO(λ)). Note that FO0(λ) ⊆ · · · ⊆ FOp(λ) ⊆ FOp+1(λ) ⊆ · · · ⊆
FO(λ). Conversely, let rank(φ) = max{i : xi ∈ Fv(φ)}. Then we have a natural
projection πp : FO(λ)→ FOp(λ) defined by

πp(φ) =

{
φ if rank(φ) ≤ p
∃xp+1 ∃xp+2 . . . ∃xrank(φ) φ otherwise

An elementary class (or axiomatizable class) C of λ-structures is a class consisting
of all λ-structures satisfying a fixed consistent first-order theory TC . Denoting by
ITC the ideal of all first-order formulas in L that are provably false from axioms
in TC , The Lindenbaum-Tarski algebra B(FO(λ), TC) associated to the theory TC
of C is the quotient Boolean algebra B(FO(λ), TC) = B(FO(λ))/ITC . As a set,
B(FO(λ), TC) is simply the quotient of FO(λ) by logical equivalence modulo TC .

As we consider countable languages, TC is at most countable and it is eas-
ily checked that S(B(FO(λ), TC)) is homeomorphic to the compact subspace of
S(B(FO(λ)) defined as {T ∈ S(B(FO(λ))) : T ⊇ TC}. Note that, for instance,
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S(B(FO0(λ), TC)) is a clopen set of S(B(FO0(λ))) if and only if C is finitely ax-
iomatizable (or a basic elementary class), that is if TC can be chosen to be a single
sentence. These explicit correspondences are particularly useful to our setting.

3.3. Stone Pairing Again. We take some time to comment Definition 5. Note
first that this definition is consistent in the sense that for every modeling A and
for every formula φ ∈ FO(λ) with p free variables can be considered as a formula
with q ≥ p free variables with q − p unused variables, we have

∫

Aq
1Ωφ(A)(x) dνqA(x) =

∫

Ap
1Ωφ(A)(x) dνpA(x).

It is immediate that for every formula φ it holds 〈¬φ,A〉 = 1−〈φ,A〉. Moreover,
if φ1, . . . , φn are formulas, then by de Moivre’s formula, it holds

〈
n∨

i=1

φi,A〉 =

n∑

k=1

(−1)k+1

( ∑

1≤i1<···<ik≤n
〈
k∧

j=1

φij ,A〉
)
.

In particular, if φ1, . . . , φk are mutually exclusive (meaning that φi ∧ φj = 0)
then it holds

〈
k∨

i=1

φi,A〉 =

k∑

i=1

〈φi,A〉.

It follows that for every fixed modeling A, the mapping φ 7→ 〈φ,A〉 is additive
(i.e. 〈 · ,A〉 ∈ ba(B(FO(λ)))):

φ1 ∧ φ2 = 0 =⇒ 〈φ1 ∨ φ2,A〉 = 〈φ1,A〉+ 〈φ2,A〉.
The Stone pairing is antimonotone:

Let φ, ψ ∈ FO(λ). For every modeling A it holds

φ ` ψ =⇒ 〈φ,G〉 ≥ 〈ψ,G〉.

However, even if φ and ψ are sentences and 〈φ, · 〉 ≥ 〈ψ, · 〉 on finite λ-structures,
this does not imply in general that φ ` ψ: let θ be a sentence with only infinite
models and let φ be a sentence with only finite models. On finite λ-structures it
holds 〈φ ∨ θ, · 〉 = 〈φ, · 〉 although φ ∨ θ 0 φ (as witnessed by an infinite model of
θ).

Nevertheless, inequalities between Stone pairing that are valid for finite λ-structures
will of course still hold at the limit. For instance, for φ1, φ2 ∈ FO1(λ), for
ζ ∈ FO2(λ), and for a, b ∈ N define the first-order sentence B(a, b, φ1, φ2, ζ) ex-
pressing that for every vertex x such that φ1(x) holds there exist at least a vertices
y such that φ2(y) ∧ ζ(x, y) holds and that for every vertex y such that φ2(x) holds
there exist at most b vertices x such that φ1(x) ∧ ζ(x, y) holds. Then it is easily
checked that for every finite λ-structure A it holds

A |= B(a, b, φ1, φ2, ζ) =⇒ a〈φ1,A〉 ≤ b〈φ2,A〉.
For example, if a finite directed graph is such that every arc connects a vertex with
out-degree 2 to a vertex with in-degree 1, it is clear that the probability that a
random vertex has out-degree 2 is half the probability that a random vertex has
in-degree 1.

Now we come to important twist and the basic of our approach. The Stone
pairing 〈 · , · 〉 can be considered from both sides: On the right side the functions of
type 〈φ, · 〉 are a generalization of the homomorphism density functions [10]:

t(F,G) =
|hom(F,G)|
|G||F |
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(these functions correspond to 〈φ,G〉 for Boolean conjunctive queries φ and a graph
G). Also the density function used in [6] to measure the probability that the ball of
radius r rooted at a random vertex as a given isomorphism type may be expressed
as a function 〈φ, · 〉. We follow here, in a sense, a dual approach: from the left
side we consider for fixed A the function 〈 · ,A〉, which is an additive function on
B(FO(λ)) with the following properties:

• 〈 · ,A〉 ≥ 0 and 〈1,A〉 = 1;
• 〈σ · φ,A〉 = 〈φ, 〉 for every σ ∈ Sω;
• if Fv(φ) ∩ Fv(ψ) = ∅, then 〈φ ∧ ψ,A〉 = 〈φ,A〉 〈ψ,A〉.

Thus 〈 · ,A〉 is, for a given A, an operator on the class of first-order formulas.
We now can apply Lemma 3 to derive a representation by means of a regular

measure on a Stone space. The fine structure and interplay of additive functions,
Boolean functions, and dual spaces can be used effectively if we consider finite λ-
structures as probability spaces as we did when we considered finite λ-structures
as a particular case of Borel models.

Theorem 5. Let λ be a signature, let B(FO(λ)) be the Lindenbaum-Tarski algebra
of FO(λ), let S(B(FO(λ))) be the associated Stone space, and let rca(S(B(FO(λ))))
be the Banach space of the regular countably additive measure on S(B(FO(λ))).
Then:

(1) There is a mapping from the class of λ-modeling to rca(S(B(FO(λ)))),
which maps a modeling A to the unique regular measure µA such that for
every φ ∈ FO(λ) it holds

〈φ,A〉 =

∫

S(B(FO(λ)))

1K(φ) dµA,

where 1K(φ) is the indicator function of K(φ) in S(B(FO(λ))). Moreover,
this mapping is injective of finite λ-structures.

(2) A sequence (An)n∈N of finite λ-structures is FO-convergent if and only if
the sequence (µAn

)n∈N is weakly converging in rca(S(B(FO(λ))));
(3) If (An)n∈N is an FO-convergent sequence of finite λ-structures then the

weak limit µ of (µAn
)n∈N is such that for every φ ∈ FO(λ) it holds

lim
n→∞

〈φ,An〉 =

∫

S(B(FO(λ)))

1K(φ) dµ.

Proof. The proof follows from Lemma 3, considering the additive functions 〈 · ,A〉.
Let A be a finite λ-structure. As µA allows to recover the complete theory of A

and as A is finite, the mapping A 7→ µA is injective. � �

It will be convenient to sometimes consider fragments of FO(λ) to define a weaker
notion of convergence.

Definition 7 (X-convergence). Let X be a fragment of FO(λ). A sequence
(An)n∈N of finite λ-structures is X-convergent if 〈φ,An〉 is convergent for every
φ ∈ X.

In this context, we can extend Theorem 5.

Theorem 6. Let λ be a signature, and let X be a fragment of FO(λ) defining a
Boolean algebra B(X) ⊆ B(FO(λ)). Let S(B(X)) be the associated Stone space,
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and let rca(S(B(X))) be the Banach space of the regular countably additive measure
on S(B(X)). Then:

(1) The canonical injection ιX : B(X)→ B(FO(λ)) defines by duality a contin-
uous projection pX : S(B(FO(λ))) → S(B(X)); The pushforward pX∗ µA of
the measure µA associated to a modeling A (see Theorem 5) is the unique
regular measure on S(B(X)) such that:

〈φ,A〉 =

∫

S(B(X))

1K(φ) dpX∗ µA,

where 1K(φ) is the indicator function of K(φ) in S(B(X)).
(2) A sequence (An)n∈N of finite λ-structures is X-convergent if and only if

the sequence (pX∗ µAn
)n∈N is weakly converging in rca(S(B(X)));

(3) If (An)n∈N is an X-convergent sequence of finite λ-structures then the weak
limit µ of (pX∗ µAn

)n∈N is such that for every φ ∈ X it holds

lim
n→∞

〈φ,An〉 =

∫

S(B(X))

1K(φ) dµ.

Proof. If X is closed under conjunction, disjunction and negation, thus defining a
Boolean algebra B(X), then the inclusion of X in FO(λ) translates as a canonical
injection ι from B(X) to B(FO(λ)). By Stone duality, the injection ι corresponds
to a continuous projection p : S(B(FO(λ))) → S(B(X)). As every measurable
function, this continuous projection also transports measures by pushforward: the
projection p transfers the measure µ on S(B(FO(λ))) to S(B(X)) as the pushfor-
ward measure p∗µ defined by the identity p∗µ(Y ) = µ(p−1(Y )), which holds for
every measurable subset Y of S(B(X)).

The proof follows from Lemma 3, considering the additive functions 〈 · ,A〉. �
�

We can also consider a notion of convergence restricted to λ-structures satisfying
a fixed axiom.

Theorem 7. Let λ be a signature, and let X be a fragment of FO(λ) defining a
Boolean algebra B(X) ⊆ B(FO(λ)). Let S(B(X)) be the associated Stone space,
and let rca(S(B(X))) be the Banach space of the regular countably additive measure
on S(B(X)).

Let C be a basic elementary class defined by a single axiom Ψ ∈ X ∩ FO0, and
let IΨ be the principal ideal of B(X) generated by ¬Ψ.

Then:

(1) The Boolean algebra obtained by taking the quotient of X equivalence
modulo Ψ is the quotient Boolean algebra B(X,Ψ) = B(X)/IΨ. Then
S(B(X,Ψ)) is homeomorphic to the clopen subspace K(Ψ) of S(B(X)).

If A ∈ C is a finite λ-structure then the support of the measure pX∗ µA

associated to A (see Theorem 6) is included in K(Ψ) and for every φ ∈ X
it holds

〈φ,A〉 =

∫

K(Ψ)

1K(φ) dpX∗ µA.

(2) A sequence (An)n∈N of finite λ-structures of C is X-convergent if and only
if the sequence (pX∗ µAn

)n∈N is weakly converging in rca(S(B(X,Ψ)));
(3) If (An)n∈N is an X-convergent sequence of finite λ-structures in C then the

weak limit µ of (pX∗ µAn)n∈N is such that for every φ ∈ X it holds

lim
n→∞

〈φ,An〉 =

∫

K(Ψ)

1K(φ) dµ.
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Proof. The quotient algebra B(X,Ψ) = B(X)/IΨ is isomorphic to the sub-Boolean
algebra B′ of B of all (equivalence classes of) formulas φ ∧ Ψ for φ ∈ X. To
this isomorphism corresponds by duality the identification of S(B(X,Ψ)) with the
clopen subspace K(Ψ) of S(B(X)). � �

The situation expressed by these theorems is summarized in the following dia-
gram.

B(FO(λ))
OO

��

B(X)
OO

��

canonical injectionoo B′inclusionoo
OO

��

oo isomorphism // B(X,Ψ)
OO

��
S(B(FO(λ)))

projection pX // S(B(X)) K(Ψ)
inclusionoo S(B(X,Ψ))//homeomorphismoo

µ
pushforward // pX∗ µ

restriction // pX∗ µ

We shall now examine more closely X-convergence for fragments X of FO(λ)
which are relevant to examples and limits previously studied and consider in par-
ticular the structure of the Stone spaces S(B(X)).

4. Convergence, Old and New

As we have seen above, there are many ways how to say that a sequence (An)n∈N
of finite λ-structures is convergent. As we considered λ-structures defined with a
countable signature λ, the Boolean algebra B(FO(λ)) is countable. It follows that
the Stone space S(B(FO(λ))) is a Polish space thus (with the Borel σ-algebra) it
is a standard Borel space. Hence every probability distribution turns S(B(FO(λ)))
into a standard probability space. However, the fine structure of S(B(FO(λ))) is
complex and we have no simple description of this space.

FO-convergence is of course the most restrictive notion of convergence and it
seems (at least on the first glance) that this is perhaps too much to ask, as we may
encounter many particular difficulties and specific cases. But we shall exhibit later
classes for which FO-convergence is captured — for special basic elementary classes
of structures — by X-convergence for a small fragment X of FO.

At this time it is natural to ask whether one can consider fragments that are
not sub-Boolean algebras of FO(L) and still have a description of the limit of a
converging sequence as a probability measure on a nice measurable space. There is
obviously a case where this is possible: when the convergence of 〈φ,An〉 for every
φ in a fragment X implies the convergence of 〈ψ,An〉 for every ψ in the minimum
Boolean algebra containing X. We prove now that this is for instance the case
when X is a fragment closed under conjunction.

We shall need the following preliminary lemma:

Lemma 4. Let X ⊆ B be closed by ∧ and such that X generates B (i.e. such that
B[X] = B).

Then {1b : b ∈ X}∪{1} (where 1 is the constant function with value 1) includes
a basis of the vector space V (B) generated by the whole set {1b : b ∈ B}.
Proof. Let b ∈ B. As X generates B there exist b1, . . . , bk ∈ X and a Boolean
function F such that b = F (b1, . . . , bk). As 1x∧y = 1x 1y and 1¬x = 1 − 1x
there exists a polynomial PF such that 1b = PF (1b1 , . . . ,1bk). For I ⊆ [k], the
monomial

∏
i∈I 1bi rewrites as 1bI where bI =

∧
i∈I bi. It follows that 1b is a linear
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combination of the functions 1bI (I ⊆ [k]) which belong to X if I 6= ∅ (as X is
closed under ∧ operation) and equal 1, otherwise. � �

Lemma 5. Let X be a fragment of FO(λ) closed under (finite) conjunction —
thus defining a meet semilattice of B(FO(λ)) — and let B(X) be the sub-Boolean
algebra of B(FO(λ)) generated by X. Let X be the fragment of FO(λ) consisting of
all formulas with equivalence class in B(X).

Then X-convergence is equivalent to X-convergence.

Proof. Let Ψ ∈ X. According to Lemma 4, there exist φ1, . . . , φk ∈ X and
α0, α1, . . . , αk ∈ R such that

1Ψ = α01 +

k∑

i=1

αi1φi .

Let A be a λ-structure, let Ω = S(B(X)) and let µA ∈ rca(Ω) be the associated
measure. Then

〈Ψ,A〉 =

∫

Ω

1Ψ dµA =

∫

Ω

(
α01 +

k∑

i=1

αi1φi
)

dµG = α0 +

k∑

i=1

αi〈φi,A〉.

It follows that if (An)n∈N is anX-convergent sequence, the sequence (〈ψ,An〉)n∈N
converges for every ψ ∈ X, that is (An)n∈N is X-convergent. � �

We now will demonstrate the expressive power of X-convergence by relating it
to the main types of convergence of graphs studied previously:

(1) the notion of dense graph limit [9, 46];
(2) the notion of bounded degree graph limit [6, 3];
(3) the notion of elementary limit derived from two important results in first-

order logic, namely Gödel’s completeness theorem and the compactness
theorem.

These standard notions of graph limits, which have inspired this work, corre-
spond to special fragments of FO(λ), where γ is the signature of graphs. In the
remaining of this section, we shall only consider undirected graphs, thus we shall
omit to precise their signature in the notations as well as the axiom defining the
basic elementary class of undirected graphs.

4.1. L-convergence and QF-convergence. Recall that a sequence (Gn)n∈N of
graphs is L-convergent if

t(F,Gn) =
hom(F,Gn)

|Gn||F |
converges for every fixed (connected) graph F , where hom(F,G) denotes the number
of homomorphisms of F to G [46, 11, 12].

It is a classical observation that homomorphisms between finite structures can be
expressed by Boolean conjunctive queries [14]. We denote by HOM the fragment
of FO consisting of formulas formed by conjunction of atoms. For instance, the
formula

(x1 ∼ x2) ∧ (x2 ∼ x3) ∧ (x3 ∼ x4) ∧ (x4 ∼ x5) ∧ (x5 ∼ x1)

belongs to HOM and it expresses that (x1, x2, x3, x4, x5) form a homomorphic image
of C5. Generally, to a finite graph F we associate the canonical formula φF ∈ HOM
defined by

φF :=
∧

ij∈E(F )

(xi ∼ xj).

Then, for every graph G it holds
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〈φF , G〉 =
hom(F,G)

|G||F | = t(F,G).

Thus L-convergence is equivalent to HOM-convergence. According to Lemma 5,
HOM-convergence is equivalent to HOM-convergent. It is easy to see that HOM is
the fragment QF− of quantifier free formulas that do not use equality. We prove
now that HOM-convergence is actually equivalent to QF-convergence, where QF is
the fragment of all quantifier free formulas. Note that QF is a proper fragment of
FOlocal.

Theorem 8. Let (Gn) be a sequence of finite graphs such that limn→∞ |Gn| =∞.
Then the following conditions are equivalent:

(1) the sequence (Gn) is L-convergent;
(2) the sequence (Gn) is QF−-convergent;
(3) the sequence (Gn) is QF-convergent;

Proof. As L-convergence is equivalent to HOM-convergence and as HOM ⊂ QF− ⊂
QF, it is sufficient to prove that L-convergence implies QF-convergence.

Assume (Gn) is L-convergent. The inclusion-exclusion principle implies that for
every finite graph F the density of induced subgraphs isomorphic to F converges
too. Define

dens(F,Gn) =
(#F ⊆i Gn)

|Gn||F |
.

Then dens(F,Gn) is a converging sequence for each F .
Let θ be a quantifier-free formula with Fv(θ) ⊆ [p]. We first consider all possible

cases of equalities between the free variables. For a partition P = (I1, . . . , Ik) of
[p], we define |P| = k and sP(i) = min Ii (for 1 ≤ i ≤ |P|). Consider the formula

ζP :=

|P|∧

i=1

(∧

j∈Ii
(xj = xsP(i)) ∧

|P|∧

j=i+1

(xsP(j) 6= xsP(i))

)
.

Then θ is logically equivalent to

(
∧

i 6=j
(xi 6= xj) ∧ θ) ∨

∨

P:|P|<p
ζP ∧ θP(xsP(1), . . . , xsP(|P|)).

Note that all the formulas in the disjunction are mutually exclusive. Also∧
i 6=j(xi 6= xj) ∧ θ may be expressed as a disjunction of mutually exclusive terms:

∧

i 6=j
(xi 6= xj) ∧ θ =

∨

F∈F
θ′F ,

where F is a finite family of finite graphs F and where G |= θ′F (v1, . . . , vp) if and
only if the mapping i 7→ vi is an isomorphism from F to G[v1, . . . , vp].
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It follows that for every graph G it holds:

〈θ,G〉 =
∑

F∈F
〈θ′F , G〉+

∑

P:|P|<p
〈ζP ∧ θP(xsP(1), . . . , xsP(|P|)), G〉

=
∑

F∈F
〈θ′F , G〉+

∑

P:|P|<p
|G||P|−p〈θP , G〉

=
∑

F∈F

1

p!

∑

σ∈Sp

|{(v1, . . . , vp) : G |= θ′F (vσ(1), . . . , vσ(p))}|
|G|p +O(|G|−1)

=
∑

F∈F

Aut(F )

p!
dens(F,G) +O(|G|−1).

Thus 〈θ,Gn〉 converge for every quantifier-free formula θ. Hence (Gn) is QF-
convergent. � �

Notice that the condition that limn→∞ |Gn| is necessary as witnessed by the
sequence (Gn) where Gn is K1 if n is odd and 2K1 if n is even. The sequence
is obviously L-convergent, but not QF convergent as witnessed by the formula
φ(x, y) : x 6= y, which has density 0 in K1 and 1/2 in K2.

Remark 2. The Stone space of the fragment QF− has a simple description. Indeed,
a homomorphism h : B(QF−) → 2 is determined by its values on the formulas
xi ∼ xj and any mapping from this subset of formulas to 2 extends (in a unique

way) to a homomorphism of B(QF−) to 2. Thus the points of S(B(QF−)) can be

identified with the mappings from
(N

2

)
to {0, 1} that is to the graphs on N. Hence

the considered measures µ are probability measures of graphs on N that have the
property that they are invariant under the natural action of Sω on N. Such random
graphs on N are called infinite exchangeable random graphs. For more on infinite
exchangeable random graphs and graph limits, see e.g. [4, 16].

4.2. BS-convergence and FOlocal-convergence. The class of graphs with max-
imum degree at most D (for some integer D) received much attention. Specifically,
the notion of local weak convergence of bounded degree graphs was introduced in
[6], which is called here BS-convergence:

A rooted graph is a pair (G, o), where o ∈ V (G). An isomorphism of rooted
graph φ : (G, o) → (G′, o′) is an isomorphism of the underlying graphs which
satisfies φ(o) = o′. Let D ∈ N. Let GD denote the collection of all isomorphism
classes of connected rooted graphs with maximal degree at most D. For the sake of
simplicity, we denote elements of GD simply as graphs. For (G, o) ∈ GD and r ≥ 0
let BG(o, r) denote the subgraph of G spanned by the vertices at distance at most
r from o. If (G, o), (G′, o′) ∈ GD and r is the largest integer such that (BG(o, r), o)
is rooted-graph isomorphic to (BG′(o

′, r), o′), then set ρ((G, o), (G′, o′)) = 1/r, say.
Also take ρ((G, o), (G, o)) = 0. Then ρ is metric on GD. Let MD denote the space
of all probability measures on GD that are measurable with respect to the Borel
σ-field of ρ. Then MD is endowed with the topology of weak convergence, and is
compact in this topology.

A sequence (Gn)n∈N of finite connected graphs with maximum degree at most
D is BS-convergent if, for every integer r and every rooted connected graph (F, o)
with maximum degree at most D the following limit exists:

lim
n→∞

|{v : BGn(v, r) ∼= (F, o)}|
|Gn|

.
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This notion of limits leads to the definition of a limit object as a probability
measure on GD [6].

To relate BS-convergence to X-convergence, we shall consider the fragment of
local formulas:

Let r ∈ N. A formula φ ∈ FOp is r-local if, for every graph G and every
v1, . . . , vp ∈ Gp it holds

G |= φ(v1, . . . , vp) ⇐⇒ G[Nr(v1, . . . , vp)] |= φ(v1, . . . , vp),

where G[Nr(v1, . . . , vp)] denotes the subgraph of G induced by all the vertices at
(graph) distance at most r from one of v1, . . . , vp in G.

A formula φ is local if it is r-local for some r ∈ N; the fragment FOlocal is the
set of all local formulas in FO. Notice that if φ1 and φ2 are local formulas, so are
φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1. It follows that the quotient of FOlocal by the relation of
logical equivalence defines a sub-Boolean algebra B(FOlocal) of B(FO). For p ∈ N
we further define FOlocal

p = FOlocal ∩ FOp.

Theorem 9. Let (Gn) be a sequence of finite graphs with maximum degree d, with
limn→∞ |Gn| =∞.

Then the following properties are equivalent:

(1) the sequence (Gn)n∈N is BS-convergent;

(2) the sequence (Gn)n∈N is FOlocal
1 -convergent;

(3) the sequence (Gn)n∈N is FOlocal-convergent.

Proof. If (Gn)n∈N is FOlocal-convergent, it is FOlocal
1 -convergent;

If (Gn)n∈N is FOlocal
1 -convergent then it is BS-convergent as for any finite rooted

graph (F, o), testing whether the the ball of radius r centered at a vertex x is
isomorphic to (F, o) can be formulated by a local first order formula.

Assume (Gn)n∈N is BS-convergent. As we consider graphs with maximum de-
gree d, there are only finitely many isomorphism types for the balls of radius r
centered at a vertex. It follows that any local formula ξ(x) with a single vari-
able can be expressed as the conjunction of a finite number of (mutually exclusive)
formulas ξ(F,o)(x), which in turn correspond to subgraph testing. It follows that

BS-convergence implies FOlocal
1 -convergence.

Assume (Gn)n∈N is FOlocal
1 -convergent and let φ ∈ FOlocal

p be an r-local formula.
Let Fφ be the set of all p-tuples ((F1, f1), . . . , (Fp, fp)) of rooted connected graphs
with maximum degree at most d and radius (from the root) at most r such that⋃
i Fi |= φ(f1, . . . , fp).
Then, for every graph G the sets

Ωφ(G) = {(v1, . . . , vp) : G |= φ(v1, . . . , vp)}
and

⊎

((F1,f1),...,(Fp,fp))∈Fφ

p∏

i=1

{v : G |= θ(Fi,fi)(v)}

differ by at most O(|G|p−1) elements. Indeed, according to the definition of an
r-local formula, the p-tuples (x1, . . . , xp) belonging to exactly one of these sets are
such that there exists 1 ≤ i < j ≤ p such that dist(xi, xj) ≤ 2r.

It follows that

〈φ,G〉 =
( ∑

((Fi,fi))1≤i≤p∈Fφ

p∏

i=1

〈θ(Fi,fi), G〉
)

+O(|G|−1).
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It follows that FOlocal
1 -convergence (hence BS-convergence) implies full FOlocal-

convergence. � �

Remark 3. According to this proposition and Theorem 7, the BS-limit of a sequence
of graphs with maximum degree at most D corresponds to a probability measure
on S(B(FOlocal

1 )) whose support is include in the clopen set K(ζD), where ζD is
the sentence expressing that the maximum degree is at most D. The Boolean
algebra B(FOlocal

1 ) is isomorphic to the Boolean algebra defined by the fragment
X ⊂ FO0(λ1) of sentences for rooted graphs that are local with respect to the root
(here, λ1 denotes the signature of graphs augmented by one symbol of constant).
According to this locality, any two countable rooted graphs (G1, r1) and (G2, r2),
the trace of the complete theories of (G1, r1) and (G2, r2) on X are the same if and
only if the (rooted) connected component (G′1, r1) of (G1, r1) containing the root r1

is elementary equivalent to the (rooted) connected component (G′2, r2) of (G2, r2)
containing the root r2. As isomorphism and elementary equivalence are equivalent
for countable connected graphs with bounded degrees (see Lemma 6) it is easily
checked that KX(ζD) is homeomorphic to GD. Hence our setting (while based on
a very different and dual approach) leads essentially to the same limit object as [6]
for BS-convergent sequences.

4.3. Elementary-convergence and FO0-convergence. We already mentioned
that FO0-convergence is nothing but elementary convergence. Elementary conver-
gence is implicitly part of the classical model theory. Although we only consider
graphs here, the definition and results indeed generalize to general λ-structures We
now reword the notion of elementary convergence:

A sequence (Gn)n∈N is elementarily convergent if, for every sentence φ ∈ FO0,
there exists a integer N such that either all the graphs Gn (n ≥ N) satisfy φ or
none of them do.

Of course, the limit object (as a graph) is not unique in general and formally,
the limit of an elementarily convergent sequence of graphs is an elementary class
defined by a complete theory.

Elementary convergence is also the backbone of all the X-convergences we con-
sider in this paper. The FO0-convergence is induced by an easy ultrametric defined
on equivalence classes of elementarily equivalent graphs. Precisely, two (finite or
infinite) graphs G1, G2 are elementarily equivalent (denoted G1 ≡ G2) if, for every
sentence φ it holds

G1 |= φ ⇐⇒ G2 |= φ.

In other words, two graphs are elementarily equivalent if they satisfy the same
sentences.

A weaker (parametrized) notion of equivalence will be crucial: two graphs G1, G2

are k-elementarily equivalent (denoted G1 ≡k G2) if, for every sentence φ with
quantifier rank at most k it holds G1 |= φ ⇐⇒ G2 |= φ.

It is easily checked that for every two graphs G1, G2 it holds:

G1 ≡ G2 ⇐⇒ (∀k ∈ N) G1 ≡k G2.

For every fixed k ∈ N, checking whether two graphs G1 and G2 are k-elementarily
equivalent can be done using the so-called Ehrenfeucht-Fräıssé game.

From the notion of k-elementary equivalence naturally derives a pseudometric
dist0(G1, G2):

dist0(G1, G2) =

{
0 if G1 ≡ G2

min{2−qrank(φ) : (G1 |= φ) ∧ (G2 |= ¬φ)} otherwise
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Proposition 1. The metric space of countable graphs (up to elementary equiva-
lence) with ultrametric dist0 is compact.

Proof. This is a direct consequence of the compactness theorem for first-order logic
(a theory has a model if and only if every finite subset of it has a model) and of the
downward Löwenheim-Skolem theorem (if a theory has a model and the language
is countable then the theory has a countable model). � �

Note that not every countable graph is (up to elementary equivalence) the limit
of a sequence of finite graphs. A graph G that is a limit of a sequence finite graphs
is said to have the finite model property, as such a graph is characterized by the
property that every finite set of sentences satisfied by G has a finite model (what
does not imply that G is elementarily equivalent to a finite graph).

Example 1. A ray is not an elementary limit of finite graphs as it contains exactly
one vertex of degree 1 and all the other vertices have degree 2, what can be expressed
in first-order logic but is satisfied by no finite graph. However, the union of two
rays is an elementary limit from the sequence (Pn)n∈N of paths of order n.

Although two finite graphs are elementary equivalent if and only if they are iso-
morphic, this property does not holds in general for countable graphs. For instance,
the union of a ray and a line is elementarily equivalent to a ray. However we shall
make use of the equivalence of isomorphisms and elementary equivalences for rooted
connected countable locally finite graphs, which we prove now for completeness.

Lemma 6. Let (G, r) and (G′, r′) be two rooted connected countable graphs.
If G is locally finite then (G, r) ≡ (G′, r′) if and only if (G, r) and (G′, r′) are

isomorphic.

Proof. If two rooted graphs are isomorphic they are obviously elementarily equiv-
alent. Assume that (G, r) and (G′, r′) are elementarily equivalent. Enumerate the
vertices of G in a way that distance to the root is not decreasing. Using n-back-
and-forth equivalence (for all n ∈ N), one builds a tree of partial isomorphisms of
the subgraphs induced by the n first vertices, where ancestor relation is restric-
tion. This tree is infinite and has only finite degrees. Hence, by Kőnig’s lemma, it
contains an infinite path. It is easily checked that it defines an isomorphism from
(G, r) to (G′, r′) as these graphs are connected. � �

Fragments of FO0 allow to define convergence notions, which are weaker that
elementary convergence. The hierarchy of the convergence schemes defined by sub-
algebras of B(FO0) is as strict as one could expect. Precisely, if X ⊂ Y are two
sub-algebras of B(FO0) then Y -convergence is strictly stronger than X-convergence
— meaning that there exists graph sequences that are X-convergent but not Y -
convergent — if and only if there exists a sentence φ ∈ Y such that for every
sentence ψ ∈ X, there exists a (finite) graph G disproving φ↔ ψ.

We shall see that the special case of elementary convergent sequences is of partic-
ular importance. Indeed, every limit measure is a Dirac measure concentrated on a
single point of S(B(FO0)). This point is the complete theory of the elementary limit
of the considered sequence. This limit can be represented by a finite or countable
graph. As FO-convergence (and any FOp-convergence) implies FO0-convergence,
the support of a limit measure µ corresponding to an FOp-convergent sequence (or
to an FO-convergent sequence) is such that Supp(µ) projects to a single point of
S(B(FO0)).

Finally, let us remark that all the results of this section can be readily formulated
and proved for λ-structures.
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5. Combining Fragments

5.1. The FOp Hierarchy. When we consider FOp-convergence of finite λ-structures
for finite a signature λ, the space S(B(FOp(λ))) can be given the following ul-
trametric distp (compatible with the topology of S(B(FOp(λ)))): Let T1, T2 ∈
S(B(FOp(λ))) (where the points of S(B(FOp(λ))) are identified with ultrafilters
on B(FOp(λ))). Then

distp(T1, T2) =

{
0 if T1 = T2

2−min{qrank(φ): φ∈T1\T2} otherwise

This ultrametric has several other nice properties:

• actions of Sp on S(B(FOp(λ))) are isometries:

∀σ ∈ Sp ∀T1, T2 ∈ S(B(FOp(λ))) distp(σ · T1, σ · T2) = distp(T1, T2);

• projections πp are contractions:

∀q ≥ p ∀T1, T2 ∈ S(B(FOq(λ))) distp(πp(T1), πp(T2)) ≤ distq(T1, T2);

We prove that there is a natural isometric embedding ηp : S(B(FOp(λ))) →
S(B(FO(λ))). This may be seen as follows: for an ultrafilter X ∈ S(B(FOp(λ))),
consider the filter X+ on B(FO(λ)) generated by X and all the formulas xi = xi+1

(for i ≥ p). This filter is an ultrafilter: for every sentence φ ∈ FO(λ), let φ̃ be
the sentence obtained from φ by replacing each free occurrence of a variable xq
with q > p by xp. It is clear that φ and φ̃ are equivalent modulo the theory

Tp = {(xi = xi+1) : i ≥ p}. As either φ̃ or ¬φ̃ belongs to X, either φ or ¬φ belongs

to ηp(X). Moreover, we deduce easily from the fact that φ̃ and φ have the same
quantifier rank that if q ≥ p then πq ◦ ηp is an isometry. Finally, let us note that
πp ◦ ηp is the identity of S(B(FOp(λ))).

Let λp be the signature λ augmented by p symbols of constants c1, . . . , cp. There
is a natural isomorphism of Boolean algebras νp : FOp(λ) → FO0(λp), which re-
places the free occurrences of the variables x1, . . . , xp in a formula φ ∈ FOp by the
corresponding symbols of constants c1, . . . , cp, so that it holds, for every modeling
A, for every φ ∈ FOp and every v1, . . . , vp ∈ A:

A |= φ(v1, . . . , vp) ⇐⇒ (A, v1, . . . , vp) |= νp(φ).

This mapping induces an isometric isomorphism of the metric spaces (S(B(FOp(λ))),distp)
and (S(B(FO0(λp))),dist0). Note that the Stone space S(B(FO0(λp))) associated
to the Boolean algebra B(FO0(λp)) is the space of all complete theories of λp-
structures. In particular, points of S(B(FOp(λ)) can be represented (up to ele-
mentary equivalence) by countable λ-structures with p special points. All these
transformations may seem routine but they need to be carefully formulated and
checked.

We can test whether the distance distp of two theories T and T ′ is smaller than
2−n by means of an Ehrenfeucht-Fräıssé game: Let νp(T ) = {νp(φ) : φ ∈ T} and,
similarly, let νp(T

′) = {νp(φ) : φ ∈ T ′}. Let (A, v1, . . . , vp) be a model of T and let
(A′, v′1, . . . , v

′
p) ba a model of T ′. Then it holds

distp(T, T
′) < 2−n ⇐⇒ (A, v1, . . . , vp) ≡n (A′, v′1, . . . , v

′
p).

Recall that the n-rounds Ehrenfeucht-Fräıssé game on two λ-structures A and
A′, denoted EF(A,A′, n) is the perfect information game with two players — the
Spoiler and the Duplicator — defined as follows: The game has n rounds and each
round has two parts. At each round, the Spoiler first chooses one of A and A′ and
accordingly selects either a vertex x ∈ A or a vertex y ∈ A′. Then, the Duplicator
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selects a vertex in the other λ-structure. At the end of the n rounds, n vertices have
been selected from each structure: x1, . . . , xn in A and y1, . . . , yn in A′ (xi and yi
corresponding to vertices x and y selected during the ith round). The Duplicator
wins if the substructure induced by the selected vertices are order-isomorphic (i.e.
xi 7→ yi is an isomorphism of A[{x1, . . . , xn}] and A′[{y1, . . . , yn}]). As there are
no hidden moves and no draws, one of the two players has a winning strategy, and
we say that that player wins EF(A,A′, n). The main property of this game is the
following equivalence, due to Fräıssé [27, 28] and Ehrenfeucht [22]: The duplicator
wins EF(A,A′, n) if and only if A ≡n A′. In our context this translates to the
following equivalence:

distp(T, T
′) < 2−n ⇐⇒ Duplicator wins EF((A, v1, . . . , vp), (A

′, v′1, . . . , v
′
p), n).

As FO0 ⊂ FO1 ⊂ · · · ⊂ FOp ⊂ FOp+1 ⊂ · · · ⊂ FO =
⋃
i FOi, the fragments FO

form a hierarchy of more and more restrictive notions of convergence. In particular,
FOp+1-convergence implies FOp-convergence and FO-convergence is equivalent to
FOp for all p. If a sequence (An)n∈N is FOp-convergent then for every q ≤ p the
FOq-limit of (An)n∈N is a measure µq ∈ rca(S(B(FOq))), which is the pushforward
of µp by the projection πq (more precisely, by the restriction of πq to S(B(FOp))):

µq = (πq)∗(µp).

5.2. FOlocal and Locality. FO-convergence can be reduced to the conjunction of
elementary convergence and FOlocal-convergence, which we call local convergence.
This is a consequence of Gaifman locality theorem, which we recall now.

Theorem 10 (Gaifman locality theorem [30]). For every first-order formula φ(x1, . . . , xn)
there exist integers t and r such that φ is equivalent to a Boolean combination of
t-local formulas ξs(xi1 , . . . , xis) and sentences of the form

(3) ∃y1 . . . ∃ym
( ∧

1≤i<j≤m
dist(yi, yj) > 2r ∧

∧

1≤i≤m
ψ(yi)

)

where ψ is r-local. Furthermore, we can choose

r ≤ 7qrank(φ)−1, t ≤ (7qrank(φ)−1 − 1)/2, m ≤ n+ qrank(φ),

and, if φ is a sentence, only sentences (3) occur in the Boolean combination. More-
over, these sentences can be chosen with quantifier rank at most q(qrank(φ)), for
some fixed function q.

From this theorem and the following folklore technical result will follow the
claimed decomposition of FO-convergence into elementary and local convergence.

Lemma 7. Let B be a Boolean algebra, let A1 and A2 be sub-Boolean algebras of
B, and let b ∈ B[A1 ∪ A2] be a Boolean combination of elements from A1 and A2.
Then b can be written as

b =
∨

i∈I
xi ∧ yi,

where I is finite, xi ∈ A1, yi ∈ A2, and for every i 6= j in I it holds (xi∧yi)∧ (xj ∧
yj) = 0.

Proof. Let b = F (u1, . . . , ua, v1, . . . , vb) with ui ∈ A1 (1 ≤ i ≤ a) and vj ∈ A2

(1 ≤ j ≤ b) where F is a Boolean combination. By using iteratively Shannon’s
expansion, we can write F as

F (u1, . . . , ua, v1, . . . , vb) =
∨

(X1,X2,Y1,Y2)∈F
(
∧

i∈X1

ui ∧
∧

i∈X2

¬ui ∧
∧

j∈Y1

vj ∧
∧

j∈Y2

¬vj),
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where F is a subset of the quadruples (X1, X2, Y1, Y2) such that (X1, X2) is a par-
tition of [a] and (Y1, Y2) is a partition of [b]. For a quadruple Q = (X1, X2, Y1, Y2),
define xQ =

∧
i∈X1

ui ∧
∧
i∈X2

¬ui and yQ =
∧
j∈Y1

vj ∧
∧
j∈Y2
¬vj . Then for

every Q ∈ F it holds xQ ∈ A1, yQ ∈ A2, for every Q 6= Q′ ∈ F it holds
xQ ∧ yQ ∧ xQ′ ∧ yQ′ = 0, and we have b =

∨
Q∈F xQ ∧ yQ. � �

Theorem 11. Let (An) be a sequence of finite λ-structures. Then (An) is FO-

convergent if and only if it is both FOlocal-convergent and FO0-convergent. Pre-
cisely, (An) is FOp-convergent if and only if it is both FOlocal

p -convergent and FO0-
convergent.

Proof. Assume (An)n∈N is both FOlocal
p -convergent and FO0-convergent and let φ ∈

FOp. According to Theorem 10, there exist integers t and r such that φ is equivalent
to a Boolean combination of t-local formula ξ(xi1 , . . . , xis) and of sentences. As both

FOlocal and FO0 define a sub-Boolean algebra of B(FO), according to Lemma 7,

φ can be written as
∨
i∈I ψi ∧ θi, where I is finite, ψi ∈ FOlocal, θi ∈ FO0, and

ψi ∧ θi ∧ ψj ∧ θj = 0 if i 6= j. Thus for every finite λ-structure A it holds

〈φ,A〉 =
∑

i∈I
〈ψi ∧ θi,A〉.

As 〈 · ,A〉 is additive and 〈θi,A〉 ∈ {0, 1} we have 〈ψi ∧ θi,A〉 = 〈ψi,A〉 〈θi,A〉.
Hence

〈φ,A〉 =
∑

i∈I
〈ψi,A〉 〈θi,A〉.

Thus if (An)n∈N is both FOlocal
p -convergent and FO0-convergent then (An)n∈N is

FOp-convergent. � �

Similarly that points of S(B(FOp(λ)) can be represented (up to elementary equiv-

alence) by countable λ-structures with p special points, points of S(B(FOlocal
p (λ))

can be represented by countable λ-structures with p special points such that every
connected component contains at least one special point. In particular, points of
S(B(FOlocal

1 (λ)) can be represented by rooted connected countable λ-structures.

Also, the structure of an FOlocal
2 -limit of graphs can be outlined by considering

that points of S(B(FOlocal
2 )) as countable graphs with two special vertices c1 and c2,

such that every connected component contains at least one of c1 and c2. Let µ2 be
the limit probability measure on S(B(FOlocal

2 )) for an FOlocal
2 -convergent sequence

(Gn)n∈N, let π1 be the standard projection of S(B(FOlocal
2 )) into S(B(FOlocal

1 )),

and let µ1 be the pushforward of µ2 by π1. We construct a measurable graph Ĝ as
follows: the vertex set of Ĝ is the support Supp(µ1) of µ1. Two vertices x and y

of Ĝ are adjacent if there exists x′ ∈ π−1
1 (x) and y′ ∈ π−1

1 (y) such that (considered

as ultrafilters of B(FOlocal
2 )) it holds:

• x1 ∼ x2 belongs to both x′ and y′,
• the transposition τ1,2 exchanges x′ and y′ (i.e. y′ = τ1,2 · x′).

The vertex set of Ĝ is of course endowed with a structure of a probability space
(as a measurable subspace of S(B(FOlocal

1 )) equipped with the probability measure

µ1). In the case of bounded degree graphs, the obtained graph Ĝ is the graph of
graphs introduced in [44]. Notice that this graph may have loops. An example of
such a graph is shown Fig. 1.
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2−1

2−2

2−3

2−4

2−5

. . .

S(B(FOlocal
1 ))

Figure 1. An outline of the local limit of a sequence of trees

5.3. Sequences with Homogeneous Elementary Limit. Elementary conver-
gence is an important aspect of FO-convergence and we shall see that in several
contexts, FO-convergence can be reduced to the conjunction and elementary con-
vergence of X-convergence (for some suitable fragment X).

In some special cases, the limit (as a countable structure) will be unique. This
means that some particular complete theories have exactly one countable model (up
to isomorphism). Such complete theories are called ω-categorical. Several properties
are known to be equivalent to ω-categoricity. For instance, for a complete theory
T the following statements are equivalent:

• T is ω-categorical;
• for every every p ∈ N, the Stone space S(B(FOp(λ), T )) is finite (see Fig. 2);
• every countable model A of T has an oligomorphic automorphism group,

what means that for every n ∈ N, An has finitely many orbits under the
action of Aut(A).

A theory T is said to have quantifier elimination if, for every formula φ ∈ FOp(λ)

there exists φ̃ ∈ QFp(λ) such that T |= φ↔ φ̃. If a theory has quantifier elimination
then it is ω-categorical. Indeed, for every p, there exists only finitely many quantifier
free formulas with p free variables hence (up to equivalence modulo T ) only finitely
many formulas with p free variables. The unique countable model of a complete
theory T with quantifier elimination is ultra-homogeneous, what means that every
partial isomorphism of finite induced substructures extends as a full automorphism.
In the context of relational structures, the property of having a countable ultra-
homogeneous model is equivalent to the property of having quantifier elimination.
We provide a proof of this folklore result (in the context of graphs) in order to
illustrate these notions.
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S(B(FO0))
T

S(B(FO1))

S(B(FO2))

S(B(FO3))

S(B(FO))

π2

π1

π0

π3

Figure 2. Ultrafilters projecting to an ω-categorical theory

Lemma 8. Let T be a complete theory (of graphs) with no finite model.
Then T has quantifier elimination if and only if some (equivalently, every) count-

able model of T is ultra-homogeneous.

Proof. Assume that T has an ultra-homogeneous countable modelG. Let (a1, . . . , ap),
(b1, . . . , bp) be p-tuples of vertices of G. Assume that ai 7→ bi is an isomorphism
between G[a1, . . . , ap] and G[b1, . . . , bp]. Then, as G is ultra-homogeneous, there
exists an automorphism f of G such that f(ai) = bi for every 1 ≤ i ≤ p. As the
satisfaction of a first-order formula is invariant by the action of the automorphism
group, for every formula φ ∈ FOp it holds

G |= φ(a1, . . . , ap) ⇐⇒ G |= φ(b1, . . . , bp).

Consider a maximal set F of p-tuples (v1, . . . , vp) of G such that G |= φ(v1, . . . , vp)
and no two p-tuples induce isomorphic (ordered) induced subgraphs. Obviously

|F| = 2O(p2) is finite. Moreover, each p-tuple ~v = (v1, . . . , vp) defines a quantifier
free formula η~v with p free variables such that G |= η~v(x1, . . . , xp) if and only if
xi 7→ vi is an isomorphism between G[x1, . . . , xp] and G[v1, . . . , vp]. Hence it holds:

G |= φ↔
∨

~v∈F
η~v.

In other words, φ is equivalent (modulo T ) to the quantifier free formula φ̃ =∨
~v∈F η~v, that is: T has quantifier elimination.
Conversely, assume that T has quantifier elimination. As notice above, T is ω-

categorical thus has a unique countable model. Assume (a1, . . . , ap) and (b1, . . . , bp)
are p-tuples of vertices such that f : ai 7→ bi is a partial isomorphism. Assume
that f does not extend into an automorphism of G. Let (a1, . . . , aq) be a tuple
of vertices of G of maximal length such that there exists bp+1, . . . , bq such that
ai 7→ bi is a partial isomorphism. Let aq+1 be a vertex distinct from a1, . . . , aq. Let
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φ(x1, . . . , xq) be the formula
∧

ai∼aj
(xi ∼ xj) ∧

∧

¬(ai∼aj)
¬(xi ∼ xj) ∧

∧

1≤i≤q
¬(xi = xj)

∧ (∃y)

( ∧

ai∼aq+1

(xi ∼ y) ∧
∧

¬(ai∼aq+1)

¬(xi ∼ y) ∧
∧

1≤i≤q
¬(xi = y)

)

As T has quantifier elimination, there exists a quantifier free formula φ̃ such that

T |= φ ↔ φ̃. As G |= φ(a1, . . . , aq) (witnessed by aq+1) it holds G |= φ̃(a1, . . . , aq)

hence G |= φ̃(b1, . . . , bq) (as ai 7→ bi, 1 ≤ i ≤ q is a partial isomorphism) thus
G |= φ(b1, . . . , bq). It follows that there exists bq+1 such that ai 7→ bi, 1 ≤ i ≤ q + 1
is a partial isomorphism, contradicting the maximality of (a1, . . . , aq). � �

When a sequence of graphs is elementarily convergent to an ultra-homogeneous
graph (i.e. to a complete theory with quantifier elimination), we shall prove that
FO-convergence reduces to QF-convergence. This later mode of convergence is of
particular interest as it is equivalent to L-convergence, as we first prove.

We now prove that for sequences of graphs elementarily convergent to ultra-
homogeneous graphs, the properties of FO-convergence and QF-convergence are
equivalent.

Lemma 9. Let (Gn)n∈N be sequence of graphs that converges elementarily to some

ultra-homogeneous graph Ĝ. Then the following properties are equivalent:

• the sequence (Gn)n∈N is FO-convergent;
• the sequence (Gn)n∈N is QF-convergent.
• the sequence (Gn)n∈N is L-convergent.

Proof. As FO-convergence implies QF-convergence we only have to prove the oppo-
site direction. Assume that the sequence (Gn)n∈N is QF-convergent. According to

Lemma 8, for every formula φ ∈ FOp there exists a quantifier free formula φ̃ ∈ QFp
such that Ĝ |= φ ↔ φ̃ (i.e. Th(Ĝ) has quantifier elimination). As Ĝ is an elemen-
tary limit of the sequence (Gn)n∈N there exists N such that for every n ≥ N it

holds Gn |= φ↔ φ̃. It follows that for every n ≥ N it holds 〈φ,Gn〉 = 〈φ̃, Gn〉 hence
limn→∞〈φ,Gn〉 exists. Thus the sequence (Gn)n∈N is FO-convergent. � �

There are not so many countable ultra-homogeneous graphs.

Theorem 12 (Lachlan and Woodrow [40]). Every infinite countable ultrahomoge-
neous undirected graph is isomorphic to one of the following:

• the disjoint union of m complete graphs of size n, where m,n ≤ ω and at
least one of m or n is ω, (or the complement of it);

• the generic graph for the class of all countable graphs not containing Kn

for a given n ≥ 3 (or the complement of it).
• the Rado graph R (the generic graph for the class of all countable graphs).

Among them, the Rado graph R is characterized by the extension property: for
every finite disjoint subsets of vertices A and B of R there exists a vertex z of
R−A−B such that z is adjacent to every vertex in A and to no vertex in B. The
Rado graph R will be of great importance for us, because of the following property.

Lemma 10 (Edrös, Rényi [26]). Let 0 < δ < 1, let pi,j ∈ [δ, 1− δ] for i, j ∈ N and
let G be the random countable graph with vertex set N that is such that — denoting
Ei,j the event that i is adjacent to j — the events Ei,j are independent and the
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probability of Ei,j is pi,j. Then, with probability one G has the extension property
(hence is isomorphic to the Rado graph).

In particular, for 0 < p < 1, let Gn be a random graph with n vertices where
two vertices are adjacent with probability p, independently for each pair of ver-
tices. Then with probability 1 the resulting graph sequence (Gn)n∈N will converge
elementarily to the Rado graph.

We now related more precisely the extension property with quantifier elimina-
tion.

Definition 8. Let k ∈ N. A graph G has the k-extension property if, for every
disjoint subsets of vertices A,B of G with size k there exists a vertex z not in A∪B
that is adjacent to every vertex in A and to no vertex in B. In other words, G has
the k-extension property if G satisfies the sentence Υk below:

(∀x1, . . . , x2k)

( ∧

1≤i<j≤2k

¬(xi = xj)

→ (∃z)
2k∧

i=1

¬(xi = z) ∧
k∧

i=1

(xi ∼ z) ∧
2k∧

i=k+1

¬(xi ∼ z)
)

Lemma 11. Let G be a graph and let p, r be integers.
If G has the (p+r)-extension property then every formula φ with p free variables

and quantifier rank r is equivalent, in G, with a quantifier free formula.

Proof. Let φ be a formula with p free variables and quantifier rank r. Let (a1, . . . , ap)
and (b1, . . . , bp) be two p-tuples of vertices of G such that ai 7→ bi is a partial
isomorphism. The (p + r)-extension properties allows to easily play a r-turns
back-and-forth game between (G, a1, . . . , ap) and (G, b1, . . . , bp), thus proving that
(G, a1, . . . , ap) and (G, b1, . . . , bp) are r-equivalent. It follows thatG |= φ(a1, . . . , ap)
if and only if G |= φ(b1, . . . , bp). Following the lines of Lemma 8, we deduce that

there exists a quantifier free formula φ̃ such that G |= φ↔ φ̃. � �

Lemma 12. Let 1/2 > δ > 0. Assume that for every positive integer n ≥ 2 and
every 1 ≤ i < j ≤ n, pn,i,j ∈ [δ, 1 − δ]. Assume that for each n ∈ N, Gn is
a random graph on [f(n)] where f(n) ≥ n, and where i and j are adjacent with
probability pn,i,j (all these events being independent). Then the sequence (Gn)n∈N
almost surely converges elementarily to the Rado graph.

Proof. Let p ∈ N and let α = δ(1 − δ). The probability that Gn |= Υp is at least

1 − (1 − αp)f(n). It follows that for N ∈ N the probability that all the graphs Gn
(n ≥ N) satisfy Υp is at least 1 − α−p(1 − αp)f(N). According to Borel-Cantelli
lemma, the probability that Gn does not satisfy Υp infinitely many is zero. As this
holds for every integer p, it follows that, with high probability, every elementarily
converging subsequence of (Gn)n∈N converges to the Rado graph hence, with high
probability, (Gn)n∈N converges elementarily to the Rado graph. � �

Thus we get:

Theorem 13. Let 0 < p < 1 and let Gn ∈ G(n, p) be independent random graphs
with edge probability p. Then (Gn)n∈N is almost surely FO-convergent.

Proof. This is an immediate consequence of Lemma 9, Lemma 12 and the easy fact
that (Gn)n∈N is almost surely QF-convergent. � �



30 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Theorem 14. For every φ ∈ FOp there exists a polynomial Pφ ∈ Z[X1, . . . , X(p2)
]

such that for every sequence (Gn)n∈N of finite graphs that converges elementarily
to the Rado graph the following holds:

If (Gn)n∈N is L-convergent to some graphon W then

lim
n→∞

〈φ,Gn〉 =

∫
· · ·
∫
Pφ((Wi,j(xi, xj))1≤i<j≤p) dx1 . . . dxp.

Proof. Assume the sequence (Gn)n∈N is elementarily convergent to the Rado graph
and that it is L-convergent to some graphon W .

According to Lemma 8, there exists a quantifier free formula φ̃ such that

G |= (∀x1 . . . xp) φ(x1, . . . , xp)↔ φ̃(x1, . . . , xp)

(hence Ωφ(G) = Ωφ̃(G)) holds when G is the Rado graph. As (Gn)n∈N is elemen-

tarily convergent to the Rado graph, this sentence holds for all but finitely many

graphs Gn. Thus for all but finitely many Gn it holds 〈φ,Gn〉 = 〈φ̃, Gn〉. Moreover,
according to Lemma 9, the sequence (Gn)n∈N is FO-convergent and thus it holds

lim
n→∞

〈φ,Gn〉 = lim
n→∞

〈φ̃, Gn〉.

By using inclusion/exclusion argument and the general form of the density of
homomorphisms of fixed target graphs to a graphon we deduce that there exists a
polynomial Pφ ∈ Z[X1, . . . , X(p2)

] (which depends only on φ) such that

lim
n→∞

〈φ̃, Gn〉 =

∫
· · ·
∫
Pφ((Wi,j(xi, xj))1≤i<j≤p) dx1 . . . dxp.

The theorem follows. �

Although elementary convergence to Rado graph seems quite a natural assump-
tion for graphs which are neither too sparse nor too dense, elementary convergence
to other ultra-homogeneous graphs may be problematic.

Example 2. Cherlin [15] posed the problem whether there is a finite k-saturated
triangle-free graph, for each k ∈ N, where a triangle free graph is called k-saturated
if for every set S of at most k vertices, and for every independent subset T of S,
there exists a vertex adjacent to each vertex of T and to no vertex of S−T . In other
words, Cherlin asks whether the generic countable triangle-free graph has the finite
model property, that is if it is an elementary limit of a sequence of finite graphs.

It is possible to extend Lemma 9 to sequences of graph having a non ultra-
homogeneous elementary limit if we restrict FO to a smaller fragment.

Example 3. A graph G is IH-Homogeneous [13] if every partial finite isomor-
phism extends into an endomorphism. Let PP be the fragment of FO that consists
into primitive positive formulas, that is formulas formed using adjacency, equality,
conjunctions and existential quantification only, and let BA(PP ) be the minimum
sub-Boolean algebra of FO containing PP.

Following the lines of Lemma 9 and using Theorem 8 and Lemma 5, one proves
that if a sequence of graphs (Gn)n∈N converges elementarily to some IH-homogeneous
infinite countable graph then (Gn)n∈N is BA(PP)-convergent if and only if it is QF-
convergent.
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5.4. FO-convergence of Graphs with Bounded Maximum Degree. We now
consider how full FO-convergence differs to BS-convergence for sequence of graphs
with maximum degree at most D. As a corollary of Theorems 11 and 9 we have:

Theorem 15. A sequence (Gn) of finite graphs with maximum degree at most d
such that limn→∞ |Gn| =∞ is FO-convergent if and only if it is both BS-convergent
and elementarily convergent.

6. Non-Standard Intermezzo

We show that limit objects which are close to modelings can be obtained by
a non-standard approach. Our goal is Theorem 18. The use of a non-standard
approach in the area of graph and hypergraph limits was pioneered by Elek and
Szegedy and we shall follow closely their paper [24].

We first recall the ultraproduct construction. Let (Gn)n∈N be a sequence of

graphs and let U be a non-principal ultrafilter. Let G̃ =
∏
i∈NGi and let ∼ be the

equivalence relation on Ṽ defined by (xn) ∼ (yn) if {n : xn = yn} ∈ U . Then the

ultraproduct of the graphs Gn is the quotient of G̃ by ∼, and it is denoted
∏
U Gi.

Two vertices [x] and [y] are adjacent if {n : xn is adjacent to yn} ∈ U . (Notice that
this construction easily extends to relational structures.)

The fundamental theorem of ultraproducts proved by  Loś makes ultraproducts
particularly useful in model theory. We express it now in the particular case of
graphs indexed by N but its general statement concerns structures indexed by a set
I and the ultraproduct constructed by considering an ultrafilter U over I.

Theorem 16 ([43]). For each formula φ ∈ FOn and each f1, . . . , fn ∈
∏
iGi we

have
∏

U

Gi |= φ([f1], . . . , [fn]) iff {i : Gi |= φ(f1(i), . . . , fn(i))} ∈ U.

Note that if (Gi) is elementary-convergent, then
∏
U Gi is an elementary limit

of the sequence: for every sentence φ, according to Theorem 16, we have
∏

U

Gi |= φ ⇐⇒ {i : Gi |= φ} ∈ U.

Remark 4. It is easily checked that a (possibly infinite) λ-structure G is an el-
ementary limit of a sequence (Gn)n∈N of finite λ-structure if and only if every
first-order sentence (in FO0(λ)) which is true in G has a finite model. This, in
turn, is equivalent (see [65], Lemma 1) to the property that there exists a (count-
able) set {Gi : i ∈ I} of finite λ-structures and an ultrafilter U on I such that G is
elementarily equivalent to the ultraproduct

∏
U Gi. In this sense, ultraproducts of

finite structures are natural limit objects for elementarily convergent sequences of
finite structures.

A measure ν extending the normalised counting measures νi of Gi is then ob-
tained via the Loeb measure construction. We denote by P(Gi) the Boolean al-

gebra of the subsets of vertices of Gi, with the normalized measure νi(A) = |A|
|Gi| .

We define P =
∏
i P(Gi)/I, where I is the ideal of the elements {Ai}i∈N such that

{i : Ai = ∅} ∈ U . We have

[x] ∈ [A] iff {i : xi ∈ Ai} ∈ U.
These sets form a Boolean algebra over

∏
U Gi. Recall that the ultralimit limU an

defined for every (an)n∈N ∈ `∞(N) is such that for every ε > 0 we have
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{i : ai ∈ [lim
U
an − ε ; lim

U
an + ε]} ∈ U.

Define

ν([A]) = lim
U
νi(Ai).

Then ν : P → R is a finitely additive measure. Remark that, according to
Hahn-Kolmogorov theorem, proving that ν extends to a countably additive measure
amounts to prove that for every sequence ([An]) of disjoint elements of P such that⋃
n[An] ∈ P it holds ν(

⋃
n[An]) =

∑
n ν([An]).

A subset N ⊆∏U Gi is a nullset if for every ε > 0 there exists [Aε] ∈ P such that
N ⊆ [Aε] and ν([Aε]) < ε. The set of nullsets is denoted by N . A set B ⊆ ∏U Gi
is measurable if there exists B̃ ∈ P such that B∆B̃ ∈ N .

The following theorem is proved in [24]:

Theorem 17. The measurable sets form a σ-algebra BU and ν(B) = ν(B̃) defines
a probability measure on BU .

Notice that this construction extends to the case where to each Gi is associated
a probability measure νi. Then the limit measure ν is non-atomic if and only if the
following technical condition holds: for every ε > 0 and for every (An) ∈ ∏Gn, if
for U -almost all n it holds νn(An) ≥ ε then there exists δ > 0 and (Bn) ∈ ∏Gn
such that for U -almost all n it holds Bn ⊆ An and min(νn(Bn), νn(An \Bn)) ≥ δ.
This obviously holds if νn is a normalized counting measure and limU |Gn| = ∞.
Let ν be the limit measure.

Let fi : Gi → [−d; d] be real functions, where d > 0. One can define f :
∏
U Gi →

[−d; d] by

f([x]) = lim
U
fi(xi).

We say that f is the ultralimit of the functions {fi}i∈N and that f is an ultralimit
function.

Let φ(x) be a first order formula with a single free variable, and let fφi : Gi →
{0, 1} be defined by

fφi (x) =

{
1 if Gi |= φ(x);

0 otherwise.

and let fφ :
∏
U Gi → {0, 1} be defined similarly on the graph

∏
U Gi. Then fφ is

the ultralimit of the functions {fφi } according to Theorem 16.
The following lemma is proved in [24].

Lemma 13. The ultralimit functions are measurable on
∏
U Gi and

∫
∏
U Gi

f dν = lim
U

∑
x∈Gi fi(x)

|Gi|
.

In particular, for every formula φ(x) with a single free variable, we have:

ν
({

[x] :
∏

U

Gi |= φ([x])
})

= lim
U
〈φ,Gi〉.

Let ψ(x, y) be a formula with two free variables. Define fi : Gi → [0; 1] by

fi(x) =
|{y ∈ Gi : Gi |= ψ(x, y)}|

|Gi|
.

and let

f([x]) = µ
({

[y] :
∏

U

Gi |= ψ([x], [y]
})
.
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Let us check that f([x]) is indeed the ultralimit of fi(xi). Fix [x]. Let gi : Gi →
{0, 1} be defined by

gi(y) =

{
1 if Gi |= ψ(xi, y)

0 otherwise.

and let g :
∏
U Gi → {0, 1} be defined similarly by

g([y]) =

{
1 if

∏
U Gi |= ψ([x], [y])

0 otherwise.

According to Theorem 16 we have
∏

U

Gi |= ψ([x], [y]) ⇐⇒ {i : Gi |= ψ(xi, yi)} ∈ U.

It follows that g is the ultralimit of the functions {gi}i∈N. Thus, according to
Lemma 13 we have

ν
({

[y] :
∏

U

GI |= ψ([x], [y])
})

= lim
U

|{y ∈ Gi : Gi |= ψ(xi, yi)}|
|Gi|

,

that is:
f([x]) = lim

U
fi(xi).

Hence f is the ultralimit of the functions {fi}i∈N and, according to Lemma 13, we
have

∫∫
1ψ([x], [y]) dν([x]) dν([y]) = lim

U
〈ψ,Gi〉.

This property extends to any number of free variables and we have the following
theorem.

Theorem 18. Let U be a non-principal ultrafilter and let (Gn)n∈N be a sequence
of graphs.

Then there the vertex set of the ultraproduct
∏
U Gi can be equipped with a struc-

ture of (non-separable) measurable space, and there exists a countably additive mea-
sure ν on

∏
U Gi such that for every first-order formula φ ∈ FOp it holds:

∫
· · ·
∫

1φ([x1], . . . , [xp]) dν([x1]) . . . dν([xp]) = lim
U
〈ψ,Gi〉.

7. Relational sample spaces and Modelings (particularly for
bounded degree graphs)

For sparse graphs the appropriate notions of limit objects seem to be relational
sample spaces and modelings.

7.1. Relational sample spaces. Let us recall Definition 3: Let λ be a signature.
A λ-relational sample space is a λ-structure A, whose domain A is a standard Borel
space with the property that every first-order definable subset of Ap is measurable.

For every integer p, and every φ ∈ FOp(λ) we define

Ωφ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}.
Formally, a λ-relational sample space is a λ-structure A, whose domain A is a

standard Borel space such that

∀φ ∈ FOp(λ) Ωφ(A) ∈ ΣpA,

where ΣA is the Borel σ-algebra of A.
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Lemma 14. Let λ be a signature, let A be a λ-structure, whose domain A is a
standard Borel space with σ-algebra ΣA.

Then the following conditions are equivalent:

(a) A is a λ-relational sample space;
(b) for every integer p ≥ 0 and every φ ∈ FOp(λ), it holds Ωφ(A) ∈ ΣpA;

(c) for every integer p ≥ 1 and every φ ∈ FOlocal
p (λ), it holds Ωφ(A) ∈ ΣpA;

(d) for every integers p, q ≥ 0, every φ ∈ FOp+q(λ), and every a1, . . . , aq ∈ Aq the
set

{(v1, . . . , vp) ∈ Ap : A |= φ(a1, . . . , aq, v1, . . . , vp)}
belongs to ΣpA.

Proof. Items (a) and (b) are equivalent by definition. Also we obviously have the
implications (d) ⇒ (b) ⇒ (c). That (c) ⇒ (b) is a direct consequence of Gaifman
locality theorem, and the implication (b) ⇒ (d) is a direct consequence of Fubini’s
theorem. � �

Lemma 15. Let A be a relational sample space, let a ∈ A, and let Aa be the
connected component of A containing a.

Then Aa has a measurable domain and, equipped with the σ-algebra of the Borel
sets of A included in Aa, it is a relational sample space.

Proof. Let φ ∈ FOlocal
p and let

X = {(v1, . . . , vp) ∈ Apa : Aa |= φ(v1, . . . , vp)}.
As φ is local, there is an integer D such that the satisfaction of φ only depends on
the D-neighborhoods of the free variables.

For every integer n ∈ N, denote by B(A, a, n) the substructure of A induced by
all vertices at distance at most n from a. By the locality of φ, for every v1, . . . , vp
at distance at most n from a it holds

Aa |= φ(v1, . . . , vp) ⇐⇒ B(A, a, n+D) |= φ(v1, . . . , vp).

However, it is easily checked that there is a local first-order formula ϕn ∈ FOlocal
p+1

such that for every v1, . . . , vp it holds

B(A, a, n+D) |= φ(v1, . . . , vp)∧
p∧

i=1

dist(a, vi) ≤ n ⇐⇒ A |= ϕn(a, v1, . . . , vp).

By Lemma 14, it follows that the setXn = {(v1, . . . , vn) ∈ A : A |= ϕn(a, v1, . . . , vp)}
is measurable. As X =

⋃
n∈NXn, we deduce that X is measurable (with respect to

ΣpA. In particular, Aa is a Borel subset of A hence Aa, equipped with the σ-algebra
ΣAa

of the Borel sets of A included in Aa, is a standard Borel set. Moreover, it
is immediate that a subset of Apa belongs to ΣpAa

if and only if it belongs to ΣpA.
Hence, every subset of Apa defined by a local formula is measurable with respect to
ΣpAa

. By Lemma 14, it follows that Aa is a relational sample space. � �

Distinguishing a single element of a λ-relational sample space may be useful in
several contexts. This can be achieved, for instance, by adding a new unary symbol
to the signature λ, and interpreting the symbol as a marking.

Lemma 16. Let A be a λ-relational sample space, let λ+ be the signature obtained
from λ by adding a new unary symbol M and let A+ be obtained from A by marking
a single a ∈ A (i.e. a is the only element x of A+ = A such that A+ |= M(x)).

Then A+ is a relational sample space.
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Proof. Let φ ∈ FOp(λ
+). There exists φ′ ∈ FOp+1(λ) such that for every x1, . . . , xp ∈

A it holds

A+ |= φ(x1, . . . , xp) ⇐⇒ A |= φ(a, x1, . . . , xp).

According to Lemma 14, the set of all (x1, . . . , xp) such that A |= φ(a, x1, . . . , xp)
is measurable. It follows that A+ is a relational sample space. � �

7.2. Modelings. Let us recall Definitions 4 and 5: A λ-modeling A is a λ-relational
sample space equipped with a probability measure (denoted νA). The Stone pairing
of φ ∈ FO(λ) and a λ-modeling A is 〈φ,A〉 = νpA(Ωφ(A)). Notice that it follows
(by Fubini’s theorem) that it holds

〈φ,A〉 =

∫

x∈Ap
1Ωφ(A)(x) dνpA(x)

=

∫
· · ·
∫

1Ωφ(A)(x1, . . . , xp) dνA(x1) . . . dνA(xp).

Based on this extension of Stone pairing, we extend our notion of X-convergence.

Definition 9 (modeling X-limit). Let X be a fragment of FO(λ).
If an X-convergent sequence (An)n∈N of λ-modelings satisfies

(∀φ ∈ X) 〈φ,L〉 = lim
n→∞

〈φ,An〉

for some λ-modeling L, then we say that L is a modeling X-limit of (An)n∈N.

Recall that a λ-modeling A is weakly uniform if all the singletons of A have
the same measure. Clearly, every finite λ-structure A can be identified with the
weakly uniform modeling obtained by considering the discrete topology on A. This
identification is clearly consistent with our definition of the Stone pairing of a
formula and a modeling.

In the case where a modeling A has an infinite domain, the condition for A to be
weakly uniform is equivalent to the condition for νA to be atomless. This property
is usually fulfilled by modeling X-limits of sequences of finite structures.

Lemma 17. Let X be a fragment of FO that includes FO0 and the formula (x1 =
x2). Then every modeling X-limit of weakly uniform modelings is weakly uniform.

Proof. Let φ be the formula (x1 = x2). Notice that for every finite λ-structure A
it holds 〈φ,A〉 = 1/|A| and that for every infinite weakly uniform λ-structure it
holds 〈φ,A〉 = 0.

Let L be a modeling X-limit of a sequence (An)n∈N. Assume limn→∞ |An| =∞.
Assume for contradiction that νL has an atom {v} (i.e. νL({v}) > 0). Then
〈φ,L〉 ≥ νL({v})2 > 0, contradicting limn→∞〈φ,An〉 = 0. Hence νL is atomless.

Otherwise, |L| = limn→∞ |An| < ∞ (as L is an elementary limit of (An)n∈N).
Let N = |L|. Label v1, . . . , vN the elements of L and let pi = νL({vi}). Then

1

N

N∑

i=1

p2
i −

( 1

N

N∑

i=1

pi

)2

=
〈φ,L〉
N

− 1

N2

=
limn→∞〈φ,An〉

N
− 1

N2

= 0

Thus pi = 1/N for every i = 1, . . . , N . � �

Corollary 1. Every modeling FOlocal
2 -limit of finite structures is weakly uniform.
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7.3. Interpretation Schemes. In model theory, the notion of interpretation of
a λ-structure in a κ-structure relies on representing the λ-structure inside the κ-
structure: an interpretation of B in A is a pair (k, I) where k ∈ N and I is a
surjective map from a subset of Ak onto B such that the preimage by Ik of every
first-order definable subset X of Bp is a first-order definable subset of Apk (see
e.g. [36, 41]). We shall be interested here in classes of interpretations defined by a
common set formulas. This can be formalized as follows.

Definition 10 (Interpretation Scheme). Let κ, λ be signatures, where λ has q
relational symbols R1, . . . , Rq with respective arities r1, . . . , rq.

An interpretation scheme I of λ-structures in κ-structures is defined by an integer
k, a formula E ∈ FO2k(κ), a formula θ0 ∈ FOk(κ), and a formula θi ∈ FOrik(κ) for
each symbol Ri ∈ λ, such that:

• the formula E defines an equivalence relation of k-tuples;
• each formula θi is compatible with E, in the sense that for every 0 ≤ i ≤ q

it holds
∧

1≤j≤ri
E(xj ,yj) ` θi(x1, . . . ,xri)↔ θi(y1, . . . ,yri),

where r0 = 1, boldface xj and yj represent k-tuples of free variables, and
where θi(x1, . . . ,xri) stands for θi(x1,1, . . . , x1,k, . . . , xri,1, . . . , xri,k).

For a κ-structure A, we denote by I(A) the λ-structure B defined as follows:

• the domain B of B is the subset of the E-equivalence classes [x] ⊆ Ak of
the tuples x = (x1, . . . , xk) such that A |= θ0(x);

• for each 1 ≤ i ≤ q and every v1, . . . ,vsi ∈ Akri such that A |= θ0(vj) (for
every 1 ≤ j ≤ ri) it holds

B |= Ri([v1], . . . , [vri ]) ⇐⇒ A |= θi(v1, . . . ,vri).

From the standard properties of model theoretical interpretations (see, for in-
stance [41] p. 180), we state the following: if I is an interpretation of λ-structures

in κ-structures, then there exists a mapping Ĩ : FO(λ)→ FO(κ) (defined by means
of the formulas E, θ0, . . . , θq above) such that for every φ ∈ FOp(λ), and every
κ-structure A, the following property holds (while letting B = I(A) and identifying
elements of B with the corresponding equivalence classes of Ak):

For every [v1], . . . , [vp] ∈ Bp (where vi = (vi,1, . . . , vi,k) ∈ Ak) it holds

B |= φ([v1], . . . , [vp]) ⇐⇒ A |= Ĩ(φ)(v1, . . . ,vp).

It directly follows from the existence of the mapping Ĩ that an interpretation scheme
I of λ-structures in κ-structures defines a continuous mapping from S(B(FO(κ)))
to S(B(FO(λ))). Thus, interpretation schemes have the following general property:

Proposition 2. Let I be an interpretation scheme of λ-structures in κ-structures.
Then, if a sequence (An)n∈N of finite κ-structures is FO-convergent then the

sequence (I(An))n∈N of (finite) λ-structures is FO-convergent.

When handling relational sample spaces and modelings, we shall be interested
in very simple interpretation schemes, corresponding to the case where k = 1, E is
equality, and θ0 is the true statement. In such a context, we can give a simplified
definition.

Definition 11. Let κ, λ be signatures. A basic interpretation scheme I of λ-
structures in κ-structures is defined by a formula θi ∈ FOri(κ) for each symbol
Ri ∈ λ with arity ri.
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For a κ-structure A, we denote by I(A) the structure with domain A such that,
for every Ri ∈ λ with arity ri and every v1, . . . , vri ∈ A it holds

I(A) |= Ri(v1, . . . , vri) ⇐⇒ A |= θi(v1, . . . , vri).

It is immediate that every basic interpretation scheme I defines a mapping Ĩ :
FO(λ) → FO(κ) such that for every κ-structure A, every φ ∈ FOp(λ), and every
v1, . . . , vp ∈ A it holds

I(A) |= φ(v1, . . . , vp) ⇐⇒ A |= Ĩ(φ)(v1, . . . , vp).

Lemma 18. A basic interpretation scheme I of λ-structures in κ-structures maps κ-
relational sample spaces to λ-relational sample spaces, κ-modelings to λ-modelings,
and for every κ-modeling A and every φ ∈ FO(λ) it holds

〈φ, I(A)〉 = 〈̃I(φ),A〉.

Proof. Assume A is a κ-relational sample space and p ∈ N. Every subset of Ap

that is first-order definable in I(A) is first-order definable in A, hence measurable.
Thus I(A) is a λ-relational sample space.

Assume A is a κ-modeling. Then νA is a probability measure thus so is νI(A) =
νA. Hence I(A) is a λ-modeling.

For every φ ∈ FOp(λ) and every v1, . . . , vp ∈ A it holds

A |= Ĩ(φ)(v1, . . . , vp) ⇐⇒ I(A) |= φ(v1, . . . , vp),

thus 〈̃I(φ),A〉 = 〈φ, I(A)〉. � �

The following strengthening of Proposition 2 in the case where we consider a
basic interpretation scheme is a clear consequence of Lemma 18.

Proposition 3. Let I be a basic interpretation scheme of λ-structures in κ-
structures.

If L is a modeling FO-limit of a sequence (An)n∈N of κ-modelings then I(L) is
a modeling FO-limit of the sequence (I(An))n∈N.

Lemma 19. Let p ∈ N be a positive integer, let L be a modeling, and let Tpp
L :

Lp → S(B(FOp(λ))) be the function mapping (v1, . . . , vp) ∈ Lp to the complete
theory of (L, v1, . . . , vp) (that is the set of the formulas ϕ ∈ FOp(λ) such that
L |= ϕ(v1, . . . , vp)).

Then Tpp
L is a measurable map from (Lp,ΣpL) to S(B(FOp(λ))) (with its Borel

σ-algebra).
Let (An)n∈N be an FOp(λ)-convergent sequence of finite λ-structures, and let µp be
the associated limit measure (as in Theorem 6).

Then L is an FOp(λ)-limit modeling of (An)n∈N if and only if µp is the push-
forward of the product measure νpL by the measurable map Tpp

L , that is:

Tpp
L ∗(ν

p
L) = µp.

Proof. Recall that the clopen sets of S(B(FOp(λ))) are of the form K(φ) for φ ∈
FOp(λ) and that they generate the topology of S(B(FOp(λ))) hence also its Borel
σ-algebra.

That Tpp
L is measurable follows from the fact that for every φ ∈ FOp the preim-

age of K(φ), that is Tpp
L

−1(K(φ)) = Ωφ(L), is measurable.
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Assume that L is an FOp(λ)-limit modeling of (An)n∈N. In order to prove that
Tpp

L ∗(ν
p
L) = µp, it is sufficient to check it on sets K(φ):

µp(K(φ)) = lim
n→∞

〈φ,An〉 = 〈φ,L〉 = νpL( Tpp
L

−1(K(φ))).

Conversely, if Tpp
L ∗(ν

p
L) = µp then for every φ ∈ FOp(λ) it holds

〈φ,L〉 = νpL( Tpp
L

−1(K(φ))) = µp(K(φ)) = lim
n→∞

〈φ,An〉,

hence L is an FOp(λ)-limit modeling of (An)n∈N. � �

If (X,Σ) is a Borel space with a probability measure ν, it is standard to define
the product σ-algebra Σω on the infinite product space XN, which is generated by
cylinder sets of the form

R = {f ∈ LN : f(i1) ∈ Ai1 , . . . , f(ik) ∈ Aik}
for some k ∈ N and Ai1 , . . . , Aik ∈ Σ. The measure νω of the cylinder R defined
above is then

νω(R) =

k∏

j=1

ν(Aij ).

By Kolmogorov’s Extension Theorem, this extends to a unique probability measure
on Σω (which we still denote by νω). We summarize this as the following (see also
Fig. 7.3).

Theorem 19. let L be a modeling, and let Tpω
L : LN → S(B(FO(λ))) be the

function mapping f ∈ LN to the point of S(B(FO(λ))) corresponding to the set
{φ : L |= φ(f(1), . . . , f(i), . . . )}.

Then Tpω
L is a measurable map.

Let (An)n∈N be an FO(λ)-convergent sequence of finite λ-structures, and let µ be
the associated limit measure (see Theorem 5).

Then L is an FO(λ)-limit modeling of (An)n∈N if and only if

Tpω
L ∗(ν

ω
L) = µ.

�
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Figure 3. Pushforward of measures
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Remark 5. We could have considered that free variables are indexed by Z instead
of N. In such a context, natural shift operations S and T act respectively on the
Stone space S of the Lindendaum-Tarski algebra of FO(λ), and on the space LZ of
the mappings from Z to a λ-modeling L. If (An)n∈N is an FO-convergent sequence
with limit measure µ on S, then (S, µ, S) is a measure-preserving dynamical system.
Also, if νZ is the product measure on A, (AZ, ν, T ) is a Bernoulli scheme. Then, the
condition of Theorem 19 can be restated as follows: the modeling L is a modeling
FO-limit of the sequence (An)n∈N if and only if (S, µ, S) is a factor of (AZ, νZ, T ).
This setting leads to yet another interpretation of our result, which we hope will
be treated elsewhere.

7.4. Modeling FO-limits for Graphs of Bounded Degrees. Nice limit ob-
jects are known for sequence of bounded degree connected graphs, both for BS-
convergence (graphing) and for FO0-convergence (countable graphs). It is natural
to ask whether a nice limit object could exist for full FO-convergence. We shall
now answer this question by the positive. First we take time to comment on the
connectivity assumption. A first impression is that FO-convergence of disconnected
graphs could be considered component-wise. The following examples shows that
this is far from being true in general. The contrast between the behaviour of graphs
with a first-order definable component relation (like graphs with bounded diameter
components) and of graphs with bounded degree is exemplified by the following
example.

Example 4. Consider a BS-convergent sequence (Gn)n∈N of planar graphs with
bounded degrees such that the limit distribution has an infinite support. Note
that limn→∞ |Gn| = ∞. Then, as planar graphs with bounded degrees form a
hyperfinite class of graphs there exists, for every graph Gn and every ε > 0 a
subgraph S(Gn, ε) of Gn obtained by deleting at most ε|Gn| of edges, such that
the connected components of S(Gn, ε) have order at most f(ε). By considering a
subsequence Gs(n) we can assume limn→∞ |Gs(n)|/f(1/n) =∞. Then note that the
sequences (Gs(n))n∈N and (S(Gs(n), 1/n))n∈N have the same BS-limit. By merging

these sequences, we conclude that there exists an FOlocal convergent sequence of
graphs with bounded degrees (Hn) such that Hn is connected if n is even and such
that the number of connected components of Hn for n odd tends to infinity.

Example 5. Consider four sequences (An)n∈N, (Bn)n∈N, (Cn)n∈N,(Dn)n∈N of FO-
converging sequences where |An| = |Bn| = |Cn| = |Dn| grows to infinity, the
sequences have distinct limits, and each of An, Bn, Cn, Dn contains an induced
path of length n. Then we can construct a sequence (Gn)n∈N of graphs with two
connected components Hn,1 and Hn,2 obtained by cutting the induced paths in
An, Bn, Cn and Dn in their middle and alternatively gluing An with Cn and Bn
with Dn, or An with Dn and Bn with Cn (see Fig. 4). Then (Gn)n∈N is FO-
convergent. However, there is no choice of a mapping f : N → {1, 2} such that
(Hn,f(n)) is FO-convergent (or even BS-convergent).

This situation is indeed related to the fact that the diameter of the graph Gn in
the sequence tend to infinity as n grows and that the belonging to a same connected
component cannot be defined by a first-order formula. This situation is standard
when one consider BS-limits of connected graphs with bounded degrees: it is easily
checked that, as a limit of connected graphs, a graphing may have uncountably
many connected components.

Let V be a standard Borel space with a measure µ. Suppose that T1, T2, . . . , Tk
are measure preserving Borel involutions of X. Then the system

G = (V, T1, T2, . . . , Tk, µ)
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An Bn

Cn Dn

An Bn

Cn Dn

Figure 4. An FO-converging sequence with no component selection

is called a measurable graphing (or simply a graphing) [1]. A graphing G determines
an equivalence relation on the points of V . Simply, x ∼G y if there exists a sequence
of points (x1, x2, . . . , xm) of X such that

• x1 = x, xm = y
• xi+1 = Tj(xi) for some 1 ≤ j ≤ k.

Thus there exist natural a simple graph structure on the equivalence classes, the
leafgraph. Here x is adjacent to y, if x 6= y and Tj(x) = y for some 1 ≤ j ≤ k. Now
if If V is a compact metric space with a Borel measure µ and T1, T2, . . . , Tk are
continuous measure preserving involutions of V , then G = (V, T1, T2, . . . , Tk, µ) is a
topological graphing. It is a consequence of [6] and [29] that every local weak limit
of finite connected graphs with maximum degree at most D can be represented as
a measurable graphing. Elek [23] further proved the representation can be required
to be a topological graphing.

A graphing defines an edge coloration, where {x, y} is colored by the set of the
indexes i such that y = Ti(x). For an integer r, a graphing G = (V, T1, . . . , Tk, µ)
and a finite rooted edge colored graph (F, o) we define the set

Dr(G, (F, o)) = {x ∈ G, Br(G, x) ' (F, o)}.
It is easily checked that Dr(G, (F, o)) is measurable.
Considering k-edge colored graphing allows to describe a vertex x in a distance-

r neighborhood of a given vertex v by the sequence of the colors of the edges
of a path linking v to x. Taking, among the minimal length sequences, the one
which is lexicographically minimum, it is immediate that for every vertex v and
every integer r there is a injection ιv,r from Br(G, v) to the set of the sequences
of length at most r with values in [k]. Moreover, if Br(G, v) and Br(G, v′) are
isomorphic as edge-colored rooted graphs, then there exists a unique isomorphism
f : Br(G, v) → Br(G, v′) and this isomorphism as the property that for every
x ∈ Br(G, v) it holds ιv,r′(f(x)) = ιv,r(x).

Lemma 20. Every graphing is a modeling.
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Proof. Let G = (V, T1, . . . , Td, µ) be a graphing. We color the edges of G according
to the the involutions involved.

For r ∈ N, we denote by Fr the finite set of all the colored rooted graphs that
arise as Br(G, v) for some v ∈ V . To every vertex v ∈ V and integer r ∈ N we
associate tr(v), which is the isomorphism type of the edge colored ball Br(G, v).

According to Gaifman’s locality theorem, in order to prove that G is a modeling,
it is sufficient to prove that for each φ ∈ FOlocal

p , the set

X = {(v1, . . . , vp) ∈ V q : G |= φ(v1, . . . , vp)}
is measurable (with respect to the product σ-algebra of V p).

Let L ∈ N be such that φ is L-local. For every v = (v1, . . . , vp) ∈ X we define the
graph Γ(v) with vertex set {v1, . . . , vp} such that two vertices of Γ(v) are adjacent if
their distance in G is at most L. We define a partition P(v) of [p] as follows: i and
j are in a same part if vi and vj belong to a same connected component of Γ(v). To
each part P ∈ P(v), we associate the tuple formed by TP = t(|P |−1)L(vminP ) and,
for each i ∈ P−{minP}, a composition FP,i = Ti1 ◦· · ·◦Tij with 1 ≤ j ≤ (|P |−1)L,
such that vi = FP,i(vminP ). We also define FP,minP as the identity mapping.
According to the locality of φ, if v′ = (v′1, . . . , v

′
p) ∈ V p defines the same partition,

types, and compositions, then v′ ∈ X. For fixed partition P, types (TP )P∈P ,
and compositions (FP,i)i∈P∈P , the corresponding subset X ′ of X is included in a
(reshuffled) product Y of sets of tuples of the form (FP,i(xminP )) for vminP ∈WP ,
and is the set of all v ∈ G such that B(|P |−1)L(G, v) = TP . Hence WP is measurable

and (as each FP,i is measurable) Y is a measurable subset of G|P |. Of course, this
product may contain tuples v defining another partition. A simple induction and
inclusion/exclusion argument shows that X ′ is measurable. As X is the union of a
finite number of such sets, X is measurable. � �

We shall make use of the following lemma which reduces a graphing to its essen-
tial support.

Lemma 21 (Cleaning Lemma). Let G = (V, T1, . . . , Td, µ) be a graphing.
Then there exists a subset X ⊂ V with 0 measure such that X is globally invariant

by each of the Ti and G′ = (V −X,T1, . . . , Td, µ) is a graphing such that for every
finite rooted colored graph (F, o) and integer r it holds

µ(Dr(G
′, (F, o))) = µ(Dr(G, (F, o)))

(which means that G′ is equivalent to G) and

Dr(G
′, (F, o)) 6= ∅ ⇐⇒ µ(Dr(G

′, (F, o))) > 0.

Proof. For a fixed r, define Fr has the set of all (isomorphism types of) finite rooted
k-edge colored graphs (F, o) with radius at most r such that µ(Dr(G, (F, o))) = 0.
Define

X =
⋃

r∈N

⋃

(F,o)∈Fr
Dr(G, (F, o)).

Then µ(X) = 0, as it is a countable union of 0-measure sets.
We shall now prove that X is a union of connected components of G, that is

that X is globally invariant by each of the Ti. Namely, if x ∈ X and y is adjacent
to x, then y ∈ X. Indeed: if x ∈ X then there exists an integer r such that
µ(D(G, Br(G, x))) = 0. But it is easily checked that

µ(D(G, Br+1(G, y))) ≤ d · µ(D(G, Br(G, x))).

Hence y ∈ X. It follows that for every 1 ≤ i ≤ d we have Ti(X) = X. So we can
define the graphing G′ = (V −X,T1, . . . , Td, µ).
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Let (F, o) be a rooted finite colored graph. Assume there exists x ∈ G′ such
that Br(G

′, r) ' (F, o). As X is a union of connected components, we also have
Br(G, r) ' (F, o) and x /∈ X. It follows that µ(D(G, (F, o))) > 0 hence it holds
µ(Dr(G

′, (F, o))) > 0. � �

The cleaning lemma allows us a clean description of FO-limits in the bounded
degree case:

Theorem 20. Let (Gn)n∈N be a FO-convergent sequence of finite graphs with max-
imum degree d, with limn→∞ |Gn| = ∞. Then there exists a graphing G, which is

the disjoint union of a graphing G0 and a countable graph Ĝ such that

• The graphing G is a modeling FO-limit of the sequence (Gn)n∈N.
• The graphing G0 is a BS-limit of the sequence (Gn)n∈N such that

Dr(G0, (F, o)) 6= ∅ ⇐⇒ µ(Dr(G0, (F, o))) > 0.

• The countable graph Ĝ is an elementary limit of the sequence (Gn)n∈N.

Proof. Let G0 be a BS-limit, which has been “cleaned” using the previous lemma,
and let Ĝ be an elementary limit of G. It is clear that G = G0∪Ĝ is also a BS-limit
of the sequence, so the lemma amounts in proving that G is elementarily equivalent
to Ĝ.

According to Hanf’s theorem [33], it is sufficient to prove that for every integers
r, t and for every rooted finite graph (F, o) (with maximum degree d) the following
equality holds:

min(t, |Dr(G, (F, o))|) = min(t, |Dr(Ĝ, (F, o))|).

Assume for contradiction that this is not the case. Then |Dr(Ĝ, (F, o))| < t and
Dr(G0, (F, o)) is not empty. However, as G0 is clean, this implies µ(Dr(G0, (F, o))) =
α > 0. It follows that for every sufficiently large n it holds |Dr(Gn, (F, o))| >
α/2 |Gn| > t. Hence |Dr(Ĝ, (F, o))| > t, contradicting our hypothesis.

That G is a modeling then follows from Lemma 20. � �

Remark 6. Not every graphing with maximum degree 2 is an FO-limit modeling of a
sequence of finite graphs. Indeed: let G be a graphing that is an FO-limit modeling
of the sequence of cycles. The disjoint union of G and a ray is a graphing G′, which
has the property that all its vertices but one have degree 2, the exceptional vertex
having degree 1. As this property is not satisfied by any finite graph, G′ is not the
FO-limit of a sequence of finite graphs.

Let us finish this section by giving an interesting example, which shows that the
cleaning lemma sometimes applies in a non-trivial way:

Example 6. Consider the graph Gn obtained from a De Bruijn sequence of length
2n as shown Fig 5.

It is easy to define a graphing G, which is the limit of the sequence (Gn)n∈N: as
vertex set, we consider the rectangle [0; 1)× [0; 3). We define a measure preserving
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Figure 5. The graph Gn is constructed from a De Bruijn sequence
of length 2n.

function f and two measure preserving involutions T1, T2 as follows:

f(x, y) =





(2x, y/2) if x < 1/2 and y < 1

(2x− 1, (y + 1)/2) if 1/2 ≤ x and y < 1

(x, y) otherwise

T1(x, y) =





(x, y + 1) if y < 1

(x, y − 1) if 1 ≤ y < 2

(x, y) otherwise

T2(x, y) =





(x, y + 1) if x < 1/2 and 1 ≤ y < 2

(x, y + 2) if 1/2 ≤ x and y < 1

(x, y − 1) if x < 1/2 and 2 ≤ y
(x, y − 2) if 1/2 ≤ x and 2 ≤ y
(x, y) otherwise

Then the edges of G are the pairs {(x, y), (x′, y′)} such that (x, y) 6= (x′, y′) and
either (x′, y′) = f(x, y), or (x, y) = f(x′, y′), or (x′, y′) = T1(x, y), or (x′, y′) =
T2(x, y).

If one considers a random root (x, y) in G, then the connected component of
(x, y) will almost surely be a rooted line with some decoration, as expected from
what is seen from a random root in a sufficiently large Gn. However, special be-
haviour may happen when x and y are rational. Namely, it is possible that the
connected component of (x, y) becomes finite. For instance, if x = 1/(2n − 1) and
y = 2n−1x then the orbit of (x, y) under the action of f has length n thus the
connected component of (x, y) in G has order 3n. Of course, such finite connected
components do not appear in Gn. Hence, in order to clean G, infinitely many
components have to be removed.

Let us give a simple example exemplifying the distinction between BS and FO-
convergence for graphs with bounded degree.
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Example 7. Let Gn denote the n× n grid. The Benjamini-Schramm limit object
is a probability distribution concentrated on the infinite grid with a specified root.
A limit graphing can be described as the Lebesgue measure on [0, 1]2, where (x, y)
is adjacent to (x± α mod 1, y ± α mod 1) for some irrational number α.

This graphing, however, is not an FO-limit of the sequence (Gn)n∈N as every FO-
limit has to contain four vertices of degree 2. An FO-limit graphing can be described
as the above graphing restricted to [0, 1)2 (obtained by deleting all vertices with
x = 1 or y = 1). One checks for instance that this graphing contains four vertices of
degree 2 (the vertices (α, α), (1−α, α), (α, 1−α), and (1−α, 1−α)) and infinitely
many vertices of degree 3.

We want to stress that our general and unifying approach to structural limits
was not developed for its own sake and that it provided a proper setting (and,
yes, encouragement) for the study of classes of sparse graphs. So far the bounded
degree graphs are the only sparse class of graphs where the structural limits were
constructed efficiently. (Another example of limits of sparse graphs is provided by
scaling limits of transitive graphs [5] which proceeds in different direction and is
not considered here.) The goal of the remaining sections of this article is to extend
this to strong Borel FO-limits of rooted trees with bounded height and thus, by
means of a fitting basic interpretation scheme, to graphs with bounded tree-depth
(defined in [50]), or graphs with bounded SC-depth (defined in [31]).

8. Merging Limits: Combinations of Modelings

The combinatorics of limits of equivalence relations (such as components) is com-
plicated. As a first approximation towards analysis we consider the combinatorics
of “large” equivalence classes. This leads to the notion of spectrum, which will be
analyzed in this section.

8.1. Spectrum of a first-order equivalence relation.

Definition 12 ($-spectrum). Let A be a λ-modeling (with measure νA), and let
$ ∈ FO2(λ) be an equivalence relation on A. Let {Ci : i ∈ Γ} be set of all the
$-equivalence classes of A, and let Γ+ be the (at most countable) subset of Γ of
the indexes i such that νA(Ci) > 0.

The $-spectrum Sp$(A) of A is the (at most countable) sequence of the values
νpA(Ci) (for i ∈ Γ+) ordered in non-increasing order.

Lemma 22. For k ∈ N, let $(k) be the formula
∧k
i=1$(xi, xi+1). Then it holds

∑

i∈Γ+

νA(Ci)
k+1 = 〈$(k),A〉.

Proof. Let k ∈ N. Define

Dk+1 = {(x1, . . . , xk+1) ∈ Ak+1 : A |= $k(x1, . . . , xk+1)}.
According to Lemma 15, each Ci is measurable, thus

⋃
i∈Γ+

Ci is measurable

and so is R = A \⋃i∈Γ+
Ci.

Considering the indicator function 1Dk+1∩Rk+1 of Dk+1 ∩ Rk+1 and applying
Fubini’s theorem, we get∫

Ak+1

1Dk+1∩Rk+1 dνk+1
A =

∫
· · ·
∫

1R(x1, . . . , xk+1) dνA(x1, . . . ,dνA(xk+1) = 0.

as for every fixed a1, . . . , ak (with a1 ∈ Cα, for some α ∈ Γ \ Γ+) we have

0 ≤
∫

1R(a1, . . . , ak, xk+1) dνA(xk+1) ≤ νA(Cα) = 0.
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It follows (by countable additivity) that

〈$(k),A〉 = νk+1
A (Dk+1) = νk+1

A (
⋃

i∈Γ+

Ck+1
i ) =

∑

i∈Γ+

νA(Ci)
k+1.

� �

It follows from Lemma 22 that the spectrum Sp$(A) is computable from the
sequence of (non-increasing) values (〈$(k),A〉)k∈N.

We assume that every finite sequence x = (x1, . . . , xn) of positive reals is implic-
itly embedded in an infinite sequence by defining xi = 0 for i > n. Recall the usual
`k norms:

‖x‖k =
(∑

i

|xi|k
)1/k

.

Hence above equations rewrite as

(4) ‖Sp$(A)‖k+1 = 〈$(k),A〉1/(k+1)

We shall prove that the spectrum is, in a certain sense, defined by a continuous
function. We need the following technical lemma.

Lemma 23. For each n ∈ N, let an = (an,i)i∈N be a non-increasing sequence of
positive real numbers with bounded sum (i.e ‖an‖1 <∞ for every n ∈ N).

Assume that for every integer k ≥ 1 the limit sk = limn→∞ ‖an‖k exists.
Then (an)n∈N converges in the space c0 of all sequences converging to zero (with

norm ‖ · ‖∞).

Proof. We first prove that the sequences converge pointwise, that is that there
exists a sequence x = (xi)i∈N such that for every i ∈ N it holds

xi = lim
n→∞

an,i.

For every ε > 0, if sk < ε then an,1 < 2ε for all sufficiently large values of n.
Thus if sk = 0 for some k, the limit limn→ an,i exists for every i and is null. Thus,
we can assume that sk is strictly positive for every k ∈ N.

Fix k ∈ N. There exists N ∈ N such that for every n ≥ N it holds |skk−‖an‖k| <
skk/k. As (an,i)i∈N is a non-increasing sequence of positive real numbers, for every
n 6= N it holds

akn,1 ≤ ‖an‖k < skk(1 + 1/k)

and

ak−1
n,1 ≥ ‖an‖k > skk(1− 1/k)

Hence

log sk +
log(1 + 1/k)

k
≥ log an,1 ≥

(
1 +

1

k − 1

)(
log sk +

log(1− 1/k)

k

)

Thus x1 = limn→∞ an,1 exists and x1 = limk→∞ sk. Inductively, we get that for
each i ∈ N, the limit xi = limn→∞ an,i exists and that

xi = lim
k→∞

(skk −
∑

j<i

xkj )1/k.

We now prove that the converge is uniform, that is that for every ε > 0 there
exists N such that for every n ≥ N it holds

‖x− an‖∞ < ε.

As an ∈ `1 and ‖an‖1 converges there exists M such that ‖an‖1 ≤ M for every
n ∈ N. Let ε > 0. Let A = min{i : xi ≤ ε/3}. (Note that A ≤ 3M/ε.) There exists



46 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

N such that for every n ≥ N it holds supi≤A |xi − an,i| < ε/3. Moreover, for every
i > A it holds

0 ≤ an,i ≤ an,A < xA + ε/3 < 2ε/3.

As 0 ≤ λi ≤ ε/3 for every i > A it holds

|xi − an,i| < ε

for every i > A (hence for every i). Thus (an)n∈N converges in `∞. As obviously
each an has 0 limit, (an)n∈N converges in c0. � �

Lemma 24. Let λ be a signature. The mapping A 7→ Sp$(A) is a continuous
mapping from the space of λ-modelings with component relation $ (with the topology

of FOlocal(λ)-convergence) to the space c0 of all sequences converging to zero (with
‖ · ‖∞ norm).

Proof. Assume An is an FOlocal(λ)-convergent sequence of λ-modelings.
Let (λn,1, . . . , λn,i, . . . ) be the $-spectrum of An (extended by zero values if

finite), and let an = (an,i)i∈N be the sequence defined by an,i = λ2
n,i. Then for

every integer k ≥ 1 it holds

‖an‖k = ‖Sp$(An)‖22k = 〈$(2k−1),An〉1/k.
Hence sk = limn→∞ ‖an‖k exists. According to Lemma 23, (an)n∈N converges in
c0, thus so does (Sp$(An))n∈N. � �

8.2. Component-Local Formulas.

Definition 13 (Component relation). Let λ be a signature and let A be a λ-
relational structure.

A binary relation $ ∈ λ is a component relation of A if it is complete on the
connected components of A.

The property of $ to be a component relation can be axiomatized by a sentence
and we shall denote by K$ the class of all λ-structures for which $ is a component
relation. Note that in some applications, the relation $ can be defined through a
basic interpretation scheme.

A local formula φ with p free variables is $-local if φ is equivalent (in K$) to

φ ∧∧p−1
i=1 $(xi, xi+1). For two $-local formulas φ1, φ2 we denote by φ1

a
$ φ2 the

formula φ1 ∧ φ2 ∧ $(xa, xb) where xa ∈ Fv(φ1) and xb ∈ Fv(φ2). Notice that
φ1

a
$ φ2 is, by construction, a $-local formula.

Recall that Sn denotes the symmetric group of {1, . . . , n}. For a permutation
σ ∈ Sn, we denote by [n]/σ the set of the orbits of σ. Elements of [n]/σ (that is:
orbits) are identified with the corresponding subsets of [n].

The basis observation is that for $-local formulas, we can reduce the Stone
pairing to components.

Lemma 25. Let A be a λ-modeling and component relation $. Let ψ ∈ FOp(λ)
be a $-local formula of A.

Assume A has countably many connected components {Ai}i∈Γ. Let Γ+ be the
set of indexes i such that νA(Ai) > 0. For i ∈ Γ+ we equip Ai with the σ-algebra
ΣAi

and the probability measure νAi
, where ΣAi

is restriction of ΣA to Ai and, for
X ∈ ΣAi

, νAi
(X) = νA(X)/νA(Ai). Then

〈ψ,A〉 =
∑

i∈Γ

νA(Ai)
p 〈ψ,Ai〉.
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Proof. First note that each connected component of A is measurable: let Ai be a
connected component of A and let a ∈ Ai. Then Ai = {x ∈ A : A |= $(x, a)}
hence Ai is measurable as A is a relational sample space. Let Y = {(v1, . . . , vp) ∈
Ap : A |= ψ(v1, . . . , vp)}. Then 〈ψ,A〉 = νpA(Y ). As ψ is $-local, it also holds
Y =

⋃
i∈Γ Yi, where Yi = {(v1, . . . , vp) : Ai |= ψ(v1, . . . , vp)} = Y ∩ Api . As

Ai ∈ ΣA and Y ∈ ΣpA, it follows that Yi ∈ ΣpA and (by countable additivity) it
holds

〈ψ,A〉 = νpA(Y ) =
∑

i∈Γ

νpA(Yi) =
∑

i∈Γ+

νA(Ai)
pνpAi

(Yi) =
∑

i∈Γ

νA(Ai)
p 〈ψ,Ai〉.

� �

Corollary 2. Let A be a finite λ-structure with component relation $. Let ψ ∈
FOp(λ) be a $-local formula of A.

Let A1, . . . ,An be the connected components of A. Then

〈ψ,A〉 =

n∑

i=1

( |Ai|
|A|

)p
〈ψ,Ai〉.

In the aim of extending this reduction result to all local first-order formulas
(Theorem 21), we consider, as a first step, the case of finite conjunctions of $-local
formulas.

Lemma 26. Let ψ1, . . . , ψn be $-local formulas.
Then for modeling A ∈ K$ it holds

〈
n∧

i=1

ψi,A〉 =
∑

σ∈Sn
(−1)ε(σ)

∏

C∈[n]/σ

〈
i

$
i∈C

ψi,A〉.

Proof. For each i = 1, . . . , n select some xai in Fv(ψi). For a partition τ of [n]
we denote by ζτ the conjunction of $(xai , xaj ) for every i, j belonging to a same
part and of ¬$(xai , xaj ) for every i, j belonging to different parts. Then it is easily
checked that every partition τ of [n] it holds

∏

C∈τ
〈
i

$
i∈C

ψi,A〉 =
∑

τ ′≥τ
〈ζτ ∧

n∧

i=1

ψi,A〉.

Recall that the Möbius function of the lattice of the partitions of [n] is

µ(τ, τ ′) = (−1)|τ |−|τ
′|

n∏

i=3

((i− 1)!)ri ,

where |τ | is the number of parts of τ and ri is the number of parts of τ ′ that are
unions of i parts of τ .

Moreover, to every permutation σ ∈ Sn we can associate the partition [n]/σ.
Note that a partition τ of [n] is obtained from exactly

∏n
i=3((i−1)!)ni permutations

where ni is the number of parts of τ with exactly ni elements (see for instance
[7, 63]).

By Möbius inversion, denoting by τ0 the trivial partition with all parts of size 1,
it holds

〈
n∧

i=1

ψi,A〉 =
∑

τ

(−1)|τ0|−|τ |µ(τ0, τ)
∏

C∈τ
〈
i

$
i∈C

ψi,A〉

=
∑

σ∈Sn
(−1)ε(σ)

∏

C∈[n]/σ

〈
i

$
i∈C

ψi,A〉.

� �
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We are now ready to reduce Stone pairing of local formulas to Stone pairings
with $-local formulas.

Lemma 27. Let φ ∈ FOlocal
p (λ). Then there exist, for every partition τ of [p] with

parts I1, . . . , I|τ |, $-local formulas φτ,i (with 1 ≤ i ≤ |τ |) with free variables xj (for
j ∈ Ii) and constants ci such that for modeling A ∈ K$ it holds

〈φ,A〉 =
∑

τ

∑

c∈Cτ

∑

σ∈S|τ|
(−1)ε(σ)

∏

P∈[|τ |]/σ
〈
i

$
i∈P

(φτ,i ⊕ ci),A〉.

Proof. For a partition τ of [p] we denote by ζτ the conjunction of $(xi, xj) for every
i, j belonging to a same part and of ¬$(xi, xj) for every i, j belonging to different
parts. Then, for any two distinct partitions τ and τ ′, the formula ζτ ∧ ζ ′τ is never
satisfied; moreover

∨
τ ζτ is always satisfied. Thus

φ =
∨

τ

(ζτ ∧ φ)

and, as the terms of the disjunction are mutually exclusive, it holds

〈φ,A〉 =
∑

τ

〈ζτ ∧ φ,A〉.

For every partition τ with parts I1, . . . , I|τ | there exist $-local formulas φτ,i
(with 1 ≤ i ≤ |τ |) with free variables xj (for j ∈ Ii) and a Boolean function gτ ,
such that it holds

A |= ζτ ∧ φ ⇐⇒ A |= gτ (φτ,1, . . . , φτ,|τ |).

Denote by ⊕ the exclusive disjunction, so that for every ψ it holds ψ⊕0 = ψ and
ψ⊕1 = ¬ψ. By considering the truth-table of gτ we can expand gτ (φτ,1, . . . , φτ,|τ |)
as

∨

c∈Cτ

|τ |∧

i=1

(φτ,i ⊕ ci),

where Cτ is a subset of {0, 1}|τ |. Note that the terms of the disjunction are mutually
exclusive and that ¬φτ,i is $-local, as φτ,i is $-local. Hence

〈φ,A〉 =
∑

τ

∑

c∈Cτ
〈
|τ |∧

i=1

(φτ,i ⊕ ci),A〉.

According to Lemma 26, it holds

〈
|τ |∧

i=1

(φτ,i ⊕ ci),A〉 =
∑

σ∈S|τ|
(−1)ε(σ)

∏

P∈[|τ |]/σ
〈
i

$
i∈P

(φτ,i ⊕ ci),A〉.

Hence

〈φ,A〉 =
∑

τ

∑

c∈Cτ

∑

σ∈S|τ|
(−1)ε(σ)

∏

P∈[|τ |]/σ
〈
i

$
i∈P

(φτ,i ⊕ ci),A〉.

� �

We can deduce the generalization of Lemma 25 to local formulas.
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Theorem 21. Let p ∈ N and φ ∈ FOlocal
p (λ). There is an integer s, finite sets Ii

(for 1 ≤ i ≤ s), values εi ∈ {−1, 1} (for 1 ≤ i ≤ s), and formulas ϕi,j ∈ FOlocal
p

(for 1 ≤ i ≤ s and j ∈ Ii) such that for every modeling A with component relation
$, and countable set of connected components {Ak}k∈Γ, it holds

〈φ,A〉 =

s∑

i=1

εi
∏

j∈Ii

∑

k∈Γ

νA(Ak)p〈ϕi,j ,Ak〉.

Proof. This is a direct consequence of Lemma 27 and Lemma 25. � �

The case of sentences can be handled easily. For a set X and an integer m, define

Bigm(X) =

{
1 if |X| ≥ m
0 otherwise

Lemma 28. Let θ ∈ FO0(λ).

Then there exist formulas ψ1, . . . , ψs ∈ FOlocal
1 with quantifier rank at most

q(qrank(θ)), integers m1, . . . ,ms ≤ qrank(θ), and a Boolean function F such that
for every λ-structure A with component relation $ and connected components Bi

(i ∈ I), the property A |= θ is equivalent to

F (Bigm1
({i,Bi |= (∃x)ψ1(x)}), . . . ,Bigms({i,Bi |= (∃x)ψs(x)})) = 1.

Proof. Indeed, it follows from Gaifman locality theorem 10 that — in presence of
a component relation $ — every sentence θ with quantifier rank r can be written
as a Boolean combination of sentences θk of the form

∃y1 . . . ∃ymk
( ∧

1≤i<j≤mk
¬$(yi, yj) ∧

∧

1≤i≤mk
ψk(yi)

)

where ψk is $-local, mk ≤ qrank(θ), and qrank(ψk) ≤ q(qrank(θ)), for some fixed
function q. As A |= θk if and only if Bigmk({i,Bi |= (∃x)ψk(x)}) = 1, the lemma
follows. � �

8.3. Convex Combinations of Modelings. In several contexts, it is clear when
disjoint union of converging sequences form a converging sequence. If two graph
sequences (Gn)n∈N and (Hn)n∈N are L-convergent or BS-convergent, it is clear that
the sequence (Gn ∪Hn)n∈N is also convergent, provided that the limit

lim
n→∞

|Gn|/(|Gn|+ |Hn|)

exists. The same applies if we merge a countable set of L-convergent (resp. BS-
convergent) sequences (Hn,i)n∈N (where i ∈ N), with the obvious restriction that
for each i ∈ N all but finitely many Hn,i are empty graphs.

We shall see that the possibility to merge up to a countable set of converg-
ing sequences to FOlocal-convergence will need a further assumption, namely the
following equality:

∑

i

lim
n→∞

|Gn,i|
|⋃j Gn,j |

= 1.

The importance of this assumption is illustrated by the next example.
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Example 8. Let Nn = 22n (so that N(n) is divisible by 2i for every 1 ≤ i ≤ 2n).
Consider sequences (Hn,i)n∈N of edgeless black and white colored graphs where
Hn,i is

• empty if i > 2n,
• the edgeless graph with (2−i + 2−n)Nn white vertices and 2−iNn black

vertices if n is odd,
• the edgeless graph with (2−i + 2−n)Nn black vertices and 2−iNn white

vertices if n is even.

For each i ∈ N, the sequence (Hn,i)n∈N is obviously L-convergent (and even FO-
convergent) as the proportion of white vertices in Hn,i tends to 1/2 as n→∞. The
order of Gn =

⋃
i∈NHn,i is 3Nn and |Hn,i|/|Gn| tends to 2

3 .2
−i as n goes to infinity.

However the sequence (Gn)n∈N is not L-convergent (hence not FOlocal-convergent).
Indeed, the proportion of white vertices in Gn is 2/3 if n is odd and 1/3 is n is
even.

Definition 14 (Convex combination of Modelings). Let Hi be λ-modelings for
i ∈ I ⊆ N and let (αi)i∈I be positive real numbers such that

∑
i∈I αi = 1.

Let H be the disjoint union of the Hi, let ΣH = {⋃iXi : Xi ∈ ΣHi} and, for
X ∈ ΣH, let νH(X) =

∑
i αiνHi

(X ∩Hi).
Then H is the convex combination of modelings Hi with weights αi and we

denote it by
∐
i∈I(Hi, αi).

Lemma 29. Let Hi be λ-modelings for i ∈ I ⊆ N and let (αi)i∈I be positive real
numbers such that

∑
i∈I αi = 1. Let H =

∐
i∈I(Hi, αi) Then

(1) H is a modeling, each Hi is measurable and νH(Hi) = αi holds for every
i ∈ I;

(2) if all the Hi are weakly uniform and either all the Hi are infinite or all
the Hi are finite, I is finite, and αi = |Hi|/

∑
i∈I |Hi|, then H is weakly

uniform.

Proof. We consider the signature λ+ obtained from λ by adding a new binary
relation $, and the basic interpretation scheme I1 of λ+-structures in λ-structures
corresponding to the addition of the new relation $ by the formula θ$ = 1. This
means that for every λ-structure A it holds I1(A) |= ∀x, y $(x, y). Let H+

i =
I1(Hi). This is a weakly uniform modeling.

Let H+ =
∐
i∈I(H

+
i , αi). Clearly, the family ΣH+ is a σ-algebra, (H,ΣH+) is a

standard Borel space, and νH+ is a probability measure. Moreover, by construction,
H+
i is measurable and νH+(H+

i ) = αi.
Let φ ∈ FOp(λ). First notice that for every (v1, . . . , vp) ∈ Hp+q (which is also

(H+)p+q) it holds Ωφ(H) = Ωφ(H+), that is:

H |= φ(v1, . . . , vp) ⇐⇒ H+ |= φ(v1, . . . , vp).

It follows from Lemma 27 that the set Ωφ(H+) may be obtained as a Boolean
combination of products of sets defined by $-local formulas. So, we can assume
that φ is $-local. Then Ωφ(H+) is the union of the sets Ωφ(Hi). All these sets are
measurable (as Hi is a modeling) thus their union is measurable (by construction
of ΣH). It follows that H+ is a modeling, and so is H = H+ −$.

Assume that all the Hi are weakly uniform. If all the Hi are finite, I is finite,
and αi = |Hi|/

∑
i∈I |Hi|, then H is the modeling associated to the union of the

Hi hence it is weakly uniform. Otherwise all the Hi are infinite, hence all the νHi

are atomless, νH is atomless, and H is weakly uniform. � �

Lemma 30. Let p ∈ N and φ ∈ FOlocal
p (λ). There is an integer s, finite sets Ii

(for 1 ≤ i ≤ s), values εi ∈ {−1, 1} (for 1 ≤ i ≤ s), and formulas ϕi,j ∈ FOlocal
p
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(for 1 ≤ i ≤ s and j ∈ Ii) such that for every countable set of modelings Aj and
weights αj (j ∈ J ⊆ N and

∑
j αj = 1) it holds

〈φ,A〉 =

s∑

i=1

εi
∏

j∈Ii

∑

k∈Γ

αpk〈ϕi,j ,Ak〉.

Proof. Considering, as above, the combination H+ =
∐
i∈I(H

+
i , αi), where H+

i is
obtained by the basic interpretation scheme adding a full binary relation $, the
result is an immediate consequence of Theorem, 21. � �

Theorem 22. Let p ∈ N, let I ⊆ N and, for each i ∈ I let (Ai,n)n∈N be an

FOlocal
p (λ)-convergent sequence of λ-modelings and let (ai,n)n∈N be a convergent

sequence of non-negative real numbers, such that
∑
i∈I ai,n = 1 holds for every

n ∈ N, and such that
∑
i∈I limn→∞ ai,n = 1.

Then the sequence of convex combinations
∐
i∈I(Ai,n, ai,n) is FOlocal

p (λ)-
convergent.

Proof. If I is finite, then the result follows from Lemma 30. Hence we can assume
I = N.

Let φ ∈ FOlocal
p , let q ∈ N, and let ε > 0 be a positive real. Assume that for

each i ∈ N the sequence (Ai,n)n∈N is FOlocal
p -convergent and that (ai,n)n∈N is a

convergent sequence of non-negative real numbers, such that
∑
i ai,n = 1 holds

for every n ∈ N. Let αi = limn→∞ ai,n, let di = limn→∞〈φ,Ai,n〉, and let C be

such that
∑C
i=1 αi > 1 − ε/4. There exists N such that for every n ≥ N and

every i ≤ C it holds |an,i − αi| < ε/4C and |aqi,n〈φ,Ai,n〉 − αqi di| < ε/2C. Thus∣∣∣
∑C
i=1 a

q
i,n〈φ,Ai,n〉 −

∑C
i=1 α

q
i di

∣∣∣ < ε/2 and
∑
i>C+1 ai,n < ε/2. It follows that for

any n ≥ N it holds∣∣∣∣∣
∑

i>C+1

aqi,n〈φ,Ai,n〉 −
∑

i>C+1

αqi di

∣∣∣∣∣ ≤ max

( ∑

i>C+1

aqi,n,
∑

i>C+1

αqi di

)
< ε/2

hence |∑i a
q
i,n〈φ,Ai,n〉 −

∑
i α

q
i di| < ε.

For every ψ ∈ FOlocal
p , the expression appearing in Lemma 30 for the expansion

of 〈φ,∐i(Ai,n, ai,n)〉 is a finite combination of terms of the form
∑
i a
q
i,n〈φ,Ai,n〉,

where q ∈ N and φ ∈ FOlocal
p . It follows that the value 〈φ,∐i(Ai,n, ai,n)〉 converges

as n grows to infinity. Hence (
∐
i(Ai,n, ai,n))n∈N is FOlocal

p -convergent. � �

Corollary 3. Let p ≥ 1 and let (An)n∈N be a sequence of finite λ-structures.
Assume An be the disjoint union of Bn,i (i ∈ N) where all but a finite number

of Bn,i are empty. Let an,i = |Bn,i|/|An|. Assume further that:

• for each i ∈ N, the limit αi = limn→∞ an,i exists,

• for each i ∈ N such that αi 6= 0, the sequence (Bn,i)n∈N is FOlocal
p -

convergent,
• it holds ∑

i≥1

αi = 1.

Then, the sequence (An)n∈N is FOlocal
p -convergent.

Moreover, if Li is a modeling FOlocal
p -limit of (Bn,i)n∈N when αi 6= 0 then∐

i(Li, αi) is a modeling FOlocal
p -limit of (An)n∈N.
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Proof. This follows from Theorem 22, as An =
∐
i(Bn,i, an,i). � �

Definition 15. A family of sequence (Ai,n)n∈N (i ∈ I) of λ-structures is uniformly
elementarily convergent if, for every formula φ ∈ FO1(λ) there is an integer N such
that it holds

∀i ∈ I, ∀n′ ≥ n ≥ N, (Ai,n |= (∃x)φ(x)) =⇒ (Ai,n′ |= (∃x)φ(x)).

First notice that if a family (Ai,n)n∈N (i ∈ I) of sequences is uniformly elemen-
tarily convergent, then each sequence (Ai,n)n∈N is elementarily convergent

Lemma 31. Let I ⊆ N , and let (Ai,n)n∈N (i ∈ I) be sequences forming a uniformly
elementarily convergent family.

Then (
⋃
i∈I Ai,n)n∈N is elementarily convergent.

Moreover, if (Ai,n)n∈N is elementarily convergent to Âi then (
⋃
i∈I Ai,n)n∈N is

elementarily convergent to
⋃
i∈I Âi.

Proof. Let λ+ be the signature λ augmented by a binary relational symbol $.
Let I1 be the basic interpretation scheme of λ+-structures in λ-structures defining
$(x, y) for every x, y. Let A+

i,n = I1(Ai,n). According to Lemma 28, for every

sentence θ ∈ FO0(λ) there exist formulas ψ1, . . . , ψs ∈ FOlocal
1 , an integer m, and a

Boolean function F such that the property
⋃
i∈I A+

i,n |= θ is equivalent to

F (Bigm1
({i,Ai,n |= (∃x)ψ1(x)}), . . . ,Bigms({i,Ai,n |= (∃x)ψs(x)})) = 1.

According to the definition of a uniformly elementarily convergent family there is
an integer N such that, for every 1 ≤ j ≤ s, the value Bigmj ({i,Ai,n |= (∃x)ψj(x)})
is a function of n, which is non-decreasing for n ≥ N . It follows that this func-
tion admits a limit for every 1 ≤ j ≤ s hence the exists an integer N ′ such that
either

⋃
i∈I A+

i,n |= θ holds for every n ≥ N ′ or it holds for no n ≥ N ′. It fol-

lows that (
⋃
i∈I A+

i,n)n∈N is elementarily convergent. Thus (by means of the basic

interpretation scheme deleting $) (
⋃
i∈I Ai,n)n∈N is elementarily convergent

If I is finite, it is easily checked that if (Ai,n)n∈N is elementarily convergent to

Âi then (
⋃
i∈I Ai,n)n∈N is elementarily convergent to

⋃
i∈I Âi.

Otherwise, we can assume I = N. Following the same lines, it is easily checked

that (
⋃n
i=1 Ãi)n∈N converges elementarily to (

⋃
i∈N Ãi)n∈N. For i, n ∈ N, let

Bi,2n = Ai,n and Bi,2n+1 = Ãi. As, for each i ∈ N, Ãi is an elementary limit of
(Ai,n)n∈N it is easily checked that the family of the sequences (Bi,n)n∈N is uniformly
elementarily convergent. It follows that (

⋃
i∈N Bi,n)n∈N is elementarily convergent

thus the elementary limit of (
⋃
i∈I Ai,n)n∈N and (

⋃n
i=1 Ãi)n∈N are the same, that

is
⋃
i∈I Ãi. � �

From Corollary 3 and Lemma 31 then follows the next general result.

Corollary 4. Let (An)n∈N be a sequence of finite λ-structures.
Assume An be the disjoint union of Bn,i (i ∈ N) where all but a finite number

of Bn,i are empty. Let an,i = |Bn,i|/|An|. Assume that:

• for each i ∈ N, the limit αi = limn→∞ an,i exists and it holds
∑

i≥1

αi = 1,

• for each i ∈ N such that αi 6= 0, the sequence (Bn,i)n∈N is FOlocal-
convergent,
• the family {(Bn,i)n∈N (i ∈ N)} is uniformly elementarily convergent.
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Then, the sequence (An)n∈N is FO-convergent.
Moreover, if Li is a modeling FO-limit of (Bn,i)n∈N when αi 6= 0 and an ele-

mentary limit of (Bn,i)n∈N when αi = 0 then
∐
i(Li, αi) is a modeling FO-limit of

(An)n∈N.

9. Decomposing Sequences: the Comb Structure

Definition 16. Let (An)n∈N be a sequence of finite λ-structures, having $ ∈ λ as
a component relation. In the following, we assume that $-spectra are extended to
infinite sequences by adding zeros if necessary.

• The sequence (An)n∈N is $-nice if Sp$(An) converges pointwise;
• The limit $-spectrum of a $-nice sequence (An)n∈N is the pointwise limit

of Sp$(An);
• the $-support is the set I of the indexes i for which the limit $-spectrum

is non-zero;
• the sequence has full $-spectrum if, for every index i not in the $-support,

there is some N such that the ith value of Sp$(An) is zero for every n > N .

As proved in Lemma 24, every FOlocal-convergent sequence is $-nice.

Lemma 32. Let (An) be a $-nice sequence of λ-structures with empty $-support.
Then the following conditions are equivalent:

(1) the sequence (An) is FOlocal-convergent;

(2) the sequence (An) is FOlocal
1 -convergent.

Moreover, for every $-local formula φ with p > 1 free variables it holds

lim
n→∞

〈φ,An〉 = 0.

Proof. FOlocal-convergence obviously implies FOlocal
1 -convergence. So, assume that

(An)n∈N is FOlocal
1 -convergent, and let φ be a $-local first-order formula with p > 1

free variables. For n ∈ N, let Bn,i (i ∈ Γn) denote the connected components of
An. As (An) is $-nice and has empty $-support, there exists for every ε > 0 an
integer N such that for n > N and every i ∈ Γn it holds |Bn,i| < ε|An|. Then,
according to Corollary 2, for n > N

〈φ,An〉 =
∑

i∈Γn

( |Bn,i|
|An|

)p
〈φ,Bn,i〉

≤
∑

i∈Γn

( |Bn,i|
|An|

)p

<
∑

i∈Γn

|Bn,i|
|An|

εp−1 = εp−1

Hence 〈φ,An〉 converges (to 0) as n grows to infinity. It follows that (An)n∈N is

FOlocal-convergent, according to Lemma 27. � �

Lemma 33. Let (An)n∈N be an FOlocal-convergent sequence of finite λ-structures,
with component relation $ and limit $-spectrum (λi)i∈I . For n ∈ N, let Bn,i be
the connected components of An order in non-decreasing order (with Bn,i empty if
i is greater than the number of connected components of An). Let a ≤ b be the first
and last occurrence of λa = λb in the $-spectrum and let A′n be the union of all
the Bn,i for a ≤ i ≤ b.

Then (A′n)n∈N is FO-convergent if λa > 0 and FOlocal-convergent if λa = 0.
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Assume moreover that (An)n∈N has a modeling FOlocal-limit L. Let L′ be the
union of the connected components Li of L with νL(Li) = λa. Equip L′ with the
σ-algebra ΣL′ which is the restriction of ΣL to L′ and the probability measure νL′

defined by νL′(X) = νL(X)/νL(L′) (for X ∈ ΣL′).

Then L′ is a modeling FO-limit of (A′n)n∈N if λa > 0 and a modeling FOlocal-
limit of (A′n)n∈N if λa = 0.

Proof. Extend the sequence λ to the null index by defining λ0 = 2. Let r =
min(λa−1/λa, λb/λb+1) (if λb+1 = 0 simply define r = λa−1/λa). Notice that r > 1.
Let φ be a $-local formula with p free variables. According to Corollary 2 it holds

〈φ,An〉 =
∑

i

( |Bn,i|
|An|

)p
〈φ,Bn,i〉.

In particular, it holds

〈$(p),An〉 =
∑

i

( |Bn,i|
|An|

)p
.

Let α > 1/(1− rp). Define

wn,i =

( |Bn,i|
|An|

)p
(α+ 〈φ,Bn,i〉).

From the definition of r it follows that for each n ∈ N, wn,i > wn,j if i < a and
j ≥ a or i ≤ b and j > b. Let σ ∈ S∞ be such that an,i = wn,σ(i) is non-increasing.
It holds ∑

i

an,i =
∑

i

wn,i = α〈$(p),An〉+ 〈φ,An〉.

Hence

sp = lim
n→∞

∑

i

apn,i

exists. According to Lemma 23 it follows that for every i ∈ N the limit limn→∞ an,i
exists. Moreover, as σ globally preserves the set {a, . . . , b} it follows that the limit

d = lim
n→∞

b∑

i=a

( |Bn,i|
|An|

)p
(α+ 〈φ,Bn,i〉)

exists. As for every i ∈ {a, . . . , b} it holds limn→∞ |Bn,i|/|An| = λa and as

〈φ,A′n〉 =
∑b
i=a(|Bn,i|/|An|)p〈φ,Bn,i〉 we deduce

lim
n→∞

〈φ,A′n〉 = d− (b− a+ 1)α.

Hence limn→∞〈φ,A′n〉 exists for every $-local formula and, according to Lemma 27,

the sequence (A′n)n∈N is FOlocal-convergent.
Assume λ > 0. Let N = b− a+ 1. To each sentence θ we associate the formula

θ̃ ∈ FOlocal
N that asserts that the substructure induced by the closed neighborhood

of x1, . . . , xN satisfies θ and that x1, . . . , xN are pairwise distinct and non-adjacent.
For sufficiently large n, the structure A′n has exactly N connected components. It

is easily checked that if A′n does not satisfy θ then 〈θ̃,A′n〉 = 0, although if A′n
does not satisfy θ then

〈θ̃,A′n〉 ≥
(mina≤i≤b |Bn,i|∑b

i=a |Bn,i|

)N
,

hence 〈θ̃,A′n〉 > (2N)−N for all sufficiently large n. As 〈θ̃,A′n〉 converges for
every sentence θ, we deduce that the sequence (A′n)n∈N is elementarily convergent.
According to Theorem 11, the sequence (A′n)n∈N is thus FO-convergent.
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Now assume that (An)n∈N has a modeling FOlocal-limit L. First note that Li
being an equivalence class of $ it holds Li ∈ ΣL, hence L′ ∈ ΣL and νL(L′) is well
defined. For every $-local formula φ ∈ FOp(λ) it holds, according to Lemma 25:

〈φ,L′〉 =

b∑

i=a

νL′(Li)
p〈φ,Li〉

=
1

νL(L′)p

b∑

i=a

νL(Li)
p〈φ,Li〉

We deduce that
〈φ,L′〉 = lim

n→∞
〈φ,A′n〉.

According to Lemma 27, it follows that the same equality holds for every φ ∈
FOlocal(λ) hence L′ is a modeling FOlocal-limit of the sequence (A′n)n∈N.

As above, for λa > 0, if L′ is a modeling FOlocal-limit of (A′n)n∈N then it is a
modeling FO-limit.

� �

Lemma 34. Let (An)n∈N be an FO-convergent sequence of finite λ-structures, with
component relation $. Assume all the An have at most k connected components.
Denote by Bn,1, . . . ,Bn,k these components (and additional empty λ-structures if
necessary).

Assume that for each 1 ≤ i ≤ k it holds limn→∞ |Bn,i|/|An| = 1/k.
Then there exists a sequence (σn)n∈N of permutations of [k] such that for each

1 ≤ i ≤ k the sequence (Bn,σn(i))n∈N is FO-convergent.

Proof. To a formula φ ∈ FOp(λ) we associate the $-local formula φ̃ ∈ FOlocal
p (λ)

asserting that all the free variables are $-adjacent and that their closed neighbor-
hood (that is their connected component) satisfies φ. Then essentially the same
proof as above allows to refine An into sequences such that 〈φ,A′n,i〉 is constant
on the connected components of each of the A′n. Considering formulas allowing to
split at least one of the sequences, we repeat this process (at most k − 1 times)
until each A′n,i contains equivalent connected components. Then, A′n,i can be split
into connected components in an arbitrary order, thus obtaining the sequences
Bn,i. � �

So we have proved that a FO-convergent can be decomposed by isolines of the
$-spectrum. In the next sections, we shall investigate how to refine further.

9.1. Sequences with Finite Spectrum. For every $-nice sequence (An)n∈N
with finite support I, we define the residue Rn of An as the union of the connected
components Bn,i of An such that i /∈ I.

When one considers an FOlocal-convergent sequence (An) with a finite support

then the sequence of the residues forms a sequence which is either FOlocal-convergent
or “negligible” in the sense that limn→∞ |Rn|/|An| = 0. This is formulated as
follows:

Lemma 35. Let (An)n∈N be a sequence of λ-structures with component relation
$. For each n ∈ N and i ∈ N, let Bn,i be the i-th largest connected component of
An.

Assume that (An)n∈N is FOlocal-convergent and has finite spectrum (λi)i∈I . Let
Rn be the residue of An.

Then λ′ = limn→∞ |Rn|/|An| exists and either λ′ = 0 or (Rn)n∈N is FOlocal-
convergent.
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Proof. Clearly, λ′ = 1 −∑i λi. Assume λ′ > 0. First notice that for every ε > 0
there exists N such that for every i > N , the λ-structure Rn has no connected
component of size at least ε/2λ′|An| and Rn has order at least λ′/2|An|. Hence, for
every i > N , the λ-structure Rn has no connected component of size at least ε|Rn|.
According to Lemma 32, proving that (Rn)n∈N is FOlocal-convergent reduces to

proving that (Rn)n∈N is FOlocal
1 -convergent.

Let φ ∈ FOlocal
1 . We group the λ-structures Bn,i (for i ∈ I) by values of λi as

A′n,1, . . . ,A
′
n,q. Denote by cj the common value of λi for the connected components

Bn,i in A′n,j . According to Corollary 2 it holds (as φ is clearly $-local):

〈φ,An〉 =
∑

i

|Bn,i|
|An|

〈φ,Bn,i〉

=
∑

i∈I

|Bn,i|
|An|

〈φ,Bn,i〉+
∑

i/∈I

|Bn,i|
|An|

〈φ,Bn,i〉

=

q∑

j=1

|A′n,j |
|An|

〈φ,A′n,j〉+
|Rn|
|An|
〈φ,Rn〉

According to Lemma 33, each sequence (A′n,j)n∈N is FO-convergent. Hence the
limit limn→∞〈φ,Rn〉 exists and we have

lim
n→∞

〈φ,Rn〉 =
1

λ′

(
lim
n→∞

〈φ,An〉 −
q∑

j=1

cj lim
n→∞

〈φ,A′n,j〉
)
.

It follows that the sequence (Rn)n∈N is FOlocal-convergent. � �

The following result finally determines the structure of converging sequences
of (disconnected) λ-structures with finite support. This structure is called comb
structure, see Fig 6.

Theorem 23 (Comb structure for λ-structure sequences with finite spectrum). Let

(An)n∈N be an FOlocal-convergent sequence of finite λ-structures with component
relation $ and finite spectrum (λi)i∈I . Let Rn be the residue of An.

Then there exists, for each n ∈ N, a permutation fn : I → I such that it holds

• limn→∞maxi/∈I |Bn,i|/|An| = 0;
• limn→∞ |Rn|/|An| exists;
• for every i ∈ I, the sequence (Bn,fn(i))n∈N is FO-convergent and

limn→∞ |Bn,fn(i)|/|An| = λi;

• either limn→∞ |Rn|/|An| = 0, or the sequence (Rn)n∈N is FOlocal-
convergent.

Moreover, if (An)n∈N is FO-convergent then (Rn)n∈N is elementary-convergent.

Proof. This lemma is a direct consequence of Lemmas 33, 34 and 35, except that we
still have to prove FO-convergence of (Rn)n∈N in the case where (An)n∈N is FO-
convergent. As I is finite, the elementary convergence of (Rn)n∈N easily follows
from the one of (An) and the one of the (Bn,fn(i)) for i ∈ I. � �

9.2. Sequences with Infinite Spectrum. Let (An)n∈N be a $-nice sequence
with infinite spectrum (and support I = N). In such a case, the notion of a residue
becomes more tricky and will need some technical definitions. Before this, let us
take the time to give an example illustrating the difficulty of the determination of
the residue Rn in the comb structure of sequences with infinite spectrum.
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G1

G2

G3

Gn

Hn,1 Hn,k Rn

λ1 λk λ′ = 1 −∑i∈I λi

Figure 6. Illustration of the Comb structure for sequences with
finite support

Example 9. Consider the sequence (Gn)n∈N where Gn is the union of 2n stars
Hn,1, . . . ,Hn,2n , where the i-th star Hn,i has order 22n(2−i+2−n)/2. Then it holds

λi = lim
n→∞

|Hn,i|/|Gn| = 2−(i+1)

hence
∑
i λi = 1/2 thus the residue asymptotically should contain half of the ver-

tices of Gn! An FO-limit of this sequence is shown Fig. 7.

This example is not isolated. In fact it is quite frequent in many of its variants.
To decompose such examples we need a convenient separation. This is provided by
the notion of clip.

Definition 17. • A clip of a $-nice sequence (An)n∈N with support N is a
non-decreasing function C : N→ N such that limn→∞ C(n) =∞ and

∀n′ ≥ n
C(n)∑

i=1

∣∣∣∣
|Bn′,i|
|An′ |

− λi
∣∣∣∣ ≤

∑

i>C(n)

λi

• The residue Rn of An with respect to a clip C(n) is the disjoint union of
the Bn,i for i > C(n).

Proposition 4. Every $-nice sequence (An)n∈N with infinite support has a clip
C0, which is defined by

C0(n) = sup

{
M, (∀n′ ≥ n)

M∑

i=1

∣∣∣∣
|Bn′,i|
|An′ |

− λi
∣∣∣∣ ≤

∑

i>M

λi

}
.

Moreover, limn→ C0(n) =∞ and a non decreasing function C is a clip of (An)n∈N
if and only if C ≤ C0 and limn→ C(n) =∞.
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Figure 7. An FO-local limit. On the left side, each rectangle
correspond to a star with the upper left point as its center; on the
right side, each vertical line is a star with the upper point as its
center.

Proof. Indeed, for each n ∈ N, the value zl(M) = supn′≥n
∑M
i=1

∣∣∣∣
|Bn′,i|
|An′ | − λi

∣∣∣∣ is

non-decreasing function of C with zl(0) = 0, and zr(M) =
∑
i>M λi is a decreasing

function of C with zr(0) =
∑
i λi > 0 hence C0 is well defined. Moreover, for every

integerM , let α =
∑
i>M λi > 0. Then, as limn→∞ |Bn′,i|/|An′ | = λi there existsN

such that for every n′ ≥ N and every 1 ≤ i ≤M it holds ||Bn′,i|/|An′ |−λi| ≤ α/M
thus for every n′ ≥ N it holds

M∑

i=1

∣∣∣∣
|Bn′,i|
|An′ |

− λi
∣∣∣∣ ≤ α =

∑

i>M

λi.

It follows that C0(N) ≥M . Hence limn→∞ C0(n) =∞.
That a non decreasing function C is a clip of (An)n∈N if and only if C ≤ C0 and

limn→ C(n) =∞ follows directly from the definition. � �

Lemma 36. Let (An)n∈N be a $-nice sequence with support N, and let C be a clip
of (An)n∈N.

Then the limit λ′ = limn→∞
|Rn|
|An| exists and λ′ = 1−∑i λi.

Proof. As C is a clip, it holds for every n ∈ N

∑

i

λi − 2
∑

i>C(n)

λi ≤
C(n)∑

i=1

|Bn,i|
|An|

≤
∑

i

λi.

Also, for every ε > 0 there exists n such that |∑C(n)
i=1 λi −

∑
i λi| < ε, that is:∑

i>C(n) λi < ε. It follows that

lim
n→∞

C(n)∑

i=1

|Bn,i|
|An|

=
∑

i

λi.

Hence the limit λ′ = limn→∞
|Rn|
|An| exists and λ′ = 1−∑i λi. � �
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Lemma 37. Let (An)n∈N be a sequence of λ-structures with component relation
$. For each n ∈ N and i ∈ N, let Bn,i be the i-th largest connected component of
An (if i is at most equal to the number of connected components of An, the empty
λ-structure otherwise).

Assume that (An)n∈N is FO-convergent.
Let C : N→ N be a clip of (An)n∈N, and let Rn be the residue of An with respect

to C.
Let λ′ = limn→∞ |Rn|/|An|. Then either λ′ = 0 or (Rn)n∈N is FOlocal-convergent.

Proof. According to Lemma 36, limn→∞ |Rn|/|An| exists and λ′ = 1−∑i λi. As-
sume λ′ > 0. First notice that for every ε > 0 there exists N such that for every
i > N , the λ-structure Rn has no connected component of size at least ε/2λ′|An|
and Rn has order at least λ′/2|An|. Hence, for every i > N , the λ-structure Rn has
no connected component of size at least ε|Rn|. According to Lemma 32, proving

that (Rn)n∈N is FOlocal-convergent reduces to proving that (Rn)n∈N is FOlocal
1 -

convergent.
Let φ ∈ FOlocal

1 (thus φ is $-local). Let ε > 0. There exists k ∈ N such that∑
i≤k λi > 1− λ′ − ε/3 and such that λk+1 < λk. We group the λ-structures Bn,i

(for 1 ≤ i ≤ k) by values of λi as A′n,1, . . . ,A
′
n,q. Denote by cj the common value

of λi for the connected components Bn,i in A′n,j . According to Lemma 33, each
sequence (A′n,i)n∈N is FO-convergent. Define

µi = lim
n→∞

〈φ,A′n,i〉.

There exists N such that for every n > N it holds

q∑

i=1

|〈φ,A′n,i〉 − µi| < ε/3.

According to Corollary 2 it holds, for every n > N :

〈φ,An〉 =
∑

i

|Bn,i|
|An|

〈φ,Bn,i〉

=

k∑

i=1

|Bn,i|
|An|

〈φ,Bn,i〉+

C(n)∑

i=k+1

|An,i|
|An|

〈φ,Bn,i〉+
∑

i>C(n)

|Bn,i|
|An|

〈φ,Bn,i〉

=

q∑

i=1

ci〈φ,A′n,i〉+

C(n)∑

i=k+1

|Bn,i|
|An|

〈φ,Bn,i〉+
|Rn|
|An|
〈φ,Rn〉

Thus we have

∣∣∣∣λ′〈φ,Rn〉 −
(
〈φ,An〉 −

q∑

i=1

ciµi
)∣∣∣∣ ≤

q∑

i=1

|〈φ,A′n,i〉 − µi|+
C(n)∑

i=k+1

|Bn,i|/|An|+
∣∣|Rn|/|An| − λ′

∣∣

≤ ε.
It follows that limn→∞〈φ,Rn〉 exists. By sorting the C(n) first connected com-

ponents of each An according to both λi and Lemma 34 we obtain the following
expression for the limit:

lim
n→∞

〈φ,Rn〉 =
1

λ′
( lim
n→∞

〈φ,An〉 −
∑

i<Ĉ

λi lim
n→∞

〈φ,Bn,i〉).

� �
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Theorem 24 (Comb structure for λ-structure sequences with infinite spectrum

(local convergence)). Let (An)n∈N be an FOlocal-convergent sequence of finite λ-
structures with component relation $, support N, and spectrum (λi)i∈N. Let C :
N→ N be a clip of (An)n∈N, and let Rn be the residue of An with respect to C.

Then there exists, for each n ∈ N, a permutation fn : [C(n)]→ [C(n)] such that,
extending fn to N by putting f(i) to be the identity for i > C(n), it holds

• limn→∞maxi>C(n) |Bn,i|/|An| = 0;
• λ′ = limn→∞ |Rn|/|An| exists;
• for every i ∈ N, (Bn,fn(i))n∈N is FO-convergent;

• either λ′ = 0 or the sequence (Rn)n∈N is FOlocal-convergent.

Proof. This lemma is a direct consequence of the previous lemmas. � �

G1

G2

G3

Gn

Hn,1 Hn,i Hn,C(n) Rn

λ1 λ2 λi 1−∑
i λi

Figure 8. Illustration of the Comb structure theorem

We shall now extend the Comb structure theorem to full FO-convergence. Op-
posite to the case of a finite $-spectrum, the elementary convergence aspects will
be non trivial and will require a careful choice of a clip for the sequence.

Lemma 38. Let (An)n∈N be an FOlocal-convergent sequence of finite λ-structures
with component relation $, such that limn→∞ |An| =∞. Let Bn,i be the connected
components of An. Assume that the connected components with same λi have
been reshuffled according to Lemma 34, so that (Bn,i)i∈N is FO-convergent for each
i ∈ N.

For i ∈ N, let B̂i be an elementary limit of (Bn,i)n∈N. Then there exists a
clip C such that the sequence (Rn)n∈N of the residues is elementarily convergent.
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Moreover, if R̂ is an elementary limit of (Rn)n∈N, then
⋃
i B̂i∪R̂ is an elementary

limit of (An)n∈N.
Let B′n,i be either Bn,i if C(n) ≥ i or the empty λ-structure if C(n) < i. Then the

family consisting in the sequences (B′n,i)i∈N (i ∈ N) and of the sequence (Rn)n∈N
is uniformly elementarily convergent.

Proof. Let Â be an elementary limit of (An)n∈N.

For θ ∈ FOlocal
1 and m ∈ N we denote by θ(m) the sentence

θ(m) : (∃x1 . . . ∃xm)

( ∧

1≤i<j≤m
¬$(xi, xj) ∧

m∧

i=1

θ(xi)

)
.

According to Theorem 10, elementary convergence of a sequence of λ-structures
with component relation $ can be checked by considering sentences of the form
θ(k) for θ ∈ FOlocal

1 and k ∈ N.

Note that for every k < k′ and every λ-structure A, if it holds A |= θ(k′) then it
holds A |= θ(k). Define

M(θ) = sup{k ∈ N, Â |= θ(k)}
Ω(θ) = {i ∈ N, B̂i |= (∃x)θ(x)}.

Note that obviously |Ω(θ)| ≤M(θ).
For r ∈ N, let θ1, . . . , θF (r) be an enumeration of the local first-order formulas

with a single free variable with quantifier rank at most r (up to logical equivalence).
Define

A(r) = max(r, max
a≤F (r)

max Ω(θa)).

Let

C0(n) = sup

{
K, (∀n′ ≥ n)

K∑

i=1

∣∣∣∣
|Bn′,i|
|An′ |

− λi
∣∣∣∣ ≤

∑

i>K

λi

}

be the standard (maximal) clip on (An)n∈N (see Proposition 4).
Let B(r) be the minimum integer such that

(1) it holds C0(B(r)) ≥ A(r) (note that limn→∞ C0(n) = ∞, according to
Proposition 4);

(2) for every n ≥ B(r), a ≤ F (r) and every k ≤ r it holds An |= θ
(k)
a if and

only if M(θa) ≥ k (note that this holds for sufficiently large n as Â is an
elementary limit of (An)n∈N);

(3) for every i ≤ A(r) and a ≤ F (r) it holds

Bn,i |= (∃x)θa(x) ⇐⇒ B̂i |= (∃x)θa(x).

(note that this holds for sufficiently large n as B̂i is an elementary limit of
(Bn,i)n∈N and as we consider only finitely many values of i);

we define the non-decreasing function C : N→ N by

C(n) = max{A(r) : B(r) ≤ n}.
As limr→∞A(r) = ∞ and as C0(B(r)) ≥ A(r) it holds limr→∞B(r) = ∞. More-
over, for every r ∈ N it holds C0(B(r)) ≥ A(r) hence C0(n) ≥ C(n). According to
Proposition 4, it follows that the function C is a clip on (An)n∈N.

Let (Rn)n∈N be the resiude of (An)n∈N with respect to the clip C, and let B′n,i
be defined as Bn,i if i ≤ C(n) and the empty λ-structure otherwise. Then it is
immediate from the definition of the clip C that the family {(B′n,i)n∈N : i ∈ N}
is uniformly elementarily convergent. Using Lemma 28, it is also easily checked
that the residue (Rn)n∈N of (An)n∈N with respect to the clip C is elementarily
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convergent and thus, that the family {(B′n,i)n∈N : i ∈ N}∪{(Rn)n∈N} is uniformly
elementarily convergent. � �

The extension of the Comb structure theorem now follows directly.

Theorem 25 (Comb structure for λ-structure sequences with infinite spectrum).
Let (An)n∈N be an FO-convergent sequence of finite λ-structures with component
relation $ and infinite spectrum (λi)i∈N.

Then there exists a clip C : N → N with residue Rn and, for each n ∈ N, a
permutation fn : [C(n)] → [C(n)] such that, extending fn to N by putting f(i) to
be the identity for i > C(n), and letting B′n,i be either Bn,fn(i) if C(n) ≥ i or the
empty λ-structure if C(n) < i, it holds:

• An = Rn ∪
⋃
i∈N B′n,i;

• limn→∞maxi>C(n) |B′n,i|/|An| = 0;
• limn→∞ |Rn|/|An| exists;
• for every i ∈ N, (B′n,i)n∈N is FO-convergent;
• either limn→∞ |Rn|/|An| = 0 and (Rn)n∈N is elementarily convergent, or

the sequence (Rn)n∈N is FO-convergent;
• the family {(B′n,i)n∈N : i ∈ N} ∪ {(Rn)n∈N} is uniformly elementarily con-

vergent.

�

10. Limit of Colored Rooted Trees with Bounded Height

In this section we explicitly define modeling FO-limits for FO-convergent se-
quences of colored rooted trees with bounded height.

For the sake of simplicity, we first sketch our method for FO-convergent sequences
of colored rooted trees with bounded height.

We consider two signatures:

(1) the signature λ consisting in a binary relation ∼ (adjacency), a unary rela-
tion R (property of being a root), and c unary relations Ci (the coloring).
Colored rooted trees will be encoded as λ-structures, and the class of col-
ored rooted trees with height at most h will be denoted by Y(h).

(2) the signature λ+, which is the signature λ augmented by a new unary
relation P . The signature λ+ is used to encode colored rooted forests with
a principal connected component, whose root will be marked by relation P
instead of R. The class of colored rooted forests with a principal connected
component and height at most h will be denoted by F (h).

Classes Y(h) and F (h) obviously form basic elementary classes. Thus they can be

axiomatized by a single axioms. These axioms are denoted η
(h)
Y and η

(h)
F . For integer

p ≥ 0, we further introduce a short notation for the Stone spaces associated to the
Lindenbaum-Tarski algebras of formulas on Y(h) and F (h) with p free variables
included in {x1, . . . , xp}:

Y(h)
p = S(B(FOp(λ), η

(h)
Y ))

F(h)
p = S(B(FOp(λ

+), η
(h)
F )).

We consider three basic interpretation schemes:

(1) IY→F is a basic interpretation scheme of λ+-structures in λ-structures,
which maps a colored rooted tree with height h into a colored rooted forest
with height h − 1 (the trees rooted at the sons of the former root) and a
single vertex rooted principal component (the former root);
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(2) IF→Y is a basic interpretation scheme of λ-structures in λ+-structures,
which maps a colored rooted forest with height h into a colored rooted
tree by making each non principal root a son of the principal root;

(3) IR→P is a basic interpretation scheme of λ-structures in λ+-structures,
which maps a colored rooted tree into the “identical” colored rooted forest
having a single component. (Roughly speaking, the relation R becomes the
relation P .)

Let (Yn)n∈N be an FO-convergent sequence of finite rooted colored trees such
that limn→∞ |Yn| =∞.

According to the Comb Structure Theorem, there exists a countable set (Yn,i)n∈N
of FO-convergent sequences of colored rooted trees and an FO-convergent sequence
(Rn)n∈N of special colored rooted forests (as the isolated principal root obviously
belongs to Rn) forming a uniformly convergent family of sequences, such that
IY→F (Yn) = Rn ∪

⋃
i∈I Yn,i.

If the limit spectrum of (IY→F (Yn))n∈N is empty (i.e. I = ∅), the sequence
(Yn)n∈N of colored rooted trees is called residual, and we prove directly that a
residual sequence of colored rooted trees admit a modeling FO-limit, which is ob-
tained by equipping a connected component of a universal relational sample space
Yh with a suitable probability measure.

Otherwise, we proceed by induction over the height bound h. Denote by (λi)i∈I
the limit spectrum of (IY→F (Yn))n∈N, let λ0 = 1 − ∑i∈I λi, and let Yn,0 =
IR→P ◦ IF→Y (Rn). As (IF→Y (Rn))n∈N is residual, (Yn,0)n∈N has a modeling

FO-limit Ỹ0. By induction, each (Yn,i)n∈N has a modeling FO-limit Ỹi. As
Yn = IF→Y (

⋃
i∈I∪{0}Yn,i), we deduce (using uniform elementary convergence)

that (Yn)n∈N has modeling FO-limit IF→Y (
∐
i∈I∪{0}(Ỹi, λi)).

This finishes the outline of our construction. Now we provide details.

10.1. Preliminary Observations. We take some time for some preliminary ob-
servations on the logic structure of rooted colored trees with bounded height, that
will be of great help in our developments. These observations will be an occa-
sion to see arguments based on Ehrenfeucht-Fräıssé games and strategy stealing.
(Definitions of ≡n and Ehrenfeucht-Fräıssé games were recalled in Section 5.1.)

For a rooted colored tree Y and a vertex x ∈ Y , we denote Y(x) the subtree of
Y rooted at x, and by Y \Y(x) the rooted tree obtained from Y by removing all
the vertices in Y(s).

Lemma 39. Let Y,Y′ be colored rooted trees with height h, let s, s′ be sons of the
roots of Y and Y′, respectively.

Let n ∈ N. If Y(s) ≡n Y′(s′) and Y \Y(s) ≡n Y′ \Y′(s′), then Y ≡n Y′.

Proof. Assume Y(s) ≡n Y′(s′) and Y\Y(s) ≡n Y′\Y′(s′). In order to prove Y ≡n
Y′ we play an n-steps Ehrenfeucht-Fräıssé-game EF0 on Y and Y′ as Duplicator.
Our strategy will be based on two auxiliary n-steps Ehrenfeucht-Fräıssé-games, EF1

and EF2, on Y(s) and Y′(s′) and on Y\Y(s) and Y′ \Y′(s′), respectively, against
Duplicators following a winning strategy. Each time Spoiler selects a vertex in game
EF0, we play the same vertex in the game EF1 or EF2 (depending on the tree the
vertex belongs to), then we mimic the selection of the Duplicator of this game. it
is easily checked that this strategy is a winning strategy. � �

Lemma 40. Let Y,Y′ be colored rooted trees with height h, let s, s′ be sons of the
roots of Y and Y′, respectively.

Let n ∈ N. If Y ≡n+h Y′ and Y(s) ≡n Y′(s′), then Y \Y(s) ≡n Y′ \Y′(s′)

Proof. Assume Y ≡n+h Y′ and Y(s) ≡n Y′(s′).
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We first play (as Spoiler) s in Y then s′ in Y′. Let t′ and t be the corresponding
plays of Duplicator. Then the further n steps of the game have to map vertices in
Y(s), Y(t), Y\(Y(s)∪Y(t)) to Y′(t′), Y′(s′), Y′\(Y′(t′)∪Y′(s′)) (and converse),
for otherwise h− 2 steps would allow Spoiler to win the game. Also, by restricting
our play to one of these pairs of trees, we deduce Y(s) ≡n Y′(t′), Y(t) ≡n Y′(s′),
and Y \ (Y(s) ∪Y(t)) ≡n Y \ (Y′(s′) ∪Y′(t′)). As Y′(s′) ≡n Y(s) it follows

Y(t) ≡n Y′(s′) ≡n Y(s) ≡n Y′(t′).

Hence, according to Lemma 39, as Y \ (Y(s)∪Y(t)) = (Y \Y(s)) \Y(t) and Y′ \
(Y′(s′)∪Y′(t′)) = (Y′\Y′(s′))\Y′(t′), we deduce Y\Y(s) ≡n Y′\Y′(s′). � �

Lemma 41. Let λ be a signature of colored rooted tree and let λ+ be the signature
λ augmented by a unary symbol M (interpreted as a marking).

Let Y,Y′ be colored rooted trees with height at most h with signature λ+, such
that Y (resp. Y′) has exactly one marked vertex m (resp. m′). Assume that
both m and m′ have height t > 1 (in Y and Y′, respectively). Let s (resp. s′)
be the ancestor of m (resp. m′) at height 2. Let Unmark be the interpretation of
λ-structures in λ+-structures consisting in forgetting M and let n ∈ N.

If Unmark(Y) ≡n+h Unmark(Y′) and Y(s) ≡n Y′(s′), then Y ≡n Y′.

Proof. Assume Unmark(Y) ≡n+h Unmark(Y′) and Y(s) ≡n Y′(s′). Then it holds
Unmark(Y(s)) ≡n Unmark(Y′(s′)) thus, according to Lemma 40,

Y \Y(s) = Unmark(Y) \Unmark(Y(s))

≡n Unmark(Y′) \Unmark(Y′(s′)) = Y′ \Y′(s′).

Hence, according to Lemma 39, it holds Y ≡n Y′. � �

The next lemma states that the properties of a colored rooted trees with a
distinguished vertex v can be retrieved from the properties of the subtree rooted at
v, the subtree rooted at the father of v, etc. (see Fig. 9).

Lemma 42. Let Y,Y′ be colored rooted trees with height at most h, vt ∈ Y and
v′t ∈ Y ′ be vertices with height t. For 1 ≤ i < t, let vi (resp. v′i) be the ancestor of
vt (resp. of v′t) at height i.

Then for every integer n it holds

(∀1 ≤ i ≤ t) Y(vi) ≡n+h+1−i Y′(v′i) =⇒ (Y, vt) ≡n (Y′, v′t)

(Y, vt) ≡n+(t−1)h (Y′, v′t) =⇒ (∀1 ≤ i ≤ t) Y(vi) ≡n+(t−i)h Y′(v′i)

Proof. We proceed by induction over t. If t = 1, then the statement obviously
holds. So, assume t > 1 and that the statement holds for t− 1.

Let λ be the signature of Y and Y′, let λ+ be the signature obtained by adding
to λ a unary symbol M (interpreted as marking), and let Y+ (resp. Y′+) be the
rooted colored trees (with signature λ+) obtained from Y (resp. Y′) by marking
vt (resp. v′t).

Assume (∀1 ≤ i ≤ t) Y(vi) ≡n+h+1−i Y′(v′i). By induction, (∀2 ≤ i ≤
t) Y(vi) ≡n+(h−1)+1−(i−1) Y′(v′i) implies (Y(v2), vt) ≡n (Y′(v′2), v′t), that is Y+(v2) ≡n
Y′+(v′2). As Y ≡n+h Y′, it follows from Lemma 41 that Y+ ≡n Y′+, that is:
(Y, vt) ≡n (Y′, v′t).

Conversely, if (Y, vt) ≡n+(t−1)h (Y′, v′t) (i.e. Y+ ≡n+(t−1)h Y′+) an repeated

application of Lemma 40 gives Y+(vi) ≡n+(t−i)h Y′+(vi)
′ hence (by forgetting the

marking) Y(vi) ≡n+(t−i)h Y′(vi)′. � �

This lemma allows to encode the complete theory of a colored rooted tree Y
with height at most h and a single special vertex v as a tuple of complete theories
of colored rooted trees with height at most h.
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v1

vt

vt−1

vt

(Y, vt)

(Y1,Y2, . . . ,Yt)

Figure 9. Transformation of a rooted tree with a distinguished
vertex (Y, vt) into a tuple of rooted trees (Y1, . . . ,Yt).

10.2. The universal relational sample space Yh. The aim of this section is
to construct a rooted colored forest on a standard Borel space Yh that is residual-
universal, in the sense that every residual sequence of colored rooted trees will have
a modeling FO-limit obtained by assigning an adapted probability measure to one
of the connected components of Yh.

For theories T, T ′ ∈ Y
(h)
0 (recall that Y

(h)
0 = S(B(FO0(λ), η

(h)
Y ))), we define

w(T, T ′) ≥ k if and only if there exists a model Y of T , such that the root of Y
has k (distinct) sons v1, . . . , vk with Th(Y(vi)) = T ′.

For z = (z1, . . . , za) ∈ Na define the subset Fz of (Y
(h)
0 )a+1 by

Fz = {(T0, . . . , Ta) : w(Ti−1, Ti) = zi}.
For t ∈ N, define

Xt =

{
{1, . . . , t}, if t ∈ N,

[0, 1], otherwise

For z = (z1, . . . , za) ∈ Na, define Xz =
∏a
i=1Xzi . Let

Vh = Y
(h)
0 ]

⊎

z

(Fz ×Xz).

Note that Vh is a subset of
⊎h
i=1(Y

(h)
0 )i × [0, 1]i−1. We define the σ-algebra Σh

as the trace on Vh of the Borel σ-algebra of
⊎h
i=1(Y

(c,h)
0 )i × [0, 1]i−1.

Definition 18. The universal forest Yh has vertex set Vh, set of roots Y
(h)
0 , and

edges

{((T0, T1, . . . , Ta), (α1, . . . , αa)), ((T ′0, T
′
1, . . . , T

′
b), (α

′
1, . . . , α

′
b))}

where |a − b| = 1, T0 = T ′0, and for every 1 ≤ i ≤ min(a, b) it holds Ti = T ′i and
αi = α′i.
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The remaining of this section will be devoted to the proof of Lemma 44, which
states that Yh is a relational sample space. In order to prove this result, we shall
need a preliminary lemma, which expresses that the property of a tuple of vertices
in a colored rooted tree with bounded height is completely determined by the
individual properties of the vertices in the tuple and the heights of the lowest
common ancestors of every pair of vertices in the tuples.

Lemma 43. Fix rooted trees Y,Y′ ∈ Y(h). Let u1, . . . , up be p vertices of Y, let
u′1, . . . , u

′
p be p vertices of Y′, and let n ∈ N.

Assume that for every 1 ≤ i ≤ p it holds (Y, ui) ≡n+h (Y′, u′i) and that for every
1 ≤ i, j ≤ p the height of ui ∧ uj in Y is the same as the height of u′i ∧ u′j in Y′

(where u ∧ v denotes the lowest common ancestor of u and v).
Then (Y, ui, . . . , up) ≡n (Y′, u′1, . . . , u

′
p).

Proof. In the proof we consider p+ 1 simultaneous Ehrenfeucht-Fräıssé games (see
Fig. 10).

S M

D1

D2

Dt−1

Dt

S

D
S

D

S
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D

S D

Figure 10. A winning strategy for
EF((Y, u1, . . . , up), (Y

′, u′1, . . . , u
′
p), n) using p auxiliary games

EF((Y, ui), (Y
′, u′i), n+ h).

Consider an n-step Ehrenfeucht-Fräıssé EF((Y, u1, . . . , up), (Y
′, u′1, . . . , u

′
p), n)

on (Y, u1, . . . , up) and (Y′, u′1, . . . , u
′
p). We build a strategy for Duplicator by

considering p auxiliary Ehrenfeucht-Fräıssé games EF((Y, ui), (Y
′, u′i), n + h) on

(Y, ui) and (Y′, u′i) (for 1 ≤ i ≤ p) where we play the role of Spoiler against
Duplicators having a winning strategy for n+ h steps games.

For every vertex v ∈ Y (resp. v′ ∈ Y ′) let p(v) (resp. p′(v)) be the maximum
ancestor of v (in the sense of the furthest from the root) such that p(v) ≤ ui (resp.
p′(v) ≤ u′i) for some 1 ≤ i ≤ p. We partition Y and Y ′ as follows: for every vertex
v ∈ Y (resp. v′ ∈ Y ′) we put v ∈ Vi (resp. v′ ∈ V ′i ) if i it the minimum integer
such that p(v) ≤ ui (resp. such that p′(v) ≤ u′i), see Fig 11.

Note that each Vi (resp. V ′i induces a connected subgraph of Y (resp. of Y′).
Assume that at round j ≤ n, Spoiler plays a vertex v ∈ (Y, u1, . . . , up) (resp. a

vertex v′ ∈ (Y′, u′1, . . . , u
′
p)).

If v ∈ Vi (resp. v′ ∈ V ′i ) for some 1 ≤ i ≤ p then we play v (resp. v′) on (Y, ui)
(resp. (Y′, u′i)). We play Duplicator on (Y′, u′1, . . . , u

′
p) (resp. on (Y, u1, . . . , up))
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u1u2 u3 u4

V1

V2

V3

V4

Figure 11. The partition (V1, V2, V3, V4) of Y induced by (u1, u2, u3, u4).

with the same move as our Duplicator opponent did on (Y′, ui) (resp. on (Y, ui)).
If all the Duplicators’ are not form a coherent then it is easily checked that h
additional moves (at most) are sufficient for at least one of the Spoilers to win one
of the p games, contradicting the hypothesis of p winning strategies for Duplicators.
It follows that (Y, ui, . . . , up) ≡n (Y′, u′1, . . . , u

′
p). � �

Lemma 44. The rooted colored forest Yh (equipped with the σ-algebra Σh) is a
relational sample space.

Proof. Let ϕ ∈ FOp and

Ωϕ(Yh) = {(v1, . . . , vp) ∈ V ph : Yh |= ϕ(v1, . . . , vp)}.
Let n = qrank(ϕ). We partition Vh into equivalence classes modulo ≡n+h, which
we denote C1, . . . , CN .

Let i1, . . . , ip ∈ [N ] and, for 1 ≤ j ≤ p, let vj and v′j belong to Cij .
According to Lemma 43, if the heights of the lowest common ancestors of the

pairs in (v1, . . . , vp) coincide with the heights of the lowest common ancestors of
the pairs in (v′1, . . . , v

′
p) then it holds

(Yh, v1, . . . , vp) ≡n (Yh, v′1, . . . , v′p)
thus (v1, . . . , vp) ∈ Ωϕ(Yh) if and only if (v′1, . . . , v

′
p) ∈ Ωϕ(Yh).

It follows from Lemma 42 (and the definition of Vh and Σh) that each Cj is
measurable. According to Lemma 42 and the encoding of the vertices of Vh, the
conditions on the heights of lowest common ancestors rewrite as equalities and
inequalities of coordinates. It follows that Ωϕ(Yh) is measurable. � �

10.3. The Modeling FO-limit of Residual Sequences. We start by a formal
definition of residual sequences of colored rooted trees.

Definition 19. Let (Yn)n∈N be a sequence of finite colored rooted trees, let Nn be
the set of all sons of the root of Yn, and let Yn(v) denote (for v ∈ Yn) the subtree
of Yn rooted at v.

The sequence (Yn)n∈N is residual if

lim sup
n→∞

max
v∈Nn

|Yn(v)|
|Yn|

= 0.
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We extend this definition to single infinite modelings.

Definition 20. A modeling colored rooted tree Ỹ with height at most h is residual
if, denoting by N the neighbour set of the root, it holds

sup
v∈N

νỸ(Ỹ(v)) = 0.

Note that the above definition makes sense as belonging to a same Ỹ(v) (for

some v ∈ N) is first-order definable hence, as Ỹ is a relational sample space, each

Ỹ(v) is ΣỸ-measurable.
We first prove that it is sufficient for a modeling colored rooted tree to be a

modeling FO-limit of a residual sequence (Yn)n∈N of rooted colored trees with
bounded height, it is sufficient that it is a modeling FO1-limit of the sequence.

Lemma 45. Assume (Yn)n∈N is a residual FO1-convergent sequence of finite rooted

colored trees with bounded height with residual modeling FO1-limit Ỹ.

Then (Yn)n∈N is FO-convergent and has modeling FO-limit Ỹ.

Proof. Let h be a bound on the height of the rooted trees Yn. Let Fn = IY→F (Yn).
Let $ be the formula asserting dist(x1, x2) ≤ 2h. Then Fn |= $(u, v) holds if
and only if u and v belong to a same connected component of Fn. According to
Lemma 32, we get that (Fn)n∈N is FOlocal convergent. As it is also FO0-convergent,
it is FO convergent (according to Theorem 11). As Yn = IF→Y (Fn), we deduce
that (Yn)n∈N is FO-convergent.

That Ỹ is a modeling FO-limit of (Yn)n∈N then follows from Lemma 27 and
Lemma 25. � �

Now we have to relate FO1 properties to our encoding of Vh, in order to transfer
the measure µ we obtained in Theorem 7 on S(B(FO1)) to the relational sample
space formed by the connected component of Yh that is an elementary limit of the
considered residual sequence. To achieve this, we need some preparatory technical
lemmas.

Let λ• denote the signature obtained from λ by adding a new unary relation S
(marking a special vertex). Let θ• be the sentence

(∃x)(S(x) ∧ (∀y S(y)→ (y = x)),

which states that a λ• contains a unique special vertex, and let I• be the princi-
pal ideal of B(FO0(λ•)) generated by ¬θ•. Let B(FO0(λ•, θ•) = B(FO0(λ•))/I•.
Then there is an obvious isomorphism of B(FO1(λ)) and B(FO0(λ•), θ•), and a
corresponding homeomorphism of S(B(FO1(λ))) and S(B(FO0(λ•)), θ•).

We consider the simple interpretation I• of λ-structures in λ•-structures, which
maps a λ•-structure Y defined as follows: let x ' y be defined as (x ∼ y)∨ (x = y).
Then

• the domain of I•(Y) is defined by the formula

¬θ• ∨ (∃y1, . . . , yh)
(
R(y1) ∧ (yh ' x1) ∧

h−1∧

i=1

((¬S(yi) ∨ (yi = x1)) ∧ (yi ' yi+1)
)

;

• the relation R of I•(Y) is defined by the formula

¬θ• ∧R(x1) ∨ θ• ∧ S(x1).

Then I• maps a colored rooted tree Y with a single special vertex v to the colored
rooted tree Y(v). In a sake for simplicity, we denote by (Y, v) (where Y is a λ-
structure) the λ•-structure obtained by adding the new relation S with v being the
unique special vertex.
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Lemma 46. For every sentence φ ∈ FO0(λ) there exists a formula %(φ) ∈ FO1(λ),
called relativization of φ, with the following property:

For every colored rooted tree Y and every v ∈ Y it holds

Y(u) |= φ ⇐⇒ Y |= %(φ)(u).

Proof. According to the isomorphism of B(FO1(λ)) and B(FO0(λ•), θ•), the lemma
follows from the existence of J• (defined by the interpretation I•) such that

Y(u) |= φ ⇐⇒ (Y, u) |= J•(φ).

� �

Definition 21. Let Encode : Y
(h)
1 → ⊎h

i=1(Y
(h)
0 )i be the mapping defined as

follows: Let k be the integer such that the formula ηk ∈ FO1(λ) stating that the
height of x1 is k belongs to T . Then Encode(T ) = (T1, . . . , Tk), where Ti is the set
of all the sentences θ such that %(θ) ∧ ηi belongs to T .

Lemma 47. Encode is a homeomorphism of Y
(h)
1 and Encode(Y

(h)
1 ), which is a

closed subspace of
⊎h
i=1(Y

(h)
0 )i.

Proof. This lemma is a direct consequence of Lemma 42. �

Definition 22. Let µ be a measure on Y
(h)
1 . We define ν on Yh as follows: let

µ̃ = Encode∗(µ) be the push-forward of µ by Encode. For t ∈ N we equip Xt with
uniform discrete probability measure if t < ∞ and the Haar probability measure
if t = ∞. For z ∈ Na, Xz is equipped with the corresponding product measure,
which we denote by λz.

We define the measure ν as follows: let A be a measurable subset of Vh, let

A0 = A ∩Y
(h)
0 , and let Az = A ∩ (Fz ×Xz). Then

ν(A) = µ̃(A0) +
∑

z

(µ̃⊗ λz)(Az).

(Notice that the sets Az are measurable as Fz ×Xz is measurable for every z.)

Lemma 48. The measure µ is the push-forward of ν by the projection P : Yh →
Y

(h)
1 defined by

P ((T0, T1, α1, . . . , Ta, αa)) = Encode−1(T0, . . . , Ta).

Proof. First notice that P is indeed continuous. Let B be a measurable set of Y
(h)
1 .

Let A = P−1(B). Then A ∩ (Fz ×Xz) = (Encode(B) ∩ Fz)×Xz hence

(µ̃⊗ λz)(A ∩ (Fz ×Xz)) = ν(Encode(B) ∩ Fz)λz(Xz) = µ̃(Encode(B) ∩ Fz).
It follows that

P∗(ν)(B) = ν(A)

= µ̃(A ∩Y
(h)
0 ) +

∑

z

(µ̃⊗ λz)(A ∩ (Fz ×Xz))

= µ̃(Encode(B) ∩Y
(h)
0 ) +

∑

z

µ̃(Encode(B) ∩ Fz)

= µ̃
(
Encode(B) ∩ (Y

(h)
0 ]

⊎

z

Fz)
)

= µ̃ ◦ Encode(B)

= µ(B).

(as z ranges over a countable set and as all the Fz are measurable). Hence µ =
P∗(ν). � �
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Lemma 49. Let Yn be a residual FO1-convergent sequence of colored rooted trees

with height at most h, let µ be the limit measure of µYn
on T

(h)
1 , and let Ỹ be the

connected component of Yh containing the support of ν. Then Ỹ, equipped with the
probability measure νỸ = ν, is a modeling FO-limit of (Yn)n∈N.

Proof. As (Yn)n∈N is elementarily convergent, the complete theory of the elemen-
tary limit of this sequence is the theory T0 to which every point of the support of
µ projects. Hence the support of µ defines a unique connected component of Yh.

That Ỹ is an FO1-modeling limit of (Yn)n∈N is a consequence of Lemmas 48 and 19.
That it is then an FO-modeling limit of (Yn)n∈N follows from Lemma 45 � �

10.4. The Modeling FO-Limit of a Sequence of Colored Rooted Trees. For
an intuition of how the structure of a modeling FO-limit of a sequence of colored
rooted trees with height at most h could look like, consider a modeling rooted
colored tree Y. Obviously, the Y contains two kind of vertices: the heavy vertices
v such that the subtree Y(v) of Y rooted at v has positive νY-measure and the
light vertices for which Y(v) has zero νY-measure. It is then immediate that heavy
vertices of Y induce a countable rooted subtree with same root as Y.

This suggest the following definitions.

Definition 23. A rooted skeleton is a countable rooted tree S together with a
mass function m : S → (0, 1] such that m(r) = 1 (r is the root of S) and for every
non-leaf vertex v ∈ S it holds

m(v) ≥
∑

u son of v

m(u).

Definition 24. Let (S,m) be a rooted skeleton, let S0 be the subset of S with
vertices v such that m(v) =

∑
u son of vm(u), let (Rv)v∈S\S0

be a countable se-
quence of non-empty residual λ-modeling indexed by S \ S0, and let (Rv)v∈S0 be
a countable sequence of non empty countable colored rooted trees indexed by S0.
The grafting of (Rv)v∈S\S0

and (Rv)v∈S0
on (S,m) is the modeling Y defined as

follows: As a graph, Y is obtained by taking the disjoint union of S with the colored
rooted trees Rv and then identifying v ∈ S with the root of Rv. The sigma algebra
ΣY is defined as

ΣY =
{ ⋃

v∈S\S0

Mv ∪
⋃

v∈S0

M ′v : Mv ∈ ΣRv ,M
′
v ⊆ Rv

}

and the measure νY(M) of M ∈ Σ is defined by

νY(M) =
∑

v∈S\S0

(
m(v)−

∑

u son of v

m(u)
)
νRv

(Mv),

where M =
⋃
v∈S\S0

Mv ∪
⋃
v∈SM

′
v with Mv ∈ ΣRv

and M ′v ⊆ Rv.

Lemma 50. Let Y be obtained by grafting countable sequence of non-empty mod-
eling colored rooted trees Rv on a rooted skeleton (S,m). Then Y is a modeling.

Proof. We prove the statement by induction over the height of the rooted skele-
ton. The statement obviously holds if S is a single vertex rooted tree (that is if
height(S) = 1). Assume that the statement holds for rooted skeletons with height
at most h, and let (S,m) be a rooted skeleton with height h+ 1.

Let s0 be the root of S and let {si : i ∈ I ⊆ N} be the set of the sons of s0 in
S. For i ∈ I, Yi = Y(si) be the subtree of Y rooted at si, let λi =

∑
x∈Yi m(x),

and let mi be the mass function on Si defined by mi(v) = m(v)/λi. Also, let
λ0 = 1−∑i∈I λi.
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For each i ∈ I∪{0}, if λi = 0 (in which case Rsi is only assumed to be a relational
sample space) we turn Rsi into a modeling by defining a probability measure on
Rsi concentrated on si.

For i ∈ I, let Yi be obtained by grafting the Rv on (Si,mi) (for v ∈ Si), and let
Y0 be the λ+-modeling consisting in a rooted colored forest with single (principal)
component Rs0 (that is: Y0 = IR→P (Rs0)). According to Lemma 18, Y0 is a
modeling, and by induction hypothesis each Yi (i ∈ I) is a modeling. According
to Lemma 29, it follows that F = qi∈I∪{0}(Yi, λi) is a modeling. Hence, according
to Lemma 18, Y = IF→Y (F) is a modeling. � �

Our main theorem is the following.

Theorem 26. Let (Yn)n∈N be an FO-convergent sequence of finite colored rooted
trees with height at most h.

Then there exists a skeleton (S,m) and a family (Rv)v∈S — where Rv is (iso-
morphic to) a connected component of Yh, ΣRv

is the induced σ-algebra on Rv —
with the property that the grafting Y of the Rv on (S,m) is a modeling FO-limit
of the sequence (Yn)n∈N.

Proof. First notice that the statement obviously holds if limn→∞ |Yn| <∞ as then
the sequence is eventually constant to a finite colored rooted tree Y: we can let
S be Y (without the colors), m be the uniform weight (m(v) = 1/|Y |), and Rv

be single vertex rooted tree whose root’s color is the color of v in Y. So, we can
assume that limn→∞ |Yn| =∞.

We prove the statement by induction over the height bound h. For h = 1, each
Yn is a single vertex colored rooted tree, and the statement obviously holds.

Assume that the statements holds for h = h0 − 1 ≥ 1 and let finite colored
rooted trees with height at most h0. Let Fn = IY→F (Yn). Then (Fn)n∈N is FO-
convergent (according to Lemma 18). According to the Comb Structure Theorem,
there exists countably many convergent sequences (Yn,i)n∈N of colored rooted trees
(for i ∈ I) and an FO-convergent sequence (Rn)n∈N of special rooted forests forming
a uniformly convergent family of sequences, such that IY→F (Yn) = Rn∪

⋃
i∈I Yn,i.

If the limit spectrum of (IY→F (Yn))n∈N is empty (i.e. I = ∅), the sequence
(Yn)n∈N of colored rooted trees is residual, and the result follows from Lemma 49.

Otherwise, let (λi)i∈I the limit spectrum of (IY→F (Yn))n∈N, let λ0 = 1 −∑
i∈I λi, and let Yn,0 = IR→P ◦ IF→Y (Rn). If λ = 0 then there is a connected

component Ỹ0 of Yh that is an elementary limit of (Yn,0)n∈N; Otherwise, as
(IF→Y (Rn))n∈N is residual, (Yn,0)n∈N has, according to Lemma 49, a modeling

FO-limit Ỹ0. By induction, each (Yn,i)n∈N has a modeling FO-limit Ỹi. As Yn =
IF→Y (

⋃
i∈I∪{0}Yn,i), we deduce, by Corollary 3, Lemma 31, Theorem 11, and

Lemma 18, that (Yn)n∈N has modeling FO-limit IF→Y (
∐
i∈I∪{0}(Ỹi, λi)). � �

So, in the case of colored rooted trees with bounded height, we have constructed
an explicit relational sample space that allows to pullback the limit measure µ
defined on the Stone space S(B(FO)).

11. Limit of Graphs with Bounded Tree-depth

Let Y be a rooted forest. The vertex x is an ancestor of y in Y if x belongs
to the path linking y and the root of the tree of Y to which y belongs to. The
closure Clos(Y) of a rooted forest Y is the graph with vertex set V (Y ) and edge
set {{x, y} : x is an ancestor of y in Y, x 6= y}. The height of a rooted forest is
the maximum number of vertices in a path having a root as an extremity. The
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tree-depth td(G) of a graph G is the minimum height of a rooted forest Y such
that G ⊆ Clos(Y). This notion is defined in [50] and studied in detail in [61]. In
particular, graphs with bounded tree-depth serve as building blocks for low tree-
depth decompositions, see [51, 52, 53]. It is easily checked that for each integer t the
property td(G) ≤ t is first-order definable. It follows that for each integer t there
exists a first-order formula ξ with a single free variable such that for every graph
G and every vertex v ∈ G it holds:

G |= ξ(v) ⇐⇒ td(G) ≤ t and td(G− v) < td(G).

Let t ∈ N. We define the basic interpretation scheme It, which interprets the
class of connected graphs with tree-depth at most t in the class of 2t−1-colored
rooted trees: given a 2t−1-colored rooted tree Y (where colors are coded by t − 1
unary relations C1, . . . , Ct−1), the vertices u, v ∈ Y are adjacent in It(Y) if the
there is an integer i in 1, . . . , t− 1 such that Y |= Ci(v) and u is the ancestor of v
at height i or Y |= Ci(u) and v is the ancestor of u at height i.

Theorem 27. Let (Gn)n∈N be an FO-convergent sequence of finite colored graphs
with tree-depth at most h.

Then there exists a modeling G with tree-depth at most h that is a modeling
FO-limit of the sequence (Gn)n∈N.

Proof. For each Gn, there is a colored rooted tree Yn with height at most h such
that Gn = Ih(Yn). By compactness, the sequence (Yn)n∈N has a converging subse-
quence (Yin)n∈N, which admits a modeling FO-limit Y (according to Theorem 26),
and it follows from Lemma 18 that Ih(Y) is a modeling FO-limit (with tree-depth
at most h) of the sequence (Gin)n∈N, hence a modeling FO-limit of the sequence
(Gn)n∈N. � �

12. Concluding Remarks

12.1. Selected Problems. The theory developed here is open ended and we hope
that it will encourage further researches. Here we list a sample of related problems

The first two problems concern existence of modeling FO-limits.

Problem 1. Is it true that every FO-convergent sequence of finite relational struc-
tures admit a modeling FO-limit?

In particular, it follows from Theorem 13 that there exists an FO-convergent
sequence (Gn)n∈N such that (Gn)n∈N converges elementarily to the Rado graph and
(Gn)n∈N is L-convergent to the constant graphon 1/2. This suggests the following
problem.

Problem 2. Does there exist modeling FO-limit G for G(n, 1/2), that is a modeling
such that G is elementarily equivalent to the Rado graph and for every finite labeled
graph F with vertex set {v1, . . . , vp} it holds

νG

({
(x1, . . . , xp) ∈ Gp : vi 7→ xi is isomorphism of F and G[x1, . . . , xp]

})
= 2−(p2)?

Aldous-Lyons conjecture [3] states that every unimodular distribution on rooted
countable graphs with bouded degree is the limit of a bounded degree graph se-
quence. One of the reformulations of this conjecture is that every graphing is an
FOlocal limit of a sequence of finite graphs. The importance of this conjecture ap-
pears, for instance, in the fact that it would imply that all groups are sofic, which
would prove a number of famous conjectures which are proved for sofic groups but
still open for all groups.
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The two next problems are related to this conjecture: the first one concerns
a possible strengthening of the conjecture, and the second one is concerned with
looking for an analog for rooted colored trees with bounded height.

Problem 3. Is every graphing G with the finite model property an FO-limit of a
sequence of finite graphs?

In the case of colored rooted trees with bounded height, we have constructed an
explicit relational sample space that allows to pullback the limit measure µ defined
on the Stone space S(B(FO)). However, we still cannot fully characterize limits of
colored rooted forests with bounded height. According to our construction, a full
characterization would follow to a solution of the following problem.

Problem 4. Characterize the measures µ on S(B(FO1)) that are limits of residual
FO1-convergent sequences of colored rooted trees with bounded height.

12.2. Classes with bounded SC-depth. We can generalize our main construc-
tion of limits to other tree-like classes. For example, in a similar way that we ob-
tained a modeling FO-limit for FO-convergent sequences of graphs with bounded
tree-depth, it is possible to get a modeling FO-limit for FO-convergent sequences
of graphs with bounded SC-depth, where SC-depth is defined as follows [31]:

Let G be a graph and let X ⊆ V (G). We denote by G
X

the graph G′ with
vertex set V (G) where x 6= y are adjacent in G′ if (i) either {x, y} ∈ E(G) and

{x, y} 6⊆ X, or (ii) {x, y} 6∈ E(G) and {x, y} ⊆ X. In other words, G
X

is the graph
obtained from G by complementing the edges on X.

Definition 25 (SC-depth). We define inductively the class SC(n) as follows:

• We let SC(0) = {K1};
• if G1, . . . , Gp ∈ SC(n) and H = G1∪̇ . . . ∪̇Gp denotes the disjoint union of

the Gi, then for every subset X of vertices of H we have H
X ∈ SC(n+ 1).

The SC-depth of G is the minimum integer n such that G ∈ SC(n).

12.3. Classes with bounded expansion. A graph H is a shallow topological
minor of a graph G at depth t if some ≤ 2t-subdivision of H is a subgraph of G.
For a class C of graphs we denote by C Õ t the class of all shallow topological minors
at depth t of graphs in C. The class C has bounded expansion if, for each t ≥ 0, the
average degrees of the graphs in the class C Õ t is bounded, that is (denoting d(G)
the average degree of a graph G):

(∀t ≥ 0) sup
G∈C Õ t

d(G) <∞.

The notion of classes with bounded expansion were introduced by the authors in [48,
49, 51], and their properties further studied in [52, 53, 17, 18, 54, 56, 58, 59, 61, 62]
and in the monograph [60]. Particularly, classes with bounded expansion include
classes excluding a topological minor, like classes with bounded maximum degree,
planar graphs, proper minor closed classes, etc.

Classes with bounded expansion have the characteristic property that they admit
special decompositions — the so-called low tree-depth decompositions — related to
tree-depth:

Theorem 28 ([49, 51]). Let C be a class of graph. Then C has bounded expansion
if and only if for every integer p ∈ N there exists N(p) ∈ N such that the vertex set
of every graph G ∈ C can be partitioned into at most N(p) parts in such a way that
the subgraph of G induced by any i ≤ p parts has tree-depth at most i.
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This decomposition theorem is the core of linear-time first-order model checking
algorithm proposed by Dvořák, Král’, and Thomas [19, 21]. In their survey on
methods for algorithmic meta-theorems [32], Grohe and Kreutzer proved that (in
a class with bounded expansion) it is possible eliminate a universal quantification
by means of the additions of a bounded number of new relations while preserving
the Gaifman graph of the structure.

By an inductive argument, we deduce that for every integer p, r and every class
C of λ-structure with bounded expansion, there is a signature λ+ ⊇ λ, such that
every λ-structure A ∈ C can be lifted into a λ+-structure A+ with same Gaifman
graph, in such a way that for every first-order formula φ ∈ FOp(λ) with quantifier

rank at most r there is an existential formula φ̃ ∈ FOp(λ
+) such that for every

v1, . . . , vp ∈ A it holds

A |= φ(v1, . . . , vp) ⇐⇒ A+ |= φ̃(v1, . . . , vp).

Moreover, by considering a slightly stronger notion of lift if necessary, we can assume

that φ̃ is a local formula. We deduce that there is an integer q = q(C, p, r) such

that checking φ(v1, . . . , vp) can be done by considering satisfaction of ψ̃(v1, . . . , vp)
in subgraphs induced by q color classes of a bounded coloration. Using a low-tree
depth decomposition (and putting the corresponding colors in the signature λ+),

we get that there exists finitely many induced substructures A+
I (I ∈

(
[N ]
q

)
) with

tree-depth at most q and the property that for every first-order formula φ ∈ FOp(λ)

with quantifier rank at most r there is an existential formula φ̃ ∈ FOp(λ
+) such

that for every v1, . . . , vp ∈ A with set of colors I0 ⊆ I it holds

A |= φ(v1, . . . , vp) ⇐⇒ ∃I ∈
(

[N ]

q − p

)
: A+

I∪I0 |= φ̃(v1, . . . , vp).

Moreover, the Stone pairing 〈φ,A〉 can be computed by inclusion/exclusion from

stone pairings 〈φ,A+
I 〉 for I ∈

(
[N ]
≤q
)
.

Thus, if we consider an FO converging-sequence (An)n∈N, the tuple of limits of
the λ+-structures (An)+

I behaves as a kind of approximation of the limit of the
λ-structures An. We believe that this presents a road map for considering more
general limits of sparse graphs.
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