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Convex computation of the maximum controlled invariant set for polynomial control systems

We characterize the maximum controlled invariant (MCI) set for discrete-as well as continuous-time nonlinear dynamical systems as the solution of an infinitedimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI) relaxations whose optimal values converge to the volume of the MCI set; dual to these LMI relaxations are sum-ofsquares (SOS) problems providing a converging sequence of outer approximations to the MCI set. The approach is simple and readily applicable in the sense that the approximations are the outcome of a single semidefinite program with no additional input apart from the problem description. A number of numerical examples illustrate the approach.

Introduction

Given a controlled dynamical system described by a differential (continuous-time) or difference (discrete-time) equation, its maximum controlled invariant (MCI) set is the set of all initial states that can be kept within a given constraint set ad infinitum using admissible control inputs. This set goes by many other names in the literature, e.g., viability kernel in viability theory [START_REF] Aubin | Set-valued analysis[END_REF], or (A, B)-invariant set in the linear case [START_REF] Dorea | A, B)-invariant polyhedral sets of linear discrete-time systems[END_REF].

Set invariance is an ubiquitous and essential concept in dynamical systems theory, as far as both analysis and control synthesis is concerned. In particular, by its very definition, the MCI set determines fundamental limitations of a given control system with respect to constraint satisfaction. In addition, there is a very tight link between invariant sets and (control) Lyapunov functions. Indeed, sub-level sets of a Lyapunov function give rise to invariant sets. Conversely, at least in the linear case, any controlled invariant set gives rise to a control Lyapunov function, and therefore these sets can be readily used to design stabilizing control laws; see, e.g., [START_REF] Blanchini | Set invariance in control[END_REF] for a general treatment and, e.g., [START_REF] Gondhalekar | Controlled invariant feasibility -A general approach to enforcing strong feasibility in MPC applied to move-blocking[END_REF][START_REF] Kerrigan | Robust constraint satisfaction: Invariant sets and predictive control[END_REF] for applications in model predictive control design.

The problem of (maximum) controlled invariant set computation for discrete-time systems has been a topic of active research for more than four decades. The central tool in this effort has been the contractive algorithm of [START_REF] Bertsekas | Infinite time reachability of state-space regions by using feedback control[END_REF] and its expansive counterpart [START_REF] Gutman | An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states[END_REF]. For an exhaustive survey and historical remarks see the survey [START_REF] Blanchini | Set invariance in control[END_REF] and the book [START_REF] Blanchini | Set-theoretic methods in control[END_REF].

Both algorithms, although conceptually applicable to any nonlinear system, have been predominantly applied in a linear setting where they boil down to a sequence of linear programs and polyhedral projections. Finite termination of this sequence is a subtle problem and sharp results are available only in the uncontrolled setting where no projections are required [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF]; for discussion of finite-termination in the controlled case see [START_REF] Vidal | Controlled invariance of discrete time systems[END_REF]. The contractive and expansive algorithms were combined in [START_REF] Gondhalekar | Controlled invariant feasibility -A general approach to enforcing strong feasibility in MPC applied to move-blocking[END_REF] to design an algorithm terminating in a finite number of iterations and outputting an -accurate inner approximation of the MCI set (with the accuracy measured by the Hausdorff distance). Another line of research, culminating in [START_REF] Raković | Parameterized robust control invariant sets for linear systems: theoretical advances and computational remarks[END_REF], exploits the linearity of the system dynamics in a more systematic way and approximates the maximum (or minimum) robust controlled invariant set by the Minkowski sum of a parametrized family of sets. Very recently, in continuous time, [START_REF] Daryin | Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty[END_REF] developed a parallel algorithm for ellipsoidal approximations of the robust MCI set scalable to very high dimensions. Computation of low-complexity polyhedral controlled invariant sets was investigated in [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF] and [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF].

In the nonlinear case, a common practice is to exploit the tight connection between invariance and Lyapunov functions and seek invariant sets as sub-level sets of a (control) Lyapunov function; see, e.g., [START_REF] Chesi | Domain of attraction; analysis and control via SOS programming[END_REF][START_REF] Topcu | Robust region-of-attraction estimation[END_REF] and references therein for recent theoretical developments on the related problem of region of attraction computation and, e.g., [START_REF] Majumdar | Control Design Along Trajectories with Sums of Squares Programming[END_REF] for practical applications of these techniques. This, however, typically leads to non-convex bilinear optimization problems which are notoriously hard to solve. Therefore, one often has to resort to ad-hoc analysis of the specific system at hand, which is typically tractable only in small dimensions; see [START_REF] Starkov | Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator[END_REF][START_REF] Starkov | Estimation of the domain containing all compact invariant sets of the optically injected laser system[END_REF] for concrete examples. Related in spirit is the localization technique of [START_REF] Kanatnikov | Localization of compact invariant sets of discrete-time nonlinear systems[END_REF] for discrete-time uncontrolled systems, also requiring considerable effort in analysing the system.

Recently, a general approach using a hierarchy of finite-dimensional linear programs (LPs) was used in [START_REF] Ben Sassi | Controller synthesis for robust invariance of polynomial dynamical systems using linear programming[END_REF] to design a controller ensuring invariance of a given candidate polyhedral set. In our opinion, although being the current state of the art, this work still suffers from the following drawbacks: 1) the sets obtained are convex polytopes (not general semi-algebraic sets, a fact particularly limiting in the nonlinear case where nonconvex MCI sets are common); 2) the geometry of the candidate polytopic set must be given a priori; 3) there are no convergence guarantees to the MCI set. In this paper, we explicitly address all these points. Building upon our previous work [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] on the computation of the region of attraction (ROA) for polynomial control systems, in this paper we characterize the maximum controlled invariant (MCI) set for discrete-as well as continuous-time polynomial systems as the solution to an infinite-dimensional LP problem in the cone of nonnegative measures. The dual of this problem is an infinite-dimensional LP in the space of continuous functions. Finite-dimensional relaxations of the primal LP and finite-dimensional approximations of the dual LP turn out to be semidefinite programs (SDPs) also related by duality. The primal relaxations lead to a truncated moment problem while the dual approximations to a sum-of-squares (SOS) problem. Super-level sets of one of the polynomials appearing in the dual SOS problem then provide outer approximations to the MCI set with guaranteed convergence as the degree of the polynomial tends to infinity.

The main mathematical tool we use are the so-called occupation measures which allow us to study the time evolution of the whole ensemble of initial conditions (described by a measure) rather than studying trajectories associated to each initial condition separately. The use of measures to study dynamical systems has a very long tradition: see [START_REF] Rubio | Control and Optimization: The Linear Treatment of Nonlinear Problems[END_REF] for probably the first systematic treatment1 ; for purely discrete-time treatment see [START_REF] Hernández-Lerma | Discrete-time Markov control processes: basic optimality criteria[END_REF]Chapter 6]. To the best of the authors' knowledge our paper is the first one to use occupation measures for MCI set (approximate) computation. The MCI set was previously characterized using occupation measures in [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF], but there the characterization is rather indirect and not straightforwardly amenable to computation. Apart from the authors' work [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF], the related problem of region of attraction computation was tackled using measures in [START_REF] Wang | Transfer operator approach for computing domain of attraction[END_REF]. There, however, a very different approach was taken, not using occupation measures but rather analyzing convergence via discretization of the state-space and propagating the initial distribution by means of a discretized transfer operator. Here, instead, we employ the (discounted) occupation measure which captures the behaviour of the trajectories emanating from the initial distribution over the infinite time horizon. As a result, our approach requires no discretization and, contrary to [START_REF] Wang | Transfer operator approach for computing domain of attraction[END_REF], provides true guarantees (not in an "almost-everywhere" or "coarse" sense) and, more importantly, is applicable in a controlled setting. Closely related to the occupation measures used here is the Rantzer's density [START_REF] Rantzer | A dual to Lyapunov's stability theorem[END_REF] which was used in [START_REF] Rajarama | Stability in the almost everywhere sense: A linear transfer operator approach[END_REF] to assess the stability of attractor sets of uncontrolled nonlinear systems. The approach, however, does not immediately yield approximations of the MCI set (or the region of attraction) and applies to uncontrolled systems only.

Similar in spirit to our approach, from the dual viewpoint of optimization over functions, are the Hamilton-Jacobi approaches (e.g., [START_REF] Margellos | Hamilton-Jacobi formulation for reach-avoid differential games[END_REF][START_REF] Mitchell | Overapproximating reachable sets by Hamilton-Jacobi projections[END_REF]). However, contrary to these methods, our approach does not require state-space discretization and comes with convergence guarantees.

The contribution of our paper with respect to previous work on the topic can be summarized as follows:

• we deal with fully general continuous-time and discrete-time polynomial dynamics under semi-algebraic state and control constraints;

• our approximated MCI set is described by (the intersections of) polynomial superlevel sets, including more restrictive classes (e.g. polytopes, ellipsoids, etc.);

• we provide a convex infinite-dimensional LP characterization of the MCI set;

• we describe a hierarchy of convex finite-dimensional SDPs to solve the LP with convergence guarantees;

• our approach is simple and readily applicable in the sense that the approximations are the result of a single SDP with no additional data required apart from the problem description.

The contribution with respect to our previous work [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] can be summarised as follows:

• in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] we compute the ROA, which is a related although different object: it is the set of all of initial conditions that can be steered to a given target set while satisfying state and control constraints. In particular, the MCI set differs from the ROA in the sense that we do not try to hit any target set at a given time but rather try to keep the state within a given set forever. Therefore we had to adapt our technique to deal explicitly with invariance;

• in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] we dealt with continuous-time systems only, whereas we can cope, with minor modifications, with discrete-time systems as well; we choose to describe both the continuous-time and discrete-time setups in parallel precisely to underline these common features;

• in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] we considered only a finite time-horizon, whereas here we show how to cope, with the help of discounting, with an infinite horizon. This brought additional technical issues not encountered in finite time.

What can be considered a drawback of our approach is the fact that the approximations to the MCI set we obtain are from the outside and therefore not invariant. However, accurate outer approximations provide important information as to the performance limitations of the control system and are of practical interest, e.g., in collision avoidance. Therefore we believe that our work bears both theoretical and practical value, and naturally complements existing inner-approximation techniques.

The paper is organised as follows. The problem to be solved is described in Section 2.

Occupation measures are introduced in Section 3. The infinite-dimensional primal and dual LPs are described in Sections 4 and 5, respectively. The finite-dimensional relaxations with convergence results are presented in Section 6. Numerical examples are in Section 7.

A reader interested only in the semialgebraic outer approximations of the MCI set can consult directly the infinite-dimensional dual LPs (8) and ( 9) and their finite-dimensional approximations [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF] and [START_REF] Blanchini | Set-theoretic methods in control[END_REF] in discrete and continuous time, respectively.

Notation

Measures are understood as signed Borel measures on a Euclidean space, i.e., as countably additive maps from the Borel sets to the real numbers. From now on all subsets of a Euclidean space we refer to are automatically understood as Borel. The vector space of all signed Borel measures with its support contained in a set X is denoted by M (X).

The support (i.e., the smallest closed set whose complement has a zero measure) of a measure µ is denoted by spt µ. The space of continuous functions on X is denoted by C(X) and likewise the space of once continuously differentiable functions is C 1 (X). The indicator function of a set X (i.e., a function equal to one on X and zero otherwise) is denoted by I X (•). The symbol λ denotes the n-dimensional Lebesgue measure (i.e., the standard n-dimensional volume). The integral of a function v with respect to a measure µ over a set X is denoted by X v(x) dµ(x). Sometimes for conciseness we use the shorter notation v dµ omitting the integration variable and also the set over which we integrate if they are obvious from the context. The ring of polynomials in (possibly vector) variables

x 1 ,. . . ,x n is denoted by R[x 1 , . . . , x n ].

Problem statement

The approach is developed in parallel for discrete and continuous time.

Discrete time

Consider the discrete-time control system

x t+1 = f (x t , u t ), x t ∈ X, u t ∈ U, t ∈ {0, 1, . . . } (1) 
with a given polynomial vector field f with entries f i ∈ R[x, u], i = 1, . . . , n, and given compact basic semialgebraic state and input constraints

x t ∈ X := {x ∈ R n : g X i (x) ≥ 0, i = 1, 2, . . . , n X }, u t ∈ U := {u ∈ R m : g U i (u) ≥ 0, i = 1, 2, . . . , n U } with g X i ∈ R[x], g U i ∈ R[u].
The maximum controlled invariant (MCI) set is defined as

X I := x 0 ∈ X : ∃ {x t } ∞ t=1 , {u t } ∞ t=1 s.t. x t+1 = f (x t , u t ), u t ∈ U, x t ∈ X, ∀t ∈ {0, 1, . . .} . A control sequence {u t } ∞ t=0 is called admissible if u t ∈ U for all t ∈ {0, 1, . . . }.
In words, the MCI set is the set of all initial states which can be kept inside the constraint set X ad infinitum using admissible control inputs.

Continuous time

Consider the relaxed continuous-time control system

ẋ(t) ∈ conv f (x(t), U ), x(t) ∈ X, t ∈ [0, ∞), (2) 
where conv denotes the convex hull, f is a polynomial vector field with entries f i ∈ R[x, u], i = 1, . . . , n, and compact basic semialgebraic state and input constraint sets are defined by

X := {x ∈ R n : g X i (x) ≥ 0, i = 1, 2, . . . , n X }, U := {u ∈ R m : g U i (u) ≥ 0, i = 1, 2, . . . , n U } with g X i ∈ R[x], g U i ∈ R[u].
The meaning of the convex differential inclusion (2) is as follows: for all time t, the state velocity ẋ(t) is constrained to the convex hull of the set f (x(t), U ) := {f (x(t), u) : u ∈ U } ⊂ R n . The connection of this convexified (or relaxed) control problem (2) and the classical control problem ẋ = f (x, u) is the Filippov-Ważewski Theorem [START_REF] Aubin | Set-valued analysis[END_REF], which shows that the trajectories of ẋ = f (x, u) are dense (in the supremum norm) in the set of trajectories of the convexified inclusion2 (2). Therefore, from a practical point of view, there is little difference between the two formulations for the purposes of MCI set computation; see Section 3.2 and Appendices B and C of [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] for a detailed discussion on this subtle issue. The simplest assumption under which the MCI sets for both systems coincide is f (x, U ) being convex for all x, which is in particular true for input-affine systems of the form ẋ = f (x) + g(x)u with U convex.

The maximum controlled invariant (MCI) set is defined as

X I := x 0 ∈ X : ∃ x(•) s.t. ẋ(t) ∈ conv f (x(t), U ) a.e., x(t) ∈ X ∀ t ∈ [0, ∞) ,
where x(•) is required to be absolutely continuous and a.e. stands for "almost everywhere" with respect to the Lebesgue measure on [0, ∞).

In words, the MCI set is the set of all initial states for which there exists a trajectory of the convexified inclusion (2) which remains in X ad infinitum.

Occupation measures

In this section we introduce the concept of occupation measures which is the centrepiece of our approach.

Discrete time

Given a discount factor α ∈ (0, 1), an initial condition x 0 and an admissible control sequence {u t|x 0 } ∞ t=0 such that the associated state sequence {x t|x 0 } ∞ t=0 remains in X for all time, we define the discounted occupation measure µ(

• | x 0 ) ∈ M (X × U ) as µ(A × B | x 0 ) := ∞ t=0 α t I A×B (x t|x 0 , u t|x 0 ) (3) 
for all sets A ⊂ X and B ⊂ U .

In words, the discounted occupation measure measures the (discounted) number of visits of the state-control pair trajectory (x(• | x 0 ), ν(• | x 0 )) to subsets of X ×U . The discounting in the definition of the occupation measure ensures that µ

(A × B | x 0 ) is always finite; in fact we have µ(X × U | x 0 ) = (1 -α) -1 .
Now suppose that the initial condition is not a single point but an initial measure3 µ 0 ∈ M (X) and an admissible control sequence is associated to each initial condition from the support of µ 0 in such a way that the corresponding state sequence remains in X. Then we define the average discounted occupation measure µ ∈ M (X × U ) as

µ(A × B) := X µ(A × B | x 0 ) dµ 0 (x 0 ).
The average discounted occupation measure measures the discounted average number of visits in subsets of X × U of trajectories starting from the initial distribution µ 0 . Now we derive an equation linking the measures µ 0 and µ. This equation will play a key role in subsequent development and in a sense replaces the dynamics equation (1). To derive this equation fix an initial condition x 0 ∈ X and a control sequence

{u t|x 0 } ∞ t=0 such that the associated state sequence {x t|x 0 } ∞ t=0 stays in X. Then for any v ∈ C(X) we have X×U v(x) dµ(x, u | x 0 ) = ∞ t=0 α t v(x t|x 0 ) = v(x 0|x 0 ) + α ∞ t=0 α t v(x t+1|x 0 ) = v(x 0|x 0 ) + α ∞ t=0 α t v(f (x t|x 0 , u t|x 0 )) = v(x 0|x 0 ) + α X×U v(f (x, u)) dµ(x, u | x 0 ).
Integrating w.r.t. µ 0 we arrive at the sought equation

X×U v(x) dµ(x, u) = X v(x) dµ 0 (x) + α X×U v(f (x, u)) dµ(x, u) ∀v ∈ C(X). (4) 
Note that this is an infinite-dimensional linear equation in variables (µ 0 , µ).

The following crucial Lemma establishes the connection between the support of any initial measure µ 0 solving (4) and the MCI set X I .

Lemma 1 For any pair of measures (µ 0 , µ) satisfying equation ( 4) with spt µ 0 ⊂ X and spt µ ⊂ U × X we have spt µ 0 ⊂ X I .

Proof: A detailed proof is in Appendix A.

Continuous time

Given an initial condition x 0 and a trajectory x(• | x 0 ) of the inclusion (2) that remains in X for all t ≥ 0, there exists an admissible time-varying measure-valued relaxed control

ν t (• | x 0 ) ∈ M (U ), ν t (U | x 0 ) = 1, such that ẋ(t) = U f (x(t), u) dν t (u | x 0 )
almost everywhere with respect to the Lebesgue measure on [0, ∞). This follows from the definition of the convex hull (in fact, for each t, ν t (• | x 0 ) can be taken to be a convex combination of finitely many Dirac measures).

Then, given a discount factor β > 0, we define the discounted occupation measure µ(

• | x 0 ) ∈ M (X × U ) as µ(A × B | x 0 ) := ∞ 0 U e -βt I A×B (x(t | x 0 ), u) dν t (u | x 0 ) dt for all sets A ⊂ X and B ⊂ U .
In words, the discounted occupation measure measures the (discounted) time spent by the state-control pair trajectory (x

(• | x 0 ), ν(• | x 0 )) in subsets of X × U . The discounting in the definition of the occupation measure ensures that µ(A × B | x 0 ) is always finite; in fact we have µ(X × U | x 0 ) = β -1 .
Now suppose that the initial condition is not a single point but an initial measure4 µ 0 ∈ M (X) and a state trajectory that remains in X along with an admissible relaxed control is associated to each initial condition from the support of µ 0 . Then we define the average discounted occupation measure µ ∈ M (X × U ) as

µ(A × B) := X µ(A × B | x 0 ) dµ 0 (x 0 ).
Now we derive an equation linking the measures µ 0 and µ. This equation will play a key role in subsequent development and in a sense replaces the dynamics equation (2). To derive the equation, fix an initial condition x 0 ∈ X, a trajectory x(• | x 0 ) that remains in X with an associated admissible relaxed control ν t (• | x 0 ). Then for any v ∈ C 1 (X) integration by parts yields

X×U grad v • f (x, u) dµ(x, u | x 0 ) = ∞ 0 U e -βt grad v•f (x(t | x 0 ), u) dν t (u | x 0 ) dt = ∞ 0 e -βt d dt v(x(t | x 0 )) dt = β ∞ 0 e -βt v(x(t | x 0 )) dt -v(x(0 | x 0 )) = β X×U v(x) dµ(x, u | x 0 ) -v(x(0 | x 0 )),
where the boundary term at infinity vanishes due to discounting and the fact that X is bounded. Integrating with respect to µ 0 then gives the sought equation

β X×U v(x) dµ(x, u) = X v(x) dµ 0 (x) + X×U grad v • f (x, u) dµ(x, u) ∀v ∈ C 1 (X). ( 5 
)
Note that this is an infinite-dimensional linear equation in variables (µ 0 , µ).

The following crucial Lemma establishes the connection between the support of any initial measure satisfying (5) and the MCI set X I .

Lemma 2 For any pair of measures (µ 0 , µ) satisfying equation ( 5) with spt µ 0 ⊂ X and spt µ ⊂ U × X we have λ(spt µ 0 ) ≤ λ(X I ).

Proof: A detailed proof is in Appendix B.

Primal LP

In this section we show how the MCI set computation problem can be cast as an infinitedimensional LP problem in the cone of nonnegative measures. As in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF], the basic idea is to maximize the mass of the initial measure µ 0 subject to the constraint that it be dominated by the Lebesgue measure, that is, µ 0 ≤ λ. System dynamics is captured by the equations ( 4) and ( 5) for discrete and continuous times, respectively; state and input constraints are expressed through constraints on the supports of the initial and occupation measure. The constraint that µ 0 ≤ λ can be equivalently rewritten as µ 0 + μ0 = λ for some nonnegative slack measure μ0 ∈ M (X). This constraint is in turn equivalent to X w(x) dµ 0 (x) + X w(x) dμ 0 (x) = X w(x) dλ(x) for all w ∈ C(X). These considerations lead to the following primal LPs.

Discrete time

The primal LP in discrete time reads

p * = sup µ 0 (X) s.t. v(x) dµ(x, u) = v(x) dµ 0 (x) + α v(f (x, u)) dµ(x, u) ∀ v ∈ C(X) w(x) dµ 0 (x) + w(x) dμ 0 (x) = w(x) dλ(x) ∀ w ∈ C(X) µ ≥ 0, µ 0 ≥ 0, μ0 ≥ 0 spt µ ⊂ X × U, spt µ 0 ⊂ X, spt μ0 ⊂ X, (6) 
where the supremum is over the vector of measures (µ,

µ 0 , μ0 ) ∈ M (X × U ) × M (X) × M (X).
This is an infinite-dimensional LP in the cone of nonnegative Borel measures. The following Lemma, which is our main theoretical result, relates an optimal solution of this LP to the MCI set X I .

Theorem 1 The optimal value of LP problem ( 6) is equal to the volume of the MCI set X I , that is, p * = λ(X I ). Moreover, the supremum is attained by the restriction of the Lebesgue measure to the MCI set X I .

Proof: The proof follows from Lemma 1 by the same arguments as Theorem 1 in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]. By definition of the MCI set X I , for any initial condition x 0 ∈ X I there exists an admissible control sequence such that the associated state sequence remains in X. Therefore for any initial measure µ 0 ≤ λ with spt µ 0 ⊂ X I there exist a discounted occupation measure µ with spt µ ⊂ X × U and a slack measure μ0 with spt μ0 ⊂ X such that the constraints of problem (6) are satisfied. One such measure µ 0 is the restriction of the Lebesgue measure to X I , and therefore p * ≥ λ(X I ). The fact p * ≤ λ(X I ) follows from Lemma 1.

Continuous time

The primal LP in continuous time reads

p * = sup µ 0 (X) s.t. β v(x) dµ(x, u) = v(x) dµ 0 (x) + grad v • f (x, u) dµ(x, u) ∀v ∈ C 1 (X) w(x) dµ 0 (x) + w(x) dμ 0 (x) = w(x) dλ(x) ∀ w ∈ C(X) µ ≥ 0, µ 0 ≥ 0, μ0 ≥ 0 spt µ ⊂ X × U, spt µ 0 ⊂ X, spt μ0 ⊂ X, (7) 
where the infimum is over the vector of measures (µ, µ 0 , μ0 ) ∈ M (X ×U )×M (X)×M (X). This is an infinite-dimensional LP in the cone of nonnegative Borel measures. The following Lemma, which is our main theoretical result, relates an optimal solution of this LP to the MCI set X I .

Theorem 2 The optimal value of LP problem [START_REF] Bertsekas | Infinite time reachability of state-space regions by using feedback control[END_REF] is equal to the volume of the MCI set X I , that is, p * = λ(X I ). Moreover, the supremum is attained by the restriction of the Lebesgue measure to the MCI set X I .

Proof: The fact that µ 0 equal to the restriction of the Lebesgue measure to X I is feasible in (7) (and therefore p * ≥ λ(X I )) follows by the same arguments as in discrete time. The fact that p * ≤ λ(X I ) follows from Lemma 2.

Dual LP

In this section we derive LPs dual to the primal LPs ( 6) and [START_REF] Bertsekas | Infinite time reachability of state-space regions by using feedback control[END_REF]. Since the primal LPs are in the space of measures, the dual LPs will be on the space of continuous functions. Super-level sets of feasible solutions to these LPs then provide outer approximations to the MCI sets, both in discrete and in continuous time. Both duals can be derived by standard infinite-dimensional LP duality theory; see [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] for a derivation in a similar setting or [START_REF] Anderson | Linear programming in infinite-dimensional spaces: theory and applications[END_REF] for a general theory of infinite-dimensional linear programming.

Discrete time

The dual LP in discrete time reads

d * = inf X w(x) dλ(x) s.t. αv(f (x, u)) ≤ v(x), ∀ (x, u) ∈ X × U w(x) ≥ v(x) + 1, ∀ x ∈ X w(x) ≥ 0, ∀ x ∈ X, (8) 
where the infimum is over the pair of functions (v, w) ∈ C(X) × C(X).

The following key observation shows that the unit super-level set of any function w feasible in ( 8) provides an outer-approximation to X I .

Lemma 3 Any feasible solution to problem (8) satisfies v ≥ 0 and w ≥ 1 on X I .

Proof: Given any x 0 ∈ X I there exists a sequence {u t } ∞ t=0 , u t ∈ U , such that x t ∈ X for all t. The first constraint of problem ( 8) is equivalent to αv(x t+1 ) ≤ v(x t ), t ∈ {0, 1, . . .}. By iterating this inequality we get

v(x 0 ) ≥ α t v(x t ) → 0 as t → ∞ since x t ∈ X and X is bounded. Therefore v(x 0 ) ≥ 0 and w(x 0 ) ≥ 1 for all x 0 ∈ X I .
The following theorem is instrumental in proving the convergence results of Section 6.

Theorem 3 There is no duality gap between primal LP problems (6) on measures and dual LP problem [START_REF] Bhatt | Occupation Measures for Controlled Markov Process: Characterization and Optimality[END_REF] on functions in the sense that p * = d * .

Proof: Follows by the same arguments as Theorem 2 in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] using standard infinitedimensional LP duality theory (see, e.g., [START_REF] Anderson | Linear programming in infinite-dimensional spaces: theory and applications[END_REF]) and the fact that the feasible set of the primal LP is nonempty and bounded in the metric inducing the weak-* topology on M (X) × M (X × U ) × M (X). To see non-emptiness, notice that the vector of measures (µ 0 , µ, μ0 ) = (0, 0, λ) is trivially feasible. To see the boundedness, it suffices to evaluate the equality constraints of (6) for v(x) = w(x) = 1. This gives µ 0 (X) + μ0 (X) = λ(X) < ∞ and µ(X) = µ 0 (X)/(1 -α), which, since α ∈ (0, 1) and all measures are nonnegative, proves the assertion.

Continuous time

The dual LP in continuous time reads

d * = inf X w(x) dλ(x) s.t. grad v • f (x, u) ≤ βv(x), ∀ (x, u) ∈ X × U w(x) ≥ v(x) + 1, ∀ x ∈ X w(x) ≥ 0, ∀ x ∈ X, (9) 
where the infimum is over the pair of functions (v, w) ∈ C 1 (X) × C(X).

The following key observation shows that the unit super-level set of any function w feasible in ( 9) provides an outer-approximation to X I .

Lemma 4 Any feasible solution to problem (9) satisfies v ≥ 0 and w ≥ 1 on X I .

Proof: Given any x 0 ∈ X I there exists an admissible relaxed control function ν t (•), ν t (U ) = 1, such that x(t) ∈ X for all t. For that x(t) we have

d dt v(x(t)) = U grad v • f (x(t), u) dν t (u) ≤ U βv(x(t)) dν t (u) = ν t (U )βv(x(t)) = βv(x(t)).
Then by Gronwall's inequality v(x(t)) ≤ e βt v(x 0 ), and consequently v(x 0 ) ≥ e -βt v(x(t)) → 0 as t → ∞ since x(t) ∈ X and X is bounded. Therefore v(x 0 ) ≥ 0 and w(x 0 ) ≥ 1 for all x 0 ∈ X I .

The following theorem is instrumental in proving the convergence results of Section 6.

Theorem 4 There is no duality gap between primal LP problems (7) on measures and dual LP problem [START_REF] Blanchini | Set invariance in control[END_REF] on functions in the sense that p * = d * .

Proof: Follows by the same arguments as Theorem 2 in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] using standard infinitedimensional LP duality theory (see, e.g., [START_REF] Anderson | Linear programming in infinite-dimensional spaces: theory and applications[END_REF]) and the fact that the feasible set of the primal LP is nonempty and bounded in the metric inducing the weak-* topology on M (X) × M (X × U ) × M (X). To see non-emptiness, notice that the vector of measures (µ 0 , µ, μ0 ) = (0, 0, λ) is trivially feasible. To see the boundedness, it suffices to evaluate the equality constraints of (7) for v(x) = w(x) = 1. This gives µ 0 (X) + μ0 (X) = λ(X) < ∞ and µ(X) = µ 0 (X)/β, which, since β > 0 and all measures are nonnegative, proves the assertion.

LMI relaxations

In this section we present finite dimensional relaxations of the infinite-dimensional LPs. Both in continuous and discrete time, the relaxations of the primal LPs lead to a truncated moment problem which translates to a semidefinite program (SDP) that can be solved by freely available software, e.g., SeDuMi [START_REF] Pólik | SeDuMi: a package for conic optimization[END_REF] or SDPA [START_REF] Yamashita | Latest developments in the SDPA Family for solving large-scale SDPs[END_REF]. Dual to the primal SDP relaxation is a sum-of-squares (SOS) problem that again translates to an SDP problem. The following discussion closely follows the one in [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF].

We only highlight the main ideas behind the derivation of the finite-dimensional relaxations. The reader is referred to [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]Section 5] or to the comprehensive reference [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] for details. First, since the supports of all measures feasible in ( 6) and ( 7) are compact, these measures are uniquely determined by their moments, i.e., by integrals of all monomials (which is a sequence of real numbers when indexed in, e.g., the canonical monomial basis). Therefore, it suffices to restrict the test functions w(x) and v(x) in ( 6) and ( 7) to all monomials, reducing the linear equality constraints on measures µ 0 , µ and μ0 of ( 6) and ( 7) to linear equality constraints on their moments. Next, by the Putinar Positivstellensatz (see [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF][START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]), the constraint that the support of a measure is included in a given compact basic semialgebraic set is equivalent to the feasibility of an infinite sequence of LMIs involving the so-called moment and localizing matrices, which are linear in the coefficients of the moment sequence. By truncating the moment sequence and taking only the moments corresponding to monomials of total degree less than or equal to 2k, where k ∈ {1, 2, . . .} is the relaxation order, we obtain a necessary condition for this truncated moment sequence to be the first part of a moment sequence corresponding to a measure with the desired support.

In what follows, R k [•] denotes the vector space of real multivariate polynomials of total degree less than or equal to k. Furthermore, throughout the rest of this section we make the following standard standing assumption: Assumption 1 One of the polynomials modeling the sets X resp. U is equal to g

X i (x) = R 2 X -x 2 2 resp. g U i (u) = R 2 U -u 2 2 with R X , R U sufficiently large constants.
This assumption is completely without loss of generality since redundant ball constraints can be always added to the description of the compact sets X and U .

Discrete time

The primal relaxation of order k in discrete time reads

p * k = max (y 0 ) 0 s.t. A k (y, y 0 , ŷ0 ) = b k M k (y) 0, M k-d X i (g X i , y) 0, i = 1, 2, . . . , n X M k-d U i (g U i , y) 0, i = 1, 2, . . . , n U M k (y 0 ) 0, M k-d X i (g X i , y 0 ) 0, i = 1, 2, . . . , n X M k (ŷ 0 ) 0, M k-d X i (g X i , ŷ0 ) 0, i = 1, 2, . . . , n X , (10) 
where the notation 0 stands for positive semidefinite and the minimum is over moment sequences (y, y 0 , ŷ0 ) truncated to degree 2k corresponding to measures µ, µ 0 and μ0 in [START_REF] Ben Sassi | Controller synthesis for robust invariance of polynomial dynamical systems using linear programming[END_REF].

The linear equality constraint captures the two linear equality constraints of (6) with v(t, x) ∈ R 2k [t, x] and w(x) ∈ R 2k [x] being monomials of total degree less than or equal to 2k. The matrices M k (•) are the moment and localizing matrices, following the notations of [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] or [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]. In problem [START_REF] Blanchini | Ultimate boundedness control for uncertain discrete time systems via set-induced Lyapunov functions[END_REF], a linear objective is minimized subject to linear equality constraints and LMI constraints; therefore problem ( 10) is a semidefinite program (SDP).

The dual relaxation of order k in discrete time reads

d * k = inf w l s.t. v(x) -αv(f (x, u)) = q 0 (x, u) + n X i=1 q i (x, u)g X i (x) + n U i=1 r i (x, u)g U i (u) w(x) -v(x) -1 = p 0 (x) + n X i=1 p i (x)g X i (x) w(x) = s 0 (x) + n X i=1 s i (x)g X i (x), ( 11 
)
where l is the vector of Lebesgue moments over X indexed in the same basis in which the polynomial w(x) with coefficients w is expressed. The minimum is over polynomials

v(x) ∈ R 2k [x] and w ∈ R 2k [x],
and polynomial sum-of-squares q i , p i , s i , i = 1, . . . , n X and r i , i = 1, . . . , n U , of appropriate degrees. In problem [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF], a linear objective function is minimized subject to sum-of-squares (SOS) constraints; therefore problem [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF] is an SOS problem which can be readily cast as an SDP (see, e.g., [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]).

Continuous time

The primal relaxation of order k in continuous time reads

p * k = max (y 0 ) 0 s.t. A k (y, y 0 , ŷ0 ) = b k M k (y) 0, M k-d X i (g X i , y) 0, i = 1, 2, . . . , n X M k-d U i (g U i , y) 0, i = 1, 2, . . . , n U M k (y 0 ) 0, M k-d X i (g X i , y 0 ) 0, i = 1, 2, . . . , n X M k (ŷ 0 ) 0, M k-d X i (g X i , ŷ0 ) 0, i = 1, 2, . . . , n X , (12) 
where the notation 0 stands for positive semidefinite and the minimum is over moment sequences (y, y 0 , ŷ0 ) truncated to degree 2k corresponding to measures µ, µ 0 and μ0 in [START_REF] Bertsekas | Infinite time reachability of state-space regions by using feedback control[END_REF].

The linear equality constraint captures the two linear equality constraints of ( 7) with v(t, x) ∈ R 2k [t, x] and w(x) ∈ R 2k [x] being monomials of total degree less than or equal to 2k. The matrices M k (•) are the moment and localizing matrices, following the notations of [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] or [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]. In problem [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF], a linear objective is minimized subject to linear equality constraints and LMI constraints; therefore problem ( 12) is a semidefinite program (SDP).

The dual relaxation of order k in continuous time reads

d * k = inf w l s.t. βv(x) -grad v•f (x, u) = q 0 (x, u)+ n X i=1 q i (x, u)g X i (x)+ n U i=1 r i (x, u)g U i (u) w(x) -v(x) -1 = p 0 (x) + n X i=1 p i (x)g X i (x) w(x) = s 0 (x) + n X i=1 s i (x)g X i (x), ( 13 
)
where l is the vector of Lebesgue moments over X indexed in the same basis in which the polynomial w(x) with coefficients w is expressed. The minimum is over polynomials

v(x) ∈ R 2k [x] and w ∈ R 2k [x],
and polynomial sum-of-squares q i , p i , s i , i = 1, . . . , n X and r i , i = 1, . . . , n U , of appropriate degrees. In problem (13), a linear objective function is minimized subject to sum-of-squares (SOS) constraints; therefore problem ( 13) is an SOS problem which can be readily cast as an SDP (see, e.g., [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]).

Convergence results

In this section we state several convergence results for the finite dimensional relaxations resp. approximations [START_REF] Blanchini | Ultimate boundedness control for uncertain discrete time systems via set-induced Lyapunov functions[END_REF], [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF] resp. ( 11), [START_REF] Blanchini | Set-theoretic methods in control[END_REF]. Let w k and v k denote an optimal solution to the k th dual SDP approximation [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF] or [START_REF] Blanchini | Set-theoretic methods in control[END_REF], and define

X I k := {x ∈ X : v k (x) ≥ 0}.
Then, in view of Lemmata 3 and 4, we know that w k over-approximates the indicator function of the MCI set X I on X, i.e., w k ≥ I X I on X, and that the sets X I k approximate from the outside the MCI set X I , i.e., X I k ⊃ X I . In the sequel we prove the following:

• The optimal values of the finite-dimensional primal and dual problems p * k and d * k coincide and converge to the optimal values of the infinite dimensional primal and dual LPs p * and d * which also coincide (in view of Theorems 3 and 4) and are equal to the volume of the MCI set.

• The sequence of functions w k converges on X from above to the indicator function of the MCI set in L 1 norm. In addition, the running minimum min i≤k w i converges on X from above to the indicator function of the MCI set set in L 1 norm and almost uniformly.

• The sequence of sets X I k converges to the MCI set X I in the sense that the volume discrepancy tends to zero, i.e., lim k→∞ λ(X Ik \ X I ) = 0.

The proofs of the results follow very similar reasoning as analogous results on region of attraction approximations in [20, Section 6].

Lemma 5 There is no duality gap between primal LMI problems (10 and 12) and dual LMI problems (11 and 13), i.e. p * k = d * k .

Proof: The argument closely follows the one in [20, Theorem 4] and therefore we only outline the key points of the proof. To prove the absence of duality gap, it is sufficient to show that the feasible sets of the primal SDPs [START_REF] Blanchini | Ultimate boundedness control for uncertain discrete time systems via set-induced Lyapunov functions[END_REF] and ( 12) are non-empty and compact. The result then follows by standard SDP duality theory (see [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]Theorem 4] for a detailed argument). The non-emptiness follows trivially since the vector of measures (µ 0 , µ, μ) = (0, 0, λ) is feasible in the primal infinite-dimensional LPs ( 6) and ( 7) and therefore the truncated moment sequences corresponding to these measures are feasible in the primal SDP relaxations [START_REF] Blanchini | Ultimate boundedness control for uncertain discrete time systems via set-induced Lyapunov functions[END_REF] and [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF]. To see the compactness observe that the first components (i.e., masses) of the truncated moment vectors y 0 , y and ŷ are bounded. This follows by evaluating the equality constraints of ( 6) and ( 7) for w(x) = v(x) = 1. Indeed, in discrete-time we get (y) 0 = (y 0 ) 0 /(1 -α) and in continuous-time we get (y) 0 = (y 0 ) 0 /β; in addition, in both cases we have (y 0 ) 0 + (ŷ 0 ) 0 = λ(X) < ∞ and therefore the first components are indeed bounded (since they are trivially bounded from below, in fact nonnegative, due to the constraints on moment matrices). Boundedness of the even components of each truncated moment vector then follows from the structure of the localizing matrices corresponding to the functions from Assumption 1. Boundedness of the entire truncated moment vectors then follows since the even moments appear on the diagonal of the positive semidefinite moment matrices.

The following result shows the convergence of the optimal values of the relaxations to the optimal values of the infinite-dimensional LPs.

Theorem 5 The sequence of infima of LMI problems ( 11) and ( 13) converges monotonically from above to the supremum of the LP problems ( 8) and ( 9), i.e.,

d * ≤ d * k+1 ≤ d * k and lim k→∞ d * k = d * .
Similarly, the sequence of maxima of LMI problems ( 10) and ( 12) converges monotonically from above to the maximum of the LP problems ( 6) and ( 7), i.e., p * ≤ p * k+1 ≤ p * k and lim k→∞ p * k = p * .

Proof: The monotonicity of the optimal values of the relaxations p * k resp. approximations d * k is evident form the structure of the feasible sets of the corresponding SDPs. The convergence of the primal relaxations p k to p * follows from the compactness of the feasible sets of the primal SDPs ( 10) and ( 12) (shown in the proof of Lemma 5) by standard arguments on the convergence of Lasserre's LMI hierarchy (see, e.g., [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]). The converge of the optimal value of the dual approximations d * k to d * then follows from Lemma 5. The next theorem shows functional convergence from above to the indicator function of the MCI set.

Theorem 6 Let w k ∈ R 2k [x]
denote the w-component of a solution to the dual LMI problems [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF] or ( 13) and let wk (x) = min i≤k w i (x). Then w k converges from above to I X I in L 1 norm and wk converges from above to I X I in L 1 norm and almost uniformly.

Proof: The convergence in L 1 norm follows immediately from Theorem 5 and from the fact that w k ≥ I X I by Lemmata 3 and 4. The convergence of the running minima follows from the fact that there exists a subsequence of {w k } ∞ k=0 which converges almost uniformly (by, e.g., [4, Theorems 2.5.2 and 2.5.3]).

Our last theorem shows a set-wise convergence of the outer-approximations to the MCI set.

Theorem 7 Let (v k , w k ) ∈ R 2k [x] × R 2k [x]
denote an optimal solution to the dual LMI problem [START_REF] Blanchini | Dynamic augmentation and complexity reduction of set-based constrained control[END_REF] or [START_REF] Blanchini | Set-theoretic methods in control[END_REF] and let

X I k := {x ∈ R n : v k (x) ≥ 0}. Then X I ⊂ X I k , lim k→∞ λ(X Ik \ X I ) = 0 and λ(∩ ∞ k=1 X I k \ X I ) = 0.
Proof: From Lemmata 3 or 4 we have X I k ⊃ X I and w k ≥ I X I ; therefore, since w ≥ v + 1 and w ≥ 0 on X, we have w k ≥ I X I k ≥ I X I and {x :

w k (x) ≥ 1} ⊃ X I k ⊃ X 0 . From Theorem 6, we have w k → I X I in L 1 norm on X. Consequently, λ(X I ) = X I X I dλ = lim k→∞ X w k dλ ≥ lim k→∞ X I X I k dλ = lim k→∞ λ(X I k ) ≥ lim k→∞ λ(∩ k i=1 X I i ) = λ(∩ ∞ k=1 X I k ).
But since X I ⊂ X I k for all k, we must have

lim k→∞ λ(X I k ) = λ(X I ) and λ(∩ ∞ k=1 X I k ) = λ(X I ),
and the theorem follows.

Numerical examples

In this section we present numerical examples that illustrate our results. The primal SDP relaxations were modeled using Gloptipoly 3 [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF] and the dual SOS problems using Yalmip [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF]. The resulting SDP problems were solved using SeDuMi [START_REF] Pólik | SeDuMi: a package for conic optimization[END_REF] (which, in the case of primal relaxations, also returns the dual solution providing the outer approximations). For numerical computation (especially for higher relaxation orders), the problem data should be scaled such that the constraint sets are (within) unit boxes or unit balls; for ease of reproduction, most of the numerical problems shown are already scaled. On our problem class we observed only marginal sensitivity to the values of the discrete-and continuous-time discount factors α and β and report results with α = 0.9 and β = 1 for all examples presented.

For a discussion on the scalability of our approach and the performance of alternative SDP solvers see the Conclusion and the acrobot-on-a-cart example below.

Discrete time 7.1.1 Double integrator

Consider the discrete-time double integrator:

x + 1 = x 1 + 0.1x 2 x + 2 =
x 2 + 0.05u with the state constraint set X = [-1, 1] 2 and input constraint set U = [-0.5, 0.5]. The resulting of MCI set outer approximations of degree 8 and 12 are shown in Figure 1; the approximation is fairly tight for modest degrees. The true MCI set was computed using the standard algorithm based on polyhedral projections [START_REF] Blanchini | Set invariance in control[END_REF].

Cathala system

Consider the Cathala system borrowed from [START_REF] Krishchenko | Maximal compact positively invariant sets of discrete-time nonlinear systems[END_REF]:

x + 1 = x 1 + x 2 x + 2 = -0.5952 + x 2 + x 2 1 .
The chaotic attractor of this system is contained in the set X = [-1.6, 1.6] 2 . MCI set outer approximations are shown in Figure 2; again, the approximations are relatively tight for small relaxation orders. The true MCI set was (approximately) computed by gridding.

Julia sets

Consider over z ∈ C, or equivalently over x ∈ R 2 with z := x 1 + ix 2 , the quadratic recurrence with c ∈ C a given complex number and i the imaginary unit. The filled Julia set is the set of all initial conditions of the above recurrence for which the trajectories remain bounded. The shape of the Julia set depends strongly on the parameter c. If c lies inside the Mandelbrot set, then the Julia set is connected; otherwise the set is disconnected. In both cases the boundary of the set has a very complicated (in fact fractal) structure. Here we shall compute outer approximations of the filled Julia set intersected with the unit ball. To this end we set X = {x ∈ R 2 : x ≤ 1}. Figure 3 shows outer approximations of degree 12 for parameter values c = -0.7 + i0.2 (inside the Mandelbrot set) and c = -0.9 + i0.2 (outside the Mandelbrot set). The "true" filled Julia set was (approximately) obtained by randomly sampling initial conditions within the unit ball and iterating the recurrence for one hundred steps. Taking higher degree of the approximating polynomials does not give significant improvements due to our choice of the monomial basis to represent polynomials. An alternative basis (e.g. Chebyshev polynomials -see the related discussions in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] and c = -0.7 + i0.2 c = -0.9 + i0.2 [20]) would allow us to improve further the outer estimates and better capture the intricate structure of the filled Julia set's boundary.

z + = z 2 + c

Hénon map

Consider the modified controlled Hénon map [START_REF] Liu | H ∞ State Estimation for Discrete-Time Chaotic Systems Based on a Unified Model[END_REF] with X = [-1, 1] 3 and U = [-u max , u max ]. We investigate two cases: uncontrolled (i.e., u max = 0) and controlled with u max = 1. Figure 4 shows outer approximations to the MCI set of degree eight for both settings and the "true" MCI set in the uncontrolled setting (approximately) obtained by random sampling of initial conditions inside the constraint set X. The outer approximations suggest that, as expected, allowing for control leads to a larger MCI set. The (approximation of) the "true" set (black) in the uncontrolled setting is represented as an ensemble of initial conditions randomly sampled within the state-constraint set.

x + 1 = 0.44 -0.1x 3 -4x 2 2 + 0.25u, x + 2 = x 1 -4x 1 x 2 , x + 3 = x 2 , adapted from
with state constraint set X = [-1, 1] 2 and input constraint set U = [-1, 1]. The resulting MCI set outer approximations for degrees 8 and 12 are in Figure 5. The approximations are fairly tight even for relatively low relaxation orders. The true MCI set was (approximately) computed as in Section 7.1.1 by methods of [START_REF] Blanchini | Set invariance in control[END_REF] after dense time discretization.

Spider-web system

As our second example we take the spider-web system from [START_REF] Ahmadi | Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation[END_REF] given by equations ẋ1 = -0.15x

7 1 + 200x 6 1 x 2 -10.5x 5 1 x 2 2 -807x 4 1 x 3 2 + 14x 3 1 x 4 2 + 600x 2 1 x 5 2 -3.5x 1 x 6 2 + 9x 7 2 ẋ2 = -9x 7 1 -3.5x 6 1 x 2 -600x 5 1 x 2 2 + 14x 4 1 x 3 2 + 807x 3 1 x 4 2 -10.5x 2 1 x 5 2 -200x 1 x 6 2 -0.15x 7 2
with the constraint set X = [-1, 1] 2 . Here we exploit the fact that the system dynamics are captured by constraints on v only whereas w is merely over approximating v + 1, and the fact that outer approximations to the MCI set are given not only by {x : v(x) ≥ 0} but also by {x : w(x) ≥ 1}. Therefore, if low-complexity outer approximations are desired, it is reasonable to choose different degrees of v and w in (13) -high for v and lower for wand use the set {x : w(x) ≥ 1} as the outer approximation. That way, we expect to obtain relatively tight low-order approximations. This is confirmed by numerical results shown in Figure 6. The degree of v is equal to [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF] 

Acrobot on a cart

As our last example we consider the acrobot on a cart system adapted from [START_REF] Jadlovská | Inverted pendula simulation and modeling -a generalized approach[END_REF], which is essentially a double pendulum on a cart where the inputs are the force acting on the cart and the torque in the middle joint of the double pendulum. The system is sketched in Figure 7. It is a sixth order system with with two control inputs; the dynamic equation is given by ẋ

=     x 4 x 5 x 6 M (x) -1 N (x, u)     ∈ R 6 where M (x) =   a 1 a 2 cos x 2 a 3 cos x 3 a 2 cos x 2 a 4 a 5 cos(x 2 -x 3 ) a 3 cos x 3 a 5 cos(x 2 -x 3 ) a 6   and N (x, u) =   u 1 + a 2 x 2 5 sin x 2 + a 3 x 2 6 sin x 3 -δ 0 x 4 -a 5 x 2 6 sin(x 2 -x 3 ) + δ 2 x 6 + a 7 sin x 2 -x 5 (δ 1 + δ 2 ) u 2 + a 5 sin(x 2 -x 3 )x 2 5 + δ 2 x 5 -δ 2 x 6 + a 8 sin x 3   .
The states x 1 , x 2 , x 3 represent, respectively, the position of the cart (in meters), the angle of the lower rod and the angle of the upper rod of the double pendulum (both in radians); the states x 4 , x 5 and x 6 are then the corresponding velocities in meters per second for the cart and radians per second for the pendulum rods. The constants are given by a 1 = 0.85, a 2 = 0.2063, a 3 = 0.0688, a 4 = 0.0917, a 5 = 0.0344, a 6 = 0.0229, a 7 = 2.0233, a 8 = 0.6744, δ 0 = 0.3, δ 1 = 0.1, δ 2 = 0.1. We are interested in computing the maximum controlled invariant subset of the state constraint set

X = [-1, 1] × [-π/3, π/3] × [-π/3, π/3] × [-0.5, 0.5] × [-5, 5] × [-5, 5].
We investigate two cases. First, we consider the situation where only the middle joint is actuated and there is no force on the cart; therefore we impose the constraint (u 1 , u 2 ) ∈ U = {0} × [-1, 1]. Second, we consider the situation where we can also exert a force on the cart; in this case we impose (u 1 , u 2 )

∈ U = [-1, 1] × [-1, 1]
. Naturally, the MCI set for the second case is larger (or at least the same) as for the first case. This is confirmed5 by outer approximations of degree four whose section for x 1 = 0, x 4 = 0, x 5 = 0 is shown in Figure 8. In order to compute the outer approximations we took a third order Taylor expansion of the non-polynomial dynamics even though exact treatment would be possible via a coordinate transformation leading to rational dynamics to which our methods can be readily extended; this extension is, however, not treated in this paper and therefore we opted for the simpler (and non-exact) approach using Taylor expansion. Before solving the problem we made a linear coordinate transform so that the state constraint set becomes the unit hypercube [-1, 1]6 .

This example, which is the largest of those considered in this paper, took 110 seconds to solve 6 with SeDuMi for d = 4; the corresponding time with the MOSEK SDP solver was 10 seconds. Using MOSEK we could also solve this example for d = 6 (in 420 seconds) although there the solver converged to a solution with a rather poor accuracy7 and therefore we do not report the results. Acrobot on a cart -section of the polynomial outer approximations of degree four for (x 1 , x 4 , x 5 ) = (0, 0, 0). Only the middle joint actuated -darker, smaller; middle joint and the cart actuated -lighter, larger. The states displayed x 2 , x 3 and x 6 are, respectively, the lower pendulum angle, the upper pendulum angle and the upper pendulum angular velocity.

Conclusion

We derived an infinite-dimensional convex characterization of the maximum controlled invariant (MCI) set, finite-dimensional approximations of (the dual of) which provide a converging sequence of semialgebraic outer-approximations to this set. The outerapproximations are the outcome of a single semidefinite program (SDP) with no additional data required besides the problem description. Therefore the approach is readily applicable using freely available modeling tools such Gloptipoly 3 [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF] or YALMIP [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF] with no hand-tuning involved.

The cost to pay for this comfort is the relatively unfavourable scalability of the semidefinite programs solved -the number of variables grows as O((n + m) d ), where n and m are the state and control dimensions and d is the degree of the approximating polynomial. Therefore, in order for this approach to scale to medium dimensions (say, more than m + n = 6) one either has to tradeoff accuracy by taking small d or go beyond the standard freely available solvers such as SeDuMi or SDPA. One possibility is parallelization; for instance, the free parallel solver SDPARA [START_REF] Yamashita | SDPARA: SemiDefinite Programming Algorithm paRAllel version[END_REF] allows for the approach to scale to larger dimensions. Alternatively, one can utilize one of the (few) commercial SDP solvers; in particular, the recently released MOSEK SDP solver seems to show far superior performance on our problem class, and therefore this may allow the approach to scale to larger dimensions (see also the discussion following the acrobot-on-a-cart example in Section 7.2.3). Finally, one can resort to customized structure-exploiting solutions; this is a promising direction of future research currently investigated by the authors. At this point it should be emphasized that, to the best of the authors' knowledge, all of the existing approaches providing approximations of similar quality experience similar or worse scalability properties.

Other directions of future research include the extension of the presented approach to inner approximations of MCI sets, to stochastic systems and to uncertain systems. Partial results on the inner approximations for the related problem of region of attraction computation already exist [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF], albeit in uncontrolled setting only.

The discounted occupation measure associated to the Markov process is defined by

µ(A × B) = ∞ t=0 α t µ t (A × B).
Note that this relation reduces to (3) when µ t = δ (xt,ut)

In order to prove Lemma 1 we need the following result that can be found in [START_REF] Hernández-Lerma | Discrete-time Markov control processes: basic optimality criteria[END_REF].

Lemma 6 For any pair of measures (µ 0 , µ) satisfying equation ( 4) there exists a stationary randomized control policy ν(• | x) such the Markov chain obtained by applying this control policy to the difference equation ( 1) starting from initial distribution µ 0 has the discounted occupation measure equal to µ.

Proof: Disintegrate µ as dµ(x, u) = dν(u | x)dμ(x), where μ denotes the x-marginal of µ and ν is a stochastic kernel on U given X. According to the discussion preceding Lemma 6, applying ν to (1) gives rise to a stationary discrete-time Markov process with the transition kernel Q ν starting form the initial distribution µ 0 .

With this notation, equation ( 4) can be equivalently rewritten as

X v(x) dμ(x) = X v(x) dµ 0 (x) + α X R n v(y) dQ ν (y | x) dμ(x) (14) 
for any measurable v(x) (derivation of equation ( 4) did not depend on the continuity of v).

Taking v(x) := I A (x) we obtain

μ(A) = µ 0 (A) + α X Q ν (A | x) dμ(x) ∀ A ⊂ X. (15) 
Using relation [START_REF] Dorea | A, B)-invariant polyhedral sets of linear discrete-time systems[END_REF] with v(x) := Q ν (A | x) to evaluate the integral w.r.t. μ on the right hand side of (15) we get

μ(A) = µ 0 (A) + α X Q ν (A | x) dµ 0 (x) + α 2 X Q 2 ν (A | x) dμ(x).
By iterating this procedure we obtain

μ(A) = µ 0 (A) + t i=1 α i X Q i ν (A | x) dµ 0 (x) µ i (A) + α t+1 X Q t+1 ν (A | x) dμ(x) → 0 , (16) 
and taking the limit as t → ∞ gives μ

(A) = ∞ t=0 α t μt (A),
where the third term in ( 16) converges to zero because α ∈ (0, 1), Q t+1 ν (A | x) ≤ 1 and μ is a finite measure. Hence the x-marginal of the discounted occupation measure of the Markov chain coincides with the x-marginal of µ.

Finally, to establish equality of the whole measures observe that

∞ t=0 α t µ t (A × B) = ∞ t=0 α t A ν(B | x) dμ t (x) = A ν(B | x) dμ(x) = µ(A × B).
Proof of Lemma 1: Disintegrate µ to dµ(x, u) = dν(u | x)dμ(x) as in the proof of Lemma 6. Then for any x ∈ S := spt μ we have

U I S (f (x, u)) ν(u | x) = 1.
This relation says that the support of μ is invariant under ν and follows from Lemma 6, from the definition of the occupation measure µ, from the definition of the support and from the fact that ν(• | x) is a probability measure for all x. where the inequality follows by the Portmanteau lemma since the set {u | f (x, u) ∈ S ∩ B 1/n (u(x))} is closed for all x by continuity of f . Therefore in fact I S (f (x, u(x))) = 1 and so f (x, u(x)) ∈ spt μ for all x ∈ spt μ. Therefore spt μ ⊂ X is invariant for the closed loop system x t+1 = f (x t , u(x t )), where u(x) is an admissible deterministic control policy. Therefore necessarily spt μ ⊂ X I . Finally, from equation (4) clearly spt µ 0 ⊂ spt μ and so spt µ 0 ⊂ X I .

9 Appendix B Lemma 7 For any pair of measures (µ 0 , µ) solving (5), there exists a family of trajectories of the convexified inclusion (2) starting from µ 0 such that the x-marginal of its discounted occupation measure is equal to the x-marginal of µ.

Proof: The proof is based on fundamental results of [START_REF] Ambrosio | Transport equation and Cauchy problem for non-smooth vector fields[END_REF] and [START_REF] Bhatt | Occupation Measures for Controlled Markov Process: Characterization and Optimality[END_REF] and on the compactification procedure discussed in [START_REF] Kurtz | Equivalence of stochastic equations and martingale problems[END_REF].

We begin by embedding the problem in a stochastic setting. To this end, define the extended state space E as the one-point compactification of R n , i.e., E = R n ∪{∆}, where ∆ is the point compactifying R n . Define also the linear 

is an F t -martingale (see, e.g., [START_REF] Kallenberg | Foundations of modern probability[END_REF] for a definition).

Observe that there exists a countable subset of D(A) (e.g., all polynomials with rational coefficients attenuated near infinity) dense in D(A) in the supremum norm. Next, D(A) is clearly an algebra that separates points of E and A1 = 0. Finally, since f (x, u) is polynomial and hence locally Lipschitz, the ODE ẋ = f (x, u) has a solution on [0, ∞) for any x 0 ∈ E and any fixed u ∈ U in the sense that if there is a finite escape time t e , then we define x(t) = ∆ for all t ≥ t e . Each such solution satisfies the martingale relation [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF] (with a trivial probability space). Therefore, A satisfies Conditions 1-3 of [START_REF] Bhatt | Occupation Measures for Controlled Markov Process: Characterization and Optimality[END_REF] and it follows from Theorem 2.2 and Corollary 2.2 therein that for any pair of measures satisfying the discounted Liouville's equation ( 5), there exists a solution to the above martingale problem whose discounted occupation measure is equal to µ, that is, 

µ(A × B) = E ∞ 0 e -βt
where the equation holds for all w ∈ C 1 (X) almost everywhere with respect to the Lebesgue measure on [0, ∞). The Lemma then follows from Ambrosio's superposition principle [2, Theorem 3.2] using the same arguments as in the proof of Lemma 4 in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF].

Proof of Lemma 2: Suppose that a pair of measures (µ 0 , µ) satisfies ( 5) and that λ(spt µ 0 \ X I ) > 0. From Lemma 7 there is a family of trajectories of (2) starting from µ 0 with discounted occupation measure whose x-marginal coincides with the x-marginal of µ. However, this is a contradiction since no trajectory starting from spt µ 0 \ X I remains in X for all times and spt µ ⊂ X. Thus, λ(spt µ 0 \ X I ) = 0 and so λ(spt µ 0 ) ≤ λ(X I ).
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 121 Figure 1: Discrete time double integrator -polynomial outer approximations (light gray) to the MCI set (dark gray) for degrees d ∈ {8, 12}.
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 2 Figure 2: Cathala system -polynomial outer approximations (light gray) to the MCI set (dark gray) for degrees d ∈ {6, 10}.
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 3 Figure 3: Filled Julia set -polynomial outer approximation of degree 12 (light gray) and (an approximation of) the "true" set (dark grey) represented as an ensemble of initial conditions randomly sampled within the state-constraint set. The dashed line shows the boundary of the unit-ball state-constraint set.
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 2 Continuous time 7.2.1 Double integrator Consider the continuous-time double integrator ẋ1 = x 2 ẋ2 = u,

Figure 4 :

 4 Figure 4: Controlled Hénon map -polynomial outer approximation of degree eight in the uncontrolled setting (darker red, smaller) and in the controlled setting (lighter red, larger).The (approximation of) the "true" set (black) in the uncontrolled setting is represented as an ensemble of initial conditions randomly sampled within the state-constraint set.
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 6 Figure 6: Spider-web system -polynomial outer approximations (light gray) to the MCI set (dark gray) for degrees deg v = 16 and deg w = 8 on the left and deg w = 16 on the right.
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  Define an admissible stationary deterministic control policy by taking any measurable selection u(x) ∈ spt ν(• | x) ⊂ U . Define further the sequence of probability measuresν n (A | x) = ν(B 1/n (u(x)) ∩ A | x) ν(B 1/n (u(x)) ∩ U | x) ∀ n ∈ {1, 2, . . .}, A ⊂ U,where B 1/n (u(x)) is a closed ball of radius 1/n centered at u(x). Then ν n (• | x) converges weakly-* (or weakly or narrowly) to δ u(x) andU I S (f (x, u)) ν n (u | x) = 1 ∀ n ∈ {1, 2, . . .}. S (f (x, u)) ν n (u | x) ≤ U I S (f (x, u)) δ u(x) (u) = I S (f (x, u(x))),

0 U

 0 operator A : D(A) → C(E × U ) by w → Aw := grad w • f,where the domain of A, D(A), is defined asD(A) := {w : E → R | w ∈ C 1 (R n ), w(∆) = 0, lim x→∆ w(x) = 0, lim x→∆ grad w • f (x, u) = 0 ∀ u ∈ U }.In words, D(A) is the space all continuously differentiable functions vanishing at infinity such that grad w • f also vanishes at infinity for all u ∈ U . Now consider the relaxed martingale problem[START_REF] Bhatt | Occupation Measures for Controlled Markov Process: Characterization and Optimality[END_REF]: find a stochastic process Y : [0, ∞] × Ω → E defined on some filtered probability space (Ω, F, (F t ) t≥0 , P ) and a stochastic kernel ν(• | •) (stationary relaxed Markov control) on U given E such that• P (Y (0) ∈ A) = µ 0 (A) ∀ A ⊂ E • for all w ∈ D(A)the stochastic process w(Y (t)) -t Aw(Y (τ ), u) ν(du | Y (τ )) dτ

  I A×B (Y (t), u) ν(du | Y (t)) dt , P (Y (0) ∈ A) = µ 0 (A),where E denotes the expectation w.r.t. the probability measure P . From the martingale property of[START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF] and the definition of A we getE{w(Y (t))} -E t 0 U grad w • f (Y (τ ), u) ν(du | Y (τ )) dτ = E{Y (0)}.Now let µ t denote the marginal distribution of Y (t) at time t; that is,µ t (A) := P (Y (t) ∈ A) = E{I A (Y (t))} ∀ A ⊂ X.Then the above relation becomesX w(x) dµ t (x) -t 0 X U grad w(x) • f (x, u) ν(du | x) dµ τ (x) dτ = w(x) dµ 0 (x),where we have used Fubini's thorem to interchange the expectation operator and integration w.r.t. time. Defining the relaxed vector fieldf (x) = U f (x, u) ν(du | x) ∈ conv f (x, U )and rearranging we obtain X w(x) dµ t (x) = w(x) dµ 0 (x) + t 0 X grad w(x) • f (x) dµ τ (x) dτ,

  for both figures, whereas deg w = 8 for the left figure and deg w = 16 for the right figure. We observe no significant loss in tightness
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	Figure 5: Continuous-time double integrator -polynomial outer approximations (light gray) to
	the MCI set (dark gray) for degrees d ∈ {8, 14}.											
	by choosing a smaller degree of w. The true MCI set was (approximately) computed by
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In[START_REF] Rubio | Control and Optimization: The Linear Treatment of Nonlinear Problems[END_REF], J. E. Rubio used Young measures[START_REF] Young | Calculus of variations and optimal control theory[END_REF] rather than occupation measures, but the basic idea of "linearizing" a nonlinear problem by going into an infinite-dimensional space of measures is the same.

Note that the set conv f (x(t), U ) is closed for every t since f is continuous and U compact; therefore there is no need to take closure of the convex hull in order to apply the Filippov-Ważewski theorem.

The initial measure µ 0 can be thought of as the probability distribution of the initial state, although we do not require the mass of µ 0 to be normalized to one.

The initial measure µ 0 can be thought of as the probability distribution of the initial state, although we do not require the mass of µ 0 to be normalized to one.

There is no a priori guarantee on set-wise ordering of the outer approximations; what is guaranteed is the ordering of optimal values of the optimization problems[START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF] or[START_REF] Blanchini | Set-theoretic methods in control[END_REF].

All examples were run on an Apple iMac with 3.4 GHz Intel Core i7, 8 GB RAM and Mac OS X 10.8.2. The time reported is the pure solver time, not including the Yalmip preprocessing time.

Note that the MOSEK SDP solver is still being developed and its accuracy is likely to improve in the future.
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Appendix A

We start by embedding our problem in the setting of discrete-time Markov control processes; terminology and notation is borrowed from the classical reference [START_REF] Hernández-Lerma | Discrete-time Markov control processes: basic optimality criteria[END_REF]. Let us define a stochastic kernel on U given X as a map ν(• | •) such that ν(• | x) is a probability measure on U for all x ∈ X and ν(B | •) is a measurable function on X for all B ⊂ U . Any such stochastic kernel gives rise to a discrete-time Markov process when applied to system (1) as a stationary randomized control policy (a policy which, given x, chooses the control action randomly based on the probability distribution ν(• | x), i.e., Prob(u

where x is the current state and x + the successor state. The t-step transition kernel is then defined by induction as

Given an initial distribution µ 0 , the distribution of the Markov chain at time t, μt , is given by μt

The joint distribution of state and control is then