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Abstract

This paper deals with continuous-time system identification using fractional differentiation models. An adapted version of the
simplified refined instrumental variable method is first proposed to estimate the parameters of the fractional model when all
the differentiation orders are assumed known. Then, an optimization approach based on the use of the developed instrumental
variable estimator is presented. Two variants of the algorithm are proposed. Either, all differentiation orders are set as integral
multiples of a commensurate order which is estimated, or all differentiation orders are estimated. The former variant allows
to reduce the number of parameters and can be used as a good initial hit for the latter variant. The performances of the
proposed approaches are evaluated by Monte Carlo simulation analysis. Finally, the proposed identification algorithms are
used to identify thermal diffusion in an experimental set-up.
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1 Introduction

Fractional calculus is a generalization of the tradi-
tional calculus and dates back to (Liouville, 1832) and
(Riemann, 1876). It remained for a long time an ab-
stract mathematical concept until used by (Oldham and
Spanier, 1970; Oldham and Spanier, 1974) for model-
ing general diffusive phenomena in semi-infinite planar,
spherical, and cylindrical media. The authors showed
that diffusive systems can be modeled by transfer func-
tions involving differentiation orders multiples of 0.5.
Moreover, in electrochemistry for example, it is proven
that the diffusion of charges in acid batteries is governed
by Randles models (Rodrigues et al., 2000; Sabatier
et al., 2006) that involve a half order integrator. In
semi-infinite thermal systems, (Battaglia et al., 2001)
have shown that the exact solution of heat equation
links thermal flux to a half order derivative of surface
temperature on which the flux is applied. In rheol-
ogy, stress in viscoelastic materials is proportional to
a non integer derivative of deformation (Heymans and
Bauwens, 1994). Foucault currents inside rotor bars in
induction machines obey to diffusive phenomena mod-
eled by fractional operators (Benchellal et al., 2004).

Time-domain system identification using fractional
models was initiated in the late nineties and the be-
ginning of this century (Mathieu et al., 1995; Cois et
al., 2001; Aoun et al., 2007; Malti et al., 2008; Narang et
al., 2011;Gabano and Poinot, 2011a). (Malti et al., 2009)
and (Gabano and Poinot, 2011b), have identified ther-
mal systems using fractional models in an output error
context. An advantage of continuous-time modeling is in
straightforwardly estimating physical parameters even
when the physics reveals systems governed by fractional
differential equations. In this context and based on a
fractional model, (Gabano and Poinot, 2011a) have suc-
cessfully estimated thermal conductivity and diffusivity
in a homogeneous medium.

Instrumental variable methods for system identification
have been developed for decades (see e.g. (Young, 1981;
Young, 2011; Söderström and Stoica, 1983; Söderström,
2012) ).Refined InstrumentalVariables forContinuous
system (rivc), and its simplified version (srivc) when the
additive measurement noise is white, were developed in
(Young and Jakeman, 1980; Young, 1981; Young, 2002).
When the model lies in the same class as the true sys-
tem, the rivc method and consequently the srivc can be
interpreted in optimal statistical terms yielding consis-
tent estimates with minimum variance. Both methods
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use an iterative-adaptive prefiltering based on a quasi-
optimal statistical solution and provide an estimation
of the parametric error covariance matrix. Recent de-
velopments aimed at extending the rivc method to han-
dle multi-input transfer function model identification
(Garnier et al., 2007), hybrid Box-Jenkins model iden-
tification (Young et al., 2008), closed-loop identification
(Gilson et al., 2008), irregularly sampled data (Wang et
al., 2009) and linear parameter varying model identifi-
cation (Laurain et al., 2011).

One very important aspect of fractional differential
equation modeling is the determination of the differ-
entiation orders. In system identification with rational
models, where only the coefficients are estimated, the
model order remains unchanged. Estimating coefficients
and differentiation orders in fractional models is not
a trivial problem: in an iterative algorithm, it indeed
changes the model order at each iteration. In this pa-
per, the srivc algorithm is first extended to fractional
models as the srivcf for linear coefficient estimation,
by assuming all differentiation orders known. Section
4 of the paper aims at proposing a gradient-based ap-
proach which combines simultaneously the coefficients
and the differentiation order estimation. Two variants
are proposed. In the first one, all differentiation or-
ders are set as integral multiples of a commensurate
order which is estimated. Then, this commensurability
constraint is released and all differentiation orders are
further adjusted. Finally, these algorithms are applied
to the identification of a real thermal process, where the
transfer function linking the temperature to the heat
density flux is modeled by a fractional model.

The main advantage of fractional models is that they
allow modeling infinite dimensional systems with a re-
duced number of parameters. Since it is always possible
to find a high order rational model equivalent to a low
dimension fractional model (Oustaloup, 1995), the use
of high dimension fractional models is of limited inter-
est. That is why, the proposed algorithms will be tested
on low dimension fractional systems. The fractional be-
havior of a given system can be recognized either from
a preliminary experiment on a step response when the
convergence time is polynomial or from prior knowledge
when theoretical models reveal the presence of fractional
derivatives or integrals.

Mathematical background

A fractional mathematical model is based on a differen-
tial equation:

y (t) + a1p
α1y (t) + · · ·+ aNpαN y (t) =

b0p
β0u (t) + b1p

β1u (t) + · · ·+ bMpβMu (t) , (1)

where u(t) is the system input, y(t) is the noise-
free system output, p is the differentiation operator

p = d
dt , and so pµu(t) denotes the µ-th time-derivative

of the continuous-time signal u(t), (aj , bi) ∈ R
2

∀i ∈ {0, 1, . . . ,m} and ∀j ∈ {1, . . . , n}, and the differ-
entiation orders

0 < α1 < α2 < . . . < αN , 0 ≤ β0 < β1 < . . . < βM ,
(2)

allowed to be non-integer positive numbers, are ordered
for identifiability purposes. The concept of differentia-
tion to an arbitrary order (non-integer) γ, with γ ∈ R

was defined by Grünwald-Letnikov (see e.g. (Podlubny,
1999, chapter 2)), which results from the generalization
of integer order derivatives:

pγx(t)= lim
h→0

1

hγ

⌊ t
h
⌋

∑

k=0

(−1)k
(

γ

k

)

x(t− kh), (3)

where ⌊.⌋ stands for the floor operator, and
(

γ
k

)

stands
for the Newton binomial coefficient generalized to real
numbers:

(

γ

k

)

=
Γ(γ + 1)

Γ(k + 1)Γ(γ − k + 1)
=

γ(γ − 1)...(γ − k + 1)

k!
.

Since
(

γ
k

)

= 0 when (γ − k) ∈ N, the definition (3)
reduces, for γ = 1, to the standard derivative definition:

p x(t) = lim
h→0

x(t)− x(t− h)

h
. (4)

The non integer derivative of a function has a global
characterization, as the whole past is taken into account.

For numerical evaluation of the fractional derivative, the
h parameter in (3) is replaced by the sampling period
and hence the limit is dropped:

pγx(t)=
1

hγ

⌊ t
h
⌋

∑

k=0

(−1)k
(

γ

k

)

x(t − kh) +O(h). (5)

In doing so, the error terms are proportional to the
sampling period (Podlubny, 1999, section 7.4). Conse-
quently, the sampling period should be small enough for
the approximation error to be negligible.

The Laplace transform of pγx(t) when x(t) is relaxed at
t = 0 (x(t) equals 0 for all t < 0), is given by (Podlubny,
1999, section 2.8.4):

L {pγx (t)} = sγX (s) . (6)

This result is coherent with the classical case when γ
is an integer. Consequently, it is easy to define a sym-
bolic representation of the fractional dynamic system
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governed by (1) using the transfer function:

G (s) =
B(s)

A(s)
=

M
∑

i=0

bis
βi

1 +
N
∑

j=1

ajsαj

. (7)

Moreover, if G(s) is commensurate of order γ, then G(s)
can be rewritten as:

G (s) =

m
∑

i=0

b̃is
iγ

1 +
n
∑

j=1

ãjsjγ
, (8)

where m = βM

γ
and n = αN

γ
are integers

and ∀i′ ∈ {0, 1, . . . ,m}, ∀j′ ∈ {1, . . . , n}:















b̃i′ = bi if ∃i ∈ {0, 1, . . . ,M} such that i′γ = βi

b̃i′ = 0 otherwise

ãj′ = aj if ∃j ∈ {1, . . . , N} such that j′γ = αj

ãj′ = 0 otherwise.
(9)

In rational transfer functions, γ equals 1 and usually
numerator αN and denominator βM orders are both
fixed, then all coefficients bi, i = 0, . . . ,M and aj , j =
1, . . . , N are estimated. Generally, no care is taken to
check whether any intermediate coefficient, as in (9),
equals zero.

(Khemane et al., 2012) have proven that the fractional
transfer function representation (7) is unique, provided
that all the differentiation orders are ordered as in
(2) and provided that all the coefficients a1, . . . , aN ,
b0, . . . , bM are non zero. This property is interesting in
system identification context as it shows that the global
minimum is unique when the fractional model is in the
same class as the true system.

Time-domain simulation of fractional systems is an
extensively studied topic in the literature (Oustaloup,
1995; Aoun et al., 2004; Krishna, 2011). System identi-
fication algorithms proposed in this paper may be used
with any time-domain simulation algorithm of frac-
tional systems, at the discretion of the user. Fractional
systems should be correctly simulated with negligible
simulation errors, in order to be able to consistently
estimate the fractional model parameters.

Stability of fractional systems was treated in different
contexts (linear, non linear, commensurate, non com-
mensurate, time-variant, time invariant, delayed, non
delayed, analytical, numerical) by different authors as
presented in the state of the art by (Sabatier et al., 2010).
The most well-known stability criterion for commen-
surate fractional systems is (Matignon, 1998, theorem

1) which allows to check the stability of a commensu-
rate fractional system through the location of its sγ-
poles. Matignon’s stability theorem was initially proven
for commensurate orders between 0 and 1, extended to
commensurate orders between 1 and 2 in (Moze and
Sabatier, 2005). A proof of instability when γ ≥ 2 for all
sγ-poles is provided in (Malti et al., 2011b).

Stability theorem ((Matignon, 1998), extended):
A commensurate transfer function, with a commensurate

order γ as in (8), G(s) = T (sγ)
R(sγ) , where T and R are

coprime polynomials, is BIBO (bounded input bounded
output) stable if and only if :

0 < γ < 2 (10)

and

| arg(sk)| > γ
π

2
, ∀sk ∈ C /R(sk) = 0. (11)

The stability conditions are used later when estimating
the commensurate order, which must be in the interval
(10) for stable systems. Additionally, analytical formu-
lae have been provided in (Malti et al., 2011a) for com-
puting the H2-norm of fractional commensurate trans-
fer functions.

2 Problem formulation

It is assumed that the input u(t) and the noise-free out-
put y(t) are related by the constant coefficient differen-
tial equation (1), which can also be written in the fol-
lowing compact model form:

G(p) =
B(p)

A(p)
=

M
∑

i=0

bip
βi

1 +
N
∑

j=1

ajpαj

. (12)

B(p) and A(p) are assumed to be coprime, and the sys-
tem asymptotically stable.

The data are collected at regular time-instants from
t = 0 to t = Tfinal (K samples), with a sampling period,
h, small enough so that the approximation errors while
computing numerically the fractional derivatives, as in
(5), are negligible. Moreover, the number of samples is
assumed to be large enough to guarantee convergence of
the estimated parameters to the true ones. The quasi-
stationary input signal {u(t), 0 ≤ t ≤ Tfinal} applied to
the system is persistently exciting, and gives rise to an
output signal {y(t), 0 ≤ t ≤ Tfinal}. The noise-free out-
put y is supposed to be corrupted by an additive white
measurement noise ξ, normally distributed with a zero
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mean and σ2 variance, considered at discrete instants.
The complete equation can be written in the form:

{

y(t) = G(p)u(t)

y∗(tk) = y(tk) + ξ(tk),
(13)

where y∗(tk) is the sampled value of the unobserved
noisy output y(t). Given the discrete-time sampled na-
ture of the data, the usual assumption is that a discrete-
time noise ξ(tk) is associated with the sampled data
(see e.g. (Young et al., 2008)). It is easier to consider
white noise in the discrete-time case, since the concept
of continuous-time white noise is a non-trivial extension
of the discrete-time case.

When the model (12) is used, the parameter vector

θ =

[

ρ

µ

]

(14)

is composed of a vector of N +M + 1 transfer function
coefficients,

ρ = [b0, b1, . . . , bM , a1, . . . , aN ]
T
, (15)

and additionally a vector of N +M + 1 ordered differ-
entiation orders, as in (2),

µ = [β0, . . . , βM , α1, . . . , αN ]T. (16)

Estimating all differentiation orders necessitates to de-
termineN+M+1 terms along with theN+M+1 trans-
fer function coefficients. Moreover, if N and/or M are
high, the number of local minima may increase and the
nonlinear optimization algorithms, with high complex-
ity, may fail to converge to the global minimum. To re-
duce the number of parameters, a commensurate model
can be chosen, instead of (12):

G (p) =

M
∑

i=0

bip
iγ

1 +
N
∑

j=1

ajpjγ
, (17)

where only one differentiation order and henceN+M+2
parameters are estimated. The parameter vector θ in
(14) is then reduced to the N +M +1 transfer function
coefficients as in (15) added to a single commensurate
differentiation order:

µ = γ. (18)

In this case, the searching domain of the commensurate
order is held for γ ∈ (0, 2) as specified in the extended
Matignon’s theorem.

3 Simplified refined instrumental variable for
continuous-time fractional models

In this section all differentiation orders are assumed to
be known and fractional transfer function coefficients are
estimated. The iterative srivc algorithm, known to de-
liver optimal estimates when the additive measurement
noise is white, is first extended to fractional systems and
then validated through a Monte Carlo analysis.

The srivc algorithm derives from the sriv algorithm
for discrete-time transfer function model identification.
This was evolved by converting the maximum likelihood
(ML) estimation equations to a pseudo-linear form in-
volving optimal prefilters (see e.g. (Young, 2011)). A
similar analysis can be utilized in the present situation
because the problem is very similar, in both algebraic
and statistical terms. For space constraint, a simpler
development of the srivc algorithm for fractional trans-
fer function model identification is presented. Following
the Prediction Error Method, a suitable error function ε
is given by the Output Error :

ε (t, ρ) = y∗ (t)−
B (p, ρ)

A (p, ρ)
u (t) , (19)

which can be rewritten as:

ε (t, ρ) = A (p, ρ)

(

1

A (p, ρ)
y
∗ (t)

)

−B (p, ρ)

(

1

A (p, ρ)
u (t)

)

(20)

= A (p, ρ) y∗

f (t)−B (p, ρ)uf (t) (21)

where y∗f = 1
A(p,ρ)y

∗ (t) and uf (t) =
1

A(p,ρ)u (t).

Hence, as for rational systems, a linear transformation
(low-pass filter) is applied to input and output signals
instead of a direct differentiation. As shown in (20), the
filter required to convert the output error into an equa-
tion error, which turns out to lead to optimal Instru-
mental Variable (IV) estimates, takes the form (see e.g.
(Young, 2011)):

F opt(p) =
1

A(p, ρ)
. (22)

In practical cases,A(p, ρ) being unknown, an estimation

Â(p, ρ̂iter) is computed iteratively:

F iter(p) =
1

Â(p, ρ̂iter)
=

1

1 +
N
∑

j=1

âjpαj

, (23)

where iter = 1, 2, . . . stands for the iteration number and
âj the estimated aj coefficient at iteration iter.
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The noise-free output estimates required to build the
instrument are obtained from an auxiliary model, with
transfer function coefficients computed iteratively:

yiteriv (t) =
B̂
(

p, ρ̂iter
)

Â (p, ρ̂iter)
u(t). (24)

The filtered derivatives of the input, the output, and the
instruments are computed respectively with:

pβiuf(t) = F iter
βi

(p)u(t), (25)

pαjy∗f(t) = F iter
αj

(p)y∗(t), (26)

pαjyiteriv,f(t) = F iter
αj

(p)yiteriv (t), (27)

where

F iter
σ (p) = pσF iter(p) =

pσ

Â(p, ρ̂iter)
, (28)

and gathered in the regression ϕf (t) and the instrumen-
tal variable ϕiter

iv,f (t) vectors :

ϕf (t) =

[

pβ0uf (t) , . . . , p
βMuf (t) ,

−pα1y∗f (t) , . . . ,−pαN y∗f (t)

]T

, (29)

ϕiter
iv,f (t) =

[

pβ0uf (t) , . . . , p
βMuf (t) ,

−pα1yiteriv,f (t) , . . . ,−pαN yiteriv,f (t)

]T

. (30)

From different time-instants, the srivcf optimization
problem can be stated as

ρ̂iter+1 = argmin
ρ

∥

∥

[

Φiter
iv,fΦ

T
f

]

ρ−
[

Φiter
iv,fY

∗
f

]∥

∥

2
, (31)

with

Φiter
iv,f =

[

ϕiter
iv,f (0) . . . ϕiter

iv,f (Tfinal)
]T

, (32)

Φf =
[

ϕf (0) . . . ϕf (Tfinal)
]T

, (33)

Y∗
f =

[

y∗f (0) . . . y∗f (Tfinal)
]T

. (34)

The srivcf -based solution is hence given at each itera-
tion by:

ρ̂iter+1 =
(

Φiter
iv,fΦ

T
f

)−1
Φiter

iv,fY
∗
f , (35)

and the algorithm is iterated until convergence, when

max
j

∣

∣

∣

∣

∣

ρ̂iter+1
j − ρ̂iterj

ρiter+1
j

∣

∣

∣

∣

∣

< ǫ, (36)

where ρ̂iterj is the j-th element of the estimated parame-

ter vector at the iteration iter. The sriv (Young and Jake-
man, 1980; Young, 1981) and srivc (Young, 2002; Gar-
nier and Wang, 2008) algorithms have been successfully
used for more than three decades in various contexts.
Moreover, it has recently been established in the rational
continuous-time case in (Liu et al., 2011, theorem 1) that
the srivc algorithm converges asymptotically in one iter-
ation under some mild assumptions 1 . In the fractional
case, the convergence of the srivcf algorithm follows
exactly the same scheme under the same assumptions.

The iterative srivcf algorithm can be initialized us-
ing the least squares-based state-variable filter (lssvf )
or the suboptimal instrumental variable svf (ivsvf )
method for fractional models, as detailed in (Cois et
al., 2001; Malti et al., 2008). In both methods a non-
optimal filter is used, instead of (28). In the case of the
state-variable filter, it takes the form:

F svf
σ (p) =

pσ
(

1 + p
ωc

)Nc
, (37)

where two user parameters need to be a priori chosen:
the integer order Nc > αN usually set as the integer
above the system order αN , i.e. Nc = ⌊αN⌋ + 1, and
the cut-off frequency ωc usually chosen to emphasize the
frequency band of interest, which is a little bit larger than
the frequency bandwidth of the system to be identified
(Garnier et al., 2003). The basic idea in using the state-
variable filter is to obtain the behavior of a differentiator
in low frequencies and to filter noise in high frequencies.

As in the rational case, if the quasi-stationary input sig-
nal is persistently exciting and the noise signal is white
with zero-mean, the srivcf estimator is asymptotically
unbiased thanks to the iv mechanism. When the sys-
tem is in the true model class, the iv estimate provides
a consistent estimate under the following two conditions







E
[

ϕiter
iv,f (tk)ϕ

T
f (tk)

]

is non-singular,

E
[

ϕiter
iv,f (tk)ξ(tk)

]

= 0.
(38)

Additionally, when the noise signal is normally dis-
tributed, an estimation of the asymptotic covariance
matrix of the estimation error associated with the es-
timate of ρ̂ in (35) follows straightforwardly from the
rational continuous-time case (Young et al., 2008) by
replacing integer derivatives by fractional derivatives
and yields:

P̂ρ = σ̂2
(

Φiv,fΦiv,f
T
)−1

, (39)

1 as qualified by the authors of the paper.
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where σ̂2 is the empirical estimation of the noise vari-
ance, and Φiv,f corresponds to Φiter

iv,f computed at the
last iteration.

In any parameter estimation problem, the estimator per-
formance can be assessed by comparing the estimator
covariance matrix to the best possible accuracy given by
the Cramér-Rao lower-bound (CRB) (Kay, 1993; Sto-
ica and Moses, 2005; Young et al., 2008). Under a white
Gaussian noise and sufficient persistency of the input
signal assumptions, the CRB is computable and often
tight, meaning that there exists an iv estimator that
asymptotically reaches the CRB (Wellstead, 1978). In
this regard, a direct extension of the rational continuous-
time case (Young et al., 2008) 2 , by replacing integer
derivatives by fractional derivatives, enables computing
the CRB:

Popt
ρ =

σ2

N

(

E
[

ϕopt
iv,f (tk)ϕ

opt
iv,f (tk)

T
])−1

, (40)

obtained with the true design variables and the true
noise variance σ2. The instrumental vector ϕopt

iv,f (tk)
is the optimally noise-free pre-filtered iv vector, with
F opt(p) defined in (22) and

ϕopt
iv,f (tk) = F opt(p)

[

pβ0u(tk), . . . , p
βMu(tk),

−pα1y(tk), . . . ,−pαN y(tk)

]T

.

(41)

It is assumed that the srivcf algorithm converges in the
sense that ρ̂ → ρ, then the covariance matrix (39) will
tend in probability to (40).

Example 1 – srivcf algorithm

To illustrate the efficacy of this algorithm, a pseudo ran-
dom binary sequence (prbs) is applied to the following
data-generating system:

G0(s) =
0.5

0.5s3 + 1.5s1.5 + 1
=

1

(s1.5 + 1)(s1.5 + 2)
.

(42)
The output, y(t), is corrupted at the sampling instants
(13), by an additive Gaussian white noise ξ(tk) with zero

mean and a signal to noise ratio (SNR=10 log ‖y(tk)‖
2

‖ξ(tk)‖2 ,

with ‖.‖2 standing for the squared Euclidean norm) of
5dB. Input and output data, sampled with a rate of
h = 0.02s, are plotted in Fig. 1. The simulation algo-
rithm used in this example is based on the numerical
discretization of the Grünwald operator (5).

2 The rational continuous-time case in (Young et al., 2008)
results from an original justification in (Pierce, 1972).
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Fig. 1. Input, noise-free and noisy outputs, used as identifi-
cation data, zoomed between t = 0 and 200s, identification
data going up to 600s (SNR = 5dB and h = 0.02s)

true ivsvf srivcf

ρ ρ̂ σ̂θ ρ̂ σ̂θ

b0 0.500 0.501 0.016 0.500 0.007

a2 0.500 0.487 0.148 0.500 0.010

a1 1.500 1.500 0.020 1.500 0.012

Table 1
Monte Carlo simulation results for SNR = 5 dB in example
1. ρ̂ denotes the mean and σ̂θ the standard deviation of the
parameter estimates. For the ivsvf method, the filter used
is given by (37), ωc is set to 100 rad/s and Nc to 4.

The model structure is chosen as:

G(s) =
b0

a2s2γ + a1sγ + 1
, (43)

and all parameters are estimated, except the commen-
surate order, set to γ = 1.5, in order to be in the same
model class as the true system. To study the statistical
properties of the estimators, a Monte Carlo (MC) sim-
ulation of 500 runs is implemented with different noise
realizations. For each MC run, the simulated system is
identified with the ivsvf method (Cois et al., 2001;Malti
et al., 2008), and the srivcf method. The results of the
MC simulation are presented in Table 1 where the esti-
mated parametermean and standard deviation are given
for each method. In such a high-level noisy context, the
srivcf and ivsvf algorithms are both asymptotically
unbiased thanks to the iv mechanism. The srivcf pa-
rameter estimates have, as expected, a smaller variance
than the suboptimal ivsvf parameter estimates. This is
further confirmed by computing the following Euclidean
norms of the covariance matrices, obtained for a single
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Fig. 2. Output error ℓ2-norm versus commensurate differen-
tiation order in example 1.

run in the Monte Carlo simulation:

∥

∥

∥
P̂

ivsvf

ρ

∥

∥

∥

2
= 2.81× 10−4, (44)

∥

∥

∥
P̂

srivcf

ρ

∥

∥

∥

2
= 1.88× 10−4. (45)

Since, the true parameters, the noise-free output, and
the noise variance are known, the CRBPopt

ρ can be com-
puted:

∥

∥Popt
ρ

∥

∥

2
= 1.79× 10−4.

As a consequence, the covariance matrix ‖P̂
srivcf

ρ ‖
2
is

closer to the Cramér-Rao lower bound as compared to

‖P̂
ivsvf

ρ ‖2:

‖P̂
ivsvf

ρ ‖
2
> ‖P̂

srivcf

ρ ‖
2
≥ ‖P̂

opt

ρ ‖
2
. (46)

Up to now, all differentiation orders have been as known.
However, if differentiation orders are unknown, then a
computation of the ℓ2-norm (in dB) of the normalized
output error,

JdB = 10 log

(

||ε(t, θ̂srivcf )||
2

||y(t)||2

)

, (47)

where ε(t, θ̂srivcf ) = y∗(t)−G(p, θ̂srivcf )u(t), versus the
commensurate order shows, in Fig. 2, that the criterion
depends on the differentiation order and that its opti-
mum is obtained at the true value. This normalized crite-
rion equals (−SNR= −5dB) at the optimum when there
is no modeling error. Otherwise, it allows to quantify the
modeling error which equals, in this example, 0.4dB for
a rational model with γ = 1.

4 Differentiation order estimation

When differentiation orders are unknown, as it is often
the case in practice, it is helpful to consider order estima-
tion along with transfer function coefficient estimation.
An algorithm is proposed to identify the parameters in
two stages. This algorithm, named order-optimization-
srivcf or oosrivcf for short, uses the srivcf algo-
rithm for coefficient estimation and is combined with a
gradient-based algorithm for differentiation order opti-
mization. Such two-stage algorithms have been used in
(Spinelli et al., 2006; Bai, 1998; Mukhopahyay et al.,
1991; Rao et al., 1984; Rao and Unbehauen, 2006). Al-
though they do not have a proof of convergence, it has
been noted in the aforementioned references that they
do often converge to a minimum. Two variants of order
optimization algorithm are presented. Either all differ-
entiation orders are set as integral multiples of a com-
mensurate order, as in the model (17), and the best com-
mensurate order is computed in the interval (0, 2), or
all differentiation orders, as in (12), are estimated. The
former variant is used as a good initial hit for the lat-
ter variant. The estimation problem is formulated as a
minimization problem of the ℓ2-norm:

J =
1

2
‖ε (t, θ)‖

2
, (48)

of the output error

ε(t, θ) = y∗(t)−G(p, θ)u(t), (49)

with respect to the vector µ, as in (16) or (18).

A Gauss-Newton algorithm (see e.g. (Ljung, 1999)) is
used for the estimation of the differentiation order(s).
This iterative algorithm allows to compute the differ-
entiation order(s) µiter at iteration iter with respect to
µiter−1 and a correction factor:

µiter = µiter−1 − λH−1 ∂J

∂µ
. (50)

Here, the gradient ∂J
∂µ

and the approximated HessianH ,

respectively given by

∂J

∂µ
=

∂ε

∂µ

T

ε and H =
∂ε

∂µ

T ∂ε

∂µ
(51)

are evaluated for µ = µiter−1.

In the Gauss-Newton method, the advantage of compu-
ting the approximated Hessian is that the second deriva-
tive of ε is not required; hence it is less time consum-
ing. Moreover, it allows to obtain always a positive semi-
definite matrix which is a necessary convergence condi-
tion. If the criterion is convex, the algorithm reaches the

7



global minimum. Otherwise, only a convergence to a lo-
cal minimum is guaranteed. The λ parameter, usually
set to , may be used to adjust the step in case of slow
convergence or oscillations around a minimum.

The error sensitivity function, required for computing
the gradient and the Hessian in (51), is given by:

∂ε

∂µ
=

[

−
∂ŷ

∂β0
, . . . ,−

∂ŷ

∂βM

,−
∂ŷ

∂α1
, . . . ,−

∂ŷ

∂αN

]T

, (52)

when all differentiation orders are estimated, and by:

∂ε

∂µ
=

∂ε

∂γ
= −

∂ŷ

∂γ
, (53)

when the commensurate order is estimated. The output
sensitivity functions with respect to all differentiation
orders are given by:

∂ŷ

∂βi

= ln(p)
b̂ip

β̂i

1 +
N
∑

j=1

âjpα̂j

u(t), ∀i = 0, . . . ,M, (54)

∂ŷ

∂αk

= ln(p)âkp
α̂k

M
∑

i=0

b̂ip
β̂i

(

1 +
N
∑

j=1

âjpα̂j

)2u(t), ∀k = 1, . . . , N.

(55)

The output sensitivity function with respect to the com-
mensurate differentiation order is given by:

∂ŷ

∂γ
= ln(p)

M
∑

i=0

ib̂ip
iγ̂ +

M
∑

i=0

N
∑

j=1

(i− j) b̂iâjp
(i+j)γ̂

(

1 +
N
∑

j=1

âjpjγ̂

)2 u (t) .

(56)

Sensitivity functions ∂ŷ
∂βi

, ∂ŷ
∂αk

, and ∂ŷ
∂µ

depend on ln(p)

(log of the differential operator) which is not trivial
to simulate in the time-domain. Thus, an alternative
method consists of computing ∂y

∂µ
numerically, using for

example the central difference method.

By assuming that the oosrivcf algorithm converges in

the sense that θ̂ → θ, then an estimate of the covariance
matrix can be obtained on the basis of the Gauss-Newton
algorithm (Ljung, 1999, Theorem 9.1) by:

P̂θ = σ̂2H−1, (57)

where σ̂2 is, as previously, the empirical estimate of noise
variance and H is the approximate Hessian computed

towards all the estimated parameters:

H =
∂ε

∂θ

T ∂ε

∂θ
=

∂εT

∂ [ρTµT]
T

∂ε

∂ [ρTµT]
T
, (58)

with ∂ε
∂µ

defined in (52) or (53) depending on whether

all differentiation orders are estimated or only the com-
mensurate order and

∂ε

∂ρ
= −

∂ŷ

∂ρ
= −

[

∂ŷ

∂b0
, . . . ,

∂ŷ

∂bM
,
∂ŷ

∂a1
, . . . ,

∂ŷ

∂aN

]T

,

(59)

where

∂ŷ

∂bi
=

p̂β̂i

1 +
N
∑

j=1

âjpα̂j

u(t), ∀i = 0, . . . ,M, (60)

∂ŷ

∂ak
= −

M
∑

i=0

b̂ip
β̂i+α̂k

(

1 +
N
∑

j=1

âjpα̂j

)2u(t), ∀k = 1, . . . , N. (61)

Summary of the oosrivcf algorithm

Both variants of the oosrivcf algorithm are summa-
rized here. Either the commensurate order is estimated
when µ is defined as in (18) or all orders are estimated
when µ is defined as in (16).

Step 1 Initialization
iter = 0
Initialize µ0 and compute ρ0 with the srivcf

method.
From θ0 = [ρ0, µ0], compute J(θ0).

Step 2 Gauss-Newton optimization
do

Initialize λ = Λ (usually to 1)
do

(i) Refine the order estimate:

µiter+1 = µiter − λ
[

H−1 ∂J
∂µ

]
∣

∣

∣

µiter

.

(ii) Compute ρiter using the srivcf algorithm.
(iii) Evaluate the error criterion: J(θiter+1).
(iv) λ = λ/2

while J(θiter+1) > J(θiter)
iter = iter + 1

while max
l

∣

∣

∣

µiter

l −µ
iter−1

l

µiter

l

∣

∣

∣
> ǫ2

where µiter
l corresponds to l-th element of the order

vector µiter at iteration iter. l equals one in case of
commensurate order estimation.
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Step 3 Parametric error estimation

After convergence, the covariance matrix P̂θ associ-

ated to the estimate θ̂ can be estimated from (57).

In case all differentiation orders are estimated, it is
highly recommended to estimate a commensurate model
first, and then to release the commensurability con-
straint in order to estimate all differentiation orders.
The commensurate model constitutes generally a good
initial hit when estimating all differentiation orders.

An alternative algorithm to the oosrivcf is the Gauss-
Newton algorithm (or the Levenberg-Marquardt vari-
ant) with a joint estimation of coefficients and differen-
tiation orders (Malti et al., 2008). The main advantage
of the oosrivcf algorithm is that it simplifies conside-
rably the initialization problem, as it requires only ini-
tializing the commensurate order, whereas the Gauss-
Newton algorithm requires initializing additionally all
the N + M + 1 coefficients in (15). Consequently, the
oosrivcf algorithm is more likely to converge to the
globalminimum as compared to the Gauss-Newton algo-
rithm where the number of local minima increases with
the increase of N and/or M . Another advantage of the
oosrivcf algorithm is its low computational complex-
ity, as it requires computing only one sensitivity func-
tion, in case of commensurate order estimation, whereas
the Gauss-Newton algorithm, with a joint estimation of
coefficients and differentiation orders, requires comput-
ing additionally N + M + 1 sensitivity functions with
respect to all the coefficients in (15). However, if the
Gauss-Newton algorithm is initialized in the convex re-
gion containing the global minimum, then it will con-
verge to that global minimum more likely in less itera-
tions, as compared to the oosrivcf algorithm, because
it uses at each iteration the global covariance matrix
which contains the cross-covariance elements between
the coefficients and the differentiation order(s).

Example 2 – Commensurate order estimation combined
to the srivcf algorithm

The proposed method is applied to the system described
in example 1. The model structure is set to (43), with an
unknown commensurate order γ. For each commensu-
rate order γ between 0.1 and 1.9, it has been previously
shown, in Fig. 2 for a single noise realization, that the
ℓ2-norm of the output error depends on the commensu-
rate order and that its optimum is on the true value.
This example intends to analyze the performance of the
proposed algorithm when the commensurate order is es-
timated using Monte Carlo simulations with 500 runs
in a noisy context with a SNR of 5dB, as in example 1.
Each Monte Carlo run is initialized at a commensurate
order γ0 = 1.8. The estimation results are presented in
Table 2, where the estimated parameter mean and stan-
dard deviation are given.

True Estimated

θ θ̂ σθ

b0 0.500 0.499 0.008

a2 0.500 0.495 0.015

a1 1.500 1.500 0.013

γ 1.500 1.504 0.012

Table 2
Monte Carlo simulation results – oosrivcf algorithm with
commensurate order estimation in example 2.

The Monte Carlo simulation results reveal an estima-
tion of the commensurate order highly accurate with a
mean value close to the real commensurate order and
with a low variance. Based on the efficacy of the srivcf
method, the commensurate order estimate is asympto-
tically unbiased including for the commensurate differ-
entiation order.

Example 3 – All order estimation combined to the srivcf
algorithm

Consider now the case of estimating transfer function
coefficients and all differentiation orders of the following
data-generating system:

G1(s) =
0.5

0.5s2.8 + 1.5s1.2 + 1
. (62)

The input signal is the PRBS of Fig.1. The output, y(t),
is corrupted at the sampling instants (13) by an additive
Gaussian white noise ξ(tk) with zero mean and a SNR
of 5dB. As stated previously, it is recommended that a
commensurate model, as in (43), be estimated first and
used as an initial hit for estimating all orders.

The ℓ2-norm of the output error versus the commensu-
rate order shows, in Fig. 3, that the criterion depends on
the differentiation order. Even if the model is considered
commensurate, in which case the model does not lie in
the same class as the true system, the system identifi-
cation algorithm behaves well and the minimum of the
ℓ2-norm of the output error is found at a commensurate
order of γ = 1.25. In this case, the estimated model for
a given run is:

Ĝ1(s) =
0.896

0.695s2.5 + 2.15s1.25 + 1
. (63)

As it can be checked, the transfer function coefficients
are not equal to the true ones, which is a normal fact
because the model is not in the same class as the true
system. The obtained model constitutes however a good
initial hit for all order estimation.

Fig. 3 shows further that the ℓ2-norm of the modeling er-
ror is around 0.6dB at the estimated commensurate or-
der obtained after convergence and that it equals 0.8dB
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Fig. 3. Output error ℓ2-norm versus commensurate differen-
tiation order in example 3.

True Estimated

θ θ̂ σθ

b0 0.500 0.501 0.010

a2 0.500 0.503 0.018

a1 1.500 1.500 0.032

α2 2.800 2.794 0.028

α1 1.200 1.196 0.019

Table 3
Monte Carlo simulation results – oosrivcf algorithm with
all differentiation order estimation in example 3.

for a rational model with γ = 1. When there is no mod-
eling error, JdB equals (−SNR= −5dB) as explained in
example 2. To improve the parametric estimation, the
commensurability constraint is now released so that all
differentiation orders are estimated separately. Hence,
the model structure is now chosen as:

G(s) =
b0

a2sα2 + a1sα1 + 1
. (64)

A Monte Carlo simulation of 500 runs is held for a SNR
of 5dB, as in examples 1 and 2. For each Monte Carlo
run, the commensurability constraint is released and all
differentiation orders are estimated. For each run, the
algorithm is initialized with the commensurate model
(63). The estimation synthesis is presented in Table 3,
where the mean and the standard deviation of the pa-
rameter estimates are given. All estimated parameters
converge to the true ones.

5 Application to a thermal plant identification

A long aluminium rod (Fig. 4) heated by a resistor at one
end is considered in this experiment. The input signal is a

Fig. 4. Insulated long aluminium rod heated by a resistor
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Fig. 5. Pretreated input/output signals of the thermal system
with a constant flux of 5kWm−2 and a constant temperature
of 42.2◦C subtracted and a shift of the output signal to
eliminate the delay

thermal flux generated by a resistor glued at one end and
the output signal is the temperature of the rod measured
at a distance x = 0.5cm from the heated end using a
platinum probe and an amplifier with a quantification
error of 0.125 degree. To ensure a unidirectional heat
transfer, the entire surface of the rod is insulated.

The sampling period is set to 0.5s. The system is driven
to a steady-state temperature by injecting a constant
flux density of φ = 5kWm−2 for a sufficiently long pe-
riod. Then a prbs is applied with a flux variation of
±5kWm−2 around the constant flux of 5kWm−2. A de-
lay of 4 samples (2s) is observed between the output and
the input. The input density flux and the output temper-
ature are pretreated to eliminate the constant parts and
the delay. The pretreated signals are plotted in Fig.5.

In (Malti et al., 2009), a theoretical model of the alu-
minum rod, obtained from heat equation under some
simplifying assumptions, was compared to experimental
data. Among the simplifying assumptions, the rod was
assumed to be perfectly isolated. The theoretical model
was found to be commensurate of order 0.5. It was also
shown that fractional models are more compact than ra-
tional models: higher order rational models are required
to get comparable results to fractional models.
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Fig. 6. Output error ℓ2-norm versus commensurate differen-
tiation; the gap between 0.90 and 1.30 corresponds to un-
stable models.

Order estimation

Since the aluminum rod reaches a steady state temper-
ature, it is not perfectly insulated. Consequently, there
is no reason to have a commensurate order of 0.5 nor
to have an integrator as in the physical model (Malti et
al., 2009). Thus, the selected model for the system iden-
tification is set to:

G1(s) =
b0

a2sγ2 + a1sγ1 + 1
× e−2s. (65)

First of all, a commensurate model is considered with
γ2 = 2γ1 and the srivcf algorithm is applied for a com-
mensurate order γ1 varying from 0.1 to 1.9 with a step of
0.05 yielding transfer function coefficients for each com-
mensurate order. The ℓ2-norm (in dB) of the normalized
output error,

JdB = 10 log

(

||y∗(t)− ŷ(t)||2

||y∗(t)||2

)

, (66)

is plotted versus the commensurate order in Fig. 6. For
commensurate orders greater than 0.85, either unstable
or poor quality models are obtained due to important
modeling errors. The commensurate order leading to the
minimum of the ℓ2-norm of the normalized output error
is around γ1 = 0.60. The srivcf method applied to a
rational model, with γ = 1, does not converge to a stable
model.

Hence applying the oosrivcf algorithm to estimate the
commensurate order, initialized according to the prior
knowledge to 0.5, leads to the global minimum γ1 =
0.593 and to the following commensurate model:

G1(s) =
3.09× 10−3

263.4s1.186 + 88.78s0.593 + 1
e−2s, (67)

Estimated

θ̂ σθ

b0 5.89 × 10−3 0.13 × 10−3

a2 954 20

a1 168 2

γ2 1.474 0.004

γ1 0.557 0.002

Table 4
Thermal process parameter estimation with the oosrivcf
algorithm.

with a corresponding ℓ2-norm of the normalized output
error:

JdB = −23.1dB. (68)

Then, the commensurability constraint is released so
that all differentiation orders and transfer function co-
efficients are estimated with the oosrivcf algorithm.
Model (67) is used to initialize the oosrivcf algorithm
for all order estimation and it converges to the para-
meters of Table 4, where the estimated standard devi-
ations are obtained from the covariance matrix (57). In
comparison with (68), the corresponding ℓ2-norm of the
normalized output error drops to:

JdB = −25.6dB. (69)

By releasing the commensurability constraint, the ℓ2-
norm of the normalized output error decreases by 2.5dB.
The time-domain responses of the commensurate (67)
and the non commensurate (65) models with the param-
eters of Table 4 are both compared on a set of valida-
tion data in Fig. 7 together with the output error. As
expected, the estimated model (65) with the parameters
of Table 4 outperforms the commensurate model (67).

This kind of model has been successfully used in (Victor
et al., 2009b; Victor et al., 2011) for temperature path
generation in open-loop by using flatness principles, and
also for temperature path tracking in closed-loop by us-
ing a CRONE controller that guarantees a robust path
planning in presence of input/ouput disturbances and in
presence of parametric variations.

6 Conclusion and prospects

This paper has presented an optimal instrumental vari-
able method for estimating transfer function coefficients
of fractional differential systems when the output is cor-
rupted by an additive white noise. The well-known srivc
algorithmhas been extended to estimating transfer func-
tion coefficients of fractional models when all differenti-
ation orders are set according to prior knowledge. Then,
when the prior knowledge is not available, a very im-
portant aspect of fractional differential models has been
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Fig. 7. Time-domain responses plotted on validation data
(y1 stands for the commensurate model output (67) and y2
for the non commensurate model output of Table 4)

treated: the determination of differentiation orders. For
that purpose a gradient-based algorithm, which com-
bines simultaneously the parameter and the differentia-
tion order estimation, has been proposed with two vari-
ants: either a commensurate order is estimated, or all dif-
ferentiation orders are further adjusted. An initialization
procedure is proposed consisting of estimating a com-
mensurate model first, and then of using the obtained
model as an initial hit for all order estimation. The per-
formance of the proposed algorithms has been evaluated
by Monte Carlo simulation analysis. Last but not least,
the proposed algorithms have been successfully applied
to identify thermal diffusion in an aluminum rod.

In a future work, it would be interesting to develop tech-
niques to help fixing the number of parameters when the
model structure is not known. It will also be interesting
to extend this study to deal with colored output noise by
using hybrid Box-Jenkins models with continuous-time
fractional input-output models and discrete-time noise
models.

References

Aoun, M., R. Malti, F. Levron and A. Oustaloup (2004).
Numerical simulations of fractional systems: an overview of
existing methods and improvements. Nonlinear Dynamics.
38(1-4), 117–131.

Aoun, M., R. Malti, F. Levron and A. Oustaloup (2007). Synthesis
of fractional Laguerre basis for system approximation.
Automatica 43, 1640–1648.

Bai, E.W. (1998). An optimal two stage identification algorithm
for Hammerstein-Wiener nonlinear systems. Automatica
34(3), 333–338.

Battaglia, J.-L., O. Cois, L. Puigsegur and A. Oustaloup (2001).
Solving an inverse heat conduction problem using a non-
integer identified model. Int. J. of Heat and Mass Transfer
44(14), 2671–2680.

Benchellal, A., S. Bachir, T. Poinot and J.-C. Trigeassou (2004).
Identification of a non-integer model of induction machines.
In: 1st IFAC Workshop on Fractional Differentiation and its
Applications (FDA). Bordeaux, France.

Cois, O., A. Oustaloup, T. Poinot and J.-L. Battaglia (2001).
Fractional state variable filter for system identification
by fractional model. In: 6th European Control Conference
ECC’01. Porto, Portugal.

Gabano, J.-D. and T. Poinot (2011a). Estimation of thermal
parameters using fractional modelling. Signal Processing
91(4), 938 – 948.

Gabano, J.-D. and T. Poinot (2011b). Fractional modelling
and identification of thermal systems. Signal Processing
91(3), 531 – 541. Advances in Fractional Signals and
Systems.

Garnier, H. and L. Wang (2008). Identification of continuous-
time models from sampled data. Springer-Verlag.

Garnier, H., M. Gilson, P.C. Young and E. Huselstein (2007).
An optimal IV technique for identifying continuous-time
transfer function model of multiple input systems. Control
Engineering Practice 46(15), 471–486.

Garnier, H., M. Mensler and A. Richard (2003). Continuous-
time model identification from sampled data. Implementation
issues and performance evaluation. International Journal of
Control 76(13), 1337–1357.

Gilson, M., H. Garnier, P.C. Young and P. Van den Hof (2008).
Instrumental Variable Methods for Closed-Loop Continuous-
time Model Identification. In: Identification of continuous-
time models from sampled data (H. Garnier and L. Wang,
Eds.). Springer-Verlag.

Heymans, N. and J.C. Bauwens (1994). Fractal rheological models
and fractional differential equations for viscoelastic behavior.
Rheologica Acta 33, 219.

Kay, S.M. (1993). Fundamentals of statistical signal processing:
estimation theory. Prentice-Hall. Upper Saddle River, NJ.
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