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This paper deals with continuous-time system identification using fractional differentiation models. An adapted version of the simplified refined instrumental variable method is first proposed to estimate the parameters of the fractional model when all the differentiation orders are assumed known. Then, an optimization approach based on the use of the developed instrumental variable estimator is presented. Two variants of the algorithm are proposed. Either, all differentiation orders are set as integral multiples of a commensurate order which is estimated, or all differentiation orders are estimated. The former variant allows to reduce the number of parameters and can be used as a good initial hit for the latter variant. The performances of the proposed approaches are evaluated by Monte Carlo simulation analysis. Finally, the proposed identification algorithms are used to identify thermal diffusion in an experimental set-up.

Introduction

Fractional calculus is a generalization of the traditional calculus and dates back to [START_REF] Liouville | Mémoire sur quelques questions de géométrie et de mécanique et sur un nouveau genre de calcul pour résoudre ces équations[END_REF] and [START_REF] Riemann | Versuch einer allgemeinen Auffassung der Integration une Differentiation[END_REF]. It remained for a long time an abstract mathematical concept until used by [START_REF] Oldham | The remplacement of fick's laws by a formulation involving semi-differentiation. Electroanal[END_REF][START_REF] Oldham | The fractionnal calculus -Theory and Applications of Differentiation and Integration to Arbitrary Order[END_REF] for modeling general diffusive phenomena in semi-infinite planar, spherical, and cylindrical media. The authors showed that diffusive systems can be modeled by transfer functions involving differentiation orders multiples of 0.5. Moreover, in electrochemistry for example, it is proven that the diffusion of charges in acid batteries is governed by Randles models [START_REF] Rodrigues | A review of state of charge indication of batteries by means of A.C. impedance measurements[END_REF][START_REF] Sabatier | Fractional system identification for lead acid battery state charge estimation[END_REF] that involve a half order integrator. In semi-infinite thermal systems, [START_REF] Battaglia | Solving an inverse heat conduction problem using a noninteger identified model[END_REF] have shown that the exact solution of heat equation links thermal flux to a half order derivative of surface temperature on which the flux is applied. In rheology, stress in viscoelastic materials is proportional to a non integer derivative of deformation [START_REF] Heymans | Fractal rheological models and fractional differential equations for viscoelastic behavior[END_REF]. Foucault currents inside rotor bars in induction machines obey to diffusive phenomena modeled by fractional operators [START_REF] Benchellal | Identification of a non-integer model of induction machines[END_REF]. Time-domain system identification using fractional models was initiated in the late nineties and the beginning of this century [START_REF] Mathieu | Transfer function parameter estimation by interpolation in the frequency domain[END_REF]Cois et al., 2001;[START_REF] Aoun | Synthesis of fractional Laguerre basis for system approximation[END_REF][START_REF] Malti | Advances in system identification using fractional models[END_REF][START_REF] Narang | Continuous-time model identification of fractional-order models with time delays[END_REF]Gabano and Poinot, 2011a). [START_REF] Malti | Thermal modeling and identification of an aluminium rod using fractional calculus[END_REF] and (Gabano and Poinot, 2011b), have identified thermal systems using fractional models in an output error context. An advantage of continuous-time modeling is in straightforwardly estimating physical parameters even when the physics reveals systems governed by fractional differential equations. In this context and based on a fractional model, (Gabano and Poinot, 2011a) have successfully estimated thermal conductivity and diffusivity in a homogeneous medium.

Instrumental variable methods for system identification have been developed for decades (see e.g. [START_REF] Young | Parameter estimation for continuous-time models -a survey[END_REF][START_REF] Young | Recursive estimation and Time-Series Analysis[END_REF][START_REF] Söderström | Instrumental variable methods for system identification[END_REF][START_REF] Söderström | How accurate can instrumental variable models become?[END_REF] ). Refined Instrumental Variables for Continuous system (rivc), and its simplified version (srivc) when the additive measurement noise is white, were developed in [START_REF] Young | Refined instrumental variable methods of time-series analysis: Part III, extensions[END_REF][START_REF] Young | Parameter estimation for continuous-time models -a survey[END_REF][START_REF] Young | Optimal IV identification and estimation of continuous-time TF models[END_REF]. When the model lies in the same class as the true system, the rivc method and consequently the srivc can be interpreted in optimal statistical terms yielding consistent estimates with minimum variance. Both methods use an iterative-adaptive prefiltering based on a quasioptimal statistical solution and provide an estimation of the parametric error covariance matrix. Recent developments aimed at extending the rivc method to handle multi-input transfer function model identification [START_REF] Garnier | An optimal IV technique for identifying continuous-time transfer function model of multiple input systems[END_REF], hybrid Box-Jenkins model identification [START_REF] Young | Identification of continuous-time models from sampled data[END_REF], closed-loop identification [START_REF] Gilson | Instrumental Variable Methods for Closed-Loop Continuoustime Model Identification[END_REF], irregularly sampled data [START_REF] Wang | Identification of linear dynamic systems operating in a networked environment[END_REF] and linear parameter varying model identification [START_REF] Laurain | Direct identification of continuous-time LPV input/output models[END_REF].

One very important aspect of fractional differential equation modeling is the determination of the differentiation orders. In system identification with rational models, where only the coefficients are estimated, the model order remains unchanged. Estimating coefficients and differentiation orders in fractional models is not a trivial problem: in an iterative algorithm, it indeed changes the model order at each iteration. In this paper, the srivc algorithm is first extended to fractional models as the srivcf for linear coefficient estimation, by assuming all differentiation orders known. Section 4 of the paper aims at proposing a gradient-based approach which combines simultaneously the coefficients and the differentiation order estimation. Two variants are proposed. In the first one, all differentiation orders are set as integral multiples of a commensurate order which is estimated. Then, this commensurability constraint is released and all differentiation orders are further adjusted. Finally, these algorithms are applied to the identification of a real thermal process, where the transfer function linking the temperature to the heat density flux is modeled by a fractional model.

The main advantage of fractional models is that they allow modeling infinite dimensional systems with a reduced number of parameters. Since it is always possible to find a high order rational model equivalent to a low dimension fractional model [START_REF] Oustaloup | La dérivation non-entière[END_REF], the use of high dimension fractional models is of limited interest. That is why, the proposed algorithms will be tested on low dimension fractional systems. The fractional behavior of a given system can be recognized either from a preliminary experiment on a step response when the convergence time is polynomial or from prior knowledge when theoretical models reveal the presence of fractional derivatives or integrals.

Mathematical background

A fractional mathematical model is based on a differential equation:

y (t) + a 1 p α1 y (t) + • • • + a N p αN y (t) = b 0 p β0 u (t) + b 1 p β1 u (t) + • • • + b M p βM u (t) , (1)
where u(t) is the system input, y(t) is the noisefree system output, p is the differentiation operator p = d dt , and so p µ u(t) denotes the µ-th time-derivative of the continuous-time signal u(t), (a j , b i ) ∈ R 2 ∀i ∈ {0, 1, . . . , m} and ∀j ∈ {1, . . . , n}, and the differentiation orders

0 < α 1 < α 2 < . . . < α N , 0 ≤ β 0 < β 1 < . . . < β M ,
(2) allowed to be non-integer positive numbers, are ordered for identifiability purposes. The concept of differentiation to an arbitrary order (non-integer) γ, with γ ∈ R was defined by Grünwald-Letnikov (see e.g. [START_REF] Podlubny | Fractional Differential Equations[END_REF], chapter 2)), which results from the generalization of integer order derivatives:

p γ x(t) = lim h→0 1 h γ ⌊ t h ⌋ k=0 (-1) k γ k x(t -kh), (3) 
where ⌊.⌋ stands for the floor operator, and γ k stands for the Newton binomial coefficient generalized to real numbers:

γ k = Γ(γ + 1) Γ(k + 1)Γ(γ -k + 1) = γ(γ -1)...(γ -k + 1) k! .
Since γ k = 0 when (γ -k) ∈ N, the definition (3) reduces, for γ = 1, to the standard derivative definition:

p x(t) = lim h→0 x(t) -x(t -h) h . (4) 
The non integer derivative of a function has a global characterization, as the whole past is taken into account.

For numerical evaluation of the fractional derivative, the h parameter in (3) is replaced by the sampling period and hence the limit is dropped:

p γ x(t) = 1 h γ ⌊ t h ⌋ k=0 (-1) k γ k x(t -kh) + O(h). (5) 
In doing so, the error terms are proportional to the sampling period (Podlubny, 1999, section 7.4). Consequently, the sampling period should be small enough for the approximation error to be negligible.

The Laplace transform of p γ x(t) when x(t) is relaxed at t = 0 (x(t) equals 0 for all t < 0), is given by (Podlubny, 1999, section 2.8.4):

L {p γ x (t)} = s γ X (s) . ( 6 
)
This result is coherent with the classical case when γ is an integer. Consequently, it is easy to define a symbolic representation of the fractional dynamic system governed by (1) using the transfer function:

G (s) = B(s) A(s) = M i=0 b i s βi 1 + N j=1 a j s αj . (7) 
Moreover, if G(s) is commensurate of order γ, then G(s) can be rewritten as:

G (s) = m i=0 bi s iγ 1 + n j=1 ãj s jγ , (8) 
where m = βM γ and n = αN γ are integers and ∀i ′ ∈ {0, 1, . . . , m}, ∀j ′ ∈ {1, . . . , n}:

       bi ′ = b i if ∃i ∈ {0, 1, . . . , M } such that i ′ γ = β i bi ′ = 0 otherwise ãj ′ = a j if ∃j ∈ {1, . . . , N } such that j ′ γ = α j ãj ′ = 0 otherwise.
(9) In rational transfer functions, γ equals 1 and usually numerator α N and denominator β M orders are both fixed, then all coefficients b i , i = 0, . . . , M and a j , j = 1, . . . , N are estimated. Generally, no care is taken to check whether any intermediate coefficient, as in (9), equals zero. [START_REF] Khemane | Robust estimation of fractional models in the frequency domain using set membership methods[END_REF] have proven that the fractional transfer function representation [START_REF] Malti | Stability and resonance conditions of elementary fractional transfer functions[END_REF] is unique, provided that all the differentiation orders are ordered as in (2) and provided that all the coefficients a 1 , . . . , a N , b 0 , . . . , b M are non zero. This property is interesting in system identification context as it shows that the global minimum is unique when the fractional model is in the same class as the true system. Time-domain simulation of fractional systems is an extensively studied topic in the literature [START_REF] Oustaloup | La dérivation non-entière[END_REF][START_REF] Aoun | Numerical simulations of fractional systems: an overview of existing methods and improvements[END_REF][START_REF] Krishna | Studies on fractional order differentiators and integrators: A survey[END_REF]. System identification algorithms proposed in this paper may be used with any time-domain simulation algorithm of fractional systems, at the discretion of the user. Fractional systems should be correctly simulated with negligible simulation errors, in order to be able to consistently estimate the fractional model parameters.

Stability of fractional systems was treated in different contexts (linear, non linear, commensurate, non commensurate, time-variant, time invariant, delayed, non delayed, analytical, numerical) by different authors as presented in the state of the art by [START_REF] Sabatier | LMI stability conditions for fractional order systems[END_REF]. The most well-known stability criterion for commensurate fractional systems is (Matignon, 1998, theorem 1) which allows to check the stability of a commensurate fractional system through the location of its s γpoles. Matignon's stability theorem was initially proven for commensurate orders between 0 and 1, extended to commensurate orders between 1 and 2 in [START_REF] Moze | LMI tools for stability analysis of fractional systems[END_REF]. A proof of instability when γ ≥ 2 for all s γ -poles is provided in (Malti et al., 2011b).

Stability theorem ( [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF], extended): A commensurate transfer function, with a commensurate order γ as in (8), G(s) = T (s γ ) R(s γ ) , where T and R are coprime polynomials, is BIBO (bounded input bounded output) stable if and only if :

0 < γ < 2 (10)
and

| arg(s k )| > γ π 2 , ∀s k ∈ C / R(s k ) = 0. ( 11 
)
The stability conditions are used later when estimating the commensurate order, which must be in the interval (10) for stable systems. Additionally, analytical formulae have been provided in (Malti et al., 2011a) for computing the H 2 -norm of fractional commensurate transfer functions.

Problem formulation

It is assumed that the input u(t) and the noise-free output y(t) are related by the constant coefficient differential equation (1), which can also be written in the following compact model form:

G(p) = B(p) A(p) = M i=0 b i p βi 1 + N j=1 a j p αj . (12) 
B(p) and A(p) are assumed to be coprime, and the system asymptotically stable.

The data are collected at regular time-instants from t = 0 to t = T f inal (K samples), with a sampling period, h, small enough so that the approximation errors while computing numerically the fractional derivatives, as in (5), are negligible. Moreover, the number of samples is assumed to be large enough to guarantee convergence of the estimated parameters to the true ones. The quasistationary input signal {u(t), 0 ≤ t ≤ T f inal } applied to the system is persistently exciting, and gives rise to an output signal {y(t), 0 ≤ t ≤ T f inal }. The noise-free output y is supposed to be corrupted by an additive white measurement noise ξ, normally distributed with a zero mean and σ 2 variance, considered at discrete instants.

The complete equation can be written in the form:

y(t) = G(p)u(t) y * (t k ) = y(t k ) + ξ(t k ), (13) 
where y * (t k ) is the sampled value of the unobserved noisy output y(t). Given the discrete-time sampled nature of the data, the usual assumption is that a discretetime noise ξ(t k ) is associated with the sampled data (see e.g. [START_REF] Young | Identification of continuous-time models from sampled data[END_REF]). It is easier to consider white noise in the discrete-time case, since the concept of continuous-time white noise is a non-trivial extension of the discrete-time case.

When the model ( 12) is used, the parameter vector

θ = ρ µ (14) is composed of a vector of N + M + 1 transfer function coefficients, ρ = [b 0 , b 1 , . . . , b M , a 1 , . . . , a N ] T , (15) 
and additionally a vector of N + M + 1 ordered differentiation orders, as in ( 2),

µ = [β 0 , . . . , β M , α 1 , . . . , α N ] T . (16) 
Estimating all differentiation orders necessitates to determine N +M +1 terms along with the N +M +1 transfer function coefficients. Moreover, if N and/or M are high, the number of local minima may increase and the nonlinear optimization algorithms, with high complexity, may fail to converge to the global minimum. To reduce the number of parameters, a commensurate model can be chosen, instead of (12):

G (p) = M i=0 b i p iγ 1 + N j=1 a j p jγ , (17) 
where only one differentiation order and hence N +M +2 parameters are estimated. The parameter vector θ in ( 14) is then reduced to the N + M + 1 transfer function coefficients as in (15) added to a single commensurate differentiation order:

µ = γ. ( 18 
)
In this case, the searching domain of the commensurate order is held for γ ∈ (0, 2) as specified in the extended Matignon's theorem.

Simplified refined instrumental variable for continuous-time fractional models

In this section all differentiation orders are assumed to be known and fractional transfer function coefficients are estimated. The iterative srivc algorithm, known to deliver optimal estimates when the additive measurement noise is white, is first extended to fractional systems and then validated through a Monte Carlo analysis.

The srivc algorithm derives from the sriv algorithm for discrete-time transfer function model identification. This was evolved by converting the maximum likelihood (ML) estimation equations to a pseudo-linear form involving optimal prefilters (see e.g. [START_REF] Young | Recursive estimation and Time-Series Analysis[END_REF]). A similar analysis can be utilized in the present situation because the problem is very similar, in both algebraic and statistical terms. For space constraint, a simpler development of the srivc algorithm for fractional transfer function model identification is presented. Following the Prediction Error Method, a suitable error function ε is given by the Output Error :

ε (t, ρ) = y * (t) - B (p, ρ) A (p, ρ) u (t) , (19) 
which can be rewritten as:

ε (t, ρ) = A (p, ρ) 1 A (p, ρ) y * (t) -B (p, ρ) 1 A (p, ρ) u (t) (20) = A (p, ρ) y * f (t) -B (p, ρ) u f (t) (21)
where

y * f = 1 A(p,ρ) y * (t) and u f (t) = 1 A(p,ρ) u (t).
Hence, as for rational systems, a linear transformation (low-pass filter) is applied to input and output signals instead of a direct differentiation. As shown in (20), the filter required to convert the output error into an equation error, which turns out to lead to optimal Instrumental Variable (IV) estimates, takes the form (see e.g. [START_REF] Young | Recursive estimation and Time-Series Analysis[END_REF]):

F opt (p) = 1 A(p, ρ) . ( 22 
)
In practical cases, A(p, ρ) being unknown, an estimation Â(p, ρiter ) is computed iteratively:

F iter (p) = 1 Â(p, ρiter ) = 1 1 + N j=1 âj p αj , ( 23 
)
where iter = 1, 2, . . . stands for the iteration number and âj the estimated a j coefficient at iteration iter.

The noise-free output estimates required to build the instrument are obtained from an auxiliary model, with transfer function coefficients computed iteratively:

y iter iv (t) = B p, ρiter  (p, ρiter ) u(t). (24) 
The filtered derivatives of the input, the output, and the instruments are computed respectively with:

p βi u f (t) = F iter βi (p)u(t), ( 25 
)
p αj y * f (t) = F iter αj (p)y * (t), ( 26 
)
p αj y iter iv,f (t) = F iter αj (p)y iter iv (t), (27) 
where

F iter σ (p) = p σ F iter (p) = p σ Â(p, ρiter ) , ( 28 
)
and gathered in the regression ϕ f (t) and the instrumental variable ϕ iter iv,f (t) vectors :

ϕ f (t) = p β0 u f (t) , . . . , p βM u f (t) , -p α1 y * f (t) , . . . , -p αN y * f (t) T , (29) 
ϕ iter iv,f (t) = p β0 u f (t) , . . . , p βM u f (t) , -p α1 y iter iv,f (t) , . . . , -p αN y iter iv,f (t) T . (30) 
From different time-instants, the srivcf optimization problem can be stated as

ρiter+1 = arg min ρ Φ iter iv,f Φ T f ρ -Φ iter iv,f Y * f 2 , (31) with Φ iter iv,f = ϕ iter iv,f (0) . . . ϕ iter iv,f (T f inal ) T , (32) 
Φ f = ϕ f (0) . . . ϕ f (T f inal ) T , (33) 
Y * f = y * f (0) . . . y * f (T f inal ) T . ( 34 
)
The srivcf -based solution is hence given at each iteration by:

ρiter+1 = Φ iter iv,f Φ T f -1 Φ iter iv,f Y * f , (35) 
and the algorithm is iterated until convergence, when

max j ρiter+1 j -ρiter j ρ iter+1 j < ǫ, (36) 
where ρiter j is the j-th element of the estimated parameter vector at the iteration iter. The sriv [START_REF] Young | Refined instrumental variable methods of time-series analysis: Part III, extensions[END_REF][START_REF] Young | Parameter estimation for continuous-time models -a survey[END_REF] and srivc [START_REF] Young | Optimal IV identification and estimation of continuous-time TF models[END_REF][START_REF] Garnier | Identification of continuoustime models from sampled data[END_REF] algorithms have been successfully used for more than three decades in various contexts. Moreover, it has recently been established in the rational continuous-time case in [START_REF] Liu | Convergence analysis of refined instrumental variable method for continuous-time system identification[END_REF], theorem 1) that the srivc algorithm converges asymptotically in one iteration under some mild assumptions 1 . In the fractional case, the convergence of the srivcf algorithm follows exactly the same scheme under the same assumptions.

The iterative srivcf algorithm can be initialized using the least squares-based state-variable filter (lssvf ) or the suboptimal instrumental variable svf (ivsvf ) method for fractional models, as detailed in (Cois et al., 2001;[START_REF] Malti | Advances in system identification using fractional models[END_REF]. In both methods a nonoptimal filter is used, instead of (28). In the case of the state-variable filter, it takes the form:

F svf σ (p) = p σ 1 + p ωc Nc , (37) 
where two user parameters need to be a priori chosen: the integer order N c > α N usually set as the integer above the system order α N , i.e. N c = ⌊α N ⌋ + 1, and the cut-off frequency ω c usually chosen to emphasize the frequency band of interest, which is a little bit larger than the frequency bandwidth of the system to be identified [START_REF] Garnier | Continuoustime model identification from sampled data. Implementation issues and performance evaluation[END_REF]. The basic idea in using the statevariable filter is to obtain the behavior of a differentiator in low frequencies and to filter noise in high frequencies.

As in the rational case, if the quasi-stationary input signal is persistently exciting and the noise signal is white with zero-mean, the srivcf estimator is asymptotically unbiased thanks to the iv mechanism. When the system is in the true model class, the iv estimate provides a consistent estimate under the following two conditions

   E ϕ iter iv,f (t k )ϕ T f (t k ) is non-singular, E ϕ iter iv,f (t k )ξ(t k ) = 0. ( 38 
)
Additionally, when the noise signal is normally distributed, an estimation of the asymptotic covariance matrix of the estimation error associated with the estimate of ρ in (35) follows straightforwardly from the rational continuous-time case [START_REF] Young | Identification of continuous-time models from sampled data[END_REF] by replacing integer derivatives by fractional derivatives and yields:

Pρ = σ2 Φ iv,f Φ iv,f T -1 , ( 39 
)
1 as qualified by the authors of the paper.

where σ2 is the empirical estimation of the noise variance, and Φ iv,f corresponds to Φ iter iv,f computed at the last iteration.

In any parameter estimation problem, the estimator performance can be assessed by comparing the estimator covariance matrix to the best possible accuracy given by the Cramér-Rao lower-bound (CRB) [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF][START_REF] Stoica | Spectral Analysis of Signals[END_REF][START_REF] Young | Identification of continuous-time models from sampled data[END_REF]. Under a white Gaussian noise and sufficient persistency of the input signal assumptions, the CRB is computable and often tight, meaning that there exists an iv estimator that asymptotically reaches the CRB [START_REF] Wellstead | An instrumental product moment test for model order estimation[END_REF]. In this regard, a direct extension of the rational continuoustime case [START_REF] Young | Identification of continuous-time models from sampled data[END_REF] 2 , by replacing integer derivatives by fractional derivatives, enables computing the CRB:

P opt ρ = σ 2 N E ϕ opt iv,f (t k )ϕ opt iv,f (t k ) T -1 , ( 40 
)
obtained with the true design variables and the true noise variance σ 2 . The instrumental vector ϕ opt iv,f (t k ) is the optimally noise-free pre-filtered iv vector, with F opt (p) defined in ( 22) and

ϕ opt iv,f (t k ) = F opt (p) p β0 u(t k ), . . . , p βM u(t k ), -p α1 y(t k ), . . . , -p αN y(t k ) T . (41) 
It is assumed that the srivcf algorithm converges in the sense that ρ → ρ, then the covariance matrix (39) will tend in probability to (40).

Example 1 -srivcf algorithm

To illustrate the efficacy of this algorithm, a pseudo random binary sequence (prbs) is applied to the following data-generating system:

G 0 (s) = 0.5 0.5s 3 + 1.5s 1.5 + 1 = 1 (s 1.5 + 1)(s 1.5 + 2)
.

(42) The output, y(t), is corrupted at the sampling instants (13), by an additive Gaussian white noise ξ(t k ) with zero mean and a signal to noise ratio (SNR=10 log y(t k ) 2 ξ(t k ) 2 , with . 2 standing for the squared Euclidean norm) of 5dB. Input and output data, sampled with a rate of h = 0.02s, are plotted in Fig. 1. The simulation algorithm used in this example is based on the numerical discretization of the Grünwald operator (5).

2 The rational continuous-time case in [START_REF] Young | Identification of continuous-time models from sampled data[END_REF] results from an original justification in [START_REF] Pierce | Least squares estimation in dynamic disturbance time-series models[END_REF]. 1 Monte Carlo simulation results for SNR = 5 dB in example 1. ρ denotes the mean and σθ the standard deviation of the parameter estimates. For the ivsvf method, the filter used is given by (37), ωc is set to 100 rad/s and Nc to 4.

The model structure is chosen as:

G(s) = b 0 a 2 s 2γ + a 1 s γ + 1 , (43) 
and all parameters are estimated, except the commensurate order, set to γ = 1.5, in order to be in the same model class as the true system. To study the statistical properties of the estimators, a Monte Carlo (MC) simulation of 500 runs is implemented with different noise realizations. For each MC run, the simulated system is identified with the ivsvf method [START_REF] Cois | Fractional state variable filter for system identification by fractional model[END_REF][START_REF] Malti | Advances in system identification using fractional models[END_REF], and the srivcf method. The results of the MC simulation are presented in Table 1 where the estimated parameter mean and standard deviation are given for each method. In such a high-level noisy context, the srivcf and ivsvf are both asymptotically unbiased thanks to the iv mechanism. The srivcf parameter estimates have, as expected, a smaller variance than the suboptimal ivsvf parameter estimates. This is further confirmed by computing the following Euclidean norms of the covariance matrices, obtained for a single Since, the true parameters, the noise-free output, and the noise variance are known, the CRB P opt ρ can be computed:

P opt ρ 2 = 1.79 × 10 -4 .
As a consequence, the covariance matrix Psrivcf ρ 2 is closer to the Cramér-Rao lower bound as compared to Pivsvf

ρ 2 : Pivsvf ρ 2 > Psrivcf ρ 2 ≥ Popt ρ 2 . ( 46 
)
Up to now, all differentiation orders have been as known. However, if differentiation orders are unknown, then a computation of the ℓ 2 -norm (in dB) of the normalized output error,

J dB = 10 log ||ε(t, θsrivcf )|| 2 ||y(t)|| 2 , ( 47 
)
where ε(t, ) = y * (t) -G(p, θsrivcf )u(t), versus the commensurate order shows, in Fig. 2, that the criterion depends on the differentiation order and that its optimum is obtained at the true value. This normalized criterion equals (-SNR= -5dB) at the optimum when there is no modeling error. Otherwise, it allows to quantify the modeling error which equals, in this example, 0.4dB for a rational model with γ = 1.

Differentiation order estimation

When differentiation orders are unknown, as it is often the case in practice, it is helpful to consider order estimation along with transfer function coefficient estimation. An algorithm is proposed to identify the parameters in two stages. This algorithm, named order-optimizationsrivcf or oosrivcf for short, uses the srivcf algofor coefficient estimation and is combined with a gradient-based algorithm for differentiation order optimization. Such two-stage algorithms have been used in [START_REF] Spinelli | A two-stage algorithm for structure identification of polynomial NARX models[END_REF][START_REF] Bai | An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems[END_REF][START_REF] Mukhopahyay | Irreducible model estimation for MIMO systems[END_REF][START_REF] Rao | Parameter estimation in large-scale interconnected systems[END_REF][START_REF] Rao | Identification of continuoustime systems[END_REF]. Although they do not have a proof of convergence, it has been noted in the aforementioned references that they do often converge to a minimum. Two variants of order optimization algorithm are presented. Either all differentiation orders are set as integral multiples of a commensurate order, as in the model ( 17), and the best commensurate order is computed in the interval (0, 2), or all differentiation orders, as in ( 12), are estimated. The former variant is used as a good initial hit for the latter variant. The estimation problem is formulated as a minimization problem of the ℓ 2 -norm:

J = 1 2 ε (t, θ) 2 , ( 48 
)
of the output error

ε(t, θ) = y * (t) -G(p, θ)u(t), (49) 
with respect to the vector µ, as in ( 16) or (18).

A Gauss-Newton algorithm (see e.g. [START_REF] Ljung | System identification -Theory for the user[END_REF]) is used for the estimation of the differentiation order(s). This iterative algorithm allows to compute the differentiation order(s) µ iter at iteration iter with respect to µ iter-1 and a correction factor:

µ iter = µ iter-1 -λH -1 ∂J ∂µ . (50) 
Here, the gradient ∂J ∂µ and the approximated Hessian H, respectively given by

∂J ∂µ = ∂ε ∂µ T ε and H = ∂ε ∂µ T ∂ε ∂µ ( 51 
)
are evaluated for µ = µ iter-1 .

In the Gauss-Newton method, the advantage of computing the approximated Hessian is that the second derivative of ε is not required; hence it is less time consuming. Moreover, it allows to obtain always a positive semidefinite matrix which is a necessary convergence condition. If the criterion is convex, the algorithm reaches the global minimum. Otherwise, only a convergence to a local minimum is guaranteed. The λ parameter, usually set to , may be used to adjust the step in case of slow convergence or oscillations around a minimum.

The error sensitivity function, required for computing the gradient and the Hessian in ( 51), is given by:

∂ε ∂µ = - ∂ ŷ ∂β 0 , . . . , - ∂ ŷ ∂β M , - ∂ ŷ ∂α 1 , . . . , - ∂ ŷ ∂α N T , (52) 
when all differentiation orders are estimated, and by:

∂ε ∂µ = ∂ε ∂γ = - ∂ ŷ ∂γ , (53) 
when the commensurate order is estimated. The output sensitivity functions with respect to all differentiation orders are given by:

∂ ŷ ∂β i = ln(p) bi p βi 1 + N j=1 âj p αj u(t), ∀i = 0, . . . , M, (54) 
∂ ŷ ∂α k = ln(p)â k p αk M i=0 bi p βi 1 + N j=1 âj p αj 2 u(t), ∀k = 1, . . . , N. (55) 
The output sensitivity function with respect to the commensurate differentiation order is given by:

∂ ŷ ∂γ = ln(p) M i=0 i bi p iγ + M i=0 N j=1 (i -j) bi âj p (i+j)γ 1 + N j=1 âj p jγ 2 u (t) .
(56) Sensitivity functions ∂ ŷ ∂βi , ∂ ŷ ∂α k , and ∂ ŷ ∂µ depend on ln(p) (log of the differential operator) which is not trivial to simulate in the time-domain. Thus, an alternative method consists of computing ∂y ∂µ numerically, using for example the central difference method.

By assuming that the oosrivcf algorithm converges in the sense that θ → θ, then an estimate of the covariance matrix can be obtained on the basis of the Gauss-Newton algorithm (Ljung, 1999, Theorem 9.1) by:

Pθ = σ2 H -1 , ( 57 
)
where σ2 is, as previously, the empirical estimate of noise variance and H is the approximate Hessian computed towards all the estimated parameters:

H = ∂ε ∂θ T ∂ε ∂θ = ∂ε T ∂ [ρ T µ T ] T ∂ε ∂ [ρ T µ T ] T , (58) 
with ∂ε ∂µ defined in ( 52) or ( 53) depending on whether all differentiation orders are estimated or only the commensurate order and

∂ε ∂ρ = - ∂ ŷ ∂ρ = - ∂ ŷ ∂b 0 , . . . , ∂ ŷ ∂b M , ∂ ŷ ∂a 1 , . . . , ∂ ŷ ∂a N T , (59) 
where

∂ ŷ ∂b i = p βi 1 + N j=1 âj p αj u(t), ∀i = 0, . . . , M, (60) 
∂ ŷ ∂a k = - M i=0 bi p βi+ αk 1 + N j=1 âj p αj 2 u(t), ∀k = 1, . . . , N. (61)

Summary of the oosrivcf algorithm

Both variants of the oosrivcf algorithm are summarized here. Either the commensurate order is estimated when µ is defined as in ( 18) or all orders are estimated when µ is defined as in (16).

Step 1 Initialization iter = 0 Initialize µ 0 and compute ρ 0 with the srivcf method.

From θ 0 = [ρ 0 , µ 0 ], compute J(θ 0 ).

Step 2 Gauss-Newton optimization do Initialize λ = Λ (usually to 1) do (i) Refine the order estimate:

µ iter+1 = µ iter -λ H -1 ∂J ∂µ µ iter . (ii) Compute ρ iter using the srivcf algorithm. (iii) Evaluate the error criterion: J(θ iter+1 ). (iv) λ = λ/2 while J(θ iter+1 ) > J(θ iter ) iter = iter + 1 while max l µ iter l -µ iter-1 l µ iter l > ǫ 2
where µ iter l corresponds to l-th element of the order vector µ iter at iteration iter. l equals one in case of commensurate order estimation.

Step 3 Parametric error estimation After convergence, the covariance matrix Pθ associated to the estimate θ can be estimated from (57).

In case all differentiation orders are estimated, it is highly recommended to estimate a commensurate model first, and then to release the commensurability constraint in order to estimate all differentiation orders. The commensurate model constitutes generally a good initial hit when estimating all differentiation orders.

An alternative algorithm to the oosrivcf is the Gauss-Newton algorithm (or the Levenberg-Marquardt variant) with a joint estimation of coefficients and differentiation orders [START_REF] Malti | Advances in system identification using fractional models[END_REF]. The main advantage of the oosrivcf algorithm is that it simplifies considerably the initialization problem, as it requires only initializing the commensurate order, whereas the Gauss-Newton algorithm requires initializing additionally all the N + M + 1 coefficients in (15). Consequently, the oosrivcf algorithm is more likely to converge to the global minimum as compared to the Gauss-Newton algorithm where the number of local minima increases with the increase of N and/or M . Another advantage of the oosrivcf algorithm is its low computational complexity, as it requires computing only one sensitivity function, in case of commensurate order estimation, whereas the Gauss-Newton algorithm, with a joint estimation of coefficients and differentiation orders, requires computing additionally N + M + 1 sensitivity functions with respect to all the coefficients in (15). However, if the Gauss-Newton algorithm is initialized in the convex region containing the global minimum, then it will converge to that global minimum more likely in less iterations, as compared to the oosrivcf algorithm, because it uses at each iteration the global covariance matrix which contains the cross-covariance elements between the coefficients and the differentiation order(s).

Example 2 -Commensurate order estimation combined to the srivcf algorithm

The proposed method is applied to the system described in example 1. The model structure is set to (43), with an unknown commensurate order γ. For each commensurate order γ between 0.1 and 1.9, it has been previously shown, in Fig. 2 for a single noise realization, that the ℓ 2 -norm of the output error depends on the commensurate order and that its optimum is on the true value. This example intends to analyze the performance of the proposed algorithm when the commensurate order is estimated using Monte Carlo simulations with 500 runs in a noisy context with a SNR of 5dB, as in example 1. Each Monte Carlo run is initialized at a commensurate order γ 0 = 1.8. The estimation results are presented in Table 2, where the estimated parameter mean and standard deviation are given. The Monte Carlo simulation results reveal an estimation of the commensurate order highly accurate with a mean value close to the real commensurate order and with a low variance. Based on the efficacy of the srivcf method, the commensurate order estimate is asymptotically unbiased including for the commensurate differentiation order.

Example 3 -All order estimation combined to the srivcf algorithm Consider now the case of estimating transfer function coefficients and all differentiation orders of the following data-generating system:

G 1 (s) = 0.5 0.5s 2.8 + 1.5s 1.2 + 1 . ( 62 
)
The input signal is the PRBS of Fig. 1. The output, y(t), is corrupted at the sampling instants ( 13) by an additive Gaussian white noise ξ(t k ) with zero mean and a SNR of 5dB. As stated previously, it is recommended that a commensurate model, as in ( 43), be estimated first and used as an initial hit for estimating all orders.

The ℓ 2 -norm of the output error versus the commensurate order shows, in Fig. 3, that the criterion depends on the differentiation order. Even if the model is considered commensurate, in which case the model does not lie in the same class as the true system, the system identification algorithm behaves well and the minimum of the ℓ 2 -norm of the output error is found at a commensurate order of γ = 1.25. In this case, the estimated model for a given run is: Ĝ1 (s) = 0.896 0.695s 2.5 + 2.15s 1.25 + 1 .

As it can be checked, the transfer function coefficients are not equal to the true ones, which is a normal fact because the model is not in the same class as the true system. The obtained model constitutes however a good initial hit for all order estimation.

Fig. 3 shows further that the ℓ 2 -norm of the modeling error is around 0.6dB at the estimated commensurate order obtained after convergence and that it equals 0.8dB for a rational model with γ = 1. When there is no modeling error, J dB equals (-SNR= -5dB) as explained in example 2. To improve the parametric estimation, the commensurability constraint is now released so that all differentiation orders are estimated separately. Hence, the model structure is now chosen as:

G(s) = b 0 a 2 s α2 + a 1 s α1 + 1 . (64) 
A Monte Carlo simulation of 500 runs is held for a SNR of 5dB, as in examples 1 and 2. For each Monte Carlo run, the commensurability constraint is released and all differentiation orders are estimated. For each run, the algorithm is initialized with the commensurate model ( 63). The estimation synthesis is presented in Table 3, where the mean and the standard deviation of the parameter estimates are given. All estimated parameters converge to the true ones.

Application to a thermal plant identification

A long aluminium rod (Fig. 4) heated by a resistor at one end is considered in this experiment. The input signal is a thermal flux generated by a resistor glued at one end and the output signal is the temperature of the rod measured at a distance x = 0.5cm from the heated end using a platinum probe and an amplifier with a quantification error of 0.125 degree. To ensure a unidirectional heat transfer, the entire surface of the rod is insulated.

The sampling period is set to 0.5s. The system is driven to a steady-state temperature by injecting a constant flux density of φ = 5kWm -2 for a sufficiently long period. Then a prbs is applied with a flux variation of ±5kWm -2 around the constant flux of 5kWm -2 . A delay of 4 samples (2s) is observed between the output and the input. The input density flux and the output temperature are pretreated to eliminate the constant parts and the delay. The pretreated signals are plotted in Fig. 5.

In [START_REF] Malti | Thermal modeling and identification of an aluminium rod using fractional calculus[END_REF], a theoretical model of the aluminum rod, obtained from heat equation under some simplifying assumptions, was compared to experimental data. Among the simplifying assumptions, the rod was assumed to be perfectly isolated. The theoretical model was found to be commensurate of order 0.5. It was also shown that fractional models are more compact than rational models: higher order rational models are required to get comparable results to fractional models. Commensurate order γ J dB Fig. 6. Output error ℓ2-norm versus commensurate differentiation; the gap between 0.90 and 1.30 corresponds to unstable models.

Order estimation

Since the aluminum rod reaches a steady state temperature, it is not perfectly insulated. Consequently, there is no reason to have a commensurate order of 0.5 nor to have an integrator as in the physical model (Malti et al., 2009). Thus, the selected model for the system identification is set to:

G 1 (s) = b 0 a 2 s γ2 + a 1 s γ1 + 1 × e -2s . (65) 
First of all, a commensurate model is considered with γ 2 = 2γ 1 and the srivcf algorithm is applied for a commensurate order γ 1 varying from 0.1 to 1.9 with a step of 0.05 yielding transfer function coefficients for each commensurate order. The ℓ 2 -norm (in dB) of the normalized output error,

J dB = 10 log ||y * (t) -ŷ(t)|| 2 ||y * (t)|| 2 , ( 66 
)
is plotted versus the commensurate order in Fig. 6. For commensurate orders greater than 0.85, either unstable or poor quality models are obtained due to important modeling errors. The commensurate order leading to the minimum of the ℓ 2 -norm of the normalized output error is around γ 1 = 0.60. The srivcf method applied to a rational model, with γ = 1, does not converge to a stable model.

Hence applying the oosrivcf algorithm to estimate the commensurate order, initialized according to the prior knowledge to 0.5, leads to the global minimum γ 1 = 0.593 and to the following commensurate model: with a corresponding ℓ 2 -norm of the normalized output error:

G 1 (s) = 3.09 × 10 -3 263.4s
J dB = -23.1dB.

(68) Then, the commensurability constraint is released so that all differentiation orders and transfer function coefficients are estimated with the oosrivcf algorithm. Model ( 67) is used to initialize the oosrivcf algorithm for all order estimation and it converges to the parameters of Table 4, where the estimated standard deviations are obtained from the covariance matrix (57). In comparison with (68), the corresponding ℓ 2 -norm of the normalized output error drops to:

J dB = -25.6dB. (69) 
By releasing the commensurability constraint, the ℓ 2norm of the normalized output error decreases by 2.5dB. The time-domain responses of the commensurate (67) and the non commensurate (65) models with the parameters of Table 4 are both compared on a set of validation data in Fig. 7 together with the output error. As expected, the estimated model ( 65) with the parameters of Table 4 outperforms the commensurate model ( 67).

This kind of model has been successfully used in [START_REF] Victor | From system identification to path planning using fractional approach: a thermal application example[END_REF][START_REF] Victor | Path tracking with flatness and crone control for fractional systems[END_REF] for temperature path generation in open-loop by using flatness principles, and also for temperature path tracking in closed-loop by using a CRONE controller that guarantees a robust path planning in presence of input/ouput disturbances and in presence of parametric variations.

Conclusion and prospects

This paper has presented an optimal instrumental variable method for estimating transfer function coefficients of fractional differential systems when the output is corrupted by an additive white noise. The well-known srivc algorithm has been extended to estimating transfer function coefficients of fractional models when all differentiation orders are set according to prior knowledge. Then, when the prior knowledge is not available, a very important aspect of fractional differential models has been 4) treated: the determination of differentiation orders. For that purpose a gradient-based algorithm, which combines simultaneously the parameter and the differentiation order estimation, has been proposed with two variants: either a commensurate order is estimated, or all differentiation orders are further adjusted. An initialization procedure is proposed consisting of estimating a commensurate model first, and then of using the obtained model as an initial hit for all order estimation. The performance of the proposed algorithms has been evaluated by Monte Carlo simulation analysis. Last but not least, the proposed algorithms have been successfully applied to identify thermal diffusion in an aluminum rod.

In a future work, it would be interesting to develop techniques to help fixing the number of parameters when the model structure is not known. It will also be interesting to extend this study to deal with colored output noise by using hybrid Box-Jenkins models with continuous-time fractional input-output models and discrete-time noise models.
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		Estimated
		θ	σ θ
	b0 5.89 × 10 -3 0.13 × 10 -3
	a2	954	20
	a1	168	2
	γ2	1.474	0.004
	γ1	0.557	0.002
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