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Increasing processes and the change of variables
formula for non-decreasing functions

Jean Bertoin and Marc Yor

Abstract Given an increasing process (At)t≥0, we characterize the right-continuous

non-decreasing functions f : R+ → R+ that map A to a pure-jump process. As an

example of application, we show for instance that functions with bounded variations

belong to the domain of the extended generator of any subordinators with no drift

and infinite Lévy measure.

Key words: Pure jump processes, increasing processes, subordinator, extended in-

finitesimal generator.

1 Introduction

We make first some simple observations about the composition of non-decreasing

functions which partly motivate the present work. Let a : R+ → R+ be a non-

decreasing function, which, as usual, we further assume to be right-continuous with

a(0) = 0. It is well-known that a can be decomposed canonically into the sum of

two non-decreasing functions, a = ac + ad , where ac is continuous and ad purely

discontinuous. More precisely, the latter is given by

ad(t) = ∑
0<s≤t

∆a(s) ,
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where ∆a(s) = a(s)−a(s−) and the sum above only takes into account the instants

s of effective jumps, that is such that ∆a(s)> 0.

We next recall the Stieltjes change of variables formula, a particular case of Itō’s

formula. Let f : R→R be a C 1 function; then there is the identity

f ◦ a(t)− f ◦ a(0) =

∫ t

0
f ′ ◦ a(s)dac(s)+ ∑

0<s≤t

∆( f ◦ a)(s) . (1)

Note that when f is non-decreasing, (1) specifies the canonical decomposition of

the non-decreasing function f ◦ a.

We assume henceforth that a is purely discontinuous, i.e. ac ≡ 0; the change of

variables formula (1) then reduces to

f ◦ a(t)− f ◦ a(0) = ∑
0<s≤t

∆( f ◦ a)(s) , (2)

and it is tempting to think that this identity still holds when f has only finite varia-

tions. However, this is incorrect in full generality as we shall now see.

We further suppose that a is strictly increasing; in other words, the Stieltjes mea-

sure da is purely atomic and its support coincides with R+. The left-inverse a−1 of

a is given by

a−1(x) = inf{y > 0 : a(y)> x} , x ≥ 0;

one sometimes calls a−1 a Devil’s staircase due to the fact that it is a continuous,

non-decreasing function that remains constant on the neighborhood of Lebesgue al-

most every x > 0. In particular the Stieltjes measure da−1 is continuous and singular

with respect to Lebesgue’s measure. Then a−1 ◦ a(x) = x for all 0 ≤ x < a(∞), as a

consequence a−1 ◦ a has no jump at all and the formula (2) fails for f = a−1.

Nonetheless, this note is concerned with the validity of the change of variables

formula (2) in the situation where the deterministic function a above is replaced

by an increasing random process (At)t≥0. Our main result specifies when the latter

holds true in terms of a notion of left-accessibility of points. This enables us to ob-

serve that, for a large class of increasing processes A which includes subordinators

with no drift and infinite Lévy measure, the version of (2) with A replacing a holds

a.s. for any function f with finite variations. As an example of application, we de-

duce that functions with bounded variations belong to the domain of the extended

generator of such subordinators.

2 Increasing processes and left-accessibility of points

Throughout this note, an increasing process A = (At)t≥0 is a random process with

values in R+, such that with probability one, A0 = 0 and the sample path t 7→ At is

right-continuous and non-decreasing. For every x > 0, we write

L(x) = sup{t ≥ 0 : At < x}
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for the last passage time of A below the level x. Observe that L(x) coincides with

the left-limit at x of the right-continuous process A−1(y) = inf{t ≥ 0 : At > y}. In

particular, L is non-decreasing and left-continuous, AL(x) ≥ x and At < x for all

t < L(x).
We then say that x is left-accessible for a sample path of A(ω) if

AL(x)−(ω) = x ,

that is to say that the sample path takes values strictly less than x which can be

arbitrarily close to x. We write L (A) for the random set of left-accessible points for

A; note that L (A) is necessarily closed on the left, i.e. the limit of an increasing

sequence of left-accessible points is again left-accessible. We also define

L(A) = {x > 0 : P(x ∈ L (A))> 0} .

In words, L(A) is the set of x > 0 which are left-accessible for A with positive

probability.

Finally, let f : R+ →R+ be a right-continuous non-decreasing function. For ev-

ery Borel set B ⊆ R+, we write f (B) for the mass assigned to B by the Stieltjes

measure d f . In particular f (y)− f (x) = f ((x,y]) for 0 ≤ x ≤ y.

We now claim the main result of this note.

Theorem 1. (i) If f (L(A)) = 0, then we have

f (At )− f (0) = ∑
0<s≤t

( f (As)− f (As−))

for all t ≥ 0, a.s.

(ii) If f (L(A)) > 0, then for t > 0 sufficiently large, the strict inequality

f (At )− f (0)> ∑
0<s≤t

( f (As)− f (As−))

holds with positive probability.

Proof. We start by pointing out that Fubini-Tonelli Theorem yields the identity

E( f (L (A))) = E

(

∫

(0,∞)
d f (x)11L (A)(x)

)

=

∫

(0,∞)
d f (x)P(x ∈ L (A)) .

Thus f (L(A)) = 0 if and only if f (L (A)) = 0 a.s.

(i) We assume that f (L(A)) = 0 and denote by Λ the event that f (L (A)) = 0,

so P(Λ) = 1. We pick ω ∈ Λ and observe that for every x > 0 which is not left-

accessible for A(ω), there is the identity

11[x,∞)(At(ω)) = ∑
0<s≤t

(

11[x,∞)(As(ω))− 11[x,∞)(As−(ω))
)

.
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Indeed the left-hand side equals 1 if t ≥ L(x) and 0 otherwise. Note that since A(ω)
is non-decreasing, the summand in the right-hand side is 0 for all s > 0, except for

s = L(x) where it equals 1 since x is not left-accessible. We also point out that the

sum in the right-hand side de facto only involves instants s > 0 at which A(ω) is

discontinuous, and since the set of discontinuities of A(ω) is at most countable, the

counting measure on that set is sigma-finite.

We now integrate the preceding equality for all x > 0 which are not left-

accessible for A(ω), with respect to the Stieltjes measure d f . Recall that d f gives

no mass to the set of left-accessible points; we get that the left-hand side equals

f (At (ω))− f (0). We apply the Fubini-Tonelli theorem on the right-hand side, which

is legitimate by the observation which was made above. We obtain

∑
0<s≤t

∫

(0,∞)

(

11[x,∞)(As(ω))− 11[x,∞)(As−(ω))
)

d f (x)

= ∑
0<s≤t

( f (As(ω))− f (As−(ω))) ,

which proves our claim.

(ii) We now assume that f (L(A))> 0 and denote by Λ c the event that f (L (A))>
0, so P(Λ c) > 0. We pick ω ∈ Λ c and observe that for every x > 0 which is left-

accessible for A(ω) and t ≥ L(x), we have

11[x,∞)(At(ω)) = 1 > 0 = ∑
0<s≤t

(

11[x,∞)(As(ω))− 11[x,∞)(As−(ω))
)

.

It then follows from arguments based on the Fubini-Tonelli theorem similar to those

in (i) that

f (At(ω))− f (0)> ∑
0<s≤t

( f (As(ω))− f (As−(ω)))

whenever t is sufficiently large. �

We stress that for a large class of increasing processes A, the set L(A) is empty

and therefore the change of variables formula holds a.s. for any function with finite

variations, that is which can be expressed as the difference of two non-decreasing

right-continuous functions. Indeed, observe that if x ∈ L(A), then the probability

that there exists s > 0 with As− = x must be positive. Thus L(A) = ∅ whenever

every single point x > 0 is polar for A, that is if

P(∃s > 0 : As = x or As− = x) = 0 .

According to an important result due to Kesten [4] and Bretagnolle [3] (see also

Andrew [1] for a more elementary argument), polarity of single points holds for any

subordinator with no drift and infinite Lévy measure. Further examples can then be

constructed from driftless subordinators, e.g. by strictly increasing mapping, change

of time or locally equivalent change of probability measures. For instance, the well-

know correspondence due to Lamperti [6] connecting positive self-similar Markov
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processes and Lévy processes, entails that single points are polar for any strictly

increasing self-similar Markov process which is further pure-jump.

3 Some applications

In this section, we present some direct consequences of Theorem 1.

First recall the following fact that has been pointed out by Kingman [5] in the

setting of subordinators. A non-decreasing function a : R+ → R+ is purely discon-

tinuous if and only if its closed range,

R(a) = {x ≥ 0 : x = a(s) or x = a(s−) for some s ≥ 0} ,

has zero Lebesgue’s measure, i.e. |R(a)| = 0. Indeed, for every t ≥ 0, the com-

plementary set [a(0),a(t)]\R(a) is open and can be expressed as the union of the

disjoint open intervals (a(s−),a(s)) for 0 < s ≤ t (of course, such an interval is non-

empty if and only if s is a discontinuity point of a, which forms a set that is at most

countable). When |R(a)| = 0, this open set has Lebesgue’s measure a(t)− a(0),
which yields the identity

a(t)− a(0) = ∑
0<s≤t

(a(s)− a(s−)) .

Conversely, when a is purely discontinuous, the identity above holds for all t ≥ 0

and this entails that |R(a)|= 0.

Combining with Theorem 1, we immediately get the following.

Corollary 1. Let f : R+→ R+ be a right-continuous non-decreasing function.

(i) If f (L(A)) = 0, then |R( f (A))| = 0 a.s.

(ii) Conversely, if f (L(A)) > 0 and we assume further that f is continuous, then

P(|R( f (A))|> 0)> 0.

Remark. The continuity of f is required in the second part of the statement to ensure

that the only jump times of the process f (A) are those of A.

We next turn our attention to stochastic calculus. Consider some filtered prob-

ability space (Ω ,F ,(Ft ),P) which fulfills the usual conditions. Let (Xt)t≥0 be a

càdlàg semi-martingale and (At)t≥0 a càdlàg increasing (adapted) process which is

purely discontinuous. Consider further a function h : R+ → R of class C 1. Then it

is well-known that h(A) is a process with finite variations, and the following inte-

gration by parts formula holds:

Xth(At)−X0h(A0)

=

∫ t

0
h(As−)dXs+ ∑

0<s≤t

Xs− (h(As)− h(As−))+ ∑
0<s≤t

∆Xs (h(As)− h(As−))

=

∫ t

0
h(As−)dXs+ ∑

0<s≤t

Xs (h(As)− h(As−)) . (3)
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We now consider a càdlàg function k : R+ → R with finite variations, that is

that k can be expressed as the difference of two right-continuous non-decreasing

functions. For every Borel set B ⊂ R+, we write |k|(B) for the mass given to B by

the total-variation measure |dk|. If we assume that |k|(L(A)) = 0, then it follows

from Theorem 1 that k(A) is a purely discontinuous process with finite variations,

and the classical integration by parts formula yields

Xtk(At)−X0k(0) =

∫ t

0
k(As−)dXs + ∑

0<s≤t

Xs (k(As)− k(As−)) .

In particular, when L(A) =∅, and a fortiori when single points are polar for A, the

integration by parts formula (3) holds when one merely assumes that the function h

has finite variations.

We now conclude this note with an application to the infinitesimal generator of

a subordinator. We consider a subordinator (St)t≥0 with no drift and infinite Lévy

measure. That is, S is a random process with values in R+, with independent and sta-

tionary increments, and we assume that its sample path is right-continuous, strictly

increasing, and has no continuous component. According to the Lévy-Itō decompo-

sition, the Stieltjes measure dS is expressed in the form

dS = ∑
t≥0

∆Stδt

where ∆St = St −St− denotes the possible jump at time t. More precisely, the jump

process ∆S is a Poisson point process whose intensity is known as the Lévy measure

of S. We refer to [2] for background.

Recall that S is a Feller process on R+; we write G : D → C0 for its infinitesimal

generator, where D is its domain and C0 the space of continuous functions on R+

with limit 0 at +∞. It is well-known that if C 1
0 denotes the subspace of functions

g ∈ C0 which are continuously differentiable with g′ ∈ C0, then C 1
0 ⊂ D and there

is the identity

Gg(x) =

∫

(0,∞)
(g(x+ y)− g(x))Π(dy) , x ≥ 0 ,

where Π denotes the Lévy measure of S. Recall also that for every g ∈D and x ≥ 0,

the process

g(x+ St)−
∫ t

0
Gg(x+ Ss)ds

is a martingale, and conversely, this martingale property together with the assump-

tion that both g and Gg are in C0, characterize the infinitesimal generator. Further, a

measurable function h : R+ →R belongs to the domain De of the extended genera-

tor if there exists a measurable function b : R+ → R such that for every x ≥ 0 and

t ≥ 0
∫ t

0
|b(x+ Ss)|ds < ∞ a.s.
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and

h(x+ St)−

∫ t

0
b(x+ Ss)ds

is a martingale. By slightly abusing notation (because b is not unique), we then write

Geh = b.

Corollary 2. Let f : R+ →R be a non-decreasing right-continuous function, which

we further assume to be bounded. Then f ∈ De and

Ge f (x) =
∫

(0,∞)
( f (x+ y)− f (x))Π(dy) , x ≥ 0 ,

where Π denotes the Lévy measure of S.

Note that Ge f (x) is well-defined in [0,∞] (and thus possibly infinite) since f is non-

decreasing.

Proof. Recall that single points are polar for S according to the result of Kesten

[4], and thus Theorem 1(i) applies to any non-decreasing function f . Replacing the

function f there by the function f (x+ ·), we get

f (x+ St)− f (x) = ∑
0<s≤t

( f (x+ Ss)− f (x+ Ss−))

= ∑
0<s≤t

( f (x+ Ss−+∆Ss)− f (x+ Ss−)) .

Recall that the jump process ∆S of S is a Poisson point process with intensity Π . It

follows that the predictable compensator of the increasing process f (x+ St)− f (x)
is

∫ t

0
ds

∫

(0,∞)
Π(dy)( f (x+ Ss+ y)− f (x+ Ss)) =

∫ t

0
Ge f (x+ Ss)ds.

In other words,

f (x+ St)− f (x)−

∫ t

0
Ge f (x+ Ss)ds

is a martingale. �

Of course, by linearity, we deduce that functions k : R+ →R with bounded vari-

ations, i.e. which can be expressed as the difference of two bounded non-decreasing

functions, are also in the domain of the extended generator, and then

Gek(x) =

∫

(0,∞)
(k(x+ y)− k(x))Π(dy) ,

where we agree for instance that Gek(x) = 0 when the integral above is not well-

defined.
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