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Abstract and Key words 
 

This work covers the symbolic description of vascular trees derived from multimodal three 

dimensional (3D) images. It aims to provide an overall method to analyse such structures, 

especially in the cerebral vascular tree. As such, it has a clinical application in neurosurgery, 

particularly in the planning of the surgeon’s gesture. 

We have developed a 3D skeletonization method which is adapted to tubular forms and is 

advisable for symbolic description. The method is based on the construction of the Dijkstra 

minimum cost spanning tree. 

The algorithms were implemented using the laboratory software platform (ArtiMed) and 

tested on both simulated and clinical data. A specific experimental evaluation plan was drawn 

up to test the skeletonization and symbolic description methods. This involved testing the 

methods’ accuracy by calculating the positioning error and its robustness by comparing the 

results on a series of 18 rotations of the initial volume.   

 

Key words: Medical imaging, vascular network, angiography, 3D skeletonization, 

symbolic description 

 

 

1. Introduction 

 

Symbolic description enables a summary to be made of an object observed via imaging, by 

describing its basic structures (e.g., connected components, branches of vascular trees, pixels, 

etc.) and the relations existing between its structures. In contrast to segmentation (which only 

allows a pixel to be classified as “in” or “out” of the object), symbolic description provides an 

environment in which the object is described according to a hierarchy enabling the 

exploration of its characteristics ([[[pixel  branch]  connected component]  vascular 

network]  , etc.). 

 

The human body contains a wide variety of elements which have a tree-like structure with a 

descending hierarchical organization (mother branches splitting to children branches).The 

relevance of studying such structures using symbolic description approaches has already been 

shown for different areas. 

 

In 1993, Gerig et al, [1] proposed an extraction method for 3D structures, in order to represent 

them using a symbolic approach, where the topological and geometrical information is 

represented in a tree-like form.  
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Later, in 2001, Bullit et al [2] highlighted the importance of knowing the relationships 

between the different branches of the cerebrovascular tree. Their study centered on the 

neurosurgical context of lower neck tumor resection, where the use of a clamp interrupted 

blood flow. It showed that understanding the relationships between the different vessels 

enabled cerebral perfusion to be anticipated and planned for during the operation. 

 

More recently, Megalooikonomou et al [3] have presented a method for characterizing, 

classifying, and analyzing the similarities of tree-like structures in medical images. Using 

clinical data obtained from X-ray galactograms, they studied the branching of the lactiferous 

ducts, combining symbolic representation by graph with “text-mining” techniques. They 

suggest expanding the potential field of application to the study of links between the form of 

tree-like structure and the corresponding pathology. 

 

In general, symbolic description has many applications. In the introduction to their article, 

Palagyi et al, [4] highlight its use in, for example:  

- virtual navigation (e.g., bronchoscopy or endovascular procedures), where a 

descriptive summary of the data allows the treatment linked to the simulation to be 

optimized 

- exploration of complex structures (e.g., cerebral or hepatic vascular networks), which 

can be simplified as a result of navigation on a graph 

- quantitative analysis of tubular forms (e.g., measurement of light or wall thickness) 

- etc. (this list is not exhaustive) 

 

The implementation of symbolic description usually follows an identical plan, in which the 

description is obtained after the extraction of data (binarization) and a skeletonization [4;5]. 

However, no matter the location nor the application, the root of the problem remains in the 

skeletonization. Much has been written about this subject, including reviews covering 

methodology [6-14], and its applications in medical imaging [5;15-23]. 

 

In this article, we concentrate especially on the cerebral vascular tree. For this location, we 

studied the minimum cost spanning tree method based on Dijkstra’s algorithm [24]. This 

algorithm is especially interesting for our application as the search for the centerline uses the 

notion of the graph. 

 

The first part of this article describes the modalities of vascular imaging, segmentation and 3D 

reconstruction used in our application. We also describe how we implemented the 

skeletonization algorithm.   

 

In the second part, we present a new evaluation plan for skeletonization, in which we 

introduce the use of digital phantoms, as well as tests on clinical data. Finally, we present and 

analyze the results. 

 

2. Material and methods [25] 

 

As Palagyi et al have noted [4], an overall solution for skeletonization adapted to all types of 

locations or forms does not seem to exist. By concentrating on their pulmonary airway tree 

application, these authors resolved certain difficulties [4], but problems remain for other 

applications. These problems are mainly linked to the properties defining the skeleton [26]: 

- Thickness: the skeleton must have a unitary thickness (one voxel) 

- Position: the skeleton is ideally positioned at the center of the forms  
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- Homotopy: the median axis has exactly the same number of connected components, 

and each component has the same number of holes as the initial form 

- Stability: when the skeleton calculation is done by thinning, all or part of the 

skeleton should not be able to be eroded again once it has stabilized.  

 

Two other properties can also be taken into consideration: 

- Invariance by translation and rotation 

- Reversibility of the skeleton: the form should be able to be reconstructed from the 

skeleton and the maximum ball rays. 

 

For the vascular application that we are interested in here, we therefore chose to test a method 

that corresponds in part to the above properties. This method is mainly used for virtual 

coloscopy, as it is particularly well adapted to tubular forms [24]. It is based on the 

construction of the Dijkstra’s minimum cost spanning tree. 

 

Our implementation followed the plan generally accepted in the literature [5] for 

skeletonization and tree extraction, represented as a graph (Figure 1). 

- Segmentation of data 

- Choice of the root 

- Skeletonization of the segmented data 

- Identification of the skeleton’s branches and nodes  

- Generation of the tree-like structure as a graph 

- Tree partitioning 

- Quantitative analysis 

 
Figure 1: Summary of the different stages of symbolic description. 
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2.1. Segmentation  

 

The segmentation solution used to extract the vascularization from the images has been 

described in [27-29]. This algorithm is particularly useful in our case as it allows the 

independent segmentation of the magnetic resonance angiography (MRA) images with or 

without injection of contrast agent. The method is based on the analysis of maximum intensity 

projection (MIP) images. For each voxel, a degree of membership is calculated by integrating 

the gray level of its projection on the MIP and the contrast to noise ratio (CNR) of the original 

images (Eq. 1 - Figure 2). 

 

 

Figure 2: Description of the algorithm based on maximum intensity projection. GlV(x,y,z) is the gray level 

at the  (x,y) (x,y) position of the slice Z, and GlMIP(x,y) is the gray level of the projection of voxel  (x,y,z)  on 

the maximum intensity projection. The two values are combined to determine if the voxel belongs to the 

vascular tree (Eq. 1). 

 

V(x,y,z) = GlV(x,y,z) / GlMIP(x,y) . WZ Eq. 1 

where V (x,y,z) is the degree of membership of the voxel at the position (x,y,z), GlV is the 

voxel intensity, GlMIP(x,y) is the intensity of the pixel corresponding to the projection of the 

voxel on the MIP, WZ is a weighting factor (Eq. 2) allowing the signal to noise relationship of 

the slice Z to be taken into account. 

 

Wz is determined from equations 2 and 3. 
 

WZ = 1 - exp(-  . CNRZ) Eq. 2 

where CNRZ is the CNR measured on slice Z, α is fixed at Log(100)/CNRMax in order to have 

Wz = 0.99 for the zones of maximum CNR thus giving them the most reliability. 

 

The CNR was calculated using the definition given in [30]: 
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where the CNR of slice Z is estimated from the maximum and minimum intensities of the 

slice (cf. Glmax and Glmin), (Sx, Sy) represent the size of the slice, GlZ(x,y) is the gray level at 

position (x,y) of slice Z and GlZF(x,y) is the gray level at the same position after filtering using 

an averaging filter unit (size 3x3, coefficients=1; normalization factor 1/9). Note that, 

following the principle of MRA, Glmax and Glmin are situated in the vascular structure and in 

the background of the image, respectively.  

 

Once the degree was calculated for each voxel, a binary volume (Figure 3b) was obtained, by 

retaining the voxels with a degree superior to 0.5. The contour of the vascular tree that was 

obtained on each slice was then used to refine the form (Figure 3c), using the algorithm 

described in [27;30]. 

 

Finally, note that the use of the MIP limits the use of the method to images in which the 

vessels are seen in hypersignal, i.e., TOF MRI or Gadolinium contrasted sequence, Computed 

Tomography Angiography (CTA) or 3D Rotational Angiography (3DRA). 

  

(a) (b) 

 
(c) 

Figure 3: Example of segmentation using the algorithm described in [27;30], on MRA 

images with injection of Gd, from a patient presenting with an intracranial aneurysm, (a) 

MIP image obtained from initial study, (b) binary volume obtained after segmentation, 

(c) volume-rendered view of the aneurysm after the algorithm described by Vial et al [30] 

had been applied. 
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After segmentation, we analyzed the connected components in order to eliminate residual 

noise. The components with a low number of related voxels were therefore eliminated from 

the vascular structure before skeletonization. 

 

2.2. Identification of the root  

 

Our study was carried out on the cerebral vascular network, but it can be extended to any 

tubular structure. The automatic detection of the root, or the Source point, was carried out by 

distance measurement. The root will obviously be at one end of the tree structure. The 

automatic algorithm chooses an arbitrary point (centered on the volume) from which the 

distance to all the form’s voxels is calculated. The point furthest away will be the Source 

point (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Determination of the Source point  

 

 

2.3. Skeletonization using Dijkstra’s tree  

 

Skeletonization is the standard method used to determine a form’s centerlines. In continuous 

or discrete fields, the choice of methods is fairly varied. However, one of the problems that is 

frequently encountered is the presence of surfaces or small barbules (especially of clusters of 

voxels at the level of junctions) in a skeleton that we would prefer to be thin [31]. This 

constraint can be solved by using Dijkstra’s minimum cost spanning tree to extract the thin 

branches. 

 

This solution for skeletonization, introduced by Wan et al [24] for application in virtual 

coloscopy, has also been used by Hassan et al in the setting of vascular analysis of aneurysms 

[32;33]. However, in these articles, the authors used this skeletonization stage with the aim of 

extracting only one part of the tree: the central colonic axis in [24] or the branches affected by 

an aneurysm with the intent of carrying out “Computed Fluid Dynamic simulations” [32;33].  

Initial point 

centered on the 

form 

Furthest distance 

Source point 
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In the first case, the technique used only allowed the extraction of the principal centerline. In 

order to extract the first generation branches, the authors therefore proposed an extension to 

the algorithm from this centerline [24].  

 

In our context, the extension proposed in [24] proved to be inadequate, and we therefore 

propose a new extension in order to skeletonize the tree down to the most distant vessels. In 

this generalization, it is advisable to reiterate the process for each first generation branch (see 

Figure 5) associated with the centerline.  

 

 
Figure 5: Representation of intergenerational relationships 

 

This new extension can be broken down into 3 stages. Firstly, the Dijkstra’s minimum cost 

spanning tree was constructed (as described below, 2.3.1); secondly, the principal branch was 

extracted; finally, the first generation child branches are extracted, followed by the later 

generations. 

 

2.3.1. Construction of the minimum cost spanning tree 

 

In graph theory, Dijkstra’s algorithm is used to resolve the shortest path problem. It applies to 

a related graph in which the weight linked to the edge is positive or nil.  

 

Firstly, the volume had to be converted into a weighted 3D graph. The centre of each voxel 

therefore represented a node in the graph (Figure 6) and the relations of 26-neighborhood 

between the voxels are symbolised by the ridges of the graph. 

 

In our case, the weight attributed to each apex is inverse to the distance with respect to the 

boundary (1/Distance from Boundary [DFB]). The further the voxel under consideration is 

from the boundary, the higher the probability is that it will be on the centerline, and 1/DFB 

will therefore be smaller. To calculate the DFB, we calculated the smallest Euclidian distance 

between each voxel and the boundary points. 
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Figure 6: 2D representation of a weighted 3D directed graph, where A and B are 2 voxel-nodes with an 

attributed weight of 1/DFB. The two-directional arrow represents the branch joining nodes A and B. 

 

 

Next, a sub-graph was progressively built. The different apices were classed in ascending 

order according to their minimum distance to the Source point (which was chosen as the 

starting apex). This distance corresponds to the sum of the weights of the borrowed ridges. 

 

This step therefore allowed the neighborhood links to be plotted between each voxel, and the 

attribution of a weight to each link corresponding to its distance from its neighbors. This is 

illustrated for a 2D form in Figure 7. 

 

To plot the shortest pathway to the Source point, we read the tree inversely, passing from 

closest neighbor to closest neighbor. We then allocated each voxel in the pathway a link 

towards its closest neighbor (a pathlink). 

 
Figure 7: The initial volume (left), the corresponding Dijkstra tree (centre), and the two images 

superimposed (right). An example of a 2D case. 

 

To describe the algorithm, we define the following variables: 

- Node S: source node 

- Node C: node being processed at a given iteration 

- N/Ni represents a neighbor of Node C  

- EndPointList/JunctionList: lists storing the endpoints and the junctions of the 

detected branches, respectively. 

 

Every node has several properties: 

- pathlink: indicates the link with the neighbor (see Figure 6: pathlink(A)=B) 

- Distance from source (DFS): is the distance from the node to the source node 

(taking Figure 6 as an example, if A is the source node, DFS(A)=0, DFS(B)=1, 

DFS(C)=2, etc) 

- the state of the node indicates if it has already been processed during an iteration 

(Mark (C)  = true if processed, otherwise false). 

A B 

C 
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From these definitions and using a heap to process the nodes, the algorithm is described 

Figure 8: 

 
Figure 8: Algorithm for the calculation of Dijkstra’s tree, where the principal stages are to 

a) mark point S (mark(S)=true), define it as the current node (C=S), set its pathlink at NULL, and its 

distance in relation to the source (DFS, Distance From Source) at  0; 

b) stack  (push) the neighbors Ni of node C if mark (Ni)=false, and initialize pathlink(Ni)= C, to calculate 

their distance to node S: DFS(Ni)=DFS(C) + dist(Ni,C) where dist is the Euclidian distance; 

c) Pull from the head of the heap in order to process a new node as of stage b)   

 

2.3.2. Extraction of the centerline and its branches using Dijkstra’s tree 

 

The centerline extraction algorithm was based on the movement through the tree from the 

node at maximum DFS up to the Source point. By using each apex’s pathlink property and 

considering the tree as an oriented graph (in which reversing is impossible), the centerline was 

defined as the longest branch. The identification of the apex of the maximum DFS is enough 

to enable a gradual retracing up to the Source apex (chosen in section 2.2), via the pathlinks. 

 

The extraction of first generation branches was based on the following stages: 

- sweeping through the centerline by retracing from E to S (see Figure 9) along the 

pathlinks 

- for each voxel C of the centerline, looking at its neighbors (apart from those not 

belonging to the centerline) and finding the Ni’s which have their pathlink at C 

(e.g., pathlink(Ni)=C) 

- for every Ni, searching for all its linked voxels V (either directly pathlink(V)=Ni) 

or indirectly pathlink(pathlink(…pathlink(V)))=Ni). 

- finding the voxel Ti which had the largest DFS of all the voxels V 
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- storing Ti as the tip of the branch (i.e., Ti  EndPointList) if DFS(Ti) was above a 

fixed threshold L for the length of the branch (see Discussion). The length of the 

branch was calculated by DFS(Ti)-DFS(C).  

- storing C as being a junction (i.e., C  JunctionList) 

 

Figure 9 shows an example of searching for a branch, in 2D.  Figure 10 summarizes the 

method. 

 
Figure 9: Extraction of the centerline and its branches. S and E are the source voxel and the end voxel, 

respectively; C is the current voxel, and Ti is the end voxel of a secondary branch Bi.  

 

 
Figure 10: Extraction of branches using Dijkstra’s tree.  Branch extraction makes use of Branch detection 

to detect the branches indirectly connected to the current voxel. 

 

A unique characteristic of our algorithm is the storing of the tips of the branches, as 

appropriate, in the EndPointList or JunctionList. This enables the simultaneous interpretation 

of the information gathered, both for the preliminary stages of symbolic description and for 

skeletonization. 
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After this stage, we extracted the first generation child branches, i.e., the child branches 

directly linked to the centerline. For the extraction of more distal branches, we chose to 

implement the algorithm in a recursive manner; this enabled the detection of 2
nd

, 3
rd

, and later 

generation branches, for every extracted branch. The implementation of this new overall 

method is illustrated in Figure 11.  

 

 
Figure 11: Recursive skeletonization 

 

The extraction of the 2
nd

 generation branches and onwards was based on the same principle as 

for the 1st generation. The minor modifications required in the algorithm were: 

- sweeping the child branch from Ti to C while retracing from E towards S along the 

pathlinks 

- storing Ti as the branch tip (i.e. Ti  EndPointList) if DFS(Ti) was above a fixed 

threshold L of the length of the branch (see Discussion). The length of the branch 

was calculated here as the number of voxels belonging to the branch. 

 

2.4 Identification of particular points 

 

After the skeletonization of the 3D volume, the identification of the different branches was 

carried out in the classic manner via the analysis and classification of the voxels belonging to 

the skeleton.  

 

On a skeleton, we can identify three types of points: the endpoints (which have only one 26-

neighbor), the junctions (which have exactly two 26-neighbors) and the skeleton points 

(which have more than two 26-neighbors) (see Figure 12). 
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Figure 12: Definition of the branches or vascular segments. A branch is defined as the group of voxels 

situated between an endpoint and a junction, or a junction and another junction; an endpoint is defined 

as a voxel with only one neighbor; a junction is defined by the presence of 2 neighbors. 

 

The detection of end points and junctions enables every branch or vascular segment to be 

defined. There are 3 cases if one compares the skeleton to an oriented graph: 

- a branch beginning with an endpoint and ending with a junction: mother branch E-

J 

- a branch beginning with a junction and ending with a junction: intermediate child 

branch J-J 

- a branch beginning with a junction and ending with an endpoint: end child branch 

J-E. 

 

From the analysis of Dijkstra’s tree as described above, we already had the skeleton’s 

characteristic voxels in the EndPointList and the JunctionList. This specificity of the 

algorithm results in an appreciable reduction in the manipulation of the voxel matrix, and thus 

reduces calculation time.   

 

However, as our algorithm functions in a recursive way, we extract only the E-J branches. 

The detection of child branches is carried out as one proceeds, and it is only possible to have a 

temporary identification of the branches as principal or secondary branches, as such. Each 

branch then has to be divided into mother, intermediate branch or end branch, according to the 

cases described above. 

 

2.5 Partitioning of the vascular tree and associated measures 

 

From the skeleton and the branches that were previously extracted, we now wanted to 

partition the segmented volume voxels into branches, i.e., to link every voxel to a branch in 
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the skeleton. The method took the segmented volume and the data gathered from the 

skeletonization (i.e., the skeleton and particular points) as input. As output, the result was a 

volume for which every voxel was labelled, depending on the branch it belonged to. 

 

Partitioning was carried out automatically by calculating the distances between every voxel in 

the volume and the voxels in the skeleton. For a given voxel, we searched for the nearest 

skeletal voxel (which had already been labelled during the skeletonization). The unlabeled 

voxel was attributed the same label as the skeletal voxel.   

 

Figure 13 shows the result obtained on an artificial volume and a vascular network: 

 

   
Figure 13: Partitioning of an artificial volume and a vascular network taken from clinical data 

 

 

Using the formula for the volume of a cylinder, this stage also allowed us to calculate the 

theoretical radius of each branch. Once the voxels were labeled, we knew the list of those 

belonging to each branch. Assuming that the vessels could be modeled as cylinders, all that 

was needed was to calculate the volume corresponding to the group of these voxels and the 

number of voxels in that branch of the skeleton. These values correspond to the volume 

(number of voxels  size of voxel) and the length (number of voxels in the branch) 

respectively of the theoretical cylinder representing the vessel.  Therefore:  
 

longueur

volume
rayon


  

 

2.6 Symbolic description 

 

At this stage of the procedure, we could describe the vascular tree as an oriented graph, as we 

knew the origin and end of the branches, the associated skeletal voxels, the length of the 

branches, etc. (Figure 14). 
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Figure 14: Representation of the relationship 

 

A structural representation of the tree is easily obtained, where the object “branch” 

encompasses various pieces of information (see Figure 15):  

- branch hierarchy (index in the list of branches) 

- the list of voxels associated with the branch 

- its particular voxels (end voxels and junctions) 

- extended relationships (ascending and descending branches)  

- its radius  

- its length 

 

 
Figure 15: Symbolic description  
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3. Experimental methods 

 

Few methods exist for the evaluation of skeletonization algorithms. However, Palagyi et al [4] 

have proposed an interesting plan for the quantitative evaluation of skeletonization. Using a 

physical phantom, a digital phantom, and in-vivo acquisition, their experimental plan enables 

the number of branches detected, the positioning error, and the diameters, lengths, and 

volumes of the detected branches to be verified. We adopted approximately the same 

evaluation strategy in our study. 

 

3.1. Validation criteria 

  3.1.1. Accuracy 

 

To verify the accuracy of our solution for skeletonization, we compared the skeleton endowed 

with the characteristics extracted using our method with a theoretical skeleton. This involved 

examining the skeleton’s positioning error and the precision of the symbolic description 

information.  

 

  3.1.2. Robustness 

 

The second evaluation criterion was the robustness of the symbolic description, i.e., the extent 

to which the results remain stable after any disruption. The conditions under which images are 

acquired cannot be exactly the same (especially concerning the orientation of the patient’s 

head). However, in images from the same patient, the symbolic description should give the 

same result. We therefore decided to observe how the method dealt with a series of rotations.  

 

3.2. Experimental plan 

3.2.1. Accuracy 

 

In the absence of ground truth concerning clinical data, we tested the accuracy of our method 

on simulated data, using a digital phantom constructed using Matlab© (The MathWorks™, 

http://www.mathworks.fr). This allowed us to have the geometric information concerning the 

branches, and as a result, we had the ground truth associated with the volume created (the 

construction spline of the volume and related information). We then estimated the positioning 

error, calculated by a hyperbolic Hausdorff distance [34] between the reference skeleton and 

the obtained skeleton. 

 

To this evaluation, we added the calculation of the Dice Similarity Coefficient (DSC) between 

the original volume and the reconstructed volume, which allowed us to assess the skeleton’s 

reversibility properties.  

 

The reconstructed volume resulted from information from the skeleton and the symbolic 

description. For each point in the skeleton, we thus formed a ball of radius which 

corresponded to the Euclidian distance between this point and the edge of the nearest volume 

(DFB). 

 

 

 

 

 

http://www.mathworks.fr/
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3.2.2. Robustness 

 

Following Palagyi et al’s approach [4], we rotated each volume studied by 5° from -15° to 

15°. This enabled us to study the following characteristics of the branches by opposing the 

values obtained with or without rotation: 

- length 

- volume 

- surface 

- radius 

 

For the statistical analysis, we used the Bland-Altman approach [35;36] for evaluating the 

agreement between two methods. This method is used to compare two methods in the absence 

of a gold standard. The aim is to characterize the coherence of the results obtained by the new 

method compared with those using the other method. We evaluated the reproducibility by 

comparing the results obtained from the original volume with those of the 18 rotations.  

 

 3.2. Data presentation 

  3.2.1. Simulated data 

 

We created an interface using Matlab (Figure 16 (a)) which allowed us to generate digital 

models from a reference skeleton (the spline). Secondary branches were connected to a 

principal branch, forming the skeleton of a tree-like structure. A volume was then constructed 

from the skeleton and the given branch diameters.  

 

  
(a) (b) 

Figure 16: (a) The digital model’s creation interface enabling the evaluation of the skeletonization 

algorithm and the symbolic description (b) Resulting digital model 

 

The digital model built up in this way, Figure 16 (b), allowed us to precisely define the 

characteristics of the skeleton under research: the point coordinates, the radii, the length of 

branches, relationships, etc..  

 

  3.2.2. Clinical data 

 

The clinical data were images taken from different MRA and 3DRA sequences. The sizes 

were 345x259x142 (MRI, Time Of Flight), 272x188x270 (MRI, Gadolinium Contrast 

Enhancement), 256x256x150 (MRI, 3D Phase Contrast) and 256x256x256 (3D X ray 

Rotational Angiography). 
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4. Results 

 

The algorithms were implemented using a software platform owned by ArtiMed laboratory, 

and developed in Borland C++. The manipulations were carried out on a personal computer 

(processor: AMD 2.4 GHz- RAM: 2Go). 

 

 Initial volume Skeleton Reconstructed volume  

(a) 

   

(b) 

   

(c) 

  
 

(d) 

 
  

(e) 

   

(f) 

   

Figure 17: Qualitative results (a-b) Digital phantoms, (c) to (f) Clinical cases 
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Figure 17 shows the results on digital phantoms (a-b) and on four clinical cases (c, d, e and f). 

The initial volume is shown, along with the skeleton extracted using our method, and the 

volume reconstructed from the skeleton. 

 

4.1. Accuracy 

 

As previously mentioned, we indicated the hyperbolic Hausdorff distance between the 

skeleton obtained using our approach and the construction spline. In addition, for the 18 

rotations of the Matlab volume, we determined the mean DSC between the reconstructed 

volume and the original volume.  

Figure 18 shows the visual and quantitative results obtained on two digital phantoms using 

our algorithm for model generation. The images represent the superimposition of the initial 

skeleton on the calculated skeleton, and the initial volume superimposed on the volume 

obtained after post-skeletonization reconstruction. The numbers given are the mean values of 

the hyperbolic Hausdorff distance and the DSC from the 19 volumes. 

 
 Skeleton/Spline Reconstructed volume/Original volume 

(a) 

  

(b) 15.36 76% 

(c) 

  
(d) 16.22 72% 

Figure 18: Results on digital phantoms (a-c) Superimposition (reference in green, results in red) 

(b-d) Numerical results: hyperbolic Hausdorff distance and Dice Similarity Coefficient 

 

4.2. Robustness 

 

For each branch extracted by symbolic description, we compared a given characteristic of the 

initial volume (length, radius or number of voxels in the branch) with the same characteristic 

in the reconstructed volume after rotation and extraction. For each rotation and each branch, 

we therefore obtained the percentage error of the characteristic studied, denoted by err_vali,j, 

in the following way:  
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For each characteristic, we then calculated the mean error on all rotations on each branch, 

using: 

 

Finally, the mean percentage error for each characteristic was described by:  

 

Table 1 shows the mean percentage errors ± SD for the reproducibility of the characteristics 

studied between the original volume and the 18 volumes obtained by rotation.   

Table 1 : Reproducibility of results: quantitative data 

 

The reproducibility indices for the radius and the number of voxels on the simulated data are 

shown in Figure 19; the corresponding indices for two clinical cases are shown in Figure 20. 

The Bland-Altman plots indicate the 95% Confidence Intervals.  

 

For each case, the mean difference between the estimates obtained from the 2 methods is 

represented, according to the mean of the two estimates, m1 and m2. When there is no 

additional information, this mean represents the best estimate of the true value of the 

parameter. In our case, the m1 estimate was replaced by the values obtained for the initial 

volume, and the m2 estimate took the values resulting from each rotation alternately. 

 

On this type of plot, the mean of the differences corresponds to the mean bias between the 

two methods. If one hypothesizes that the differences follow a normal distribution, 95% will 

be between the mean value ± 1.96 x SD of the differences. According to this interval’s range, 

one can determine if the two methods are interchangeable. For example, a maximum tolerable 

value of difference can be fixed, so that the methods can be used to replace one another.  

We then studied the reproducibility of the characteristics (branch length, number of voxels per 

branch and the radius of branches for the 19 volumes [initial volume + 18 rotations]) 

according to the rotations. 

For i=1, …, number of branches 

For  j=1, …, number of rotations 

100*_
,

init

rotInit

ji
val

valval
valerr

j


  

end 

end 

Eq. 4 

For i=1, …, number of branches 

)_(__ ,
rotations ofnumber  ,...,1

ji
j

i valerrmeanvalerrmy


  

end 

Eq. 5 

)__(_%_ i
i

valerrmmeanerrormean   

)__(_ i
i

valerrmerrorsd   
Eq. 6 

% error 
Simulated  

volume (a)  

Simulated  

volume (b)  

Clinical case  

(c) 

Clinical case  

(d) 

number of voxels 8.7±4.07 8.9±4.6 9.4±4.4 14.9±10.7 

length 3.8±3 7.2±3.4 5.4±2.2 12.5±7.6 

radius 13±8 4.9±2.3 11.1±10.7 12.9±8 
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Figure 19: Reproducibility of results on simulated volumes: Bland-Altman plot 
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Figure 20: Reproducibility of results for clinical data: Bland-Altman plot 
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5. Discussion 

5.1. Analysis of the method 

 

The method that we have proposed for the extraction of centerlines and the descriptive analysis of 

tubular objects has several interesting properties. Firstly, the basic tool for the calculation of the 

skeleton is the construction of Dijkstra’s tree.  This enables a thin result to be obtained (1 voxel 

thick) without the need of a pruning stage, as a length limit is applied during the branch detection 

phase. Secondly, the use of this approach to skeletonization allows a preliminary description to be 

carried out “during the extraction”. The iterative detection of the skeletal branches enables a first 

analysis of the tree structure. 

  

The accuracy of our method was evaluated only on simulated data, for which we knew the ground 

truth of the construction. We could see the good superimposition obtained between the skeleton 

and the construction spline, with a hyperbolic Hausdorff distance of 15 voxels. We can conclude 

that, on the simulated data, the method is satisfactory, as the value of 15 (which notably reveals 

non-detection of the smallest branches) is highly acceptable, given the severe criteria chosen. 

 

In the same way, we evaluated the accuracy using the skeleton’s reversibility criteria, by 

superimposing the original volume on the reconstructed volume. The DSC was chosen to quantify 

the superimposition, and the mean value obtained was 76%. Taking into account our spherical 

reconstruction model, and the use of the mean radial value of each branch, we conclude that the 

index of 76% indicates good reversibility. In fact, the theoretical index calculated for the 

reconstruction method used after symbolic description versus the volume obtained by the model 

generator gives a maximum value of 90.7%. This value highlights the shortcomings in our 

reconstruction model, but enables the value obtained during the experiments to be more clearly 

analyzed and understood. 

 

Turning to the robustness, we first presented the means and SDs of the percentage errors for each 

characteristic (length, volume and radius of the branches). Apart from that of the radius, the error 

SDs obtained were small and therefore highly satisfactory. Taking into account the characteristics 

extracted by symbolic description, the error obtained for the radius was not satisfactory; this error 

concerned the mean radius of a branch and did not take into account the variability which exists 

along the branches. However, no matter which characteristic was studied, the use of the Bland-

Altman plots enabled us to observe that 95% of the points were within the confidence interval, thus 

implying that the method was robust with regard to the volume orientation before skeletonization 

and symbolic description. 

 

5.2. Limits of the skeletonization method 

 

Since the result of Dijkstra’s algorithm is an oriented graph without cycle, it is not easy to detect 

and delete the holes (loops in the graphs). As a result, although our method is satisfactory in the 

majority of cases, it creates a problem when dealing with the intracranial network: the circle of 

Willis is a loop which is incompatible with the method as it exists.  

 

A preliminary study of the different general methods of 3D skeletonization enables us to suggest a 

solution to this problem. The Distance-ordered Homotopic Thinning method, proposed by [37], 

seems to be able to resolve the problem in this localised area (Figure 21). However, as it does not 

integrate the descriptive data as does our method based on Dijkstra’s algorithm, this other 
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skeletonization method is generally less appropriate for our symbolic description application. It 

would be reasonable to envisage associating the 2 methods. 

 

  

  
(a) (b) 

Figure 21: Descriptive graph obtained of circle of Willis using synthetic data 

(a) Proposed method (Dijkstra) (b) Distance-ordered Homotopic Thinning method 

 

5. Conclusion and future prospects 

 

We have proposed a new approach to the extraction of the cerebral vascular tree based on the 

calculation and analysis of the Dijkstra’s minimum cost spanning tree. Furthermore, we have 

proposed an original framework for evaluation which is adapted to all types of tubular forms 

(blood vessels, lactiferous ducts, the pulmonary network, etc.). 

 

Our method of symbolic description enables the analysis and interpretation of a vascular network 

obtained from angiographic images. It provides a simplified representation of the network in the 

form of a skeleton, as well as a description of the corresponding information in the form of a tree-

like view. It therefore creates an interaction between visual and descriptive information by linking 

these two representations of the network. This type of vessel representation may be of use in the 

development of new applications (e.g., in new Computational Fluid Dynamics models, or the 

association of a subject’s data with a vascular atlas, etc.). 

 

A DSC above 70% proves that the skeleton is reversible. In addition, the weak positioning error 

between the reference and the calculated skeleton indicates that the algorithm is robust. This leads 

us to conclude that the method is relevant for tree-like objects, and, in particular, satisfies the 

fundamental requirements needed for future clinical application.  

At first, we chose to detect the root of Dijkstra’s tree automatically, without taking anatomical 

considerations into account. The identification of the tree root could possibly be improved by using 

anatomical information beforehand, thus allowing the skeletonization to be started on a principal 

artery, respecting the direction of blood flow. 

 

In the context of the cerebral vasculature, a future application could be the development of 

supporting software in neurosurgery. By simply clicking on the zone required on the segmented 3D 

network, the software interface should enable the neurosurgeon to easily identify a branch and its 

children, and give him or her access to its morphological data (Figure 22). 
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(a)   (b) 

Figure 22: Interaction between the view of the tree and the volume. The software extracts the symbolic 

information at the clicked point (in blue). An inverse interaction is also possible. 

 

Finally, due to a quicker analysis of the network after its description, we envisage the development 

of a tool which will analyse the interactions between the vascular network and the surgical 

instruments. This tool could be developed as simulation software to improve the accuracy of the 

surgeon’s gesture. 
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