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REPRESENTATIONS OF WEIL-DELIGNE GROUPS AND FROBENIUS

CONJUGACY CLASSES

ABHIJIT LASKAR

Abstract. Let X be a smooth projective algebraic variety over a number field F , with an
embedding τ : F ↪→ C. The action of Gal(F̄ /F ) on `-adic cohomology groups Hi

et(X/F̄ ,Q`),
induces Galois representations ρi` : Gal(F̄ /F ) → GL(Hi

et(X/F̄ ,Q`)). Fix a non-archimedean

valuation v on F , of residual characteristic p. Let Fv be the completion of F at v and ′Wv be
the Weil-Deligne group of Fv. We establish new cases, for which the linear representations
ρi` of ′Wv, associated to ρi`, form a compatible system of representations of ′Wv defined over
Q. Under suitable hypotheses, we show that in some cases, these representations actually
form a compatible system of representations of ′Wv, with values in the Mumford-Tate group
of Hi

B(τX(C),Q). When X has good reduction at v, we establish a motivic relationship
between the compatibility of the system {ρi`}` 6=p and the conjugacy class of the crystalline
Frobenius of the reduction of X at v.

1. Introduction and notation

Throughout, F is a number field, with an embedding τ : F ↪→ C, v is a non-archimedean
valuation on F and Fv is the completion. By F̄ we denote a fixed separable algebraic closure
of F , τ̄ : F̄ ↪→ C is an extension of τ , v̄ is an extension of v to F̄ and F̄v is the localization
of F̄ at v̄. The residue fields of Fv and F̄v are denoted by kv and k̄v, respectively. Let the
characteristic of kv be p > 0 and write |kv| := qv. We write Γv := Gal(F̄v/Fv) ⊂ ΓF :=
Gal(F̄ /F ) and Iv ⊂ Γv is the inertia group. By an arithmetic Frobenius Φv ∈ Γv, we mean
an element which induces the Frobenius automorphism φv of k̄v. We denote by Wv the
Weil group of Fv, i.e., the dense subgroup formed by elements w ∈ Γv which induce on k̄v
an integral power φv

α(w). The map α : Wv → Z thus defined is a group homomorphism
and ker(α) = Iv. The Weil-Deligne group ′Wv of Fv is the group scheme over Q defined
as the semi-direct product of Wv with the additive group Ga over Q, on which Wv acts

as : w · x · w−1 = q
α(w)
v · x. For ease of exposition, we shall assume our varieties to be

geometrically irreducible.
Consider a smooth projective algebraic variety X over F . The action of ΓF on the

geometric `-adic cohomology groups V i
` := H i

et(X/F̄ ,Q`), induces Galois representations

ρi` : ΓF → GL(V i
` ). A fundamental problem in arithmetic geometry, is to determine, how

far the properties of ρi` are independent of `. For instance, it has been conjectured [25]
that, if v is any non-archimedean valuation on F , then for every w ∈Wv, the characteristic
polynomial P i`,v(w, T ) := det(1− ρi`(w)T ;V i

` ), of the Q`-linear map ρi`(w) has coefficients in

Q and is independent of ` ? By Deligne’s result [6] on the Weil conjectures, we know that
this conjecture holds true if we assume that variety X has good reduction at v. But the case
of bad-reduction is wide open. The starting point of this article is an observation (see Thm.
2.1), which gives a criterion for detecting the rationality and `-independence of P i`,v(w, T ),
irrespective of the type of reduction at v. This allows us to verify the above conjecture in
a large number of new cases; see Cor.2.3. Equipped with these results, we can take a step
forward in the analysis of the bad reduction case. In order to do this one attaches to ρi`, a
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linear representation ρi` := (V i
` , ρ

i′
`, N

′
i,`) of ′Wv over Q`, where ρi

′
` is a continuous represen-

tation of Wv and N ′i,` is the associated monodromy operator (see §3.2). These ρi` are the

basic source of linear representations of ′Wv. The following is a longstanding conjecture of
Deligne, Tate et al (cf.[10, 2.4.3])

Conjecture 1.1 (CWD(XFv , i) ). The system {ρi`}`6=p forms a compatible system ( in the

sense of [5, 8.8] ) of linear representations of ′Wv defined over Q.

The notion of compatible system considered here is a strong one ( see §3.2). The first
main result of this article establishes some new cases of the above conjecture.

Theorem 1.2. Let X a smooth projective variety over F which is a finite product of moduli
spaces of stable vector bundles of co-prime rank and degree over smooth projective curves,
unirational varieties of dimension ≤ 3, uniruled surfaces, hyperkähler varieties of K3[n] type,
abelian varieties, curves and Fermat hypersurfaces. Then, for every i ∈ N, the CWD(XFv , i)
Conjecture (1.1) holds true.

For surfaces and complete intersections, we show a slightly weaker result. Let ρi`
ss

denote

the (Frobenius) semi-simplification ( see §.3.14) of ρi`.

Theorem 1.3. (1) Let S be a smooth projective surface over F . Then CWD(SFv , i) holds
true i 6= 2. When i = 2, the system {ρ2

`
ss}

`6=p
forms a compatible system of linear

representations of ′Wv defined over Q.
(2) Let X be a smooth complete intersection of dimension n in a projective space Pr,

defined over F . Then CWD(XFv , i) holds true for i 6= n. When i = n, the system
{ρn`

ss}
` 6=p

forms a compatible system of linear representations of ′Wv defined over Q.

Corollary 3.16 shows that when X is a smooth complete intersection of Hodge level 1,
CWD(XFv , i) holds true for all i. Previously, Conjecture 1.1, was only known to hold for
i = 1 and X an abelian variety (see [5]). The relevance of Thm. 1.2 and Thm 1.3, in the
Langlands program, is described by Cor. 3.13 and Cor. 3.17, respectively.

Now write τX := X ×F,τ C and let V i := H i
B(τX(C),Q) denote the (degree i)Betti

cohomology group of the complex algebraic variety τX. Let Gi∞ Mumford-Tate group of the
Hodge structure on V i. Conjecture 1.1 has a sharper reformulation, if one assumes the Hodge
conjecture. In that case, ρi` factors through Gi∞(Q`) and it is expected that the {ρi`}` 6=p forms

a compatible system ( in the sense of [5, 8.11] ) of representations of ′Wv with values in the
algebraic group Gi∞. In its full generality, this is unknown even in the case of i = 1 and X an
abelian variety of dim ≥ 2. Theorem 4.7 shows that, under some mild assumptions (without
assuming the Hodge conjecture), this conjecture holds for the varieties in Thm. 1.2. There
is another closely related conjecture (in the good reduction case) formulated by Serre [24,
12.6], in terms of motivic Galois groups. Recall that Grothendieck’s standard conjectures on
algebraic cycles predict that the category of motives for homological equivalence of algebraic
cycles coincides with the category of numerical(Grothendieck) motives and is Tannakian.
This would imply in particular that the action of the Galois group ΓF on the `-adic realization
H`(M) of any motive M over F , factors as ρM,` : ΓF → GM (Q`), where GM is the motivic
Galois group of M . This is the group associated, via the Betti realization functor Hτ , to the
Tannakian subcategory generated by M and the Tate motive. Now, let (Conj(GM ),Cl) be
the universal categorical quotient of GM for its action on itself by conjugation. For every
` 6= p, ρM,`(Φv) defines an element Cl(ρM,`(Φv)) ∈ Conj(GM )(Q`).

Conjecture 1.4 (Serre, [24, 12.6]). If M is a motive with good reduction at v, then Cl(ρM,`(Φv)) ∈
Conj(GM )(Q), ∀ ` 6= p and is independent of `.
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In [14], we showed this conjecture (under additional assumptions) for motives of the form
M := hi(X), where X is any smooth proper algebraic variety with good reduction at v and
M ∈ Ob(Mav

AH(F )) i.e. the full Tannakian subcategory, generated by abelian varieties and
Artin motives, inside the category of motivesMAH(F ) for absolute Hodge cycles. Now, it is
natural to wonder, what happens in the case ` = p. The final section of the paper investigates
this issue. To state the principal result in this direction, we need more notation. First
note that the advantage of working over MAH(F ), is that it has many desired properties of
homological motives, unconditionally. Moreover, it is well known that if the Hodge conjecture
is true, then the category of homological motives coincides with the category of motives for
absolute Hodge cycles.

Let X/F be a smooth proper algebraic variety with good reduction at v and such that the
motive M := hi(X) ∈ Ob(Mav

AH(F )). Denote the ring of Witt vectors of kv by W (kv) and
by F 0

v the fraction field of W (kv). Let Xv denote the special fiber of a smooth proper model
of X over the ring of integers of Fv. Fix a i ∈ N and let ΦCris : H i

Cris(Xv/W (kv)) ⊗ F 0
v →

H i
Cris(Xv)⊗ F 0

v , be the degree i crystalline Frobenius of X at v.
The CCris-conjecture (now a theorem, cf. [11, Th. 3.2.3]) allows us to define a crystalline re-

alization ( cf.[27, §4.1]), i.e., a fiber functor HM,Cris : 〈M,Q(1)〉⊗ → VectF 0
v
. We write GM,Cris

for the automorphism group of HM,Cris. The action of GM,Cris on itself by conjugation, pro-
vides a universal categorical quotient (Conj(GM,Cris),ClCris). Now, ΦCris defines an element
ΦM,Cris ∈ GM,Cris(F

0
v ) which in turn defines an element ClCris(ΦM,Cris) ∈ Conj(GM,Cris)(F

0
v ).

Theorem 1.5. Let M be as above. Assume that GM is connected and there is prime number
`0 such that ρM,`0(Φv) is weakly neat. Then, there exists a unique conjugacy class

FrobM ∈ Conj′(GM )(F 0
v ),

such that ClCris(ΦM,Cris) = FrobM and Cl(ρM,`(Φv)) = FrobM , ∀ ` 6= p.

Roughly speaking, (Conj′(GM ),Cl) refers to a modification of (Conj(GM ),Cl), which we
need to make when the derived group Gder

M/Q̄ of GM/Q̄ has certain factors of type D ( see §4).

Now denote by Mav
num(F ) the Tannakian category of motives generated by abelian varieties

and zero dimensional varieties, inside the category of numerical Grothendieck motives over
F . Since homological equivalence coincides with numerical equivalence for zero dimensional
varieties and abelian varieties [16], we can identify Mav

num(F ) to a subcategory (a priori not
full) of Mav

AH(F ). Thus, our result also holds for M ∈ Ob(Mav
num(F )). The special case,

where M is the motive h1(A) for an abelian variety A, Theorem 1.5 was proved by Noot in
[17, Th. 4.2]. We also note that as the Hodge conjecture remains unproven, a prioriMav

AH(F )
has more objects than in Mav

num(F ). An example of this phenomenon is the motive of a K3
surface.

2. Action of Weil group on `-adic cohomology

We follow the notation of §1. All algebraic cycles and Chow groups are with rational
coefficients. For any smooth projective algebraic variety X over the number field F , we
write τX := X ×F,τ C. For any complex algebraic variety Y of dimension d, we denote by

γdB : CHd(Y × Y )→ H2d
B (Y (C)× Y (C),Q)(d),

the cycle class map from codimension d algebraic cycles on Y ×Y to the Tate twisted degree
2d Betti cohomology of Y × Y . The Künneth isomorphism

H2d
B (Y (C)× Y (C),Q)(d) ∼=

2d⊕
i=0

H2d−i
B (Y (C),Q)⊗Hi

B(Y (C),Q)(d),
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gives us a decomposition γdB([∆]) =
∑2d

i=0 π
i, of the class of the diagonal sub-variety ∆ of

Y × Y . To say that the degree i Künneth standard conjecture w.r.t. Betti Cohomology is
true for Y , means that there is a correspondence zi ∈ CHd(Y × Y ) such that γdB(zi) = πi.

Theorem 2.1. Let X be any smooth projective variety over F . Fix a i ∈ N and assume that
the degree i Künneth standard conjecture w.r.t Betti Cohomology holds for τX. Then, for ev-
ery ` 6= p and w ∈Wv with α(w) ≤ 0, the polynomial P i`,v(w, T ) ∈ Z[T ] and is independent of `.

Proof. Let us denote by τ∆ ⊂ τX × τX the diagonal subvariety and by d the dimension
of X. Let γdB : CHd(τX × τX) → H2d

B (τX(C) × τX(C),Q)(d). By hypothesis there is a

correspondence τzi ∈ CHd(τX × τX) such that γdB(τzi) = τπi. Let

p∗ : CHd(XF̄ ×XF̄ )→ CHd(τX × τX)

denote the base change map. It is well known (cf.[8, 2.9, a]) that base change induces an
isomorphism between algebraic cycle groups over F̄ and C modulo homological equivalence.
This implies that there is a correspondence zi

/F̄
∈ CHd(XF̄ × XF̄ ) such that γdB(τzi) =

γdB(p∗(zi
/F̄

)). Now there is also a diagram

(1) CHd(τX × τX)
γdB⊗1

// H2d
B (τX(C)× τX(C),Q)(d)⊗Q`

CHd(XF̄ ×XF̄ )

p∗

OO

γd` // Hi
et(XF̄ ×XF̄ ,Q`)(d)

I`,τ

OO

where γd` is the cycle class map of `-adic cohomology and I`,τ is the comparison isomor-
phism between Betti and `-adic cohomology groups. It follows from the arguments given in
[8, I, page 21], that (1) is commutative.

Let ∆/F̄ ⊂ XF̄ ×XF̄ denote the diagonal subvariety. We have the Künneth decomposition

of the `-adic cohomology class γd` ([∆/F̄ ]) =
∑2d

i=0 π
i
/F̄
. It follows from the commutativity of

(1), that

γd` (zi/F̄ ) = I−1
`,τ ((γdB ⊗ 1)(τzi)) = I−1

`,τ (τπi ⊗ 1) = πi/F̄ .

Now, clearly we can suppose that zi
/F̄

is defined over some finite extension (say) F1 of F .

By using the natural action of G := Gal(F1/F ) on CHd(XF1 ×XF1), we set

zi :=
1

|G|
∑
σ∈G

σ∗zi/F̄ .

As zi ∈ CHd(XF1 ×XF1)G, we conclude that zi ∈ CHd(X ×X). Now we have

(2) γd` (zi) =
1

|G|
∑
σ∈G

γd` (σ∗zi/F̄ ) =
1

|G|
∑
σ∈G

σ̃∗γd` (zi/F̄ ),

where σ̃ is a lift of σ to Gal(F̄ /F ).
Now, by Künneth formula and Poincaré duality for `-adic cohomology, we have the fol-

lowing canonical isomorphisms

(3) H2d
et (XF̄ ×XF̄ ,Q`)(d) ∼= ⊕r≥0H2d−r

et (XF̄ ,Q`)(d)⊗Hr
et(XF̄ ,Q`)

∼= ⊕r≥0HomQ`(H
r
et(XF̄ ,Q`),Q`)⊗Hr

et(XF̄ ,Q`) ∼= ⊕r≥0EndQ`(H
r
et(XF̄ ,Q`))

More precisely, under the above isomorphism, an element u ∈ H2d
et (XF̄ × XF̄ ,Q`)(d) is

mapped to the element u := (z 7→ pr2∗(pr1
∗(z) · u)) ∈ ⊕r≥0EndQ`(H

r
et(XF̄ ,Q`)), where pr1
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and pr2 are projections. As one easily verifies, πi
/F̄

is the idempotent projection

pi : H∗et(XF̄ ,Q`)→ Hi
et(XF̄ ,Q`) ↪→ H∗et(XF̄ ,Q`).

Clearly pi is invariant under the action of Gal(F̄ /F ) on ⊕i≥0EndQ`(H
i
et(XF̄ ,Q`)). Thus, it

follows from (3) that πi
/F̄

is invariant under the action of Gal(F̄ /F ) on H2d
et (XF̄ ×XF̄ ,Q`)(d).

Under the above observations, (2) now reads as

(4) γd` (zi) =
1

|G|
∑
σ∈G

σ̃∗πi/F̄ =
1

|G|
(|G| · πi/F̄ ) = πi/F̄ .

Finally, let αi denote the image of zi under the canonical injective morphism
CHd(X×X)→ CHd(XFv×XFv). Let γd`,v : CHd(XFv×XFv)→ H2d

et (XF̄v×XF̄v ,Q`)(d) denote

the cycle class map. By invariance of `-adic cohomology groups under extension from F̄ to al-
gebraically closed over-field , we have Hi

et(XF̄ ,Q`) ∼= Hi
et(XF̄v ,Q`) and H2d

et (XF̄v×XF̄v ,Q`) ∼=
H2d
et (XF̄ ×XF̄ ,Q`). We also know that γd`,v|CHd(X×X) = γd` ; in particular γd`,v(α

i) = γd` (zi).

Thus using (4) and (3), it follows that γd`,v(α
i) induces an endomorphism H∗et(XF̄v ,Q`) →

H∗et(XF̄v ,Q`), which is identity on Hi
et(XF̄v ,Q`) and 0 otherwise. In particular we see that

(5) Tr((γd`,v(α
i) ◦ wm∗ ) : H∗et(XF̄v ,Q`)) = Tr(ρi`(w

m)), for every m ≥ 0,

where wm∗ := ⊕2d
i=0ρ

i
`(w

m) is the Q`-linear map induced by wm on H∗et(XF̄v ,Q`). Now, pick

a N ≥ 1, such that Nγd`,v(α
i) belongs to the image of the Chow group of codimension d

algebraic cycles on XFv × XFv , with Z-coefficients. It follows from (5) and [20, Thm 0.1],
that

(6) Tr(ρi`(w
m)) ∈ (1/N)Z, and is independent of `.

Using (6) and applying the next lemma to the eigenvalues of ρi`(w), we conclude that
Tr(ρi`(w)) ∈ Z. This combined with the Newton identities relating power sums and symmet-
ric polynomials, we conclude that the characteristic polynomial P i`,v(w, T ) of ρi`(w) belongs

to Z[T ] and is independent of `.
�

Lemma 2.2 (cf. [13, 2.8] ). Let a1, · · · , ar and b1, · · · , bs be elements of a field of charac-
teristic 0. We put sm =

∑r
i=1 a

m
i −

∑s
j=1 b

m
j for an m ∈ N. Assume there exists an integer

N ≥ 1 such that Nsm ∈ Z for all m ≥ 0. Then sm ∈ Z.

Corollary 2.3. Let X be a smooth projective variety over F which is a finite product of
hyperkähler varieties of K3[n] type; moduli spaces of stable vector bundles of co-prime rank
and degree over smooth projective curves; unirational varieties of dimension ≤ 4; uniruled
varieties of dimension ≤ 3; curves, surfaces, abelian varieties and smooth complete inter-
sections in projective spaces. Then, for every i ∈ N, ` 6= p and w ∈ Wv, the polynomial
P i`,v(w, T ) ∈ Q[T ] and is independent of `.

Proof. We begin with an observation. Let Y1 and Y2 be varieties over C. Let γdimY∗
B ([∆∗]) =∑2 dimY∗

r∗=0 πr∗ , be the Künneth decomposition of the diagonal sub-variety ∆∗ of Y∗ × Y∗

, for ∗ = 1, 2. Let γdimY1×Y2
B ([∆Y1×Y2 ]) =

∑2 dimY1×Y2
i=0 πi, be the Künneth decompo-

sition of the diagonal sub-variety ∆Y1×Y2 of Y1 × Y2. Then we check that the identity
πiY1×Y2

=
∑

r1+r2=i π
r1 ⊗ πr2 , holds true for every 0 ≤ i ≤ 2 dimY1 × Y2. Now, assume that

for every r1 and r2, satisfying r1 +r2 = i, there exists algebraic cycles zr∗ ∈ CHdimY∗(Y∗×Y∗)
such that γdimY∗

B (zr∗) = πr∗ , where ∗ = 1, 2. Then, by the above identity, πiY1×Y2
=

5
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r1+r2=i γ

dimY1
B (zr1) ⊗ γdimY2

B (zr2). It now follows from the multiplicativity of the cycle

class maps that πiY1×Y2
=
∑

r1+r2=i γ
dimY1×Y2
B (zr1 × zr2). As γdimY1×Y2

B is a group homo-

morphism it follows that πiY1×Y2
= γdimY1×Y2

B (
∑

r1+r2=i(z
r1 × zr2)). This observation tells us

that, in order to apply Thm.2.1 to the variety τX, it suffices to check that the individual
varieties in the statement of the corollary satisfies the Künneth Standard conjecture (w.r.t
Betti cohomology) in all degrees ≤ i. Now, for curves, surfaces, abelian varieties and smooth
complete intersection in projective spaces, this is well-known ( cf.[13]). For hyperkähler vari-

eties of K3[n] type this follows from the results of [2]. For unirational varieties of dimension
≤ 4 and uniruled varieties of dimension ≤ 3 this is shown in [1]. For the moduli spaces
NC(q, e), this follows from [3].

Now, applying Thm. 2.1 to τX, we see that for every i ∈ N, the characteristic polynomial

(7) P i`,v(w, T ) ∈ Z[T ] and is independent of `, for every w ∈Wv such that α(w) ≥ 0.

Now, let w ∈ Wv such that α(w) > 0, then α(w−1) < 0. As ρi`(w) = (ρi`(w
−1))−1, so if

P i`,v(w
−1, T ) = Tm +

∑m
r=1 am−rT

m−r, then P i`,v(w, T ) = Tm + a−1
0 (
∑m−1

r=1 arT
m−r + 1). By

(7), ar ∈ Z, hence P i`,v(w, T ) ∈ Q[T ] and is independent of `.
�

Remark 2.4. (i) Special cases of Cor.2.3, such as abelian varieties (cf.[25]) and curves,
had been previously proved using methods quite different from ours. Thanks to the
motivic nature of Thm. 2.1, we deduce these known cases and much more, at once.

(ii) For any smooth projective curve C of genus > 1 over F , the moduli space NC(q, e) of
stable vector bundles of co-prime rank q and degree e over C is known to be a smooth
projective fine moduli space.

(iii) Recall that an algebraic variety Y is said to be a hyperkähler variety Y of K3[n]-type if

(a) Y = S[n] is the punctual Hilbert scheme which parametrizes closed subschemes of
of length n of a K3 surface S, or (b) Y is any projective deformation of a hyperkähler

variety of type S[n]. Any general projective deformation of S[n] is not of the form S′[n]

for any other K3 surface S′. In dimension 2, hyperkähler varieties are K3 surfaces.

3. Around the CWD conjecture

3.1. Monodromy. Let K be a complete discretely valued field with a finite residue field
kv, where v denotes the valuation on K. Let char(kv) = p > 0. Fix an algebraic closure K̄
of K and write ΓK := Gal(K̄/K). Let v̄ be the extension of v to K̄. The residue field of K̄
at v̄ is denoted by k̄v (which is also an algebraic closure of kv).

For any prime number `, we denote by µ`n the group of `n-th roots of unity in k̄v and
Z`(1) := lim←−

n

µ`n . The inertia group IK ⊂ ΓK fits into the following exact sequence

1→ P → IK
t−→ Z(p′)(1)→ 1,

where P is a pro-p-group and Z(p′)(1) =
∏
`6=p

Z`(1). Let ` 6= p be a prime number. We

denote by t` : IK → Z`(1), the `-component of t. Explicitly, the surjective map t` is given

as x 7→
(
x(π

1
`n )/π

1
`n

)
n
, where π ∈ OK is an uniformizer. The map t` is unique upto

multiplication by an element of Z×` .
For any Q`-vector space U , we write U(1) := U ⊗Q` Q`(1), where Q`(1) = Q` ⊗Z` Z`(1).

Grothendieck’s `-adic monodromy theorem [25, Appendix], says that any `-adic representa-
tion ξ` : ΓK → GL(U) is quasi-unipotent, i.e., there exists an open subgroup J ⊆ IK such
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that ξ`|J is unipotent (i.e. ξ`(σ) is a unipotent linear map for every σ ∈ J). Moreover, there
exists a unique nilpotent morphism N` : U(1)→ U such that

(8) ξ`(x) = exp(t`(x)N`), for all x ∈ J.

The morphism N` is called the monodromy operator associated to ξ`.

3.2. Linear representations of Weil-Deligne groups. The notation is as in §3.1, we
assume further that K is a finite extension of Qp and |kv| = qv. Denote by φv : x 7→ xqv the
arithmetic Frobenius automorphism of k̄v over kv.

Definition 3.3. Let E be any field of characteristic 0. A linear representation ′WK over E
is a triple ξ = (∆, ξ′, N ′) consisting of

(a) A finite dimensional linear representation ξ′ : WK → GL(∆) of WK over E.

(b) A nilpotent endomorphism N ′ of ∆, such that ξ′(w)N ′ξ′(w)−1 = q
α(w)
v ·N for every

w ∈WK .

Definition 3.4. A morphism ξ1 → ξ2 between two linear representations of ′WK over E,

is a E-linear map f : ∆1 → ∆2 such that f ◦ ξ′1(w) = ξ′2(w) ◦ f , for all w ∈ WK , and
f ◦N ′1 = N ′2 ◦ f .

The collection of all linear representations of ′WK over E, forms a neutral Tannakian
category RepE(′WK) over E. Any field embedding τ : E → L gives rise to a functor

RepE(′WK)→ RepL(′WK), (∆, ξ′, N ′) 7→ (L ⊗
τ,E

∆, τξ′, 1 ⊗
τ,E

N ′).

Definition 3.5 (Deligne [5]). Let ξ be as above and E0 a sub-field of E. We say that ξ
is defined over E0, if given any algebraically closed field Ω ⊃ E and any σ ∈ Aut(Ω/E0),
the representations σξ

/Ω
= (Ω ⊗

σ,E
∆, σξ′/Ω, 1 ⊗

σ,E
N ′) of ′WK over Ω, obtained by extension of

scalars via σ, are all isomorphic. This condition is independent of the choice of Ω.

Definition 3.6 (Deligne [5]). Let (Ei)i∈I be a family of extensions of E0, and for every
i, let ξi be a linear representation of ′WK over Ei. We say that (ξi)i∈I forms a compatible

family of representations of ′WK if every ξi is defined over E0, and for any i, j ∈ I, if Ω is
an algebraically closed field containing Ei and Ej , then the representations ξi/Ω and ξj

/Ω

obtained by extension of scalars are isomorphic.

Now fix an arithmetic Frobenius Φ ∈ ΓK and an isomorphism ι : Q` ' Q`(1). To any
arbitrary `-adic representation ξ` : ΓK → GL(U) (as in §3.1), we associate a representation
ξ` = (U, ξ′`, N

′
`) of ′WK over Q`, by setting

(a) ξ′`(w) = ξ`(w)exp(−N`t`(Φ
−α(w)w)), where N` is the monodromy operator as in (8).

(b) N ′` ∈ End(U) corresponds to N`, via ι.

The following lemma is well-known.

Lemma 3.7. The isomorphism class of ξ` depends only on ξ`, and it doesn’t depend on the
choice of Φ and ι.

3.8. Proof of Theorem 1.2. The proof will follow from a series of subsidiary results which
are of independent interest. We denote by V i

` := H i
et(XF̄v ,Q`) and by ρi` = (V i

` , ρ
i′
`, N

′
i,`) the

representation of ′Wv over Q`, associated (see §3.2) to the canonical `-adic representations
ρi` : ΓF → GL(V i

` ).
7



Abhijit Laskar

For simplicity of notation, let us suppress the natural number i for a moment. As N ′` :
V` → V` is a nilpotent endomorphism, it induces a unique filtration M• on V` called the local
monodromy filtration [7], characterized by the following properties:

(1) M• is an increasing filtration · · ·Mj−1V` ⊂MjV` ⊂Mj+1V` · · · of Γv representations,
such that MjV` = 0 for sufficiently small j and MjV` = V` for sufficiently large j.

(2) N`(MjV`(1)) ⊆Mj−2V` for all j.

(3) Using the second condition we can define an induced map N : GrMj V`(1)→ GrMj−2V`,

where GrMj V` = MjV`/Mj−1V`. Then N r : GrMr V`(r) → GrM−rV` is an isomorphism
for each r ≥ 0.

Explicitly, the filtration M• is defined as the convolution F ∗G of the Kernel filtration F•
and image filtration G• on V`, induced by N ′`, i.e.,

MrV` :=
∑
p−q=r

FpV` ∩GqV` for r ∈ Z,

Let ρ̄`,j : Γv → GL(GrMj V`) denote the representation induced by ρ` on the graded parts of
M•. For every w ∈Wv, we write P`(w, T ) := det(1−ρ`(w)T ;V`) the characteristic polynomial
of ρ`(w) and P̄`,j(w, T ) := det(1− ρ̄`,j(w)T ; GrMj V`) the characteristic polynomial of ρ̄`,j(w).

Main Lemma 3.9. Fix a w ∈ Wv, then for every j, P̄`,j(w, T ) ∈ Q[T ] and is independent
of `.

Proof. Let L be the sub-field of an algebraic closure Q̄` of Q`, generated by the roots of
P`(w, T ). By Cor.2.3, P`(w, T ) ∈ Q[T ] and has coefficients independent of `. This implies
that if P`(w, β) = 0, then P`(w, σ(β)) = 0, for every σ ∈ Gal(L/Q). Now, from linear
algebra, we know that P`(w, T ) =

∏
j P̄`,j(w, T ). Let η be an eigenvalue ρ̄`,j(w) and hence of

ρ`(w). By [15], the weight monodromy conjecture (WMC) holds for V`, hence the complex
absolute value

(9) |η|C = q(i+j)α(w)/2
v for every j

(recall that i is the degree of the cohomology group V`). As |β|C = |σ(β)|C, it follows from
(9), that β and σ(β) occurs as the roots of a same factor (say) P̄`,j0(w, T ) of P`(w, T ). Now
suppose P̄`,j0(w, T ) = Tm +

∑m
r=1 am−rT

m−r. As the coefficients ar’s are symmetric poly-
nomials in the roots of P̄`,j0(w, T ), it follows from the previous observation that σ(ar) = ar,
for every σ ∈ Gal(L/Q). In other words, ar ∈ Q, i.e., P̄`,j0(w, T ) ∈ Q[T ] and is independent
of `. By varying β over all roots of P`(w, T ), we conclude the P̄`,j(w, T ) ∈ Q[T ] and is
independent of `, for every j. �

The proof of the next two results would employ some motivic ideas, we review some of
the necessary facts very briefly, for details see [8, II].

We denote by V(F ) the category of smooth projective algebraic varieties over F . Recall
that the category of (pure) motivesMAH(F ), defined by absolute Hodge cycles is a Q-linear
semisimple neutral Tannakian category. There exists a contravariant functor for MAH(F ))
h : V(F ) → MAH(F ) such that Betti, `-adic or deRham cohomology on V(F ) factorizes
through h. This provides fiber functors Hτ , H` and HdR on MAH(F ). We call these func-
tors as realizations. There also exists a natural grading h(Z) = ⊕hi(Z), i ∈ N for every
Z ∈ Ob(V(F )), which extends to all of MAH(F ). We denote by Mav

AH(F ) the Tannakian
subcategory of MAH(F ) generated by abelian varieties and zero dimensional varieties. Ev-
erything stated above holds more generally for any arbitrary field of characteristic 0, with
an embedding in C.

Lemma 3.10. Let X/F be as in Thm. 1.2. Then there exists a finite extension F ′ of F
such that h(XF ′) ∈ Ob(Mav

AH(F ′)).
8
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Proof. First, we claim that h(XF̄ ) ∈ Ob(Mav
AH(F̄ )). Let X =

∏
rXr, where each Xr is one

of the varieties in the statement of the theorem. As h(XF̄ ) = ⊗rh(Xr,F̄ ) and Mav
AH(F̄ ) is

closed ⊗, in order to verify the claim it suffices to do so for the individual Xr’s (which by
abuse of notation we denote by X).

First suppose that X is the moduli space NC(q, e). By [3] we have a decomposition
⊕bh(C)⊗a(b) = h(X) ⊕ N , for some a ∈ Z and b ∈ N and some motive N . Now, let J(C)
denote the Jacobian of C. We know that h(C) = 1 ⊕ h1(J(C)) ⊕ L, where 1 denotes the
unit object of MAH(F̄ ) and L is the Lefschetz motive. As Mav

AH(F ) is closed under direct
summands, h(X) ∈ Ob(Mav

AH(F )).

Now consider the case where X is a hyperkähler variety of K3[n]-type. The cohomology
group H2

B(τX,Q) carries a weight 2 Hodge structure. It is well-known that in this case, the
Kuga-Satake morphism H2

B(τX,Q)(1) ↪→ H1(KX,Q) ⊗ H1(KX,Q), is an absolute Hodge
correspondence, where KX is the Kuga-Satake abelian variety associated to H2

B(τX,Q).
This implies that there is a monomorphism of motives

h2(τX)(1) ↪→ h1(KX)⊗ h1(KX).

Moreover, since X is defined over F , one can show (as in the case of K3 surfaces) that KX
is defined over a finite extension F ′ of F . The main result of [21] shows that h(XF̄ ) ∈ Ob(<
h2(XF̄ ) >⊗) i.e. the smallest Tannakian category generated by h2(XF̄ ). It follows that
h(XF̄ ) ∈ Ob(Mav

AH(F̄ )).
Finally, when X is a uniruled surface, we know (cf.[1]) that there exists a curve C ′ over

F̄ and a decomposition ⊕b′h(C ′)⊗a
′
(b′) = h(XF̄ ) ⊕ N ′, for some a′ ∈ Z, b′ ∈ N and some

motive N ′. Thus, as before, it follows that h(XF̄ ) ∈ Ob(Mav
AH(F̄ )).

Next, when X is a Fermat hypersurface or a unirational variety of dimension ≤ 3, it follows
from [8, II, 6.26] that h(XF̄ ) ∈ Ob(Mav

AH(F̄ )).
Thus in each case we see that h(XF̄ ) ∈ Ob(Mav

AH(F̄ )). By using [8, I, 2.9] we conclude
there exists a finite extension F ′ of F such that h(XF ′) ∈ Ob(Mav

AH(F ′)).
�

Now, for X as in Thm. 1.2, we denote by M the motive hi(X). As M is a direct
summand of h(X), by Lemma 3.10 there is a finite extension F ′ of F such that MF ′ :=
hi(XF ′) ∈ Ob(Mav

AH(F ′)). Let us denote by v′ an extension of the valuation v to F ′; n
the residual degree; Φv′ := Φn

v an arithmetic Frobenius corresponding to this extension. We
denote by 〈MF ′ ,Q(1)〉⊗ the Tannakian subcategory ofMav

AH(F ′)) which is tensor generated
by MF ′ and the Tate motive Q(1) and we write GMF ′ := Aut⊗(Hτ |〈MF ′ ,Q(1)〉⊗). We recall,

that the `-adic representations ρMF ′ ,` : ΓF ′ → GL(H`(MF ′)), arising from the action of ΓF ′

on the `-adic realization H`(MF ′) of MF ′ , factorizes through GMF ′ (Q`).

Proposition 3.11. The continuous representation ρi
′
` : Wv → GL(V i

` ) is a semisimple
representation of Wv

Proof. We know that there exists (possibly after passing to another finite extension, which we
again denote by F ′) an abelian variety A over F ′ and a unique homomorphism of algebraic
groups θ : GA → GMF ′ where GA := Aut⊗(Hτ |〈h1(A),Q(1)〉⊗). Moreover, θ(Q`) ◦ ρA,` =
ρMF ′ ,`, where θ(Q`) denotes the induced map on Q`-valued points and ρA,` is the Galois

representation associated to the motive h1(A). For details on the above facts see [14, 3.10 &
3.11]. In particular, we have θ(Q`)(ρA,`(Φv′)) = ρMF ′ ,`(Φv′).

Now, it is well known that ρA,`(Φv′) is a semisimple automorphism. As θ is a homo-
morphism of algebraic groups, the image of ρA,`(Φv′), under θ(Q`) must be semisimple. In
other words, ρMF ′ ,`(Φv′) is semisimple. Finally, let ρM,` : ΓF → GL(H`(M)) be the `-adic
representation associated M . As ρMF ′ ,`(Φv′) = (ρM,`(Φv))

n, so ρM,`(Φv) is semisimple.
9
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Now, by definition

H`(M) = πi ∗ ⊕r Hr
et(XF̄ ,Q`),

where πi is the (i-th) Künneth component of the diagonal subvariety ∆ ⊂ XF̄ ×XF̄ and πi ∗

is the image of πi under the isomorphism (3). As we’ve seen before, πi ∗ is the idempotent
projection pi. We conclude that H`(M) = Hi

et(XF̄ ,Q`) and ρM,` = ρi`. Thus, it follows from
the above discussion that ρi`(Φv) is semisimple.

Now, we note that ρi
′
`(Φv) (= ρi`(Φv)) generates a subgroup of finite index in ρi

′
`(Wv).

We know that in characteristic 0 a representation (in the ordinary sense) of a group is
semisimple if and only if its restriction to a subgroup of finite index is semisimple. As ρi`(Φv)

is a semisimple automorphism, it follows that ρi
′
` is a semisimple representation of Wv. �

Now, by the main lemma 3.9, the character of the representations ρi`,j (on the graded

parts of the local monodromy filtration on V i
` ) has values in Q and is independent of `. It

now follows from Prop. 3.11 and [5, Prop. 8.9], that {(V i
` , ρ

i′
`, N

′
i,`)}`6=p forms a compatible

system of linear representations of ′Wv defined over Q. This completes the proof of Theorem
1.2.

�

Remark 3.12. Let Y be an algebraic variety over F and v a non-archimedean valuation of
F . Let Φv be any arithmetic Frobenius element of Γv. A conjecture of Serre ( cf.[24, 12.4])
predicts that the operators ρi`(Φv) are semisimple, where ρi` : ΓF → GL(H i

et(YF̄ ,Q`)) are
the canonical `-adic representations associated to Y . Prop. 3.11, says that this is true for
the algebraic varieties in the statement of Theorem 1.2.

We now discuss how our result fits in the context of Langlands program. Let us review
some notation. For any m ∈ N, we denote by Gm(Fv) the set of equivalence classes of m-
dimensional complex semi-simple representations of ′Wv. We denote by Am(Fv) the set of
equivalence class of irreducible admissible representations of GLm(Fv). The local Langlands
correspondence for Fv gives a bijection

recFv ,m : Am(Fv)→ Gm(Fv).

Corollary 3.13. Let X be as in the theorem, i ∈ N and let bi := dimV i
` denote the i-th Betti

number of X. Then, there exists a representation ρi of ′Wv defined over Q and a unique
class [ πi ] ∈ Abi(Fv) such that

recFv ,bi([ πi ]) = [ ρi
/C ] = [ σρi`/C

] for every ` 6= p and embeddings σ : Q` ↪→ C,

where σρi`/C
:= (C ⊗

σ,Q`
V i
` ,

σρi
′
`/C, 1 ⊗

σ,Q`
N ′i,`).

Proof. First note that the Betti number bi is independent of `. It follows from the theorem
and Prop.3.11 that there exists a representation ρi of ′Wv defined over Q such that class

[ ρi
/C ] ∈ Gbi(Fv) and

ρi
/C
∼= σρi`/C

for every ` 6= p and embeddings σ : Q` ↪→ C.

Now we apply the local Langlands correspondence to get a unique class [ πi ] ∈ Abi(Fv)
verifying the required relation.

�
10



Representations of Weil-Deligne groups and Frobenius conjugacy classes

3.14. The case of surfaces and complete intersections. Let the notation be as in
§3.2. Let ξ = (∆, ξ′, N ′) be any linear representation of ′WK over E. Pick an arithmetic
Frobenius element Φ ∈ WK . Consider the multiplicative Jordan-Chevalley decomposition
of the endomorphism ξ′(Φ) = ξ′(Φ)ss · ξ′(Φ)u, where ξ′(Φ)ss is semisimple and ξ′(Φ)u is
unipotent.

Definition 3.15. The semi-simplification ξss of ξ is the linear representation of ′WK over

E, obtained from ξ by keeping ∆, ξ′|IK and N ′ unchanged, and replacing ξ′(Φ) by ξ′(Φ)ss.

It can be shown that ξss is independent of the initial choice of the arithmetic Frobenius
Φ.

The semi-simplification of the representations ρi` = (V i
` , ρ

i′
`, N

′
i,`) of the Weil-Deligne group

′Wv of Fv, over Q`, are denoted by ρi`
ss

.

Proof of Theorem 1.3. (1) The motive of S has a decomposition 1 h(S) = ⊕4
i=0h

i(S),
such that h0(S) ∼= h4(S)(2) ∼= 1 and

h1(S) ∼= h3(S)(1) ∼= h1(Pic0
S) ∼= h1(AlbS) ∼= h1(S)∨(−1),

where Pic0
S and AlbS are the Picard and Albanese variety of S, respectively. This

observation allows us to deduce CWD(SFv , i), for i 6= 2 , directly from h1(AlbS) [5].

Now let i = 2. Let ρ2
`,j : Γv → GL(GrMj V`) denote the representation induced

by ρ2
` on the graded parts GrMj V

2
` of the local monodromy filtration M• on V 2

` .

By Cor.2.3, we know that the characteristic polynomial of ρ2
`(w) ∈ Q[T ] and is

independent of `. We also know from [19], that WMC holds for V 2
` , i.e., for every

w ∈ Wv, the eigenvalues of ρ2
`,j(w) are all algebraic integers of complex absolute

value q
(2+j)α(w)/2
v . It follows, as in the proof of Lemma 3.9, that the character of

the representations ρ2
`,j has values in Q and is independent of `. We now apply [5,

Prop.8.9] to conclude the proof in this case.
(2) First consider the case i 6= n. If i < n, then by a repeated application of the weak

Lefschetz theorem [7], for `-adic cohomology, we get ΓF -equivariant isomorphisms
V i
`
∼= Hi

et(Pr,Q`). It follows that V i
` = Q`(−i/2) for even i < n and V i

` = 0 for odd
i < n. Now, by Poincare duality, for every i we have ΓF -equivariant isomorphisms
V i
` = (V 2n−i

` (n))∨. Therefore by the previous observation, we deduce that for i even

and n < i ≤ 2n, we have V i
` = (Q`(−n+ i/2)⊗Q`(n))∨ = Q`(−i/2) and V i

` = 0 for
i odd and n < i ≤ 2n. Thus, in order to prove our claim, we only need to consider
the cases of even positive integers i 6= n. Now, fix such a i and let x ∈ Z`(1) be a

generator, then Q`(−i/2) = Q` · x−i/2. Let χ` : ΓF :→ Q×` be the `-adic cyclotomic

character of ΓF , then the `-adic representations ρi` : ΓF → GL(V i
` ) = GL(Q`(−i/2))

are given by

λ 7→ (x−i/2 7→ χ
−i/2
` (λ) · x−i/2).

Now note that for any non-archimedean valuation v (of residual characteristic p) of
F , χ`(λ) = 1 for every ` 6= p and λ ∈ Iv ( inertia subgroup of Γv). This implies that
ρi`|Iv = 1 and the `-adic monodromy operators N ′i,`’s associated to ρi`’s are all trivial.

In other words, the representation of ′Wv associated to ρi` is given as

ρi` = (Q`(−i/2), ρi`|Wv
, 0).

This combined with the fact that Q`(−i/2) is a 1-dimensional representation, implies
that in order to show that {ρi`}`6=p forms a compatible system of representations of

1This decomposition also holds in the category of Chow motives.
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′Wv defined over Q, we need to show that for every w ∈Wv, the traces Tr(ρi`(w)) ∈ Q
and is independent of `. As ρi`|Iv = {1}, it suffices to show that for any arithmetic
Frobenius element Φv ∈ Γv, the trace Tr(ρi`(Φv)) ∈ Q and is independent of `. Now,

Tr(ρi`(Φv)) = χ
−i/2
` (Φv) = q

−i/2
v ∈ Q and is independent of `. Hence, {ρi`}`6=p forms

a compatible system of representations of ′Wv defined over Q.
Now consider the case i = n. Let ρn`,j : Γv → GL(GrMj V

n
` ) denote the representa-

tion induced by ρn` on the graded parts GrMj V
n
` of the local monodromy filtration M•

on V n
` . By Cor.2.3, we know that the characteristic polynomial of ρn` (w) ∈ Q[T ] and

is independent of `. We also know from [23], that WMC holds for V n
` , i.e., for every

w ∈ Wv, the eigenvalues of ρn`,j(w) are all algebraic integers of complex absolute

value q
(n+j)α(w)/2
v . It follows, as before, that the character of the representations

ρn`,j has values in Q and is independent of `. We now apply [5, Prop.8.9] to conclude
the proof in this case.

�

Corollary 3.16. Let X be a smooth complete intersection of odd dimension n = 2m+1 and
of Hodge level 1, defined over F . Then CWD(XFv , i) holds true for all i.

Proof. In view of Thm. 1.3, we only need to establish that for i = n, Φv acts semi-simply
on V n

` . By a result of Deligne [4], we know that there is an abelian variety J(X) ( interme-
diate Jacobian of X ) defined over F and an isomorphism of Γ-modules, Hn

et(XF̄ ,Q`)(m) ∼=
H1
et(J(X)F̄ ,Q`). Thus our claim follows from the corresponding fact for H1

et(J(X)F̄ ,Q`). �

The next result is the analog of Cor. 3.13, in case of surfaces and smooth complete
intersections.

Corollary 3.17. Let the notation be as in Thm. 1.3

(1) If S is a smooth projective surface over F , then for every i 6= 2, there exists a
representation ρi of ′Wv defined over Q and a unique class [ πi ] ∈ Abi(Fv) such that

recFv ,bi([ πi ]) = [ ρi
/C ] = [ σρi`/C

] for every ` 6= p and embeddings σ : Q` ↪→ C.

When i = 2, there exists a representation ρ2 of ′Wv defined over Q and a unique
class [ π2 ] ∈ Ab2(Fv) such that

recFv ,b2([ π2 ]) = [ ρ2
/C ] = [ σρ2

`
ss

/C
] for every ` 6= p and embeddings σ : Q` ↪→ C.

(2) If X is a smooth complete intersection of dimension n in a projective space Pr, defined
over F , then for every i 6= n, there exists a representation ρi of ′Wv defined over Q
and a unique class [ πi ] ∈ Abi(Fv) such that

recFv ,bi([ πi ]) = [ ρi
/C ] = [ σρi`/C

] for every ` 6= p and embeddings σ : Q` ↪→ C.

When i = n, there exists a representation ρn of ′Wv defined over Q and a unique
class [ πn ] ∈ Abn(Fv) such that

recFv ,bn([ πn ]) = [ ρn
/C ] = [ σρn`

ss

/C
] for every ` 6= p and embeddings σ : Q` ↪→ C.

Proof. This follows from Thm. 1.3 and the local Langlands correspondence for Fv. �

4. Conjugacy class of Frobenius

The principal result of this section is Theorem 4.7, first we need some preliminaries.
12



Representations of Weil-Deligne groups and Frobenius conjugacy classes

4.1. The Algebraic Group H\ad and weakly neat elements. Let H be a reductive
algebraic group over a field K of characteristic 0 and K̄ an algebraic closure of K. The adjoint
action of Had on H gives a universal categorical quotient (Conj(H),Cl), where Conj(H) is an
algebraic variety over K and Cl : H → Conj(H) is the quotient map. The pair (Conj(H),Cl)
is also the universal categorical quotient for the action of H on itself by conjugation.

The derived group Hder
K̄

is the almost direct product of almost simple subgroups Hi, for

i ∈ I a finite indexing set. If Hder
K̄

has any almost direct factor of type SO(2ki)K̄ , then
there is an action which extends the above action. We briefly recall this. For details see [14]

and [17]. Let J ⊂ I such that for i ∈ J , Hi
∼= SO(2ki)K̄ with ki ≥ 4 and set H\

i := O(2ki)K̄ .
Define an algebraic group

H\ad =
∏
i∈J

H\ad
i ×

∏
i/∈J

Had
i ⊃ Had

K̄ .

There is a natural action of H\ad on HK̄ , which extends the adjoint action on Hder
K̄

and

is trivial on the center of HK̄ . Denote by Conj′(H)K̄ the categorical quotient of HK̄ under
this action of H\ad. Now, using the properties of categorical quotients, we can descend from
Conj′(H)K̄ to an algebraic variety Conj′(H) over K. We also get a quotient map (as above),
which we again denote by Cl : H → Conj′(H). Now, let Ω ⊇ K be any algebraically closed
field. From the functorial properties of the above action we deduce an adjoint map

Ad : H\ad(Ω)→ Aut(h⊗ Ω),

where h denotes the Lie algebra of H.
Now we discuss the notion of weakly neat elements. Fix a faithful K-linear representation

V of H. A semisimple element g ∈ H(Ω) is said to be weakly neat if 1 is the only root of
unity among the quotients λµ−1, with λ, µ being the eigenvalues of g.

For any positive integer n we denote by ϕn : H → H the n-th power map. Let Y/K
denote any one of the algebraic varieties Conj(H) or Conj′(H). The map ϕn is equivariant
for the action of conjugation. Since Y is a universal categorical quotient, this implies that
ϕn induces a map ϕ̄n : Y → Y such that Cl◦ϕn = ϕ̄n ◦Cl. The proof of the following lemma
(see for example [14, 2.7]) is left to the reader .

Lemma 4.2. Let Ω ⊇ K be an algebraically closed field. Let V be a finite dimensional
faithful K-linear representation of H and α, β ∈ H(Ω) be two weakly neat elements having
same characteristic polynomial in the representation V . If ϕ̄n(Cl(α)) = ϕ̄n(Cl(β)) for some
positive integer n, then Cl(α) = Cl(β).

4.3. Representations of Weil-Deligne groups with values in algebraic groups. We
generalize some of the notions about linear representations of Weil-Deligne groups, described
in §3.2.

Let H be an algebraic group over Q and ξ` : Γv → H(Q`) be an `-adic represen-
tation. By Grothendieck’s `-adic monodromy theorem, there exists a nilpotent element
N ′` ∈ Lie(H/Q`)(−1) and an open subgroup J ⊆ Iv such that for λ ∈ J , we have ξ`(λ) =
exp(N ′`t`(λ)). Now, by using the identification Q`

∼= Q`(1), we interpret N ′` as an element of
Lie(H/Q`) and we define as in §3.2,

(10) ξ′` : Wv → H(Q`), w 7→ ξ`(w)exp(−N ′l t`(Φ−α(w)
v w)).

A triple (H/Q` , ξ
′
`, N

′
`) as above is called a representation of the Weil-Deligne group ′Wv

of Fv with values in H/Q` . For a fixed `, we say that (H/Q` , ξ
′
`, N

′
`) is rational over Q ( as a

representation with values in H), if for every algebraically closed field Ω ⊃ Q` and for every
13
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σ ∈ AutQ(Ω), there exists a g ∈ H(Ω) such that

(11) σξ′`/Ω = g · ξ′`/Ω · g
−1 and N ′` ⊗

σ,Q`
1 = Ad(g)(N ′` ⊗

Q`
1),

where ξ′`/Ω denote the extension of scalars ξ′` ⊗Q`
Ω : Wv → H/Ω(Ω) and N ′` ⊗Q`

1 is the image

of N ′` in (Lie(H)⊗
Q
Q`) ⊗

Q`
Ω.

If in addition to (11), we have for every pair (`, `′) of prime numbers (different from p)
and every algebraically closed field Ω ⊃ Q`,Q`′ , an element g ∈ H(Ω) such that

(12) ξ′`/Ω = g · ξ′`′/Ω · g
−1 and N ′` ⊗

Q`
1 = Ad(g)(N ′`′ ⊗

Q`′
1),

then we say that the representations (H/Q` , ρ
i′
`, N

′
`), form a compatible system of represen-

tations of ′Wv ( with values in H).
Note that, as the action of H(Ω) factors through H(Ω)→ Had(Ω), H(Ω)-conjugacy may

be replaced by Had(Ω)-conjugacy everywhere. Now, suppose that H is a reductive algebraic
group, then as above we can define the algebraic group H\ad. To say that the representation
(H/Q` , ξ

′
`, N

′
`) is rational over Q modulo the action of H\ad, means that in (11) we require

that g ∈ H\ad(Ω). In a similar manner we make sense of the phrase compatible system of
representations of ′Wv modulo the action of H\ad

4.4. Conjugacy class in Mumford-Tate group. Let Gi∞ denotes the Mumford-Tate
group of the Hodge structure on the Betti cohomology group V i := H i

B(τX(C),Q). The
comparison isomorphism V i ⊗ Q`

∼= V i
` between Betti and `-adic cohomology, allows us to

identify Gi∞/Q` to an algebraic subgroup of GL(V i
` ). We denote by Gi` the global algebraic

monodromy group, defined as the Zariski closure of ρi`(ΓF ) in GL(V i
` ).

Proposition 4.5. Let X be as in Thm. 1.2. Fix i ∈ N and assume that all absolute Hodge
cycles in all tensor spaces formed by V i, V i ∨,Q(1) and Q(1)∨, are defined over F . Then, Gi`
is subgroup of Gi∞/Q` for every `.

Proof. Let X =
∏
rXr, where each Xr is one of the varieties of the the type mentioned in the

statement of the proposition. As seen in the proof of Lemma 3.10, h(Xr,F̄ ) ∈ Ob(Mav
AH(F̄ )),

for each r. As h(XF̄ ) = ⊗rh(Xr,F̄ ) and Mav
AH(F̄ ) is closed under tensor products, h(XF̄ ) ∈

Ob(Mav
AH(F̄ )).

Write M := hi(X); the algebraic groups GMF̄
and GM are stabilizers of all absolute Hodge

classes (AHC) and AHC that are defined over F , respectively, in all tensor spaces formed

by V i, V i ∨,Q(1) and Q(1)∨ (see [8, I, Principle A]). So, it follows from hypothesis that
GMF̄

= GM .

Now the Mumford-Tate group Gi∞ of the Hodge structure V i is the stabilizer of Hodge

classes relative to the embedding τ , in all tensor spaces formed by V i, V i ∨,Q(1) and Q(1)∨.
As h(XF̄ ) ∈ Ob(Mav

AH(F̄ )), all Hodge classes relative to τ are AHC (see [8, II, 6.27]). This
implies that Gi∞ = GMF̄

= GM .

Finally, as ρM,` : ΓF → GL(H`(M)) factorizes through GM (Q`) and ρM,` = ρi`, we con-
clude that Gi` is a subgroup of Gi∞/Q` .

�

Remark 4.6. (1) By [8, I, 2.9] there exists number fields verifying the hypothesis of
Proposition 4.5.

(2) The Proposition above pertains to the Mumford-Tate conjecture, which claims that
Gi∞/Q` = Gi`

◦
, for any smooth projective variety over F .
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Now, let X be as in Prop..4.5. Then, the triple (Gi∞/Q` , ρ
i′
`, N

′
i,`) is a representation of

the Weil-Deligne group ′Wv of Fv, with values in Gi∞/Q` .

For any finite extension F ′ of F we denote by ΓF ′ the absolute Galois group and by v′ an
extension of v to F ′. Let Iv′ , Wv′ and ′Wv′ denote the inertia, Weil and Weil-Deligne group
of F ′v′ , respectively. We also have a group homomorphism α′ : Wv′ → Z as in §1. By Φ′v we
mean an arithmetic Frobenius for this extension.

If XF ′ denotes base change of X to F ′, then the `-adic representation ρi`|ΓF ′ associated

to XF ′ induces a representation (Gi∞/Q` , ρ
i′
`|ΓF ′ , N

′
i,`) of the Weil-Deligne group ′Wv′ of Fv′ ,

with values in Gi∞/Q`

Theorem 4.7. Let the notation and hypotheses be as in Proposition4.5.

(i) If ρi`|Γv is potentially unramified representation for every ` 6= p and ρi`0(Φv) is weakly
neat for some prime number `0 6= p, then there exists a unique conjugacy class

Frobv,i ∈ Conj′(Gi∞)(Q)

such that Cl(ρi`(Φv)) = Frobv,i, ∀ ` 6= p.
(ii) If ρi`|Γv is a semi-stable representation for every ` 6= p and ρi`0(Φv) is weakly neat for

some prime number `0 6= p, then the representations (Gi∞/Q` , ρ
i′
`, N

′
i,`) are rational over

Q and form a compatible system of representations of ′Wv modulo the action of Gi
\ad

∞ .

Proof. (i) As before let us denote by M the motive hi(X). Let F ′ be a finite extension
of F such that MF ′ := hi(XF ′) ∈ Ob(Mav

AH(F ′)), as in Lemma 3.10. Let v′ be an an
extension of the valuation v to F ′ and Φv′ an arithmetic Frobenius for this extension.
Now, we have seen in the proof of Prop. 4.5 that Gi∞ = GMF̄

= GM , in particular

GMF̄
= GMF ′ . We also have Conj′(Gi∞) = Conj′(GMF ′ ) = Conj′(GM ) and ρMF ′/`

=

ρi`|Γv′ . Now, using the fact that ρi`|Γv is potentially unramified for all ` 6= p, it can

be checked (cf. the proof of [14, Thm. 1.1]) that there exists an element2 Frobv′,i ∈
Conj′(Gi∞)(Q) such that,

(13) Cl(ρi`(Φv′)) = Frobv′,i, ∀ ` 6= p.

Now, let the residual degree of the extension F ′v′/Fv be n. We denote by
ϕn : Gi∞ → Gi∞ the n-th power map and by ϕ̄n : Conj′(Gi∞)→ Conj′(Gi∞) the induced
map on Conj′(Gi∞). Then it follows easily from (13) and the fact that ϕ̄n is a finite
morphism, that

Cl(ρi`(Φv)) ∈ Conj′(Gi∞)(Q̄), ∀ ` 6= p.

Now, by hypothesis there exists a `0 such that ρi`0(Φv) is weakly neat. So, by Corollary

2.3, ρi`0(Φv) is weakly neat for every ` 6= p. Again, Corollary 2.3 and a repeated use

of Lemma 4.2, shows that Cl(ρi`(Φv)) (as an element of Conj′(Gi∞)(Q̄)) is independent
of `. We denote this element by Frobv,i. As Frobv,i ∈ Conj′(Gi∞)(Q`) for every ` 6= p,
Frobv,i is a Q-rational point of Conj′(Gi∞).

(ii) Now let the notation be as in part (i). By, applying [14, 3.9] to the motive MF ′ , we see

that for ` 6= p the representations (Gi∞/Q` , ρ
i′
`|ΓF ′ , N

′
i,`) are rational over Q and form a

compatible system of representations of ′Wv, modulo the action of Gi
\ad

∞ . In particular
by setting Φv′ := Φn

v , we get that for any fixed ` 6= p, algebraically closed field Ω ⊃ Q`

and σ ∈ AutQ(Ω), there exists a gσ ∈ Gi
\ad

∞ (Ω) such that

2In [14, eqn. 14] this was denoted by ClMFrv′
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(14) σρi
′

`/Ω(Φn
v ) = gσ · (ρi

′
`/Ω(Φn

v )) · g−1
σ and N ′i,` ⊗

σ,Q`
1 = Ad(gσ)(N ′i,` ⊗

Q`
1).

Thus we have (σρi
′
`/Ω(Φv))

n = (gσ ·(ρi
′
`/Ω(Φn

v )) ·g−1
σ )n. Now it follows from Corollary

2.3 that σρi
′
`/Ω(Φv)) and gσ · (ρi

′
`/Ω(Φv)) · g−1

σ have the same characteristic polynomial.

It now follows from a property of weakly neat elements ( cf. [18, 7.4]), that
σρi
′
`/Ω(Φv) = gσ · (ρi

′
`/Ω(Φv)) · g−1

σ .

As the monodromy operator N ′i,` is unchanged by finite base extension, it now follows

from (14) that (Gi∞/Q` , ρ
i′
`, N

′
i,`) is rational over Q modulo the action of Gi

\ad

∞ .

The compatibility condition is checked in a similar manner.
�

Remark 4.8. The main differences between Theorem 4.7 and [14, Theorem 1.1 & corollary
1.3], are the following :

(a) in part (i) (resp. (ii)) of Theorem 4.7 we just need that ρi`|Γv is potentially unramified
(resp. semi-stable) representation for every ` 6= p, while in [loc.cit.] a stronger condition
was used namely X has good (resp. semi-stable) reduction at v;

(b) here we only know that there is a finite extension F ′ of F such that the motive
hi(XF ′) ∈ Ob(Mav

AH(F ′)) ( by Lemma 3.10), while in [loc.cit.] we assumed this property
over the base field F ;

5. Conjugacy class of Crystalline Frobenius

We follow the notation of §1 and we introduce some more notation. The ring of Witt
vectors of kv is denoted by W (kv) and σ : W (kv) → W (kv) is the morphism induced by
the Frobenius automorphism of kv. For any finite extension F ′ of F , we denote by v′ an
extension of v to F ′; F ′v′ is the completion of F ′ at v′; kv′ the residue field of F ′v′ . The ring of
Witt vectors of kv′ is denoted by W (kv′) and σ′ : W (kv′)→W (kv′) is the morphism induced
by the Frobenius automorphism of kv′ . The fraction field of W (kv′) is denoted by F 0

v′ . Note
that F 0

v and F 0
v′ naturally identifies to the maximal unramified extension of Qp inside Fv and

Fv′ , respectively.
Consider a smooth projective algebraic variety Y over F with potential good reduction

at v. Fix a i ∈ N and denote by N the motive hi(Y ) ∈ Ob(MAH(F )). Assume that the
extension of scalars NF̄ ∈ Ob(Mav

AH(F̄ )). Thus, by taking a large enough finite extension
F ′ of F , we may assume that Y has good reduction over F ′ and NF ′ ∈ Ob(Mav

AH(F ′)). Let
Yv′ denote the reduction of YF ′ at v′ and 〈NF ′ ,Q(1)〉⊗ denote the Tannakian subcategory
of MAH(F ′), ⊗-generated by NF ′ and the Tate motive. It is well known from the CCris-
conjecture (cf.[11, Th.3.2.3]) that Hp(NF ′) = H i

et(Y/F̄ ,Qp) is a crystalline representation of

Γv′ and its associated filtered Dieudonné module is isomorphic to H i
Cris(Yv′) ⊗ F 0

v′ . This
allows us to define the crystalline realization (cf.[27, §4.1]), i.e., a fiber functor

HNF ′ ,Cris : 〈NF ′ ,Q(1)〉⊗ → VectF 0
v′
,

which associates to any motive L ∈ 〈NF ′ ,Q(1)〉⊗ its associated filtered Dieudonné Fv′-module
(Hp(L)⊗Qp BCris)

Γv′ , where BCris is the F 0
v′ [Γv′ ]-algebra introduced by Fontaine (cf. [9]). We

call this functor the crystalline realization for the subcategory of motives 〈NF ′ ,Q(1)〉⊗.We
write GNF ′ ,Cris := Aut⊗(HNF ′ ,Cris) for the automorphism group of the fiber functor HNF ′ ,Cris.

The absolute Frobenius endomorphism Frabs of Yv′ induces a σ′-linear endomorphism
FrCris : H i

Cris(Yv′/W (kv′)) → H i
Cris(Yv′/W (kv′)), on crystalline cohomology groups of Yv′ .
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Now, let |kv′ | = ps
′
, then Frs

′
Cris is a W (kv′)-linear endomorphism of H i

Cris(Yv′/W (kv′)). Let
us denote by

ΦCris : H i
Cris(Yv′/W (kv′))⊗ F 0

v′ → H i
Cris(Yv′)⊗ F 0

v′ ,

the degree i crystalline Frobenius of YF ′ at v′, i.e., the F 0
v′-linear endomorphism Frs

′
Cris ⊗ 1.

Now, Φ′Cris defines an element Φ′N,Cris ∈ GNF ′ ,Cris(F
0
v′).

As before the conjugation action of GNF ′ ,Cris gives us a universal categorical quotient

(Conj′(GNF ′ ,Cris),ClCris). We also have the universal categorical quotient (Conj′(GNF ′ ),Cl)

for the conjugation action of GNF ′ := Aut⊗(Hτ |〈NF ′ ,Q(1)〉⊗). For every ` 6= p the `-adic rep-

resentation ρNF ′ ,` : ΓF ′ → GNF ′ (Q`) defines an element Cl(ρNF ′ ,`(Φv′)) ∈ Conj′(GNF ′ )(Q`).
Now, it is well known ( cf.[8, II, Th.3.2]) from the general theory of Tannakian categories

that GNF ′ ,Cris is an inner form of GNF ′ ⊗Q F
0
v′ . It follows (see for example [26]) that there is

an isomorphism Conj′(GNF ′ ,Cris) ∼= (Conj′(GNF ′ )) ⊗Q F
0
v′ , which allows us to make sense of

the following

Theorem 5.1. Let Y be any smooth projective algebraic variety over F with potential good
reduction at a non-archimedean valuation v of F . For any fixed i ∈ N write N := hi(Y ) and
assume that NF̄ ∈ Ob(Mav

AH(F̄ )). Then, there exists a finite extension F ′ of F and a unique
conjugacy class

Frob′N ∈ Conj′(GNF ′ )(F
0
v′),

such that ClCris(Φ
′
N,Cris) = Frob′N and Cl(ρNF ′ ,`(Φv′)) = Frob′N , ∀ ` 6= p.

Proof of Theorem 5.1. We shall first find a finite extension of F and then show that it is the
right one. To avoid confusion, we shall denote all successive extensions of F by F ′.

Recall, as in the proof of Propn. 3.11, there is a finite extension F ′ of F , an abelian variety
A over F ′ such that NF ′ ∈ 〈h1(A),Q(1)〉⊗. Further, this induces a unique homomorphism
of algebraic groups θ : GA → GNF ′ satisfying θ(Q`) ◦ ρA,` = ρNF ′ ,` for every prime number `
(where θ(Q`) is the induced map on Q`-valued points).

Lemma 5.2. There exists an abelian variety A over F ′ as above with potential good reduction
at v′.

Proof. First we note that for any abelian variety A, by Grothendieck’s `-adic monodromy
theorem, Iv′ (possibly after passing over to another finite extension of F ) acts unipotently
on H1

et(A/F̄ ,Q`) ∼= W ⊗ Q`, where W := H1
B(τA,Q). As Y has potential good reduction

at v, we may assume that Iv′ acts trivially on H`(N). Now, by [14, Lemma 3.10] we may
choose A such that GadA

∼= GadNF ′
. This combined with the fact that θ(Q`) ◦ ρA,` = ρNF ′ ,`,

implies that I := ρA,`(Iv′) ⊆ ZA(Q`), where ZA denotes the center of GA. Fix an algebraic
closure Ω of Q`. For any σ ∈ I ⊆ ZA(Q`), denote by σ̄ the image of σ in ZA/Ω(Ω). As GA
is reductive, ZA/Ω is a diagonalizable algebraic group. Since GA is a subgroup of GL(W ),

there exists a matrix P ∈ GLm(Ω) such that P · σ̄ · P−1 is of the form diag(λ1, · · · , λm),
where m := dimW . As σ̄ is unipotent, λ1 = · · · = λm = 1, i.e. σ̄ is the identity matrix.
Since σ ∈ I was an arbitrary element, I is trivial. Now, using the Néron-Ogg-Shafarevich
condition [25, Thm. 1], we conclude that A has potential good reduction at v′. �

End of the proof of Theorem 5.1: By passing over to another finite extension we may
suppose that A has good reduction at v′. Now, we have the crystalline realization

HA,Cris : 〈h1(A),Q(1)〉⊗ → VectF 0
v′

and we write GA,Cris := Aut⊗(HA,Cris). As before, the crystalline Frobenius element for A at
v′ defines an element ΦA,Cris ∈ GA,Cris(F

0
v′). By passing over to another finite extension we

may suppose that ΦA,Crisis weakly neat. Again, as GA,Cris is an inner form of GA⊗QF
0
v′ , there

17
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is an isomorphism Conj′(GA,Cris) ∼= (Conj′(GA)) ⊗Q F
0
v′ . For our purpose we identify these

two varieties. Now, by [17, 4.2] we know that the there is an element ClAFrv ∈ Conj′(GA)(Q)
such that Cl(ρA,`(Φv′)) = ClAFrv ∀ ` 6= p and its image in Conj′(GA,Cris)(F

0
v ) coincides with

ClCris(ΦA,Cris). Let us write FrobA ∈ Conj′(GA)(F 0
v′) = Conj′(GA,Cris)(F

0
v′), for this image.

By universal property of (universal) categorical quotients we have the following commu-
tative diagram:

(15) GA
Cl //

θ

��

Conj′GA

θ̄
��

GNF ′
Cl // Conj′GNF ′

Again, the inclusion functor 〈NF ′ ,Q(1)〉⊗ → 〈h1(A),Q(1)〉⊗, induces a unique homomor-
phism

θcris : GA,Cris → GNF ′ ,Cris.

As before, this gives us the following commutative diagram :

(16) GA,Cris
ClCris//

θcris

��

Conj′GA,Cris

θ̄Cris

��
GNF ′ ,Cris

ClCris// Conj′GNF ′ ,Cris

We set Frob′N := ClCris(Φ
′
N,Cris) ∈ Conj′(GNF ′ ,Cris)(F

0
v′). We shall show that

Cl(ρNF ′ ,`(Φv′)) = Frob′N for every ` 6= p.

By functoriality, θcris(F
0
v′)(ΦA,Cris) = Φ′N,Cris, where θcris(F

0
v′) is the induced map on

F 0
v′-valued points. Thus, by commutativity of (16) we obtain Frob′N = θ̄Cris(F

0
v′)(FrobA).

Now, as θ(Q`) ◦ ρA,` = ρNF ′ ,` and Cl(ρA,`(Φv′)) = FrobA for all ` 6= p, it follows that

Cl(ρNF ′ ,`(Φv′)) = θ̄(F 0
v′)(FrobA) as elements of Conj′(GNF ′ )(F

0
v′) = Conj′(GNF ′ ,Cris)(F

0
v′).

Thus the proposition will be proved if we can show that Frob′N = θ̄(F 0
v′)(FrobA). In other

words we need to show that θ̄Cris(F
0
v′)(FrobA) = θ̄(F 0

v′)(FrobA). This follows from the next
lemma.

�

Lemma 5.3. The morphism θ̄/F 0
v′

:= θ̄ ⊗Q id : Conj′(GA) ⊗Q F
0
v′ → Conj′(GNF ′ ) ⊗Q F

0
v′

coincides with θ̄Cris.

Proof. AsG∗,Cris is an inner form ofG∗⊗QF
0
v′ , where ∗ = NF ′ or A we can identifyG∗,Cris⊗F 0

v′

Q̄p with G∗⊗Q Q̄p. Then, under this identification and by definition of θ and θCris, it follows
that the homomorphisms of algebraic groups

(17) θ/Q̄p := θ ⊗Q id : GA ⊗Q Q̄p → GNF ′ ⊗Q Q̄p and

θCris/Q̄p := θCris ⊗F 0
v′

id : GA,Cris ⊗F 0
v′
Q̄p → GNF ′ ,Cris ⊗F 0

v′
Q̄p, are identical.

It follows from (17), that θ̄/Q̄p = θ̄Cris/Q̄p . As GA,Cris is geometrically reducible (as alge-

braic variety over F 0
v′), so is Conj′(GA,Cris). Now, it is a well known fact that if two morphisms

f, g : Y → Z of algebraic varieties Y and Z are identical over the algebraic closure of the
base field and Y is geometrically reducible, then f and g are identical. By using this fact we
conclude that θ̄/F 0

v′
= θ̄Cris. �
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Proof of Theorem 1.5. By applying Theorem 5.1 to X we obtain an extension F ′ of F and
an element Frob′M ∈ Conj′(GMF ′ )(F

0
v′). Let n be the residual degree of the F ′v′/Fv. By

hypothesis GM is connected, which implies that it is geometrically connected because GM
is an algebraic group. In particular GM ⊗Q Q̄p

∼= GM,Cris ⊗F 0
v′
Q̄p is connected. This implies

that GM,Cris is connected. Now, all Hodge cycles relative to the embedding τ : F ↪→ C on M
are absolute Hodge cycles, because M ∈ Ob(Mav

AH(F )). This implies that G0
M = GMF̄

(see
[8, II, 6.23]). Thus, in our situation GM = GMF̄

= GMF ′ and similarly GMF ′ ,Cris = GM,Cris.

We also get Conj′(GMF ′ ) = Conj′(GM ) and Conj′(GMF ′ ,Cris) = Conj′(GM,Cris).
As the crystalline Frobenius element for XF ′ at v′ is the n-th power of the crystalline

Frobenius element for X at v, so (ΦM,Cris)
n = Φ′M,Cris (as elements of GM,Cris(F

0
v′)).

Now, let ϕn : GM,Cris → GM,Cris be the n-th power map. The map ϕn is equivariant for
the action of conjugation. By the universal property of universal categorical quotient, ϕn
induces a map ϕ̄n : Conj′(GM,Cris) → Conj′(GM,Cris) such that ClCris ◦ ϕn = ϕ̄n ◦ ClCris.
Write FrobM := ClCris(ΦM,Cris) ∈ Conj′(GM,Cris)(F

0
v ) ⊂ Conj′(GM,Cris)(F

0
v′), then it follows

from the above discussion that

(18) ϕ̄n(F 0
v′)(FrobM ) = Frob′M .

By [14, 1.1] there is an element

ClMFrv ∈ Conj′(GM )(Q) such that Cl(ρM,`(Φv)) = ClMFrv ∀ ` 6= p.

Using the inclusions

Conj′(GM )(Q) ⊂ Conj′(GM )(F 0
v ) ∼= Conj′(GM,Cris)(F

0
v ) ⊂ Conj′(GM,Cris)(F

0
v′),

we regard ClMFrv as an element of Conj′(GM,Cris)(F
0
v′). By taking Φv′ := Φv

n for the
arithmetic Frobenius for the extension of F ′, we have Cl((ρM,`(Φv))

n) = Cl(ρMF ′ ,`(Φv′)).

It follows from this and (18), that ϕ̄n(F 0
v′)(ClMFrv) = ϕ̄n(F 0

v′)(FrobM ) as elements of
Conj′(GM,Cris)(F

0
v′). Since ClMFrv,FrobM ∈ Conj′(GM,Cris)(F

0
v ), we get

(19) ϕ̄n(F 0
v )(ClMFrv) = ϕ̄n(F 0

v )(FrobM ) ∈ Conj′(GM,Cris)(F
0
v ).

Now, fix a prime number ` and let Ω ⊃ Q̄p, Q̄` be an algebraically closed field. As M =
hi(X), we have H`(M) = Hi

et(XF̄ ,Q`). Again by the CCris conjecture (cf. [11, Th.3.2.3]),
we have HM/Cris(M) = H i

Cris(Xv/W (kv)) ⊗ F 0
v . As X has good reduction at v, we can

use Deligne’s result on Weil conjectures [6, I.6] and smooth specialization (proper-smooth
base change)to conclude that for every ` 6= p, the characteristic polynomial of ρM,`(Φv)
(seen as an element of GL(H`(M)) has coefficients in Q and is independent of `. Next
by a result of Katz and Messing [12, Theorem 1], we conclude that ΦM,Cris (seen as an
element of GL(HCris(M))) has the same characteristic polynomial as ρM,`(Φv). This implies
in particular that if ρM,`(Φv) is weakly neat then ΦM,Cris is also weakly neat. Now we have
two weakly neat elements ρM,`(Φv) and ΦM,Cris in GM (Ω) ∼= GM,Cris(Ω) which have same
characteristic polynomial. Therefore, by Lemma 4.2 and (19) we conclude that FrobM =
ClMFrv. In other words, Cl(ρM,`(Φv)) = FrobM .

�

By using the previous theorem (and its proof) combined with Lemma 3.10, we easily relate
the element Frobv,i ∈ Conj′(Gi∞)(Q) of Theorem 4.7 to the conjugacy class of the crystalline
Frobenius ΦCris,i associated to the motive hi(X).

Corollary 5.4. Let the notation and hypothesis be as in Proposition 4.5. Let v be a non-
archimedean valuation and i ∈ N. Assume that X has good reduction at v and there is a
prime number `0 such that ρi`(Φv) is weakly neat. Then, the image of the element Frobv,i in
Conj′(Gi∞)(F 0

v ) coincides with ClCris(ΦCris,i).
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Remark 5.5. It is natural to wonder about what one can say concerning Serre’s conjecture
1.4, for motives which do not belong toMav

AH(F ) and whether there also exists an analogue
of Thm. 1.5 for them. We discuss a potential candidate. Let f be a normalized newform
of weight w > 2, level N and character χ (for ease of exposition, we shall assume that the
field generated by the Fourier coefficients of f is Q). Let M(f) be the Grothendieck motive
associated to f , as constructed by Scholl [22]. It is well-known that if f is not of CM type,
then M(f) is not an object of Mav

AH(Q). Moreover, by considering M(f) as an element of
MAH(Q), we can construct as before, the motivic Galois group, corresponding to the Betti-
realization of M(f). Now let p - N be a prime number, then by [22], we know that M(f)
has good reduction at p. This allows us to frame Conjecture 1.4 for M(f) at such a prime p.
Finally, by [ibid.], one can also define the crystalline realization of M(f) at p and hence the
motivic (Tannakian) group associated to this realization. Then we may ask whether there
exists an analogue of Thm. 1.5 for M(f).
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1994. Périodes p-adiques (Bures-sur-Yvette, 1988).
[11] Luc Illusie. Crystalline cohomology. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure

Math., pages 43–70. Amer. Math. Soc., Providence, RI, 1994.
[12] Nicholas M. Katz and William Messing. Some consequences of the Riemann hypothesis for varieties over

finite fields. Invent. Math., 23:73–77, 1974.
[13] S. L. Kleiman. Algebraic cycles and the Weil conjectures. In Dix exposés sur la cohomologie des schémas,
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Lond. Math. Soc. (2), 79(1):53–71, 2009.
[18] Rutger Noot. The system of representations of the Weil-Deligne group associated to an abelian variety.

Algebra Number Theory, 7(2):243–281, 2013.
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[21] Ulrich Schlickewei. On the André motive of certain irreducible symplectic varieties. Geom. Dedicata,
156:141–149, 2012.

[22] A. J. Scholl. Motives for modular forms. Invent. Math., 100(2):419–430, 1990.

[23] Peter Scholze. Perfectoid spaces. Inst. Hautes Études Sci. Publ. Math., (116):245–313, 2012.

20

https://hal.archives-ouvertes.fr/file/index/docid/1068065/filename/MonoF_Motives.pdf


Representations of Weil-Deligne groups and Frobenius conjugacy classes

[24] Jean-Pierre Serre. Propriétés conjecturales des groupes de Galois motiviques et des représentations l-
adiques. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 377–400. Amer.
Math. Soc., Providence, RI, 1994.

[25] Jean-Pierre Serre and John Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:492–517,
1968.

[26] Alexei Skorobogatov. Torsors and rational points, volume 144 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2001.

[27] Jean-Pierre Wintenberger. Torseur entre cohomologie étale p-adique et cohomologie cristalline; le cas
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