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ON FROBENIUS CONJUGACY CLASS OF SOME ALGEBRAIC

VARIETIES OVER NUMBER FIELDS

ABHIJIT LASKAR

Fakultät für Mathematik, Universität Regensburg, Germany.

Abstract. Let X be a smooth projective algebraic variety over a number field F . The
action of Gal(F̄ /F ) on `-adic cohomology groups Hi

et(X/F̄ ,Q`), induces Galois representa-

tions ρi` : Gal(F̄ /F ) → GL(Hi
et(X/F̄ ,Q`)). Fix a non-archimedean valuation v on F . Let

Fv be the completion of F at v, Φv be any arithmetic Frobenius element at v and Wv

be the Weil group of Fv. First, we exhibit new cases of X for which the characteristic
polynomial of ρi`(w) has coefficients in Q and independent of `, for any w ∈ Wv. Then

we establish new cases, for which the representations (ρi
′
`, N

′
i,`) of the Weil-Deligne group

′Wv of Fv, are Frobenius semisimple and form a compatible system of representations of
′Wv, thus giving partial answer to a conjecture of Deligne, Tate, et al. Finally, we treat the
question of `-independence of the conjugacy classes of ρi`(Φv) in certain natural subgroups
of GL(Hi

et(X/F̄ ,Q`)), both when ` is different or equal, to the residual characteristic at v.

1. Introduction

This paper is concerned with certain (related) questions, about the action of Frobenius
elements on the etale cohomology groups of algebraic varieties, defined over number fields.
We’ve tried to answer these questions in a significant number of new cases and in the process
we gained new insight into these questions.

1.1. Background and notation. Throughout, F is a number field, with an embedding
τ : F ↪→ C, v is a non-archimedean valuation on F and Fv is the completion. By F̄ we
denote a fixed separable algebraic closure of F , τ̄ : F̄ ↪→ C is an extension of τ , v̄ is an
extension of v to F̄ and F̄v is the localization of F̄ at v̄. The residue fields of Fv and F̄v
are denoted by kv and k̄v, respectively, and the characteristic of kv is p > 0. We write
Γv := Gal(F̄v/Fv) ⊂ ΓF := Gal(F̄ /F ) and Iv ⊂ Γv is the inertia group. An arithmetic
Frobenius Φv ∈ Γv is an element which induces the Frobenius automorphism φv of k̄v. We
denote by Wv the Weil group of Fv i.e. the dense subgroup formed by elements w ∈ Γv
which induce on k̄v an integral power φv

α(w). The map α : Wv → Z thus defined is a group
homomorphism and ker(α) = Iv. The Weil-Deligne group ′Wv of Fv is the group scheme
over Q defined as the semi-direct product of Wv with the additive group Ga over Q, on which
Wv acts as : w · x · w−1 = |kv|α(w) · x

For simplicity of the proofs, we’ll assume all our varieties to be geometrically irreducible;
this condition can be loosened. Consider a smooth projective algebraic variety X over F .
The action of ΓF on the geometric `-adic cohomology groups V i

` := H i
et(X/F̄ ,Q`), induces

Galois representations ρi` : ΓF → GL(V i
` ). A fundamental question in arithmetic geometry

is the following,
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Problem 1.2 (Serre-Tate, [30]). Is it true that for every w ∈Wv, the characteristic polyno-
mial P i`,v(w, T ) := det(1− ρi`(w)T ;V i

` ), of the Q`-linear map ρi`(w) has coefficients in Q and
is independent of ` ?

By Deligne’s result on the Weil conjectures [9], we know that the answer to Prob.1.2 is
affirmative, if we assume that variety X has good reduction at v. But the case of bad-
reduction is wide open. We show in Thm. 1.6, that the answer to 1.2 is always true, if we
assume that the complex algebraic variety τX := X ×F,τ C verifies the degree i Künneth
standard conjecture for Betti cohomology theory. This criterion is then used to deduce
many new cases, where 1.2 holds true, such as hyperkähler varieties of K3[n] type, moduli
spaces of stable vector bundles of coprime rank and degree over smooth projective curves
and unirational varieties of dimension ≤ 4; see Cor.1.7 for the full list of new cases.

Another fundamental question, asked by Serre [29, 12.4], is whether the operators ρi`(Φv)
are semisimple. This is relevant, for instance, to the local Langlands correspondence for
general linear groups, which state that there are unique bijections between the equivalence
classes of Frobenius semisimple n-dimensional linear representations of ′Wv over Q̄` to the
equivalence classes of irreducible smooth representations of GLn(Fv) over Q̄`. Deligne has

shown how to attach to ρi`, a linear representation ρi` := (V i
` , ρ

i′
`, N

′
i,`) of ′Wv over Q`, where

ρi
′
` is a continuous representation of Wv and N ′i,` is the associated monodromy operator.

These ρi` are the basic source of linear representations of ′Wv. But, whether they are Frobe-

nius semisimple is unknown in general. Thm. 1.8 establishes the semi-simplicity question for
a class of algebraic varieties, which includes for example, hyperkähler varieties of K3[n] type,
moduli spaces of stable vector bundles of coprime rank and degree over smooth projective
curves and unirational varieties of dimension ≤ 3.

The representations ρi` are also subject to the following conjecture of Deligne, Tate,et. al

, cf.[13, 2.4.3]

Conjecture 1.3 (CWD(XFv , i) ). The system {ρi`}`6=p forms a compatible system ( in the

sense of [8, 8.8] ) of linear representations of ′Wv.

The notion of compatible system considered here is a strong one ( see §3.2). Theorem 1.8
shows that Conjecture 1.3 holds for the above mentioned class of algebraic varieties which
satisfies Frobenius semi-simplicity. Theorem 1.9 establishes a weaker version of Conj. 1.3 for
surfaces and complete intersections.

Now, let Gi∞ denotes the Mumford-Tate group of the Hodge structure on the Betti co-
homology group V i := H i

B(τX(C),Q). Conjecture 1.3 has a sharper reformulation, if one
assumes the Hodge conjecture. In that case, ρi` factors through Gi∞(Q`) and it is expected
that the {ρi`} 6̀=p forms a compatible system ( in the sense of [8, 8.11] ) of representations

of ′Wv with values in the algebraic group Gi∞. In its full generality, this is unknown even
for abelian varieties. Theorem 1.11 shows that, after a finite base extension, this conjecture
holds in certain special cases, without assuming the Hodge conjecture. A conjecture, similar
to the one above, can be also be formulated in terms of motivic Galois groups. First, recall
that Grothendieck’s standard conjectures on algebraic cycles predict that the category of
motives for homological equivalence of algebraic cycles coincides with the category of nu-
merical(Grothendieck) motives and is Tannakian [15, Cor.2]. This would imply in particular
that the action of the Galois group ΓF on the `-adic realization H`(M) of any motive M
over F , factors as

ρM,` : ΓF → GM (Q`),

where GM is the motivic Galois group of M . This is the group associated, via the Betti
realization functor Hτ , to the Tannakian subcategory generated by M and the Tate motive.
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Now, let (Conj(GM ),Cl) be the universal categorical quotient of GM for its action on itself
by conjugation. For every ` 6= p, ρM,`(Φv) defines an element Cl(ρM,`(Φv)) ∈ Conj(GM )(Q`).

Conjecture 1.4 (Serre[29, 12.6]). If M is a motive with good reduction at v, then
Cl(ρM,`(Φv)) ∈ Conj(GM )(Q), ∀ ` 6= p and is independent of `.

Special cases of this conjecture were studied in [18] and [21]. The case when ` = p, is
more mysterious. One of our main result, Thm.1.12, sheds some light on this mystery, in
certain special cases which includes motives of hyperkähler variety of K3[n] type, moduli
spaces of stable vector bundles of coprime rank and degree over smooth projective curves
and unirational varieties of dimension ≤ 3.

1.5. Main results. In what follows, all algebraic cycles and Chow groups are with rational
coefficients. Let Y be any complex algebraic variety Y of dimension d.
Let γdB : CHd(Y × Y )→ H2d

B (Y (C)× Y (C),Q)(d), be the cycle class map from codimension
d algebraic cycles on Y × Y to the Tate twisted degree 2d Betti cohomology of Y × Y . The
Künneth isomorphism H2d

B (Y (C) × Y (C),Q)(d) ∼= ⊕2d
i=0H2d−i

B (Y (C),Q) ⊗ Hi
B(Y (C),Q)(d),

gives us a decomposition γdB([∆]) =
∑2d

i=0 π
i, of the class of the diagonal sub-variety ∆ of

Y × Y . To say that the degree i Künneth standard conjecture (w.r.t Betti Cohomology) is
true for Y , means that there is a correspondence zi ∈ CHd(Y × Y ) such that γdB(zi) = πi.

Theorem 1.6. Let X be any smooth projective variety over F . Fix a i ∈ N and as-
sume that the the degree i Künneth standard conjecture (w.r.t Betti Cohomology) holds for
τX. Then, for every ` 6= p and w ∈ Wv with α(w) ≤ 0, the polynomial P i`,v(w, T ) ∈
Z[T ] and is independent of `.

The above result is surprising, since a priori, the automorphisms ρi`(w) are not induced
by algebraic cycles on X ×X. As a consequence of the theorem, we find positive response
to Prob.1.2 in the following cases :

Corollary 1.7. Let X be a smooth projective variety over F which is a finite product of
hyperkähler varieties of K3[n] type; moduli spaces of stable vector bundles of coprime rank
and degree over smooth projective curves; unirational varieties of dimension ≤ 4; uniruled
varieties of dimension ≤ 3; curves, surfaces, abelian varieties and smooth complete intersec-
tions in projective spaces. Then, for every i ∈ N, ` 6= p and w ∈ Wv with α(w) ≤ 0, the
polynomial P i`,v(w, T ) ∈ Z[T ] and is independent of `.

Special cases of Cor.1.7, such as abelian varieties (cf.[30]), surfaces (cf.[23]) and smooth
complete intersection in projective spaces (cf.[23]), had been previously proved using methods
quite different from ours. Thanks to the motivic nature of Thm. 1.6, we deduce these known
cases and much more, at once.

Equipped with Cor.1.7, we can now handle the questions about representations of the
Weil-Deligne groups.

Theorem 1.8. Let X a smooth projective variety over F which is a finite product of hy-
perkähler varieties of K3[n] type, unirational varieties of dimension ≤ 3, uniruled surfaces,
moduli spaces of stable vector bundles of coprime rank and degree over smooth projective
curves, Fermat hypersurfaces, curves and abelian varieties. Then, for every i ∈ N and prime
number ` 6= p

(i) the continuous representation ρi
′
` : Wv → GL(V i

` ) is a semisimple representation of
Wv and ;

(ii) the CWD(XFv , i) conjecture 1.3, holds true.

Previously, Thm.1.8, was only known to hold for i = 1 and X a curve or an abelian variety,
cf. [8]. For surfaces and complete intersections, we show the following result.
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Theorem 1.9. (1) Let S be a smooth projective surface over F . Then CWD(SFv , i)
holds true i 6= 2. For i = 2, the system {ρ2

`
ss}

`6=p
forms a compatible system of linear

representations of ′Wv defined over Q.
(2) Let X be a smooth complete intersection of dimension n in a projective space Pr,

defined over F . Then CWD(XFv , i) holds true for i 6= n. For i = n, the system
{ρn`

ss}
` 6=p

forms a compatible system of linear representations of ′Wv defined over Q.

In the previous theorem, ρ∗`
ss denotes the semi-simplification of ρ∗` ( see §.3.11). Cor. 3.13,

shows that for complete intersection of Hodge level 1, CWD(XFv , i) holds true for all i.
Now, when X is as in Cor.1.7, then we see that the conjugacy class of ρi`(Φv) in GL(V i) is

rational over Q and independent of `, in the sense of [28, I, §2.4]. We can sharpen this last
conclusion, as well as Theorem 1.8(ii), by studying the properties of the Mumford-Tate group
Gi∞ of the Hodge structure V i. First note that the comparison isomorphism V i ⊗ Q`

∼= V i
`

between Betti and `-adic cohomology, allows us to identify Gi∞/Q` to an algebraic subgroup

of GL(V i
` ). We denote by Gi` the global algebraic monodromy group, defined as the Zariski

closure of ρi`(ΓF ) in GL(V i
` ).

Proposition 1.10. Let X be as in Thm. 1.8. Fix i ∈ N and assume that all absolute Hodge
cycles in all tensor spaces formed by V i, V i ∨,Q(1) and Q(1)∨, are defined over F . Then, Gi`
is subgroup of Gi∞/Q` for every `.

The Proposition above pertains to the Mumford-Tate conjecture, which claims that
Gi∞/Q` = Gi`

◦
, for any smooth projective variety over F .

As Gi∞ is a reductive algebraic group, we can construct the universal categorical quotient
(Conj(Gi∞),Cl) for the action of Gi∞ on itself by conjugation. If we are in the situation of
Proposition 1.10, then ρi`(Φv) defines an element

Cl(ρi`(Φv)) ∈ Conj(Gi∞)(Q`) for every ` 6= p.

In this situation, we can also associate to ρi`, a representation (Gi∞/Q` , ρ
i′
`, N

′
i,`) of ′Wv

with values in Gi∞/Q`(see §4 for details). The notion of rationality and compatibility for

representations of ′Wv with values in an algebraic group can be defined (see [8, 8.11]), similar
to the case of linear representations; see §4.

Theorem 1.11. Let the notation and hypotheses be as in Proposition1.10.

(i) If ρi`|Γv is potentially unramified representation for every ` 6= p and ρi`0(Φv) is weakly
neat for some prime number `0 6= p, then there exists a unique conjugacy class

Frobv,i ∈ Conj′(Gi∞)(Q)

such that Cl(ρi`(Φv)) = Frobv,i, ∀ ` 6= p.
(ii) If ρi`|Γv is a semi-stable representation for every ` 6= p and ρi`0(Φv) is weakly neat for

some prime number `0 6= p, then the representations (Gi∞/Q` , ρ
i′
`, N

′
i,`) are rational over

Q and form a compatible system of representations of ′Wv modulo the action of Gi
\ad

∞ .

Roughly speaking, (Conj′(Gi∞),Cl) refers to a modification of (Conj(Gi∞),Cl), which we

need to make when the derived group Gi
der

∞/Q̄ of Gi∞/Q̄ has certain factors of type D. It is the

quotient for the action of a slightly larger group Gi
\

∞ on Gi∞ that extends the conjugation

action. If Gi
der

∞/Q̄ has no factors of the above type, then (Conj′(Gi∞),Cl) coincides with

(Conj(Gi∞),Cl). A similar modification is made in part (ii) of the theorem (see §4 for more
on this and for the technical condition of weak neatness)
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By assuming a stronger hypothesis that the variety itself has good (resp. semi-stable)
reduction at v, results similar to Thm.1.11, were obtained for any i ∈ N and X any finite
product of K3 surfaces, abelian varieties, Fermat hypersurfaces and curves, in [18]. Under
those hypothesis the case of i = 1 and X an abelian variety was shown by Noot in [21] and
[22]. For other improvements over these results, see Remark 4.6.

In the final section of the paper we investigate conjecture 1.4, for the case ` = p. As the
standard conjectures remain unsolved, we work in the framework of Tannakian category of
motivesMAH(F ) for absolute Hodge cycles [11]. This category has many desired properties
of Grothendieck motives, unconditionally. Of course, it is well known that if the Hodge
conjecture is true, then these categories coincide.

Let X/F be a smooth proper algebraic variety with good reduction at v. Suppose that
the motive M := hi(X) ∈ Ob(Mav

AH(F )) i.e. the full Tannakian subcategory of MAH(F )
generated by abelian varieties and Artin motives. The CCris-conjecture (cf. [14, Th. 3.2.3])
proved by Fontaine-Messing, Faltings and Tsuji, allows us to define the crystalline realization
( cf.[31, §4.1]), i.e., a fibre functor HM,Cris : 〈M,Q(1)〉⊗ → VectF 0

v
. We put GM,Cris for the

automorphism group of HM,Cris. The action of GM,Cris on itself by conjugation, provides a
universal categorical quotient (Conj(GM,Cris),ClCris).

Let Xv denote the special fibre of a smooth proper model of X over the ring of integers of
Fv. Denote the ring of Witt vectors of kv by W (kv) and by F 0

v the fraction field of W (kv). Fix
a i ∈ N and let ΦCris : H i

Cris(Xv/W (kv))⊗ F 0
v → H i

Cris(Xv)⊗ F 0
v , be the degree i crystalline

Frobenius of X at v. Now, ΦCris defines an element ΦM,Cris ∈ GM,Cris(F
0
v ) which in turn

defines an element ClCris(ΦM,Cris) ∈ Conj(GM,Cris)(F
0
v ). As Conj(GM,Cris) ∼= Conj(GM )/F 0

v
,

we make sense of the following theorem

Theorem 1.12. Let M be as above. Assume that GM is connected and there is prime
number `0 such that ρM,`0(Φv) is weakly neat. Then, there exists a unique conjugacy class

FrobM ∈ Conj′(GM )(F 0
v ),

such that ClCris(ΦM,Cris) = FrobM and Cl(ρM,`(Φv)) = FrobM , ∀ ` 6= p.

Corollary 5.4 relates the above result to part (i) of Thm. 1.11. Denote by Mav
num(F )

(cf.[15]) the Tannakian category of motives generated by abelian varieties and zero dimen-
sional varieties, inside the category of numerical Grothendieck motives over F . Since ho-
mological equivalence coincides with numerical equivalence for zero dimensional varieties
and abelian varieties [20], we can identify Mav

num(F ) to a subcategory (a priori not full) of
Mav

AH(F ). Thus, our result also holds for M ∈ Ob(Mav
num(F )). The special case, where M

is the motive h1(A) for an abelian variety A, Theorem 1.12 was proved by Noot in [21, Th.
4.2]. We also note that as the Hodge conjecture remains unproven, a priori Mav

AH(F ) has
more objects than in Mav

num(F ). An example of this phenomenon is the motive of a K3
surface.

Finally, a word about the proofs of our results. We’ve freely used motivic arguments in
many of our proofs, not only because this makes the proofs more elegant, but also due to the
fact that they represent the most general context in which our questions could be pursued.

2. Action of Frobenius on `-adic cohomology groups

Proof of Theorem 1.6. Let us denote by τ∆ ⊂ τX × τX the diagonal subvariety and by d
the dimension of X. Let γdB : CHd(τX × τX) → H2d

B (τX(C) × τX(C),Q)(d), be the cycle
class map from codimension d algebraic cycles on τX × τX to the Tate twisted degree 2d
Betti cohomology of τX × τX. By hypothesis the degree i Künneth standard conjecture is
true for τX, which means that there is a correspondence τzi ∈ CHd(τX × τX) such that
γdB(τzi) = τπi.
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Let p∗ : CHd(XF̄ ×XF̄ )→ CHd(τX × τX) denote the base change map. It is well known
(cf.[11, 2.9, a]) that base change induces an isomorphism between algebraic cycle groups
over F̄ and C modulo homological equivalence. This implies that there is a correspondence
zi
/F̄
∈ CHd(XF̄ ×XF̄ ) such that γdB(τzi) = γdB(p∗(zi

/F̄
)). Now there is also a diagram

(1) CHd(τX × τX)
γdB⊗1

// H2d
B (τX(C)× τX(C),Q)(d)⊗Q`

CHd(XF̄ ×XF̄ )

p∗

OO

γd` // Hi
et(XF̄ ×XF̄ ,Q`)(d)

I`,τ

OO

where γd` is the cycle class map of `-adic cohomology and I`,τ is the comparison isomor-
phism between Betti and `-adic cohomology groups. It follows from the arguments given in
[11, I, page 21], that (1) is commutative.

Let ∆/F̄ ⊂ XF̄ ×XF̄ denote the diagonal subvariety. We have the Künneth decomposition

of the `-adic cohomology class γd` ([∆/F̄ ]) =
∑2d

i=0 π
i
/F̄
. It follows from the commutativity of

(1), that

γd` (zi/F̄ ) = I−1
`,τ ((γdB ⊗ 1)(τzi)) = I−1

`,τ (τπi ⊗ 1) = πi/F̄ .

Now, clearly we can suppose that zi
/F̄

is defined over some finite extension (say) F1 of F .

By using the natural action of G := Gal(F1/F ) on CHd(XF1 ×XF1), we set

zi :=
1

|G|
∑
σ∈G

σ∗zi/F̄ .

As zi ∈ CHd(XF1 ×XF1)G, we conclude that zi ∈ CHd(X ×X). Now we have

(2) γd` (zi) =
1

|G|
∑
σ∈G

γd` (σ∗zi/F̄ ) =
1

|G|
∑
σ∈G

σ̃∗γd` (zi/F̄ ),

where σ̃ is a lift of σ to Gal(F̄ /F ).
Now, by Künneth formula and Poincaré duality for `-adic cohomology, we have the fol-

lowing canonical isomorphisms

(3) H2d
et (XF̄ ×XF̄ ,Q`)(d) ∼= ⊕r≥0H2d−r

et (XF̄ ,Q`)(d)⊗Hr
et(XF̄ ,Q`)

∼= ⊕r≥0HomQ`(H
r
et(XF̄ ,Q`),Q`)⊗Hr

et(XF̄ ,Q`) ∼= ⊕r≥0EndQ`(H
r
et(XF̄ ,Q`))

More precisely, under the above isomorphism, an element u ∈ H2d
et (XF̄ × XF̄ ,Q`)(d) is

mapped to the element u := (z 7→ pr2∗(pr1
∗(z) · u)) ∈ ⊕r≥0EndQ`(H

r
et(XF̄ ,Q`)), where pr1

and pr2 are projections. As one easily verifies, πi
/F̄

is the idempotent projection

pi : H∗et(XF̄ ,Q`)→ Hi
et(XF̄ ,Q`) ↪→ H∗et(XF̄ ,Q`).

Clearly pi is invariant under the action of Gal(F̄ /F ) on ⊕i≥0EndQ`(H
i
et(XF̄ ,Q`)). Thus, it

follows from (3) that πi
/F̄

is invariant under the action of Gal(F̄ /F ) on H2d
et (XF̄ ×XF̄ ,Q`)(d).

Under the above observations, (2) now reads as

(4) γd` (zi) =
1

|G|
∑
σ∈G

σ̃∗πi/F̄ =
1

|G|
(|G| · πi/F̄ ) = πi/F̄ .

Finally, let αi denote the image of zi under the canonical injective morphism
CHd(X×X)→ CHd(XFv×XFv). Let γd`,v : CHd(XFv×XFv)→ H2d

et (XF̄v×XF̄v ,Q`)(d) denote
6
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the cycle class map. By invariance of `-adic cohomology groups under extension from F̄ to al-
gebraically closed over-field , we have Hi

et(XF̄ ,Q`) ∼= Hi
et(XF̄v ,Q`) and H2d

et (XF̄v×XF̄v ,Q`) ∼=
H2d
et (XF̄ ×XF̄ ,Q`). We also know that γd`,v|CHd(X×X) = γd` ; in particular γd`,v(α

i) = γd` (zi).

Thus using (4) and (3), it follows that γd`,v(α
i) induces an endomorphism H∗et(XF̄v ,Q`) →

H∗et(XF̄v ,Q`), which is identity on Hi
et(XF̄v ,Q`) and 0 otherwise. In particular we see that

(5) Tr((γd`,v(α
i) ◦ wm∗ ) : H∗et(XF̄v ,Q`)) = Tr(ρi`(w

m)), for every m ≥ 0,

where wm∗ := ⊕2d
i=0ρ

i
`(w

m) is the Q`-linear map induced by wm on H∗et(XF̄v ,Q`). Now, pick

a N ≥ 1, such that Nγd`,v(α
i) belongs to the image of the Chow group of codimension d

algebraic cycles on XFv ×XFv , with Z-coefficients. It follows from (5) and [25, Th. 0.1] that

(6) Tr(ρi`(w
m)) ∈ (1/N)Z, and is independent of `.

Using (6) and applying the next lemma to the eigenvalues of ρi`(w), we conclude that
Tr(ρi`(w)) ∈ Z. This combined with the Newton identities relating power sums and symmet-
ric polynomials, we conclude that the characteristic polynomial P i`,v(w, T ) of ρi`(w) belongs

to Z[T ] and is independent of `.
�

Lemma 2.1 (cf. [17, 2.8] ). Let a1, · · · , ar and b1, · · · , bs be elements of a field of charac-
teristic 0. We put sm =

∑r
i=1 a

m
i −

∑s
j=1 b

m
j for an m ∈ N. Assume there exists an integer

N ≥ 1 such that Nsm ∈ Z for all m ≥ 0. Then sm ∈ Z.

Before proceeding further, we need to recall few definitions.

Definition 2.2. A hyperkähler variety over any field K of characteristic 0 (cf.[1]) is a simply
connected smooth projective K-variety Y of even dimension 2n, with the property that there
exists a section ω of Ω2

Y , unique up to multiplication by a constant, such that ωn vanishes

nowhere. The variety Y is said to be of K3[n]-type if it is one of the following:

(1) For any K3 surface S, take Y = S[n] the punctual Hilbert scheme which parametrizes
closed subschemes of S of length n.

(2) Any projective deformation of a hyperkähler variety of type S[n].

Any general projective deformation of S[n] is not of the form S′[n] for any other K3 surface
S′. Hyperkähler varieties of K3[n]-type, form one of the two series of examples of hyperkähler
varieties constructed by Beauville [3]. Apart from these only two exceptional examples has
been discovered by O’Grady.

Definition 2.3. Let C be a smooth projective curve of genus > 1 over F . The moduli
space NC(q, e) of stable vector bundles of coprime rank q and degree e over C is a smooth
projective fine moduli space.

Proof of Corollary 1.7. It follows from Thm. 1.6, that we need to show that τX satisfies
the degree i Künneth standard conjecture for each i ∈ N. It suffices to show this for each one
of the varieties in the statement. Indeed, if X1 and X2 are any two algebraic varieties over
C, then the Künneth components of diagonal sub-varieties, satisfies the identity πiX1×X2

=∑
r+s=i π

r
X1
⊗ πsX2

. Therefore, if X1 and X2 verifies degree i Künneth standard conjecture
for each i ∈ N, then so does their product X1 ×X2.

Now, for curves, surfaces, abelian varieties and smooth complete intersection in projective
spaces, it is a classical fact , cf.[17]. For hyperkähler varieties of K3[n] type this follows
from the results of [5]. For unirational varieties of dimension ≤ 4 and uniruled varieties of
dimension ≤ 3 this is shown in [2]. For the moduli spaces NC(q, e) as above this follows from
[6].

�
7
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Corollary 2.4. Let X be as in corollary 1.7. Then for every ` 6= p and w ∈ Wv, the
polynomial P i`,v(w, T ) ∈ Q[T ] and is independent of `.

Proof. Let w ∈ Wv such that α(w) > 0, then α(w−1) < 0. As ρi`(w) = (ρi`(w
−1))−1, so if

P i`,v(w
−1, T ) = Tm +

∑m
r=1 am−rT

m−r, then P i`,v(w, T ) = Tm + a−1
0 (
∑m−1

r=1 arT
m−r + 1). By,

Cor. 1.7 ar ∈ Z, hence P i`,v(w, T ) ∈ Q[T ].
�

3. Around the CWD conjecture

3.1. Monodromy. Let K be a complete discretely valued field with a finite residue field
kv, where v denotes the valuation on K. Let char(kv) = p > 0. Fix an algebraic closure K̄
of K and write ΓK := Gal(K̄/K). Let v̄ be the extension of v to K̄. The residue field of K̄
at v̄ is denoted by k̄v (which is also an algebraic closure of kv).

For any prime number `, we denote by µ`n the group of `n-th roots of unity in k̄v and
Z`(1) := lim←−

n

µ`n . The inertia group IK ⊂ ΓK fits into the following exact sequence

1→ P → IK
t−→ Z(p′)(1)→ 1,

where P is a pro-p-group and Z(p′)(1) =
∏
`6=p

Z`(1). Let ` 6= p be a prime number. We

denote by t` : IK → Z`(1), the `-component of t. Explicitly, the surjective map t` is given

as x 7→
(
x(π

1
`n )/π

1
`n

)
n
, where π ∈ OK is an uniformizer. The map t` is unique upto

multiplication by an element of Z×` .
For any Q`-vector space U , we write U(1) := U ⊗Q` Q`(1), where Q`(1) = Q` ⊗Z` Z`(1).

Grothendieck’s `-adic monodromy theorem [30, Appendix], says that any `-adic representa-
tion ξ` : ΓK → GL(U) is quasi-unipotent, i.e., there exists an open subgroup J ⊆ IK such
that ξ`|J is unipotent (i.e. ξ`(σ) is a unipotent linear map for every σ ∈ J). Moreover, there
exists a unique nilpotent morphism N` : U(1)→ U such that

(7) ξ`(x) = exp(t`(x)N`), for all x ∈ J.
The morphism N` is called the monodromy operator associated to ξ`.

3.2. Linear representations of Weil-Deligne groups. The notation is as in §3.1, we
assume further that K is a finite extension of Qp and |kv| = qv. Denote by φv : x 7→ xqv the
arithmetic Frobenius automorphism of k̄v over kv.

Definition 3.3. Let E be any field of characteristic 0. A linear representation ′WK over E
is a triple ξ = (∆, ξ′, N ′) consisting of

(a) A finite dimensional linear representation ξ′ : WK → GL(∆) of WK over E.

(b) A nilpotent endomorphism N ′ of ∆, such that ξ′(w)N ′ξ′(w)−1 = q
α(w)
v ·N for every

w ∈WK .

Definition 3.4. A morphism ξ1 → ξ2 between two linear representations of ′WK over E,

is a E-linear map f : ∆1 → ∆2 such that f ◦ ξ′1(w) = ξ′2(w) ◦ f , for all w ∈ WK , and
f ◦N ′1 = N ′2 ◦ f .

The collection of all linear representations of ′WK over E, forms a neutral Tannakian
category RepE(′WK) over E. Any field embedding τ : E → L gives rise to a functor

RepE(′WK)→ RepL(′WK), (∆, ξ′, N ′) 7→ (L ⊗
τ,E

∆, τξ′, 1 ⊗
τ,E

N ′).

8



On Frobenius conjugacy class of some algebraic varieties over number fields

Definition 3.5. Let ξ be as above and E0 a sub-field of E. We say that ξ is rational over
E0, if given any algebraically closed field Ω ⊃ E and any σ ∈ Aut(Ω/E0), the representations
σξ
/Ω

= (Ω ⊗
σ,E

∆, σξ′/Ω, 1 ⊗
σ,E

N ′) of ′WK over Ω, obtained by extension of scalars via σ, are

all isomorphic. This condition is independent of the choice of Ω.

Definition 3.6. Let (Ei)i∈I be a family of extensions of E0, and for every i, let ξi be a linear

representation of ′WK over Ei. We say that (ξi)i∈I forms a compatible family of representa-

tions of ′WK if every ξi is rational over E0, and for any i, j ∈ I, if Ω is an algebraically closed
field containing Ei and Ej , then the representations ξi/Ω and ξj

/Ω
obtained by extension of

scalars are isomorphic.

Now fix an arithmetic Frobenius element Φ ∈ ΓK and an isomorphism ι : Q` ' Q`(1). To
any arbitrary `-adic representation ξ` : ΓK → GL(U) (as in §3.1), we associate a representa-
tion ξ` = (U, ξ′`, N

′
`) of ′WK over Q`, by setting

(a) ξ′`(w) = ξ`(w)exp(−N`t`(Φ
−α(w)w)), where N` is the monodromy operator as in (7).

(b) N ′` ∈ End(U) corresponds to N`, via ι.

The following lemma is well-known.

Lemma 3.7. The isomorphism class of ξ` depends only on ξ`, and it doesn’t depend on the
choice of Φ and ι.

3.8. Proof of Theorem 1.8. The proof will occupy the rest of this subsection. Let Y
be any smooth and proper algebraic variety over Fv. As before, to the canonical `-adic
representations ρi` : Γv → GL(H i

et(Ȳ ,Q`)), we associate the representation ρi` = (V i
` , ρ

i′
`, N

′
i,`)

of ′Wv over Q`, where V i
` := H i

et(Ȳ ,Q`).

We first show the semisimplicity of the representation ρi
′
`, i.e. part (i) of the theorem. This

proof would employ some motivic ideas. We review some of the necessary facts very briefly,
for details see [11, II]. Denote by V(F ) the category of smooth projective algebraic varieties
over F . Recall that the category of (pure) motives MAH(F ), defined by absolute Hodge
cycles is a Q-linear semisimple neutral Tannakian category. There exists a contravariant
functor for MAH(F )) h : V(F )→MAH(F ) such that Betti, `-adic or deRham cohomology
on V(F ) factorizes through h. This provides fibre functors Hτ , H` and HdR on MAH(F ).
We call these functors as realizations. There also exists a natural grading h(Z) = ⊕hi(Z),
i ∈ N for every Z ∈ Ob(V(F )), which extends to all ofMAH(F ). We denote byMav

AH(F ) the
Tannakian subcategory ofMAH(F ) generated by abelian varieties and zero dimensional va-
rieties. Everything stated above holds more generally for any arbitrary field of characteristic
0, with an embedding in C.

Lemma 3.9. Let X/F be as in Thm. 1.8. Then there exists a finite extension F ′ of F such
that h(XF ′) ∈ Ob(Mav

AH(F ′)).

Proof. First, we claim that h(XF̄ ) ∈ Ob(Mav
AH(F̄ )). We observe that as Mav

AH(F̄ ) is a
Tannakian category, it is closed under tensor products. Thus, in order to verify the claim it
suffices to do so for each of the individual varieties in the statement of Thm. 1.8, since X is
a finite products of these varieties.

So, first assume that X is a hyperkähler variety of K3[n]-type. As the Kuga-Satake abelian
variety associated to X is defined over a finite extension of F (see [1]) and h(XF̄ ) belongs to
the smallest Tannakian subcategory generated by h2(XF̄ ) ( cf. [26]), it follows that in this
case h(XF̄ ) ∈ Ob(Mav

AH(F̄ )).
Next, when X is a Fermat hypersurfaces or a unirational variety of dimension ≤ 3, it

follows from [11, II, 6.26] that h(XF̄ ) ∈ Ob(Mav
AH(F̄ )).

9
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When X is the moduli space NC(q, e) as above, then it follows from [6], that h(X) is a
direct summand of a motive of the form ⊕bh(C)⊗a(b). Now, let J(C) denote the Jacobian
of C. We know that h(C) = 1⊕ h1(J(C))⊕L, where 1 denotes the unit object ofMAH(F̄ )
and L is the Lefschetz motive. It follows that h(X) ∈ Ob(Mav

AH(F )).
Finally, when X is a uniruled surface, we know ( see [2] ) that there exists a curve C ′ over

F̄ such that h(XF̄ ) is a direct summand of a motive of the form ⊕b′h(C ′)⊗a
′
(b′). Thus, as

above it follows that h(XF̄ ) ∈ Ob(Mav
AH(F̄ )).

Now, for each individual variety as in the statement of the corollary, we see that h(XF̄ ) ∈
Ob(Mav

AH(F̄ )). Hence, the same holds for any product of these varieties. By using [11, I,
2.9] we conclude there exists a finite extension F ′ of F such that h(XF ′) ∈ Ob(Mav

AH(F ′)).
�

Now, let us denote by M the motive hi(X). As M is a direct summand of h(X), by
Lemma 3.9 there is a finite extension F ′ of F such that MF ′ := hi(XF ′) ∈ Ob(Mav

AH(F ′)).
Let us denote by v′ an extension of the valuation v to F ′; n the residual degree; Φv′ := Φn

v

an arithmetic Frobenius corresponding to this extension. We denote by 〈MF ′ ,Q(1)〉⊗ the
Tannakian subcategory ofMav

AH(F ′)) which is tensor generated by MF ′ and the Tate motive
Q(1) and we write GMF ′ := Aut⊗(Hτ |〈MF ′ ,Q(1)〉⊗). We recall, that the `-adic representations

ρMF ′ ,` : ΓF ′ → GL(H`(MF ′)), arising from the action of ΓF ′ on the `-adic realizationH`(MF ′)
of MF ′ , factorizes through GMF ′ (Q`).

We know that there exists (possibly after passing to another finite extension, which we
again denote by F ′) an abelian variety A over F ′ and a unique homomorphism of algebraic
groups θ : GA → GMF ′ where GA := Aut⊗(Hτ |〈h1(A),Q(1)〉⊗). Moreover, θ(Q`) ◦ ρA,` =
ρMF ′ ,`, where θ(Q`) denotes the induced map on Q`-valued points and ρA,` is the Galois

representation associated to the motive h1(A). For details on the above facts see [18, 3.10 &
3.11]. In particular, we have θ(Q`)(ρA,`(Φv′)) = ρMF ′ ,`(Φv′).

Now, it is well known that ρA,`(Φv′) is semisimple i.e. becomes diagonalizable after a base
change. As θ is a homomorphism of algebraic groups, the image of ρA,`(Φv′), under θ(Q`)
must be semisimple. In other words, ρMF ′ ,`(Φv′) is semisimple.

Finally, let ρM,` : ΓF → GL(H`(M)) be the `-adic representation associated M . As
ρMF ′ ,`(Φv′) = (ρM,`(Φv))

n, so ρM,`(Φv) is semisimple. Now, by definition H`(M) = πi ∗ ⊕r
Hr
et(XF̄ ,Q`), where πi is the (i-th) Künneth component of the diagonal subvariety of XF̄×XF̄

and πi ∗ is the image of πi under the isomorphism (3). As we’ve seen before, πi ∗ is the
idempotent projection pi. We conclude that H`(M) = Hi

et(XF̄ ,Q`) and ρM,` = ρi`. Thus, it
follows from the above discussion that ρi`(Φv) is semisimple.

Now, we note that ρi
′
`(Φv) (= ρi`(Φv)) generates a subgroup of finite index in ρi

′
`(Wv). We

know that in characteristic 0 a representation (in the ordinary sense) of a group is semisim-
ple if and only if its restriction to a subgroup of finite index is semisimple. As ρi`(Φv) is

a semisimple automorphism, it follows that ρi
′
` is a semisimple representation of Wv. This

completes the proof of part (i) of the theorem.

We now move to the part (ii) of the theorem. For simplicity of notation, henceforth we’ll
suppress the natural number i, which will be fixed in the rest of the proof.

As, N ′` : V` → V` is a nilpotent endomorphism, it induces a unique filtration M• on V`
called the local monodromy filtration [10], characterized by the following properties:

(1) M• is an increasing filtration · · ·Mj−1V` ⊂MjV` ⊂Mj+1V` · · · of Γv representations,
such that MjV` = 0 for sufficiently small j and MjV` = V` for sufficiently large j.

(2) N`(MjV`(1)) ⊆Mj−2V` for all j.
10



On Frobenius conjugacy class of some algebraic varieties over number fields

(3) Using the second condition we can define an induced map N : GrMj V`(1)→ GrMj−2V`,

where GrMj V` = MjV`/Mj−1V`. Then N r : GrMr V`(r) → GrM−rV` is an isomorphism
for each r ≥ 0.

Explicitly, the filtration M• is defined as the convolution of the Kernel and image filtration
on V` induced by N ′`. Let ρ̄`,j : Γv → GL(GrMj V`) denote the representation induced by ρ`
on the graded parts of M•. For every w ∈ Wv, let us denote by P`(w, T ) the characteristic
polynomial of ρ`(w) and by P̄`,j(w, T ) the characteristic polynomial of ρ̄`,j(w).

Lemma 3.10. Fix a w ∈Wv, then for every j, P̄`,j(w, T ) ∈ Q[T ] and is independent of `.

Proof. Let L be the sub-field of an algebraic closure Q̄` of Q`, generated by the roots of
P`(w, T ). By Cor.2.4, P`(w, T ) ∈ Q[T ] and has coefficients independent of `. This implies
that if β is a root of P`(w, T ), then so is σ(β), for every σ ∈ Gal(L/Q). Now, from linear
algebra, we know that P`(w, T ) =

∏
j P̄`,j(w, T ). By [19], we know that the Weight Mon-

odromy conjecture (WMC) holds for V`, i.e., for every w ∈ Wv, the eigenvalues of ρ̄`,j(w)

are all algebraic integers of complex absolute value q
(i+j)α(w)/2
v (recall that i is the degree of

the cohomology group V`). This, combined with the fact that the complex absolute value
of β and σ(β) are same, implies that β and σ(β) occurs as the roots of a same factor (say)
P̄`,j(w, T ) of P`(w, T ). This implies that the coefficients of each P̄`,j(w, T ) are stable under
Gal(L/Q), i.e., P̄`,j(w, T ) ∈ Q[T ] and is independent of `. �

The previous lemma says that for every j, the character of the representations ρ̄`,j has
values in Q and is independent of `. It now follows from [8, Prop. 8.9] and part (i) of the
theorem, that {(V`, ρ′`, N ′`)} 6̀=p forms a compatible system of linear representations of ′Wv

(defined over Q).

3.11. The case of surfaces and complete intersections. Let the notation be as in
§3.2. Let ξ = (∆, ξ′, N ′) be any linear representation of ′Wv over E. Pick an arithmetic
Frobenius element Φv ∈Wv. Consider the multiplicative Jordan-Chevalley decomposition of
the endomorphism ξ′(Φv) = ξ′(Φv)ss · ξ′(Φv)u, where ξ′(Φv)ss is semisimple and ξ′(Φv)u is
unipotent.

Definition 3.12. The semi-simplification ξss of ξ is the linear representation of ′WK over

E, obtained from ξ, by keeping ∆, ξ′|Iv and N ′ unchanged and replacing ξ′(Φv) by ξ′(Φv)ss.

It can be shown that ξss is independent of the initial choice of Φv. The semi-simplification

of the representations ρi` = (V i
` , ρ

i′
`, N

′
i,`) is denoted by ρi`

ss

Proof of Theorem 1.9. (1) The motive of S has a decomposition 1 h(S) = ⊕4
i=0h

i(S),
such that h0(S) ∼= h4(S)(2) ∼= 1 and

h1(S) ∼= h3(S)(1) ∼= h1(Pic0
S) ∼= h1(AlbS) ∼= h1(S)∨(−1),

where Pic0
S and AlbS are the Picard and Albanese variety of S, respectively. This

observation allows us to deduce CWD(SFv , i), for i 6= 2 , directly from h1(AlbS).

Now let i = 2. Let ρ2
`,j : Γv → GL(GrMj V`) denote the representation induced

by ρ2
` on the graded parts GrMj V

2
` of the local monodromy filtration M• on V 2

` .

By Cor.2.4, we know that the characteristic polynomial of ρ2
`(w) ∈ Q[T ] and is

independent of `. We also know from [24]( see also [25]), that WMC holds for

V 2
` , i.e., for every w ∈ Wv, the eigenvalues of ρ2

`,j(w) are all algebraic integers of

complex absolute value q
(2+j)α(w)/2
v . It follows, as in the proof of Lemma 3.10, that

1This decomposition also holds in the category of Chow motives.
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the character of the representations ρ2
`,j has values in Q and is independent of `. We

now apply [8, Prop.8.9] to conclude the proof in this case.
(2) Let us first consider the case i 6= n. By using the fact that the Lefschetz standard

conjecture is true for Pr and a repeated application of the weak Lefschetz theorem (
for classical cohomology theories ), we see that the motive

hi(X) ∼= hi(Pr).

Thus in order to see the validity of our claim, we only need to note that the `-adic
realization H`(T) = Q`(1) of the Tate motive T (which is the dual of Lefschetz motive
L), gives rise to a compatible system of linear representations of ′Wv defined over Q.

Now consider the case i = n. Let ρn`,j : Γv → GL(GrMj V
n
` ) denote the represen-

tation induced by ρn` on the graded parts GrMj V
n
` of the local monodromy filtration

M• on V n
` . By Cor.2.4, we know that the characteristic polynomial of ρn`(w) ∈ Q[T ]

and is independent of `. We also know from [27], that WMC holds for V n
` , i.e., for

every w ∈Wv, the eigenvalues of ρn`,j(w) are all algebraic integers of complex abso-

lute value q
(n+j)α(w)/2
v . It follows, as before, that the character of the representations

ρn`,j has values in Q and is independent of `. We now apply [8, Prop.8.9] to conclude
the proof in this case.

�

Corollary 3.13. Let X be a smooth complete intersection of odd dimension n = 2m+1 and
of Hodge level 1, defined over F . Then CWD(XFv , i) holds true for all i.

Proof. In view of Thm. 1.9, we only need to establish that for i = n, Φv acts semi-simply
on V n

` . By a result of Deligne [7], we know that there is an abelian variety J(X) ( interme-
diate Jacobian of X ) defined over F and an isomorphism of Γ-modules, Hn

et(XF̄ ,Q`)(m) ∼=
H1
et(J(X)F̄ ,Q`). Thus our claim follows from the corresponding fact for H1

et(J(X)F̄ ,Q`). �

4. Conjugacy class of Frobenius

The principal aim of this section is to show Theorem 1.11, but for this we shall need some
preliminaries.

4.1. The Algebraic Group H\ad. Let H be a reductive algebraic group over a field K of
characteristic 0 and K̄ an algebraic closure of K. The adjoint action of Had on H gives a
universal categorical quotient (Conj(H),Cl), where Conj(H) is an algebraic variety over K
and Cl : H → Conj(H) is the quotient map. The pair (Conj(H),Cl) is also the universal
categorical quotient for the action of H on itself by conjugation.

The derived group Hder
K̄

is the almost direct product of almost simple subgroups Hi, for

i ∈ I a finite indexing set. If Hder
K̄

has any almost direct factor of type SO(2ki)K̄ , then there
is an action which extends the above action. We briefly recall this. For details see [18] and
[21].

Let J ⊂ I such that for i ∈ J , Hi
∼= SO(2ki)K̄ with ki ≥ 4 and set H\

i := O(2ki)K̄ . Define
an algebraic group

H\ad =
∏
i∈J

H\ad
i ×

∏
i/∈J

Had
i ⊃ Had

K̄ .

There is a natural action of H\ad on HK̄ , which extends the adjoint action on Hder
K̄

and

is trivial on the center of HK̄ . Denote by Conj′(H)K̄ the categorical quotient of HK̄ under
this action of H\ad. Now, using the properties of categorical quotients, we can descend from

12
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Conj′(H)K̄ to an algebraic variety Conj′(H) over K. We also get a quotient map (as above),
which we again denote by

Cl : H → Conj′(H).

Now, let Ω ⊇ K be any algebraically closed field. From the functorial properties of the
above action we deduce an adjoint map

Ad : H\ad(Ω)→ Aut(h⊗ Ω),

where h denotes the Lie algebra of H.
Weakly neat elements. Fix a faithful K-linear representation V of H. A semisimple element
g ∈ H(Ω) is said to be weakly neat if 1 is the only root of unity among the quotients λµ−1,
with λ, µ being the eigenvalues of g.

For any positive integer n we denote by ϕn : H → H the n-th power map. Let Y/K
denote any one of the algebraic varieties Conj(H) or Conj′(H). The map ϕn is equivariant
for the action of conjugation. Since Y is a universal categorical quotient, this implies that
ϕn induces a map ϕ̄n : Y → Y such that Cl◦ϕn = ϕ̄n ◦Cl. The proof of the following lemma
(see for example [18, 2.7]) is left to the reader .

Lemma 4.2. Let Ω ⊇ K be an algebraically closed field. Let V be a finite dimensional
faithful K-linear representation of H and α, β ∈ H(Ω) be two weakly neat elements having
same characteristic polynomial in the representation V . If ϕ̄n(Cl(α)) = ϕ̄n(Cl(β)) for some
positive integer n, then Cl(α) = Cl(β).

4.3. Representations of Weil-Deligne groups with values in algebraic groups. We
generalize some of the notions about linear representations of Weil-Deligne groups, described
in §3.2.

Let H be an algebraic group over Q and ξ` : Γv → H(Q`) be an `-adic represen-
tation. By Grothendieck’s `-adic monodromy theorem, there exists a nilpotent element
N ′` ∈ Lie(H/Q`)(−1) and an open subgroup J ⊆ Iv such that for λ ∈ J , we have ξ`(λ) =
exp(N ′`t`(λ)). Now, by using the identification Q`

∼= Q`(1), we interpret N ′` as an element of
Lie(H/Q`) and we define as in §3.2,

(8) ξ′` : Wv → H(Q`), w 7→ ξ`(w)exp(−N ′l t`(Φ−α(w)
v w)).

A triple (H/Q` , ξ
′
`, N

′
`) as above is called a representation of the Weil-Deligne group ′Wv

of Fv with values in H/Q` . For a fixed `, we say that (H/Q` , ξ
′
`, N

′
`) is rational over Q ( as a

representation with values in H), if for every algebraically closed field Ω ⊃ Q` and for every
σ ∈ AutQ(Ω), there exists a g ∈ H(Ω) such that

(9) σξ′`/Ω = g · ξ′`/Ω · g
−1 and N ′` ⊗

σ,Q`
1 = Ad(g)(N ′` ⊗

Q`
1),

where ξ′`/Ω denote the extension of scalars ξ′` ⊗Q`
Ω : Wv → H/Ω(Ω) and N ′` ⊗Q`

1 is the image

of N ′` in (Lie(H)⊗
Q
Q`) ⊗

Q`
Ω.

If in addition to (9), we have for every pair (`, `′) of prime numbers (different from p) and
every algebraically closed field Ω ⊃ Q`,Q`′ , an element g ∈ H(Ω) such that

(10) ξ′`/Ω = g · ξ′`′/Ω · g
−1 and N ′` ⊗

Q`
1 = Ad(g)(N ′`′ ⊗

Q`′
1),

then we say that the representations (H/Q` , ρ
i′
`, N

′
`), form a compatible system of represen-

tations of ′Wv ( with values in H).
Note that, as the action of H(Ω) factors through H(Ω)→ Had(Ω), H(Ω)-conjugacy may

be replaced by Had(Ω)-conjugacy everywhere. Now, suppose that H is a reductive algebraic
13
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group, then as above we can define the algebraic group H\ad. To say that the representation
(H/Q` , ξ

′
`, N

′
`) is rational over Q modulo the action of H\ad, means that in (9) we require

that g ∈ H\ad(Ω). In a similar manner we make sense of the phrase compatible system of
representations of ′Wv modulo the action of H\ad

4.4. Proof of Proposition 1.10 & Theorem 1.11.

Proof of 1.10. Let X =
∏
rXr, where each Xr is one of the varieties of the the type men-

tioned in the statement of the proposition. As seen in the proof of Lemma 3.9,
h(Xr,F̄ ) ∈ Ob(Mav

AH(F̄ )), for each r. As h(XF̄ ) = ⊗rh(Xr,F̄ ) and Mav
AH(F̄ ) is closed under

tensor products, h(XF̄ ) ∈ Ob(Mav
AH(F̄ )).

Write M := hi(X); the algebraic groups GMF̄
and GM are stabilizers of all absolute Hodge

classes (AHC) and AHC that are defined over F , respectively, in all tensor spaces formed

by V i, V i ∨,Q(1) and Q(1)∨ (see [11, I, Principle A]). So, it follows from hypothesis that
GMF̄

= GM .

Now the Mumford-Tate group Gi∞ of the Hodge structure V i is the stabilizer of Hodge

classes relative to the embedding τ , in all tensor spaces formed by V i, V i ∨,Q(1) and Q(1)∨.
As h(XF̄ ) ∈ Ob(Mav

AH(F̄ )), all Hodge classes relative to τ are AHC (see [11, II, 6.27]). This
implies that Gi∞ = GMF̄

= GM .

Finally, as ρM,` : ΓF → GL(H`(M)) factorizes through GM (Q`) and ρM,` = ρi`, we con-
clude that Gi` is a subgroup of Gi∞/Q` .

�

Remark 4.5. By [11, I, 2.9] there exists number fields verifying the hypothesis of Proposition
1.10.

Now, let X be as in Theorem 1.10. Then, the triple (Gi∞/Q` , ρ
i′
`, N

′
i,`) is a representation

of the Weil-Deligne group ′Wv of Fv, with values in Gi∞/Q` .

For any finite extension F ′ of F we denote by ΓF ′ the absolute Galois group and by v′ an
extension of v to F ′. Let Iv′ , Wv′ and ′Wv′ denote the inertia, Weil and Weil-Deligne group
of F ′v′ , respectively. We also have a group homomorphism α′ : Wv′ → Z as in §1. By Φ′v we
mean an arithmetic Frobenius for this extension.

If XF ′ denotes base change of X to F ′, then the `-adic representation ρi`|ΓF ′ associated

to XF ′ induces a representation (Gi∞/Q` , ρ
i′
`|ΓF ′ , N

′
i,`) of the Weil-Deligne group ′Wv′ of Fv′ ,

with values in Gi∞/Q`

Remark 4.6. Although Theorem 1.11 is similar in spirit to [18, Theorem 1.1 & corollary 1.3],
there are two important differences between [loc.cit.] and our case, which are as following :

(a) here we only know that there is a finite extension F ′ of F such that the motive
hi(XF ′) ∈ Ob(Mav

AH(F ′)) ( by Lemma 3.9), while in [loc.cit.] we assumed this property
over the base field F ;

(b) in part (i) (resp. (ii)) of Theorem 1.11 we just need that ρi`|Γv is potentially unramified
(resp. semi-stable) representation for every ` 6= p, while in [loc.cit.] a stronger condition
was used namely X has good (resp. semi-stable) reduction at v.

Proof of Theorem 1.11. (i) The principal idea of the proof is similar to that of [18, Thm.
1.1], so we only present the main arguments and sketch the rest. As before let us
denote by M the motive hi(X). Let F ′ be a finite extension of F such that MF ′ :=
hi(XF ′) ∈ Ob(Mav

AH(F ′)), as in Lemma 3.9. Let v′ be an an extension of the valuation
v to F ′ and Φv′ an arithmetic Frobenius for this extension. Now, we have seen in the
proof of Prop. 1.10 that Gi∞ = GMF̄

= GM , in particular GMF̄
= GMF ′ . We also have

14
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Conj′(Gi∞) = Conj′(GMF ′ ) = Conj′(GM ) and ρMF ′/`
= ρi`|Γv′ . Now, using the fact that

ρi`|Γv is potentially unramified for all ` 6= p, it can be checked (as at the beginning of

the proof of [ibid.]) that there exists an element2 Frobv′,i ∈ Conj′(Gi∞)(Q) such that,

(11) Cl(ρi`(Φv′)) = Frobv′,i, ∀ ` 6= p.

Now, let the residual degree of the extension F ′v′/Fv be n. We denote by
ϕn : Gi∞ → Gi∞ the n-th power map and by ϕ̄n : Conj′(Gi∞)→ Conj′(Gi∞) the induced
map on Conj′(Gi∞). Then it follows easily from (11) and the fact that ϕ̄n is a finite
morphism, that

Cl(ρi`(Φv)) ∈ Conj′(Gi∞)(Q̄), ∀ ` 6= p.

Now, by hypothesis there exists a `0 such that ρi`0(Φv) is weakly neat. So, by Corollary

2.4, ρi`0(Φv) is weakly neat for every ` 6= p. Again, Corollary 2.4 and a repeated use

of Lemma 4.2, shows that Cl(ρi`(Φv)) (as an element of Conj′(Gi∞)(Q̄)) is independent
of `. We denote this element by Frobv,i. As Frobv,i ∈ Conj′(Gi∞)(Q`) for every ` 6= p,
Frobv,i is a Q-rational point of Conj′(Gi∞).

(ii) Now let the notation be as in part (i). By, applying [18, 3.9] to the motive MF ′ , we see

that for ` 6= p the representations (Gi∞/Q` , ρ
i′
`|ΓF ′ , N

′
i,`) are rational over Q and form a

compatible system of representations of ′Wv, modulo the action of Gi
\ad

∞ . In particular
by setting Φv′ := Φn

v , we get that for any fixed ` 6= p, algebraically closed field Ω ⊃ Q`

and σ ∈ AutQ(Ω), there exists a gσ ∈ Gi
\ad

∞ (Ω) such that

(12) σρi
′

`/Ω(Φn
v ) = gσ · (ρi

′
`/Ω(Φn

v )) · g−1
σ and N ′i,` ⊗

σ,Q`
1 = Ad(gσ)(N ′i,` ⊗

Q`
1).

Thus we have (σρi
′
`/Ω(Φv))

n = (gσ ·(ρi
′
`/Ω(Φn

v )) ·g−1
σ )n. Now it follows from Corollary

2.4 that σρi
′
`/Ω(Φv)) and gσ · (ρi

′
`/Ω(Φv)) · g−1

σ have the same characteristic polynomial.

It now follows from a property of weakly neat elements ( cf. [22, 7.4]), that
σρi
′
`/Ω(Φv) = gσ · (ρi

′
`/Ω(Φv)) · g−1

σ .

As the monodromy operator N ′i,` is unchanged by finite base extension, it now follows

from (12) that (Gi∞/Q` , ρ
i′
`, N

′
i,`) is rational over Q modulo the action of Gi

\ad

∞ .

The compatibility condition is checked in a similar manner.
�

5. Conjugacy class of Crystalline Frobenius

We follow the notation of §1 and we introduce some more notation. The ring of Witt
vectors of kv is denoted by W (kv) and σ : W (kv) → W (kv) is the morphism induced by
the Frobenius automorphism of kv. For any finite extension F ′ of F , we denote by v′ an
extension of v to F ′; F ′v′ is the completion of F ′ at v′; kv′ the residue field of F ′v′ . The ring of
Witt vectors of kv′ is denoted by W (kv′) and σ′ : W (kv′)→W (kv′) is the morphism induced
by the Frobenius automorphism of kv′ . The fraction field of W (kv′) is denoted by F 0

v′ . Note
that F 0

v and F 0
v′ naturally identifies to the maximal unramified extension of Qp inside Fv and

Fv′ , respectively.
Consider a smooth projective algebraic variety Y over F with potential good reduction

at v. Fix a i ∈ N and denote by N the motive hi(Y ) ∈ Ob(MAH(F )). Assume that the
extension of scalars NF̄ ∈ Ob(Mav

AH(F̄ )). Thus, by taking a large enough finite extension
F ′ of F , we may assume that Y has good reduction over F ′ and NF ′ ∈ Ob(Mav

AH(F ′)). Let

2In [18, eqn. 14] this was denoted by ClMFrv′
15
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Yv′ denote the reduction of YF ′ at v′ and 〈NF ′ ,Q(1)〉⊗ denote the Tannakian subcategory
of MAH(F ′), ⊗-generated by NF ′ and the Tate motive. It is well known from the CCris-
conjecture (cf.[14, Th.3.2.3]) that Hp(NF ′) = H i

et(Y/F̄ ,Qp) is a crystalline representation of

Γv′ and its associated filtered Dieudonné module is isomorphic to H i
Cris(Yv′) ⊗ F 0

v′ . This
allows us to define the crystalline realization ( cf.[31, §4.1]), i.e., a fibre functor

HNF ′ ,Cris : 〈NF ′ ,Q(1)〉⊗ → VectF 0
v′
,

which associates to any motive L ∈ 〈NF ′ ,Q(1)〉⊗ its associated filtered Dieudonné Fv′-
module (Hp(L)⊗Qp BCris)

Γv′ , where BCris is the F 0
v′ [Γv′ ]-algebra introduced by Fontaine

(cf. [12]). We call this functor the crystalline realization for the subcategory of motives
〈NF ′ ,Q(1)〉⊗.We write GNF ′ ,Cris := Aut⊗(HNF ′ ,Cris) for the automorphism group of the fibre
functor HNF ′ ,Cris.

The absolute Frobenius endomorphism Frabs of Yv′ induces a σ′-linear endomorphism
FrCris : H i

Cris(Yv′/W (kv′)) → H i
Cris(Yv′/W (kv′)), on crystalline cohomology groups of Yv′ .

Now, let |kv′ | = ps
′
, then Frs

′
Cris is a W (kv′)-linear endomorphism of H i

Cris(Yv′/W (kv′)). Let
us denote by

ΦCris : H i
Cris(Yv′/W (kv′))⊗ F 0

v′ → H i
Cris(Yv′)⊗ F 0

v′ ,

the degree i crystalline Frobenius of YF ′ at v′, i.e., the F 0
v′-linear endomorphism Frs

′
Cris ⊗

1. It follows from a result of Blasius [4, Th.5.3] that Φ′Cris defines an element Φ′N,Cris ∈
GNF ′ ,Cris(F

0
v′).

Now, as before the conjugation action of GNF ′ ,Cris gives us a universal categorical quotient

(Conj′(GNF ′ ,Cris),ClCris). We also have the universal categorical quotient (Conj′(GNF ′ ),Cl)

for the conjugation action of GNF ′ := Aut⊗(Hτ |〈NF ′ ,Q(1)〉⊗). For every ` 6= p the `-adic rep-

resentation ρNF ′ ,` : ΓF ′ → GNF ′ (Q`) defines an element Cl(ρNF ′ ,`(Φv′)) ∈ Conj′(GNF ′ )(Q`).
Now, it is well known [11, II, Th.3.2] from the general theory of Tannakian categories

that GNF ′ ,Cris is an inner form of GNF ′ ⊗Q F 0
v′ . It follows that there is an isomorphism

Conj′(GNF ′ ,Cris) ∼= (Conj′(GNF ′ ))⊗Q F
0
v′ , which allows us to make sense of the following

Theorem 5.1. Let Y be any smooth projective algebraic variety over F with potential good
reduction at a non-archimedean valuation v of F . For any fixed i ∈ N write N := hi(Y ) and
assume that NF̄ ∈ Ob(Mav

AH(F̄ )). Then, there exists a finite extension F ′ of F and a unique
conjugacy class

Frob′N ∈ Conj′(GNF ′ )(F
0
v′),

such that ClCris(Φ
′
N,Cris) = Frob′N and Cl(ρNF ′ ,`(Φv′)) = Frob′N , ∀ ` 6= p.

Proof of Theorem 5.1. We shall first find a finite extension of F and then show that it is the
right one. To avoid confusion, we shall denote all successive extensions of F by F ′.

Recall, as in the proof of part (i) of Thm. 1.8, there is a finite extension F ′ of F , an
abelian variety A over F ′ such that NF ′ ∈ 〈h1(A),Q(1)〉⊗. Further, this induces a unique
homomorphism of algebraic groups θ : GA → GNF ′ satisfying θ(Q`) ◦ ρA,` = ρNF ′ ,` for every
prime number ` (where θ(Q`) is the induced map on Q`-valued points).

Lemma 5.2. There exists an abelian variety A over F ′ as above with potential good reduction
at v′.

Proof. First we note that for any abelian variety A, by Grothendieck’s `-adic monodromy
theorem, Iv′ (possibly after passing over to another finite extension of F ) acts unipotently
on H1

et(A/F̄ ,Q`) ∼= W ⊗ Q`, where W := H1
B(τA,Q). As Y has potential good reduction

at v, we may assume that Iv′ acts trivially on H`(N). Now, by [18, Lemma 3.10] we may
choose A such that GadA

∼= GadNF ′
. This combined with the fact that θ(Q`) ◦ ρA,` = ρNF ′ ,`,
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implies that I := ρA,`(Iv′) ⊆ ZA(Q`), where ZA denotes the centre of GA. Fix an algebraic
closure Ω of Q`. For any σ ∈ I ⊆ ZA(Q`), denote by σ̄ the image of σ in ZA/Ω(Ω). As GA
is reductive, ZA/Ω is a diagonalizable algebraic group. Since GA is a subgroup of GL(W ),

there exists a matrix P ∈ GLm(Ω) such that P · σ̄ · P−1 is of the form diag(λ1, · · · , λm),
where m := dimW . As σ̄ is unipotent, λ1 = · · · = λm = 1, i.e. σ̄ is the identity matrix.
Since σ ∈ I was an arbitrary element, I is trivial. Now, using the Néron-Ogg-Shafarevich
condition [30, Thm. 1], we conclude that A has potential good reduction at v′. �

End of the proof of Theorem 5.1: By passing over to another finite extension we may
suppose that A has good reduction at v′. Now, we have the crystalline realization

HA,Cris : 〈h1(A),Q(1)〉⊗ → VectF 0
v′

and we write GA,Cris := Aut⊗(HA,Cris). As before, the crystalline Frobenius element for A at
v′ defines an element ΦA,Cris ∈ GA,Cris(F

0
v′). By passing over to another finite extension we

may suppose that ΦA,Crisis weakly neat. Again, as GA,Cris is an inner form of GA⊗QF
0
v′ , there

is an isomorphism Conj′(GA,Cris) ∼= (Conj′(GA)) ⊗Q F
0
v′ . For our purpose we identify these

two varieties. Now, by [21, 4.2] we know that the there is an element ClAFrv ∈ Conj′(GA)(Q)
such that Cl(ρA,`(Φv′)) = ClAFrv ∀ ` 6= p and its image in Conj′(GA,Cris)(F

0
v ) coincides with

ClCris(ΦA,Cris). Let us write FrobA ∈ Conj′(GA)(F 0
v′) = Conj′(GA,Cris)(F

0
v′), for this image.

By universal property of (universal) categorical quotients we have the following commu-
tative diagram:

(13) GA
Cl //

θ

��

Conj′GA

θ̄
��

GNF ′
Cl // Conj′GNF ′

Again, the inclusion functor 〈NF ′ ,Q(1)〉⊗ → 〈h1(A),Q(1)〉⊗, induces a unique homomor-
phism

θcris : GA,Cris → GNF ′ ,Cris.

As before, this gives us the following commutative diagram :

(14) GA,Cris
ClCris//

θcris

��

Conj′GA,Cris

θ̄Cris

��
GNF ′ ,Cris

ClCris// Conj′GNF ′ ,Cris

We set Frob′N := ClCris(Φ
′
N,Cris) ∈ Conj′(GNF ′ ,Cris)(F

0
v′). We shall show that

Cl(ρNF ′ ,`(Φv′)) = Frob′N for every ` 6= p.

By functoriality, θcris(F
0
v′)(ΦA,Cris) = Φ′N,Cris, where θcris(F

0
v′) is the induced map on

F 0
v′-valued points. Thus, by commutativity of (14) we obtain Frob′N = θ̄Cris(F

0
v′)(FrobA).

Now, as θ(Q`) ◦ ρA,` = ρNF ′ ,` and Cl(ρA,`(Φv′)) = FrobA for all ` 6= p, it follows that

Cl(ρNF ′ ,`(Φv′)) = θ̄(F 0
v′)(FrobA) as elements of Conj′(GNF ′ )(F

0
v′) = Conj′(GNF ′ ,Cris)(F

0
v′).

Thus the proposition will be proved if we can show that Frob′N = θ̄(F 0
v′)(FrobA). In other

words we need to show that θ̄Cris(F
0
v′)(FrobA) = θ̄(F 0

v′)(FrobA). This follows from the next
lemma.

�
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Lemma 5.3. The morphism θ̄/F 0
v′

:= θ̄ ⊗Q id : Conj′(GA) ⊗Q F
0
v′ → Conj′(GNF ′ ) ⊗Q F

0
v′

coincides with θ̄Cris.

Proof. AsG∗,Cris is an inner form ofG∗⊗QF
0
v′ , where ∗ = NF ′ or A we can identifyG∗,Cris⊗F 0

v′

Q̄p with G∗⊗Q Q̄p. Then, under this identification and by definition of θ and θCris, it follows
that the homomorphisms of algebraic groups

(15) θ/Q̄p := θ ⊗Q id : GA ⊗Q Q̄p → GNF ′ ⊗Q Q̄p and

θCris/Q̄p := θCris ⊗F 0
v′

id : GA,Cris ⊗F 0
v′
Q̄p → GNF ′ ,Cris ⊗F 0

v′
Q̄p, are identical.

It follows from (15), that θ̄/Q̄p = θ̄Cris/Q̄p . As GA,Cris is geometrically reducible (as alge-

braic variety over F 0
v′), so is Conj′(GA,Cris). Now, it is a well known fact that if two morphisms

f, g : Y → Z of algebraic varieties Y and Z are identical over the algebraic closure of the
base field and Y is geometrically reducible, then f and g are identical. By using this fact we
conclude that θ̄/F 0

v′
= θ̄Cris. �

Proof of Theorem 1.12. By applying Theorem 5.1 to X we obtain an extension F ′ of F and
an element Frob′M ∈ Conj′(GMF ′ )(F

0
v′). Let n be the residual degree of the F ′v′/Fv. By

hypothesis GM is connected, which implies that it is geometrically connected because GM
is an algebraic group. In particular GM ⊗Q Q̄p

∼= GM,Cris ⊗F 0
v′
Q̄p is connected. This implies

that GM,Cris is connected. Now, all Hodge cycles relative to the embedding τ : F ↪→ C on M
are absolute Hodge cycles, because M ∈ Ob(Mav

AH(F )). This implies that G0
M = GMF̄

(see
[11, II, 6.23]). Thus, in our situation GM = GMF̄

= GMF ′ and similarly GMF ′ ,Cris = GM,Cris.

We also get Conj′(GMF ′ ) = Conj′(GM ) and Conj′(GMF ′ ,Cris) = Conj′(GM,Cris).
As the crystalline Frobenius element for XF ′ at v′ is the n-th power of the crystalline

Frobenius element for X at v, so (ΦM,Cris)
n = Φ′M,Cris (as elements of GM,Cris(F

0
v′)).

Now, let ϕn : GM,Cris → GM,Cris be the n-th power map. The map ϕn is equivariant for
the action of conjugation. By the universal property of universal categorical quotient, ϕn
induces a map ϕ̄n : Conj′(GM,Cris) → Conj′(GM,Cris) such that ClCris ◦ ϕn = ϕ̄n ◦ ClCris.
Write FrobM := ClCris(ΦM,Cris) ∈ Conj′(GM,Cris)(F

0
v ) ⊂ Conj′(GM,Cris)(F

0
v′), then it follows

from the above discussion that

(16) ϕ̄n(F 0
v′)(FrobM ) = Frob′M .

By [18, 1.1] there is an element

ClMFrv ∈ Conj′(GM )(Q) such that Cl(ρM,`(Φv)) = ClMFrv ∀ ` 6= p.

Using the inclusions

Conj′(GM )(Q) ⊂ Conj′(GM )(F 0
v ) ∼= Conj′(GM,Cris)(F

0
v ) ⊂ Conj′(GM,Cris)(F

0
v′),

we regard ClMFrv as an element of Conj′(GM,Cris)(F
0
v′). By taking Φv′ := Φv

n for the
arithmetic Frobenius for the extension of F ′, we have Cl((ρM,`(Φv))

n) = Cl(ρMF ′ ,`(Φv′)).

It follows from this and (16), that ϕ̄n(F 0
v′)(ClMFrv) = ϕ̄n(F 0

v′)(FrobM ) as elements of
Conj′(GM,Cris)(F

0
v′). Since ClMFrv,FrobM ∈ Conj′(GM,Cris)(F

0
v ), we get

(17) ϕ̄n(F 0
v )(ClMFrv) = ϕ̄n(F 0

v )(FrobM ) ∈ Conj′(GM,Cris)(F
0
v ).

Now, fix a prime number ` and let Ω ⊃ Q̄p, Q̄` be an algebraically closed field. As M =
hi(X), we have H`(M) = Hi

et(XF̄ ,Q`). Again by the CCris conjecture (cf. [14, Th.3.2.3]),
we have HM/Cris(M) = H i

Cris(Xv/W (kv)) ⊗ F 0
v . As X has good reduction at v, we can

use Deligne’s result on Weil conjectures [9, I.6] and smooth specialization (proper-smooth
base change)to conclude that for every ` 6= p, the characteristic polynomial of ρM,`(Φv)

18
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(seen as an element of GL(H`(M)) has coefficients in Q and is independent of `. Next
by a result of Katz and Messing [16, Theorem 1], we conclude that ΦM,Cris (seen as an
element of GL(HCris(M))) has the same characteristic polynomial as ρM,`(Φv). This implies
in particular that if ρM,`(Φv) is weakly neat then ΦM,Cris is also weakly neat. Now we have
two weakly neat elements ρM,`(Φv) and ΦM,Cris in GM (Ω) ∼= GM,Cris(Ω) which have same
characteristic polynomial. Therefore, by Lemma 4.2 and (17) we conclude that FrobM =
ClMFrv. In other words, Cl(ρM,`(Φv)) = FrobM .

�

By using the previous theorem (and its proof) combined with Lemma 3.9, we easily relate
the element Frobv,i ∈ Conj′(Gi∞)(Q) of Theorem 1.11 to the conjugacy class of the crystalline
Frobenius ΦCris,i associated to the motive hi(X).

Corollary 5.4. Let the notation and hypothesis be as in Proposition 1.10. Let v be a non-
archimedean valuation and i ∈ N. Assume that X has good reduction at v and there is a
prime number `0 such that ρi`(Φv) is weakly neat. Then, the image of the element Frobv,i in
Conj′(Gi∞)(F 0

v ) coincides with ClCris(ΦCris,i).
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[1] Yves André. On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann., 305(2):205–
248, 1996.

[2] Donu Arapura. Motivation for Hodge cycles. Adv. Math., 207(2):762–781, 2006.
[3] Arnaud Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom.,

18(4):755–782 (1984), 1983.
[4] Don Blasius. A p-adic property of Hodge classes on abelian varieties. In Motives (Seattle, WA, 1991),

volume 55 of Proc. Sympos. Pure Math., pages 293–308. Amer. Math. Soc., Providence, RI, 1994.
[5] François Charles and Eyal Markman. The standard conjectures for holomorphic symplectic varieties

deformation equivalent to Hilbert schemes of K3, surfaces. Compos. Math., 149(3):481–494, 2013.
[6] Sebastian del Baño. On the Chow motive of some moduli spaces. J. Reine Angew. Math., 532:105–132,

2001.
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