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On Frobenius conjugacy class of some algebraic varieties over number fields

On Frobenius conjugacy class of some algebraic
varieties over number fields

Abhijit Laskar 1

Abstract

Let X be smooth projective algebraic variety over a number field F and F̄
an algebraic closure of F . The action of Gal(F̄ /F ) on the ℓ-adic etale coho-
mology groups H i

et(X/F̄ ,Qℓ), induces Galois representations ρiℓ : Gal(F̄ /F ) →

GL(H i
et(X/F̄ ,Qℓ)). Fix a non-archimedean valuation v on F and let Φv be an

arithmetic Frobenius element at v. In this article we answer, for many algebraic
varieties, classical semisimplicty and ℓ-independence questions related to ρiℓ(Φv)
and its conjugacy class in certain natural subgroups of GL(H i

et(X/F̄ ,Qℓ)). We
deal with both the good reduction and bad reduction case. We also treat the
case where ℓ is equal to the residual characteristic at v, by studying crystalline
realization of motives.

1 Introduction and Main results

Consider a smooth projective algebraic variety X over a number field F , with an
embedding τ : F →֒ C. Fix an algebraic closure F̄ of F . The action of ΓF :=
Gal(F̄ /F ) on the ℓ-adic etale cohomology groups V i

ℓ := H i
et(X/F̄ ,Qℓ), induces Galois

representations ρiℓ : ΓF → GL(V i
ℓ ). Now, fix a non-archimedean valuation v on F

and let Φv be an arithmetic Frobenius element at v. The aim of this article is to
study ρiℓ(Φv) and its conjugacy class in certain natural subgroups of GL(V i

ℓ ), for many
algebraic varieties. We shall study both the good reduction and bad reduction case.

We begin with some results of geometric nature. For any complex algebraic vari-
ety Y , let H i

B(Y (C),Q) denote the Betti cohomology groups of the complex analytic
variety Y (C). We shall say that the Lefschetz standard conjecture holds for Y if there
exists an algebraic self-correspondence on Y that give an inverse to the operations

H i
B(Y (C),Q) → H2 dimY−i

B (Y (C),Q)

given by the cup product 2 dimY −i times with a hyperplane section for all i ≤ dimY .
We put τX := X ×F,τ C and V i := H i

B(τX(C),Q). For any element w of the Weil
group Wv of the completion Fv, let α(w) denote the corresponding exponent of the
Frobenius automorphism of the absolute Galois group of the residue field of Fv.We
denote by

P i
ℓ,v(w, T ) := det(1− w∗T ;V i

ℓ )

the characteristic polynomial of the Qℓ-linear map ρiℓ(w).

1Abhijit Laskar: Johannes Gutenberg-Universität, Institut für Mathematik, Staudingerweg 9,
55099 Mainz, Germany. E-mail: abhijit.laskar@gmail.com.
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Theorem 1.1. Let X be a smooth projective algebraic variety defined over F , v a non-
archimedean valuation on F and i ∈ N. Assume that the Lefschetz standard conjecture
holds for τX. Then for every ℓ 6= p and w ∈ Wv with α(w) ≤ 0, the polynomial
P i
ℓ,v(w, T ) ∈ Z[T ] and is independent of ℓ.

Corollary 1.2. Let X be a smooth projective variety over F which is a finite product
of hyperkähler varieties of K3[n] type; unirational varieties of dimension ≤ 4; uniruled
varieties of dimension ≤ 3; moduli spaces of stable vector bundles of coprime rank
and degree over smooth projective curves. Then for every ℓ 6= p and w ∈ Wv with
α(w) ≤ 0, the polynomial P i

ℓ,v(w, T ) ∈ Z[T ] and is independent of ℓ.

Corollary 1.2 gives a positive response to a classical conjecture of Serre-Tate [23,
Problem 2]. Note that the case where X has good reduction at v, follows from the
results of Deligne [8] on Weil Conjectures. But, here we do not make any assumption
on the reduction of Y at v. Other (non-trivial) known cases of 1.2 are abelian vareities,
curves and surfaces (see [19]).

Theorem 1.3. Let X be a smooth projective variety over F which is a finite product
of hyperkähler varieties of K3[n] type, unirational vareities of dimension ≤ 3, uniruled
surfaces, Fermat hypersurfaces, moduli spaces of stable vector bundles of coprime rank
and degree over smooth projective curves. For every non-archimedean valuation v and
prime number ℓ 6= p, ρiℓ(Φv) : V

i
ℓ → V i

ℓ is a semisimple automorphism.

This gives a positive response to another question of Serre [22, 12.4]. Again the
only known case of 1.3 is where i = 1 and X is an abelian variety or a curve (cf. [22]).

Now, let Gi
∞ ⊆ GL(V i) denote the Mumford-Tate group of the natural Hodge

structure on V i. By using the comparison isomorphism V i ⊗ Qℓ
∼= V i

ℓ between Betti
and ℓ-adic cohomology, we identify Gi

∞/Qℓ
to an algebraic subgroup of GL(V i

ℓ ). Let

Gi
ℓ be the global algebraic monodromy group defined as the Zariski closure of ρiℓ(ΓF )

in GL(V i
ℓ ).

Proposition 1.4. Let X be as in Theorem 1.3. Fix i ∈ N and assume that all absolute
Hodge cycles in all tensor spaces formed by V i, V i ∨,Q(1) and Q(1)∨, are defined over
F . Then, Gi

ℓ is subgroup of Gi
∞/Qℓ

for every ℓ.

The Proposition above pertains to the Mumford-Tate conjecture, which claims that
Gi

∞/Qℓ
= Gi

ℓ
◦
, for any smooth projective variety over F .

Now, if X is as above, then it follows from Theorem 1.2 that the conjugacy class of
ρiℓ(Φv) in GL(V i) is rational over Q and independent of ℓ, in the sense of [21, I, §2.4].
By, using Proposition 1.4, we can get deeper results concerning the conjugacy class of
ρiℓ(Φv), which we now describe.

As Gi
∞ is a reductive algebraic group, we can construct the universal categorical

quotient (Conj(Gi
∞),Cl) for the action of Gi

∞ on itself by conjugation. The variety
Conj(Gi

∞) is defined over Q and Cl : Gi
∞ → Conj(Gi

∞) denotes the canonical quotient
map. For any algebraically closed field Ω ⊃ Q, the map Cl induces a bijection between
Conj(Gi

∞)(Ω) and the semi-simple conjugacy classes of Gi
∞(Ω). If we are in the situ-

ation of Proposition 1.4, then ρiℓ(Φv) defines an element Cl(ρiℓ(Φv)) ∈ Conj(Gi
∞)(Qℓ)

for every ℓ 6= p.
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We also note that by using Grothendieck’s ℓ-adic monodromy theorem we can
associate to ρiℓ, a representation of ′Wv with values in Gi

∞/Qℓ
(in the sense of [7,

8.11]). We denote this representation by (Gi
∞/Qℓ

, ρi
′
ℓ, N

′
i,ℓ) (see §3 for details), where

ρi
′
ℓ : Wv → Gi

∞(Qℓ) ⊂ GL(V i
ℓ ) is a representation of the Weil-group Wv of Fv trivial

on an open subgroup of the inertia group and N ′
i,ℓ is the corresponding monodromy

operator. The notion of rationality and compatibility for represenations of ′Wv with
values in an algebraic group has been defined in [7, 8.11].

Theorem 1.5. Let the notations and hypotheses be as in Proposition 1.4 and v be a
non-archimedean valuation on F .

(i) If ρiℓ|Γv is potentially unramified representation for every ℓ 6= p and ρiℓ0(Φv) is
weakly neat for some prime number ℓ0 6= p, then there exists a unique conjugacy
class

Frobv,i ∈ Conj′(Gi
∞)(Q)

such that Cl(ρiℓ(Φv)) = Frobv,i, ∀ ℓ 6= p.

(ii) The representation ρi
′
ℓ is a semisimple representation of Wv. If ρiℓ|Γv is a semi-

stable representation for every ℓ 6= p and ρiℓ0(Φv) is weakly neat for some prime

number ℓ0 6= p, then the representations (Gi
∞/Qℓ

, ρi
′
ℓ, N

′
i,ℓ) are rational over Q and

form a compatible system of representations of ′Wv modulo the action of Gi ♮ad

∞ .

Roughly speaking, (Conj′(Gi
∞),Cl) refers to a modification of (Conj(Gi

∞),Cl),
which we need to make when the derived group Gi der

∞/Q̄
of Gi

∞/Q̄
has certain factors

of type D. It is the quotient for the action of a slightly larger group Gi ♮

∞ on Gi
∞

that extends the conjugation action. If Gi der

∞/Q̄
has no factors of the above type, then

(Conj′(Gi
∞),Cl) coincides with (Conj(Gi

∞),Cl). A similar modification is made in part
(ii) of the theorem (see §3 for more on this and for the technical condition of weak
neatness)

By assuming a stronger hypothesis that the variety itself has good (resp. semi-
stable) reduction at v, results similar to Theorem 1.5 was obtained for any i and X
any finite product of K3 surfaces, abelian varieties, Fermat hypersurfaces and curves,
in [15]. Under those hypothesis the case of i = 1 and X an abelian variety was shown
by Noot in [17] and [18].

We now move to a topic of motivic nature and discuss an issue closely related to
the above topics. Recall that Grothendieck’s standard conjectures on algebraic cycles
predict that the category of motives for homological equivalence of algebraic cycles
coincides with the category of numerical(Grothendieck) motives and is Tannakian
(cf.[12, Cor.2]). This would imply in particular that the action of the Galois group ΓF

on the ℓ-adic realization Hℓ(M) of any motive M over F , factors as

ρM,ℓ : ΓF → GM(Qℓ),

where GM is the motivic Galois group of M . This is the group associated, via the Betti
realization functor Hτ , to the Tannakian subcategory generated by M and the Tate
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motive. Let (Conj(GM),Cl) be the universal categorical quotient of GM for its action
on itself by conjugation. For every ℓ 6= p, ρM,ℓ(Φv) defines an element Cl(ρM,ℓ(Φv)) ∈
Conj(GM)(Qℓ). In [22, 12.6], Serre conjectures that: If M is a motive with good
reduction at v, then Cl(ρM,ℓ(Φv)) ∈ Conj(GM)(Q), ∀ ℓ 6= p and is independent of
ℓ. Special cases of this conjecture were studied in [15] and [17]. It is natural to
ask that what one may expect from this conjecture of Serre in the case ℓ = p. The
main result of the last section of this article gives an answer to this question. As
the standard conjectures remain unsolved, we work in the framework of Tannakian
category of motives defined by absolute Hodge cycles, as in Deligne [9]. This category
has many desired properties of Grothendieck motives, unconditionally. Of course, it is
well known that if the Hodge conjecture is true, then these categories coincide.

We introduce some more notation, denote the ring of Witt vectors of kv by W (kv)
and by σ : W (kv) → W (kv) the morphism induced by the Frobenius automorphism of
kv. Let us denote by F 0

v the fraction field of W (kv). Note that F 0
v naturally identifies

to the maximal unramified extension of Qp inside Fv.
Let X/F be a smooth proper algebraic variety with good reduction at v. Let Xv

denote the special fiber of a smooth proper model of X over the ring of integers of
Fv. Fix i ∈ N. The absolute Frobenius endomorphism Frabs of Xv induces a σ-linear
map FrCris : H i

Cris(Xv/W (kv)) → H i
Cris(Xv/W (kv)), where H i

Cris(Xv/W (kv)) refers
to crystalline cohomology of Xv. Now, let |kv| = ps, then FrsCris is a W (kv)-linear
endomorphism of H i

Cris(Xv/W (kv)). Let us denote by

ΦCris : H
i
Cris(Xv/W (kv))⊗ F 0

v → H i
Cris(Xv)⊗ F 0

v ,

the crystalline Frobenius element forX at v i.e. the F 0
v -linear endomorphism FrsCris⊗1.

We denote by MAH(F ) the category of motives (over F ) for absolute Hodge cycles
and by Mab

AH(F ) the full Tannakian subcategory generated by abelian varieties and
Artin motives. Henceforth, we assume that the motive M := hi(X) ∈ Ob(Mab

AH(F )).
Let 〈M,Q(1)〉⊗ denote the full Tannakian subcategory of Mab

AH(F ) tensor generated
byM and the Tate motive Q(1). By the CCris-conjecture (cf. [11, Th. 3.2.3]) proved by
Fontaine-Messing (partially) and Faltings (in full generality) Hp(M) = H i

et(X/F̄ ,Qp)
is a crystalline representation of Γv and its associated filtered Dieudonné module is
isomorphic to H i

Cris(Xv) ⊗ F 0
v . This allows us to define the crystalline realization (

cf.[24, §4.1]), i.e., a fiber functor

HM,Cris : 〈M,Q(1)〉⊗ → VectF 0
v
,

which associates to any object in 〈M,Q(1)〉⊗ its associated filtered Dieudonné module
(see §4 for details).

We put GM,Cris := Aut⊗(HM,Cris) for the automorphism group of HM,Cris. The
action of GM,Cris on itself by conjugation, provides a universal categorical quotient
(Conj(GM,Cris),ClCris). The algebraic variety Conj(GM,Cris) is defined over F 0

v and
ClCris : GM,Cris → Conj(GM,Cris) denotes the quotient map. By a result of Blasius
[4, Th. 5.3] ΦCris defines an element ΦM,Cris ∈ GM,Cris(F

0
v ) which in turn defines an

element ClCris(ΦCris) ∈ Conj(GM,Cris)(F
0
v ). As GM,Cris and GM are inner forms of each

other, hence there is an isomorphism Conj(GM,Cris) ∼= Conj(GM)/F 0
v
, which allows to

make sense of the following result.
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Theorem 1.6. Let M be as above. Assume that GM is connected and there is prime
number ℓ0 such that ρM,ℓ0(Φv) is weakly neat. Then, there exists a unique conjugacy
class

FrobM ∈ Conj′(GM)(F 0
v ),

such that ClCris(ΦCris) = FrobM and Cl(ρM,ℓ(Φv)) = FrobM , ∀ ℓ 6= p.

Finally, let us denote by Mab
num(F ) (cf.[12]) the Tannakian category of motives

generated by abelian varieties and zero dimensional varieties, inside the category of
numerical motives over F . Since homological equivalence coincides with numerical
equivalence for abelian varieties [16], we can identify Mab

num(F ) to a subcategory (a
priory not full) of Mab

AH(F ). Thus, our result also holds for M ∈ Ob(Mab
num(F )).

Here we should remark that in the special case, where M is the motive h1(A) ∈
Ob(Mab

num(F )) for an abelian variety A, Theorem 1.6 was proved by Noot in [17, Th.
4.2]. We also note that as the Hodge conjecture remains unproven, a priory Mab

AH(F )
contains more objects than Mab

num(F ). An example of this phenomenon is the motive
of a K3 surface.

1.7 Notation

In the introduction and in the main text of the article the following notation is used,
unless otherwise specified : F̄ is a fixed algebraic closure of a number field F ; τ̄ : F̄ →֒ C

is an extension of the embedding τ : F →֒ C; v̄ is an extension of v to F̄ ; F̄v is the
localization of F̄ at v̄. The residue fields of Fv and F̄v are denoted by kv and k̄v,
respectively. The characteristic of kv is p > 0. We write Γv := Gal(F̄v/Fv) ⊂ ΓF :=
Gal(F̄ /F ) and Iv ⊂ Γv is the inertia group. An arithmetic Frobenius Φv ∈ Γv is an
element which induces the Frobenius automorphism φv of k̄v.

We denote by Wv the Weil group of Fv i.e. the dense subgroup formed by elements
w ∈ Γv which induce on k̄v an integral power φv

α(w). The map α : Wv → Z thus
defined is a group homomorphism and ker(α) = Iv. The Weil-Deligne group ′Wv of Fv

is the group scheme over Q defined as the semi-direct product of Wv with the additive
group Ga over Q, on which Wv acts as : w · x · w−1 = |kv|

α(w) · x.
The ring of Witt vectors of kv is denoted by W (kv); σ : W (kv) → W (kv) the

morphism induced by the Frobenius automorphism of kv; F 0
v the fraction field of

W (kv).

2 Action of Frobenius on ℓ-adic cohomology groups

In the following all the algebraic cycles and Chow groups are with rational coefficients.

Proof of Theorem 1.1. Let us denote by τ∆ ⊂ τX × τX the diagonal subvariety and
by d the dimension of X. Let γd

B : CHd(τX × τX) → H2d
B (τX × τX)(d), be the cycle

class map from codimension d algebraic cycles on τX× τX to the Tate twisted degree
2d Betti cohomology of τX × τX.

The Künneth isomorphism H2d
B (τX × τX)(d) ∼= ⊕2d

i=0H
2d−i
B (τX)⊗ Hi

B(τX)(d), gives

us a decomposition γd
B([τ∆]) =

∑2d
i=0 τπ

i. Now, by hypothesis the Lefschetz standard
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conjecture is true for τX, which by [14, Thm 4-1] implies that for each i ∈ [0, 2d] there
is a correspondence τzi ∈ CHd(τX × τX) such that γd

B(τz
i) = τπi.

Let p∗ : CHd(XF̄ × XF̄ ) → CHd(τX × τX) denote the base change map. It is
well known (cf.[9, 2.9, a]) that base change induces an isomorphism between algebraic
cycle groups over F̄ and C modulo homological equivalence. This implies that there is
a correspondence zi

/F̄
∈ CHd(XF̄ ×XF̄ ) such that γd

B(τz
i) = γd

B(p
∗(zi

/F̄
)). Now there

is also a diagram

CHd(τX × τX)
γd
B⊗1

// H2d
B (τX × τX)(d)⊗Qℓ

CHd(XF̄ ×XF̄ )

p∗

OO

γd
ℓ // Hi

et(XF̄ ×XF̄ ,Qℓ)(d)

Iℓ,τ

OO
(1)

where γd
ℓ is the cycle class map of ℓ-adic cohomology and Iℓ,τ is the comparison iso-

morphism between Betti and ℓ-adic cohomology groups. It follows from the arguments
given in [9, I, page 21], that (1) is commutative.

Let ∆/F̄ ⊂ XF̄ × XF̄ denote the diagonal subvariety. We have the Künneth de-

composition of the ℓ-adic cohomology class γd
ℓ ([∆/F̄ ]) =

∑2d
i=0 π

i
/F̄
. It follows from the

commutativity of (1), that

γd
ℓ (z

i
/F̄ ) = I−1

ℓ,τ ((γ
d
B ⊗ 1)(τzi)) = I−1

ℓ,τ (τπ
i ⊗ 1) = πi

/F̄ .

Now, clearly we can suppose that zi
/F̄

is defined over some finite extension (say) F1

of F . By using the natural action of G := Gal(F1/F ) on CHd(XF1
×XF1

), we set

zi :=
1

|G|

∑

σ∈G

σ∗zi/F̄ .

As zi ∈ CHd(XF1
×XF1

)G, we conclude that zi ∈ CHd(X ×X). Now we have

γd
ℓ (z

i) =
1

|G|

∑

σ∈G

γd
ℓ (σ

∗zi/F̄ ) =
1

|G|

∑

σ∈G

σ̃∗γd
ℓ (z

i
/F̄ ), (2)

where σ̃ is a lift of σ to Gal(F̄ /F ).
Now, by Künneth formula and Poincaré duality for ℓ-adic cohomology, we have the

following canonical isomorphisms

H2d
et (XF̄ ×XF̄ ,Qℓ)(d) ∼= ⊕r≥0H

2d−r
et (XF̄ ,Qℓ)(d)⊗ Hr

et(XF̄ ,Qℓ)
∼= ⊕r≥0HomQℓ

(Hr
et(XF̄ ,Qℓ),Qℓ)⊗ Hr

et(XF̄ ,Qℓ) ∼= ⊕r≥0EndQℓ
(Hr

et(XF̄ ,Qℓ)) (3)

More precisely, under the above isomorphism, an element u ∈ H2d
et (XF̄ ×XF̄ ,Qℓ)(d)

is mapped to the element u := (z 7→ pr2∗(pr1
∗(z) · u)) ∈ ⊕r≥0EndQℓ

(Hr
et(XF̄ ,Qℓ)),

where pr1 and pr2 are projections. As one easily verifies, πi
/F̄

is the idempotent pro-

jection
pi : H

∗
et(XF̄ ,Qℓ) → Hi

et(XF̄ ,Qℓ) →֒ H∗
et(XF̄ ,Qℓ).
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Clearly pi is invariant under the action of Gal(F̄ /F ) on ⊕i≥0EndQℓ
(Hi

et(XF̄ ,Qℓ)).
Thus, it follows from (3) that πi

/F̄
is invariant under the action of Gal(F̄ /F ) on

H2d
et (XF̄ ×XF̄ ,Qℓ)(d). Under the above observations, (2) now reads as

γd
ℓ (z

i) =
1

|G|

∑

σ∈G

σ̃∗πi
/F̄ =

1

|G|
(|G| · πi

/F̄ ) = πi
/F̄ . (4)

Finally, let αi denote the image of zi under the canonical injective morphism
CHd(X×X) → CHd(XFv ×XFv). Let γ

d
ℓ,v : CH

d(XFv ×XFv) → H2d
et (XF̄v

×XF̄v
,Qℓ)(d)

denote the cycle class map. By invariance of ℓ-adic cohomology groups under exten-
sion from F̄ to algebraically closed overfield , we have Hi

et(XF̄ ,Qℓ) ∼= Hi
et(XF̄v

,Qℓ) and
H2d

et (XF̄v
× XF̄v

,Qℓ) ∼= H2d
et (XF̄ × XF̄ ,Qℓ). We also know that γd

ℓ,v|CHd(X×X) = γd
ℓ ; in

particular γd
ℓ,v(α

i) = γd
ℓ (z

i). Thus using (4) and (3), it follows that γd
ℓ,v(α

i) induces an
endomorphism H∗

et(XF̄v
,Qℓ) → H∗

et(XF̄v
,Qℓ), which is identity on Hi

et(XF̄v
,Qℓ) and 0

otherwise. By [19, cor.0.6, 1] we conclude the proof the theorem.

Before proceeding further, let us recall few definitions. A hyperkähler variety over
any field K of characteristic 0 (see for example [1]) is a simply connected smooth
projective K-variety Y of even dimension 2n, with the property that there exists a
section ω of Ω2

Y , unique up to multiplication by a constant, such that ωn vanishes
nowhere. The variety Y is said to be of K3[n]-type if it is one of the following:

1. For anyK3 surface S, take Y = S[n] the punctual Hilbert scheme which parametrizes
closed subschemes of S of length n.

2. Any projective deformation of a hyperkähler variety of type S[n].

Let us remark that any general projective deformation of S[n] is not of the form S ′[n]

for any other K3 surface S ′. Hyperkähler varieties of K3[n]-type, form one of the two
series of examples of hyperkähler varieties constructed by Beauville [3]. Apart from
these only two exceptional examples has been discovered by O’Grady.

Now, let C be a smooth projective curve of genus > 1 over F . It is well known
that the moduli space NC(q, e) of stable vector bundles of coprime rank q and degree
e over C is a smooth projective fine moduli space.

Proof of Corollary 1.2. By [14, Prop. 4-3] the Lefschetz standard conjecture is stable
under products. This implies that in order to establish our result, it suffices to show
that the Lefschtz standard conjecture is true for τX, where X is now one of the
varieties in the statement of the corollary. But, this follows from the results of [5] and
[2] for hyperkähler varieties of K3[n] type and unirational varieties of dimension ≤ 4
and uniruled varieties of dimension ≤ 3, respectively. For the moduli spaces NC(q, e)
as above this follows from [6]. The corollary now follows from Theorem 1.1.

Corollary 2.1. Let X be as in corollary 1.2. Then for every ℓ 6= p and w ∈ Wv, the
polynomial P i

ℓ,v(w, T ) ∈ Q[T ] and is independent of ℓ.

Proof. This an immediate consequence of Cor. 1.2
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The proofs of our next results employs some motivic ideas. We review these very
briefly. Denote by V(F ) the category of smooth projective algebraic varieties over F .
Recall that the category of (pure) motives MAH(F ), defined by absolute Hodge cy-
cles is a Q-linear semisimple neutral Tannakian category. There exists a contravariant
functor for MAH(F )) h : V(F ) → MAH(F ) such that Betti, ℓ-adic or deRham coho-
mology on V(F ) factorizes through h. This provides fibre functors Hτ , Hℓ and HdR on
MAH(F ). We call these functors as realizations. There also exists a natural grading
h(Z) = ⊕hi(Z), i ∈ N for every Z ∈ Ob(V(F )), which extends to all of MAH(F ).
We denote by Mab

AH(F ) the Tannakian subcategory of MAH(F ) generated by abelian
varieties and zero dimensional varieties. Everything stated above holds more generally
for any arbitrary field of characteristic 0, with an embedding in C. For details on the
above facts see [9, II].

Lemma 2.2. Let X/F be as in Theorem 1.3. Then there exists a finite extension F ′

of F such that h(XF ′) ∈ Ob(Mab
AH(F

′)).

Proof. First, we claim that h(XF̄ ) ∈ Ob(Mab
AH(F̄ )). We observe that as Mab

AH(F̄ )
is a Tannakian category, it is closed under tensor products. Thus, in order to verify
the claim it suffices to do so for each of the individual varieties in the statement of
Theorem 1.3, since X is a finite products of these varieties.

So, first assume that X is a hyperkähler variety of K3[n]-type. As the Kuga-Satake
Abelian variety associated to X is defined over a finite extension of F (see [1]) and
h(XF̄ ) belongs to the smallest Tannakian subcategory generated by h2(XF̄ ) ( cf. [20]),
it follows that in this case h(XF̄ ) ∈ Ob(Mab

AH(F̄ )).
Next, when X is a Fermat hypersurfaces or a unirational variety of dimension ≤ 3,

it follows from [9, II, 6.26] that h(XF̄ ) ∈ Ob(Mab
AH(F̄ )).

When X is the moduli space NC(q, e) as above, then it follows from [6], that h(X)
is a direct summand of a motive of the form ⊕bh(C)⊗a(b). Now, let J(C) denote the
Jacobian of C. We know that h(C) = 1⊕h1(J(C))⊕L, where 1 denotes the unit object
of MAH(F̄ ) and L is the Lefschetz motive. It follows that h(X) ∈ Ob(Mab

AH(F )).
Finally, when X is a uniruled surface, we know ( see [2] ) that there exists a curve

C ′ over F̄ such that h(XF̄ ) is a direct summand of a motive of the form ⊕b′h(C
′)⊗a′(b′).

Thus, as above it follows that h(XF̄ ) ∈ Ob(Mab
AH(F̄ )).

Now, for each individual variety as in the statement of the corollary, we see that
h(XF̄ ) ∈ Ob(Mab

AH(F̄ )). Hence, the same holds for any product of these varieties.
By using [9, I, 2.9] we conclude there exists a finite extension F ′ of F such that
h(XF ′) ∈ Ob(Mab

AH(F
′)).

Proof of Theorem 1.3. Let us denote by M the motive hi(X). As M is a direct
summand of h(X), by Lemma 2.2 there is a finite extension F ′ of F such that
MF ′ := hi(XF ′) ∈ Ob(Mab

AH(F
′)). Let us denote by v′ an extension of the valua-

tion v to F ′; n the residual degree; Φv′ := Φn
v an arithmetic Frobenius correspond-

ing to this extension. We denote by 〈MF ′ ,Q(1)〉⊗ the Tannakian subcategory of
Mab

AH(F
′)) which is tensor generated by MF ′ and the Tate motive Q(1) and we write

GMF ′
:= Aut⊗(Hτ |〈MF ′ ,Q(1)〉⊗). We recall, that the ℓ-adic representations ρMF ′ ,ℓ : ΓF ′ →

8
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GL(Hℓ(MF ′)), arising from the action of ΓF ′ on the ℓ-adic realization Hℓ(MF ′) of MF ′ ,
factorizes through GMF ′

(Qℓ).
We know that there exists (possibly after passing to another finite extension, which

we again denote by F ′) an abelian variety A over F ′ and a unique homomorphism of
algebraic groups θ : GA → GMF ′

where GA := Aut⊗(Hτ |〈h1(A),Q(1)〉⊗). Moreover,
θ(Qℓ) ◦ ρA,ℓ = ρMF ′ ,ℓ, where θ(Qℓ) denotes the induced map on Qℓ-valued points and
ρA,ℓ is the Galois representation assoicated to the motive h1(A). For details on the
above facts see [15, 3.10 & 3.11]. In particular, we have θ(Qℓ)(ρA,ℓ(Φv′)) = ρMF ′ ,ℓ(Φv′).

Now, it is well known that ρA,ℓ(Φv′) is semisimple i.e. becomes diagonalizable after
a base change. As θ is a homomorphism of algebraic groups, the image of ρA,ℓ(Φv′),
under θ(Qℓ) must be semisimple. In other words, ρMF ′ ,ℓ(Φv′) is semisimple.

Finally, let ρM,ℓ : ΓF → GL(Hℓ(M)) be the ℓ-adic representation associated M .
As ρMF ′ ,ℓ(Φv′) = (ρM,ℓ(Φv))

n, so ρM,ℓ(Φv) is semisimple. Now, by definition Hℓ(M) =
πi ∗H∗

et(XF̄ ,Qℓ), where πi is the Künneth projector (as before) and πi ∗ is the image
of πi under the isomorphism of (3). As we have already seen, πi ∗ is the idempotent
projection pi. We conclude that Hℓ(M) = Hi

et(XF̄ ,Qℓ) and ρM,ℓ = ρiℓ. Thus, it follows
from the above discussion that ρiℓ(Φv) is semisimple.

3 Conjugacy class of Frobenius

The principal aim of this section is to show Theorem 1.5, but for this we shall need
some preliminaries.

The Algebraic Group H♮ad. Let H be a reductive algebraic group over a field K
of characteristic 0 and K̄ an algebraic closure of K. The adjoint action of Had on
H gives a universal categorical quotient (Conj(H),Cl), where Conj(H) is an algebraic
variety over K and Cl : H → Conj(H) is the quotient map. The pair (Conj(H),Cl) is
also the universal categorical quotient for the action of H on itself by conjugation.

The derived group Hder
K̄

is the almost direct product of almost simple subgroups Hi,
for i ∈ I a finite indexing set. If Hder

K̄
has any almost direct factor of type SO(2ki)K̄ ,

then there is an action which extends the above action. We briefly recall this. For
details see [15] and [17].

Let J ⊂ I such that for i ∈ J , Hi
∼= SO(2ki)K̄ with ki ≥ 4 and set H♮

i := O(2ki)K̄ .
Define an algebraic group

H♮ad =
∏

i∈J

H♮ad
i ×

∏

i/∈J

Had
i ⊃ Had

K̄ .

There is a natural action of H♮ad on HK̄ , which extends the adjoint action on Hder
K̄

and is trivial on the center of HK̄ . Denote by Conj′(H)K̄ the categorical quotient of
HK̄ under this action of H♮ad. Now, using the properties of categorical quotients, we
can descend from Conj′(H)K̄ to an algebraic variety Conj′(H) over K. We also get a
quotient map (as above), which we again denote by

Cl : H → Conj′(H).

9
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Now, let Ω ⊇ K be any algebraically closed field. From the functorial properties
of the above action we deduce an adjoint map

Ad : H♮ad(Ω) → Aut(h⊗ Ω),

where h denotes the Lie algebra of H.

Weakly neat elements. Fix a faithful K-linear representation V of H. A semisim-
ple element g ∈ H(Ω) is said to be weakly neat if 1 is the only root of unity among
the quotients λµ−1, with λ, µ being the eigenvalues of g.

For any positive integer n we denote by ϕn : H → H the n-th power map. Let
Y/K denote any one of the algebraic varieties Conj(H) or Conj′(H). The map ϕn is
equivariant for the action of conjugation. Since Y is a universal categorical quotient,
this implies that ϕn induces a map ϕ̄n : Y → Y such that Cl◦ϕn = ϕ̄n ◦Cl. The proof
of the following lemma (see for example [15, 2.7]) is left to the reader .

Lemma 3.1. Let Ω ⊇ K be an algebraically closed field. Let V be a finite dimensional
faithful K-linear representation of H and α, β ∈ H(Ω) be two weakly neat elements hav-
ing same characteristic polynomial in the representation V . If ϕ̄n(Cl(α)) = ϕ̄n(Cl(β))
for some positive integer n, then Cl(α) = Cl(β).

Compatible systems. We briefly recall the notion of compatible system of repre-
sentations of Weil-Deligne groups with values in an algebraic group as sketched by
Deligne [7, 8.11], see also [18].

Let H be an algebraic group over Q and ξℓ : Γv → H(Qℓ) be an ℓ-adic representa-
tion. By Grothendieck’s monodromy theorem [23, Appendix], there exists a nilpotent
element N ′

ℓ ∈ Lie(H/Qℓ
)(−1) and an open subgroup J ⊆ Iv such that for λ ∈ J , we

have ξℓ(λ) = exp(N ′
ℓtℓ(λ)). Now, by using the identification Qℓ

∼= Qℓ(1), we interpret
N ′

ℓ as an element of Lie(H/Qℓ
) and we define

ξ′ℓ : Wv → H(Qℓ), w 7→ ξℓ(w)exp(−N ′
l tℓ(Φ

−α(w)
v w)). (5)

A triple (H/Qℓ
, N ′

ℓ, ξ
′
ℓ) as above is called a representation of the Weil-Deligne group

′Wv of Fv with values in H/Qℓ
.

For a fixed ℓ, we say that (H/Qℓ
, N ′

ℓ, ξ
′
ℓ) is rational over Q ( as a representation with

values in H), if for every algebraically closed field Ω ⊃ Qℓ and for every σ ∈ AutQ(Ω),
there exists a g ∈ H(Ω) such that

σξ′ℓ/Ω = g · ξ′ℓ/Ω · g−1 and σ(N ′
ℓ ⊗Qℓ

1) = Ad(g)(N ′
ℓ ⊗Qℓ

1), (6)

where ξ′ℓ/Ω denote the extension of scalars ξ′ℓ ⊗Qℓ
Ω : Wv → H/Ω(Ω) and N ′

ℓ ⊗Qℓ
1 is

the image of N ′
ℓ in (Lie(H)⊗Q Qℓ)⊗Qℓ

Ω.
If in addition to (6), we have for every pair (ℓ, ℓ′) of prime numbers (different from

p) and every algebraically closed field Ω ⊃ Qℓ,Qℓ′ , an element g ∈ H(Ω) such that

ξ′ℓ/Ω = g · ξ′ℓ′/Ω · g−1 and N ′
ℓ ⊗Qℓ

1 = Ad(g)(N ′
ℓ′ ⊗Qℓ′

1), (7)

10
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then we say that the representations (H/Qℓ
, N ′

ℓ, ρ
i′
ℓ), form a compatible system of rep-

resentations of ′Wv ( with values in H).
Note that, as the action of H(Ω) factors through H(Ω) → Had(Ω), H(Ω)-conjugacy

may be replaced by Had(Ω)-conjugacy everywhere. Now, suppose that H is a reductive
algebraic group, then as above we define the algebraic group H♮ad. To say that the
representation (H/Qℓ

, N ′
ℓ, ξ

′
ℓ) is rational over Q modulo the action of H♮ad, means that

in (6) we require that g ∈ H♮ad(Ω). In a similar manner we make sense of the phrase
compatible system of representations of ′Wv modulo the action of H♮ad

3.2 Proof of Proposition 1.4 & Theorem 1.5

Proof of 1.4. Let X =
∏

r Xr, where each Xr is one of the varieties of the the type
mentioned in the statement of the proposition. As seen in the proof of Lemma 2.2,
h(Xr,F̄ ) ∈ Ob(Mab

AH(F̄ )), for each r. As h(XF̄ ) = ⊗rh(Xr,F̄ ) and Mab
AH(F̄ ) is closed

under tensor products, h(XF̄ ) ∈ Ob(Mab
AH(F̄ )).

Write M := hi(X); the algebraic groups GMF̄
and GM are stabilizers of all absolute

Hodge classes (AHC) and AHC that are defined over F , respecitvely, in all tensor
spaces formed by V i, V i ∨,Q(1) and Q(1)∨ (see [9, I, Principle A]). So, it follows from
hypothesis that GMF̄

= GM .
Now the Mumford-Tate group Gi

∞ of the Hodge structure V i is the stabilizer of
Hodge classes relative to the embedding τ , in all tensor spaces formed by V i, V i ∨,Q(1)
and Q(1)∨. As h(XF̄ ) ∈ Ob(Mab

AH(F̄ )), all Hodge classes relative to τ are AHC (see
[9, II, 6.27]). This implies that Gi

∞ = GMF̄
= GM .

Finally, as ρM,ℓ : ΓF → GL(Hℓ(M)) factorizes through GM(Qℓ) and ρM,ℓ = ρiℓ, we
conclude that Gi

ℓ is a subgroup of Gi
∞/Qℓ

.

Remark 3.3. By [9, I, 2.9] there exists number fields verifying the hypothesis of
Proposition 1.4.

Now, let X be as in Theorem 1.4. For every non-archimedan valuation v on F and
prime number ℓ 6= p(the residual characteristic at v), the ℓ-adic representation ρiℓ gives
rise to a representation

ρi
′

ℓ(w) = ρiℓ(w)exp(−N ′
i,ℓtℓ(Φv

−α(w)w)) (8)

of Wv, as in (5). The triple (Gi
∞/Qℓ

, ρi
′
ℓ, N

′
i,ℓ) is a representation of the Weil-Deligne

group ′Wv of Fv, with values in Gi
∞/Qℓ

.
For any finite extension F ′ of F we denote by ΓF ′ the absolute Galois group and

by v′ an extension of v to F ′. Let Iv′ , Wv′ and
′Wv′ denote the inertia, Weil and Weil-

Deligne group of F ′
v′ , respectively. We also have a group homomorphism α′ : Wv′ → Z

as in §1.7. By Φ′
v we mean an arithmetic Frobenius for this extension.

If XF ′ denotes base change of X to F ′, then the ℓ-adic representation ρiℓ|ΓF ′
asso-

ciated to XF ′ induces a representation (Gi
∞/Qℓ

, ρi
′
ℓ|ΓF ′

, N ′
i,ℓ) of the Weil-Deligne group

′Wv′ of Fv′ , with values in Gi
∞/Qℓ

11
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Remark 3.4. Although Theorem 1.5 is similar in spirit to [15, Theorem 1.1 & corollary
1.3], there are two important differences between [loc.cit.] and our case, which are as
following :

(a) here we only know that there is a finite extension F ′ of F such that the motive
hi(XF ′) ∈ Ob(Mab

AH(F
′)) ( by Lemma 2.2), while in [loc.cit.] we assumed this

property over the base field F ;

(b) in part (i) (resp. (ii)) of Theorem 1.5 we just need that ρiℓ|Γv is potentially un-
ramified (resp. semi-stable) representation for every ℓ 6= p, while in [loc.cit.] a
stronger condition was used namely X has good (resp. semi-stable) reduction at
v.

Proof of Theorem 1.5. (i) The idea of the proof is similar to that of [15, Thm. 1.1],
so we only present the main arguments and sketch the rest. As before let us
denote by M the motive hi(X). Let F ′ be a finite extension of F such that
MF ′ := hi(XF ′) ∈ Ob(Mab

AH(F
′)), as in Lemma 2.2. Let v′ be an an extension of

the valuation v to F ′ and Φv′ an arithmetic Frobenius for this extension. Now, we
have seen in the proof of Prop. 1.4 that Gi

∞ = GMF̄
= GM , in particular GMF̄

=
GMF ′

. We also have Conj′(Gi
∞) = Conj′(GMF ′

) = Conj′(GM) and ρMF ′/ℓ = ρiℓ|Γv′
.

Now, using the fact that ρiℓ|Γv is potentially unramified for all ℓ 6= p, it can be
checked (as at the beginning of the proof of [ibid.]) that MF ′ verifies [ibid. eqn.
14], in particular there exists a

2Frobv′,i ∈ Conj′(Gi
∞)(Q), such that Cl(ρiℓ(Φv′)) = Frobv′,i, ∀ ℓ 6= p. (9)

Now, let the residual degree of the extension F ′
v′/Fv be n. We denote by ϕn :

Gi
∞ → Gi

∞ the n-th power map and by ϕ̄n : Conj′(Gi
∞) → Conj′(Gi

∞) the induced
map on Conj′(Gi

∞). Then it follows easily from (9) and the fact that ϕ̄n is a finite
morphism, that

Cl(ρiℓ(Φv)) ∈ Conj′(Gi
∞)(Q̄), ∀ ℓ 6= p.

Now, by hypothesis there exists a ℓ0 such that ρiℓ0(Φv) is weakly neat. So,
by Corollary 2.1, ρiℓ0(Φv) is weakly neat for every ℓ 6= p. Again, Corollary
2.1 and a repeated use of Lemma 3.1, shows that Cl(ρiℓ(Φv)) (as an element
of Conj′(Gi

∞)(Q̄)) is independent of ℓ. We denote this element by Frobv,i. As
Frobv,i ∈ Conj′(Gi

∞)(Qℓ) for every ℓ 6= p, Frobv,i is aQ-rational point of Conj′(Gi
∞).

(ii) First note that ρi
′
ℓ(Φv) (= ρiℓ(Φv)) generates a subgroup of finite index in ρi

′
ℓ(Wv).

Now, we know that in characteristic 0 a representation (in the ordinary sense)
of a group is semisimple if and only if its restriction to a subgroup of finite
index is semisimple. Thus, it follows from Theorem 1.3 that ρi

′
ℓ is a semisimple

representation of Wv.

2In [15, eqn. 14] this element is denoted by ClMFrv′
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Now let the notation be as in part (i). By, applying [15, 3.9] to the motive MF ′ ,
we see that for ℓ 6= p the representations (Gi

∞/Qℓ
, ρi

′
ℓ|ΓF ′

, N ′
i,ℓ) are rational over

Q and form a compatible system of representations of ′Wv, modulo the action
of Gi ♮ad

∞ . In particular by setting Φv′ := Φn
v , we get that for any fixed ℓ 6= p,

algebraically closed field Ω ⊃ Qℓ and σ ∈ AutQ(Ω), there exists a gσ ∈ Gi ♮ad

∞ (Ω)
such that

σ(ρi
′

ℓ/Ω(Φ
n
v )) = gσ · (ρ

i′

ℓ/Ω(Φ
n
v )) ·g

−1
σ and σ(N ′

i,ℓ⊗Qℓ
1) = Ad(gσ)(N

′
i,ℓ⊗Qℓ

1). (10)

Thus we have (σ(ρi
′
ℓ/Ω(Φ

n
v )))

n = (gσ · (ρi
′
ℓ/Ω(Φ

n
v )) · g

−1
σ )n. Now it follows from

Corollary 2.1 that σ(ρi
′
ℓ/Ω(Φv)) and gσ · (ρ

i′
ℓ/Ω(Φv)) ·g

−1
σ have the same character-

istic polynomial. This now allows us to use a property of weakly neat elements
( cf. [18, 7.4]) to conclude that σ(ρi

′
ℓ/Ω(Φv)) = gσ · (ρ

i′
ℓ/Ω(Φv)) · g

−1
σ .

As the monodromy operator N ′
i,ℓ is unchanged by finite base extension, it now

follows from (10) that (Gi
∞/Qℓ

, ρi
′
ℓ, N

′
i,ℓ) is rational over Q modulo the action of

Gi ♮ad

∞

The compatibility condition is checked in a similar manner (cf. proof of [15,
Thm. 1.2]).

4 Conjugacy class of Crystalline Frobenius

We follow the notation of §1.7 and we introduce some more notation. For any finite
extension F ′ of F , we denote by v′ an extension of v to F ′; F ′

v′ is the completion of F ′

at v′; kv′ the residue field of F ′
v′ ; Γv′ is the absolute Galois group of Gal(F̄v/Fv′); Φv′

an arithmetic Frobenius at v′. The fraction field of the ring of Witt vectors W (kv′) is
denoted by F 0

v′ . Note that F
0
v′ naturally identifies to the maximal unramified extension

of Qp inside Fv′ .
Now, let Y be any smooth projective algebraic variety over F with potential good

reduction at v. For any i ∈ N, we denote by N the motive hi(Y ) ∈ Ob(MAH(F )).
Assume that the extension of scalars NF̄ ∈ Ob(Mab

AH(F̄ )). Thus, by taking a large
enough finite extension F ′ of F , we may assume that Y has good reduction over F ′

and NF ′ ∈ Ob(Mab
AH(F

′)). Let Yv′ denote the reduction of YF ′ at v′ and 〈NF ′ ,Q(1)〉⊗

denote the Tannakian subcategory of MAH(F
′), ⊗-generated by NF ′ and the Tate mo-

tive. It is well known (cf.[11, Th.3.2.3]) from the CCris-conjecture proved by Fontaine-
Messing (partially) and Faltings (in full generality) that Hp(NF ′) = H i

et(Y/F̄ ,Qp) is a
crystalline representation of Γv′ and its associated filtered Dieudonné module is iso-
morphic to H i

Cris(Yv′)⊗F 0
v′ . This allows us to define the crystalline realization ( cf.[24,

§4.1]), i.e., a fiber functor

HNF ′ ,Cris : 〈NF ′ ,Q(1)〉⊗ → VectF 0

v′
,

13
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which associates to any motive L ∈ 〈NF ′ ,Q(1)〉⊗ its associated filtered Dieudonné
Fv′-module (Hp(L)⊗Qp BCris)

Γv′ , where BCris is the F 0
v′ [Γv′ ]-algebra introduced by

Fontaine (cf. [10]). We call this functor the crystalline realization for the subcate-
gory of motives 〈NF ′ ,Q(1)〉⊗.

We write GNF ′ ,Cris := Aut⊗(HNF ′ ,Cris) for the automorphism group of the fibre
functor HNF ′ ,Cris. Let

Φ′
Cris : H

i
Cris(Yv′/W (kv′))⊗ F 0

v′ → H i
Cris(Yv′)⊗ F 0

v′ ,

be the (i-th) crystalline Frobenius element for YF ′ at v′. Then, it follows from a result
of Blasius [4, Th.5.3] that Φ′

Cris defines an element Φ′
N,Cris ∈ GNF ′ ,Cris(F

0
v′).

Now, as before the conjugation action of GNF ′ ,Cris gives us a universal categori-
cal quotient (Conj′(GNF ′ ,Cris),ClCris). We also have the universal categorical quotient
(Conj′(GNF ′

),Cl) for the conjugation action of GNF ′
:= Aut⊗(Hτ |〈NF ′ ,Q(1)〉⊗). For

every ℓ 6= p the ℓ-adic representation ρNF ′ ,ℓ : ΓF ′ → GNF ′
(Qℓ) defines an element

Cl(ρNF ′ ,ℓ(Φv′)) ∈ Conj′(GNF ′
)(Qℓ).

It is well known (see [9, II, Th.3.2]) from the general theory of Tannakian categories
that GNF ′ ,Cris is an inner form of GNF ′

⊗Q F 0
v′ . It follows that there is an isomorphism

Conj′(GNF ′ ,Cris) ∼= (Conj′(GNF ′
))⊗QF

0
v′ , which allows us to make sense of the following

Theorem 4.1. let Y be any smooth projective algebraic variety over F with potential
good reduction at a non-archimdean valaution v of F . For any fixed i ∈ N write
N := hi(Y ) and assume that NF̄ ∈ Ob(Mab

AH(F̄ )). Then, there exists a finite extension
F ′ of F and a unique conjugacy class

Frob′
N ∈ Conj′(GNF ′

)(F 0
v′),

such that ClCris(Φ
′
N,Cris) = Frob′

N and Cl(ρNF ′ ,ℓ(Φv′)) = Frob′
N , ∀ ℓ 6= p.

Proof of Theorem 4.1. We shall first find a finite extension of F and then show that
it is the right one. To avoid confusion, we shall denote all successive extensions of F
by F ′.

Recall, as in the proof of Theorem 1.3, there is a finite extension F ′ of F , an abelian
variety A over F ′ such that NF ′ ∈ 〈h1(A),Q(1)〉⊗. Further, this induces a unique
homomorphism of algebraic groups θ : GA → GNF ′

satisfying θ(Qℓ) ◦ ρA,ℓ = ρNF ′ ,ℓ for
every prime number ℓ (where θ(Qℓ) is the induced map on Qℓ-valued points).

Lemma 4.2. There exists an abelian vareity A over F ′ as above with potential good
reduction at v′.

Proof. First we note that for any abelian variety A, by Grothendieck’s ℓ-adic mon-
odromy theorem, Iv′ (possibly after passing over to another finite extension of F ) acts
unipotently on H1

et(A/F̄ ,Qℓ) ∼= W ⊗Qℓ, where W := H1
B(τA,Q). As Y has potential

good reduction at v, we may assume that Iv′ acts trivially on Hℓ(N). Now, by [15,
Lemma 3.10] we may choose A such that Gad

A
∼= Gad

NF ′
. This combined with the fact

that θ(Qℓ) ◦ ρA,ℓ = ρNF ′ ,ℓ, implies that I := ρA,ℓ(Iv′) ⊆ ZA(Qℓ), where ZA denotes the
centre of GA. Fix an algebraic closure Ω of Qℓ. For any σ ∈ I ⊆ ZA(Qℓ), denote by

14
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σ̄ the image of σ in ZA/Ω(Ω). As GA is reductive, ZA/Ω is a diagonalizable algebraic
group. Since GA is a subgroup of GL(W ), there exists a matrix P ∈ GLm(Ω) such
that P · σ̄ ·P−1 is of the form diag(λ1, · · · , λm), where m := dimW . As σ̄ is unipotent,
λ1 = · · · = λm = 1, i.e. σ̄ is the identity matrix. Since σ ∈ I was an arbitrary
element, I is trivial. Now, using the Néron-Ogg-Shafarevich condition [23, Thm. 1],
we conclude that A has potential good reduction at v′.

End of the proof of Theorem 4.1: By passing over to another finite extension we
may suppose that A has good reduction at v′. Now, we have the crystalline realization
HA,Cris : 〈h

1(A),Q(1)〉⊗ → VectF 0

v′
and we write GA,Cris := Aut⊗(HA,Cris). As before,

the crystalline Frobenius element for A at v′ defines an element ΦA,Cris ∈ GA,Cris(F
0
v′).

By passing over to another finite extension we may suppose that ΦA,Crisis weakly neat.
Again, asGA,Cris is an inner form ofGA⊗QF

0
v′ , there is an isomorphism Conj′(GA,Cris) ∼=

(Conj′(GA))⊗Q F 0
v′ . For our purpose we identify these two varieties. Now, by [17, 4.2]

we know that the there is an element ClAFrv ∈ Conj′(GA)(Q) such that Cl(ρA,ℓ(Φv′)) =
ClAFrv ∀ ℓ 6= p and its image in Conj′(GA,Cris)(F

0
v ) coincides with ClCris(ΦA,Cris). Let

us write FrobA ∈ Conj′(GA)(F
0
v′) = Conj′(GA,Cris)(F

0
v′), for this image.

By universal property of (universal) categorical quotients we have the following
commutative diagram:

GA
Cl //

θ

��

Conj′GA

θ̄
��

GNF ′

Cl // Conj′GNF ′

(11)

Again, the inclusion functor 〈NF ′ ,Q(1)〉⊗ → 〈h1(A),Q(1)〉⊗, induces a unique homo-
morphism

θcris : GA,Cris → GNF ′ ,Cris.

As before, this gives us the following commutative diagram :

GA,Cris
ClCris//

θcris

��

Conj′GA,Cris

θ̄Cris

��
GNF ′ ,Cris

ClCris// Conj′GNF ′ ,Cris

(12)

We set Frob′
N := ClCris(Φ

′
N,Cris) ∈ Conj′(GNF ′ ,Cris)(F

0
v′). We shall show that

Cl(ρNF ′ ,ℓ(Φv′)) = Frob′
N for every ℓ 6= p.

By functoriality, θcris(F
0
v′)(ΦA,Cris) = Φ′

N,Cris, where θcris(F
0
v′) is the induced map on

F 0
v′-valued points. Thus, by commutativity of (12) we obtain Frob′

N = θ̄Cris(F
0
v′)(FrobA).

Now, as θ(Qℓ) ◦ ρA,ℓ = ρNF ′ ,ℓ and Cl(ρA,ℓ(Φv′)) = FrobA for all ℓ 6= p, it follows that
Cl(ρNF ′ ,ℓ(Φv′)) = θ̄(F 0

v′)(FrobA) as elements of Conj′(GNF ′
)(F 0

v′) = Conj′(GNF ′ ,Cris)(F
0
v′).

Thus the proposition will be proved if we can show that Frob′
N = θ̄(F 0

v′)(FrobA). In
other words we need to show that θ̄Cris(F

0
v′)(FrobA) = θ̄(F 0

v′)(FrobA). This follows from
the next lemma.
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Lemma 4.3. The morphism θ̄/F 0

v′
:= θ̄⊗Q id : Conj′(GA)⊗QF

0
v′ → Conj′(GNF ′

)⊗QF
0
v′

coincides with θ̄Cris.

Proof. As G∗,Cris is an inner form of G∗ ⊗Q F 0
v′ , where ∗ = NF ′ or A we can identify

G∗,Cris ⊗F 0

v′
Q̄p with G∗ ⊗Q Q̄p. Then, under this identification and by definition of θ

and θCris, it follows that the homomorphisms of algebraic groups

θ/Q̄p
:= θ ⊗Q id : GA ⊗Q Q̄p → GNF ′

⊗Q Q̄p and

θCris/Q̄p
:= θCris ⊗F 0

v′
id : GA,Cris ⊗F 0

v′
Q̄p → GNF ′ ,Cris ⊗F 0

v′
Q̄p are identical. (13)

It follows from (13), that θ̄/Q̄p
= θ̄Cris/Q̄p

. As GA,Cris is geometrically reducible (as
alegbraic variety over F 0

v′), so is Conj′(GA,Cris). Now, it is a well known fact that if two
morphisms f, g : Y → Z of algebraic varieties Y and Z are identical over the algebraic
closure of the base field and Y is geometrically reducible, then f and g are identical.
By using this fact we conclude that θ̄/F 0

v′
= θ̄Cris.

Proof of Theorem 1.6. By applying Theorem 4.1 to X we obtain an extension F ′ of
F and an element Frob′

M ∈ Conj′(GMF ′
)(F 0

v′). Let n be the residual degree of the
F ′
v′/Fv. By hypothesis GM is connected, which implies that it is geometrically con-

nected because GM is an algebraic group. In particular GM ⊗Q Q̄p
∼= GM,Cris⊗F 0

v′
Q̄p is

connected. This implies that GM,Cris is connected. Now, all Hodge cycles relative to the
embedding τ : F →֒ C on M are absolute Hodge cycles, because M ∈ Ob(Mab

AH(F )).
This implies that G0

M = GMF̄
(see [9, II, 6.23]). Thus, in our situation GM = GMF̄

=
GMF ′

and similarly GMF ′ ,Cris = GM,Cris. We also get Conj′(GMF ′
) = Conj′(GM) and

Conj′(GMF ′ ,Cris) = Conj′(GM,Cris).
As the crystalline Frobenius element forXF ′ at v′ is the n-th power of the crystalline

Frobenius element for X at v, so (ΦM,Cris)
n = Φ′

M,Cris (as elements of GM,Cris(F
0
v′)).

Now, let ϕn : GM,Cris → GM,Cris be the n-th power map. The map ϕn is equivariant
for the action of conjugation. By the universal property of universal categorical quo-
tient, ϕn induces a map ϕ̄n : Conj′(GM,Cris) → Conj′(GM,Cris) such that ClCris ◦ ϕn =
ϕ̄n◦ClCris. Write FrobM := ClCris(ΦM,Cris) ∈ Conj′(GM,Cris)(F

0
v ) ⊂ Conj′(GM,Cris)(F

0
v′),

then it follows from the above discussion that

ϕ̄n(F
0
v′)(FrobM) = Frob′

M . (14)

By [15, 1.1] there is an element

ClMFrv ∈ Conj′(GM)(Q) such that Cl(ρM,ℓ(Φv)) = ClMFrv ∀ ℓ 6= p.

Using the inclusions

Conj′(GM)(Q) ⊂ Conj′(GM)(F 0
v )

∼= Conj′(GM,Cris)(F
0
v ) ⊂ Conj′(GM,Cris)(F

0
v′),

we regard ClMFrv as an element of Conj′(GM,Cris)(F
0
v′). By taking Φv′ := Φv

n for the
arithmetic Frobenius for the extension of F ′, we have Cl((ρM,ℓ(Φv))

n) = Cl(ρMF ′ ,ℓ(Φv′)).
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It follows from this and (14), that ϕ̄n(F
0
v′)(ClMFrv) = ϕ̄n(F

0
v′)(FrobM) as elements of

Conj′(GM,Cris)(F
0
v′). Since ClMFrv,FrobM ∈ Conj′(GM,Cris)(F

0
v ), we get

ϕ̄n(F
0
v )(ClMFrv) = ϕ̄n(F

0
v )(FrobM) ∈ Conj′(GM,Cris)(F

0
v ). (15)

Now, fix a prime number ℓ and let Ω ⊃ Q̄p, Q̄ℓ be an algebraically closed field.
As M = hi(X), we have Hℓ(M) = Hi

et(XF̄ ,Qℓ). Again by Falting’s result (cf. [11,
Th.3.2.3])on the CCris conjecture HM/Cris(M) = H i

Cris(Xv/W (kv)) ⊗ F 0
v . As X has

good reduction at v, we can use Deligne’s result on Weil conjectures [8, I.6] and
smooth specialization (proper-smooth base change)to conlcude that for every ℓ 6=
p, the characteristic polynomial of ρM,ℓ(Φv) (seen as an element of GL(Hℓ(M)) has
coefficients in Q and is independent of ℓ. Next by a result of Katz and Messing
[13, Theorem 1], we conclude that ΦM,Cris (seen as an element of GL(HCris(M)))
has the same characteristic polynomial as ρM,ℓ(Φv). This implies in particular that if
ρM,ℓ(Φv) is weakly neat then ΦM,Cris is also weakly neat. Now we have two weakly neat
elements ρM,ℓ(Φv) and ΦM,Cris in GM(Ω) ∼= GM,Cris(Ω) which have same characteristic
polynomial. Therefore, by Lemma 3.1 and (15) we conclude that FrobM = ClMFrv.
In other words, Cl(ρM,ℓ(Φv)) = FrobM .

By using the previous theorem (and its proof) combined with Lemma 2.2, we easily
relate the element Frobv,i ∈ Conj′(Gi

∞)(Q) of Theorem 1.5 to the conjugacy class of
the crystalline Frobenius ΦCris,i associated to the motive hi(X).

Corollary 4.4. Let the notation and hypothesis be as in Theorem 1.4. Let v be a
non-archimedean valuation and i ∈ N. Assume that X has good reduction at v and
there is a prime number ℓ0 such that ρiℓ(Φv) is weakly neat. Then, the image of the
element Frobv,i in Conj′(Gi

∞)(F 0
v ) coincides with ClCris(ΦCris,i).

Remark 4.5. We may also include abelian varieties and curves in the previous corol-
lary.
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