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Abstract

This paper presents the analytical properties of the sensitivity of the two-dimensional,
steady-state groundwater flow equation to the flow parameters and to the boundary
conditions, based on the perturbation approach. These analytical properties are used to
provide guidelines for model design, model calibration and monitoring network design. The
sensitivity patterns are shown to depend on the nature of both the perturbed parameter
and the variable investigated. Indeed, the sensitivity of the hydraulic head to the hydraulic
conductivity extends mainly in the flow direction, while the sensitivity to the recharge
spreads radially. Besides, the sensitivity of the flow longitudinal velocity to the hydraulic
conductivity propagates in both the longitudinal and transverse directions, whereas the
sensitivity of the flow transverse velocity propagates in the diagonal directions to the
flow. The analytical results are confirmed by application examples on idealized and real-
world simulations. These analytical findings allow some general rules to be established
for model design, model calibration and monitoring network design. In particular, the
optimal location of measurement points depends on the nature of the variable of interest.
Measurement network design thus proves to be problem-dependent. Moreover, adequate
monitoring well network design may allow to discriminate between the possible sources of
error.

Keywords: perturbation approach, model sensitivity, model calibration, well network
design, groundwater flow modelling

1. Introduction

Sensitivity analysis is the study of a system response to disturbances [1], and is now
recognized as an integral part of the modelling process [2]. In the field of water resources,
its range of application includes scenario analysis [3], optimization [4, 5], identification of
the relevant parameters to model calibration [6] and experimental network design [7, 8].

In this paper, sensitivity analysis is used to derive some general rules for two-dimensional
groundwater flow model calibration and monitoring network design. Since the first step in
the calibration process is a steady-state simulation, the analysis is carried out for steady-
state, two-dimensional flow simulations. The analytical properties of the sensitivity of the
steady-state two-dimensional groundwater flow equation to the flow parameters and to the
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boundary conditions are investigated, based on the perturbation approach. The main issues
addressed are: (i) do flow parameters, model geometry and boundary conditions influence
model response in the same way, (ii) do confined and unconfined aquifers behave in the same
way with respect to the sensitivity propagation, (iii) when a two-dimensional model is shown
to provide wrong simulation results, where should additional measurements be carried out
in priority, and (iv) can general rules be defined for the optimal location of measurement
points ? These issues have been previously addressed for the steady state, two-dimensional
shallow water flow equations [9]. The present work follows the methodology described in
this former study.

In most studies available from the litterature, the effects of a perturbation on the
response of a groundwater flow system have been investigated with the concern of
understanding the effects of the heterogeneity of the governing hydraulic parameters
distribution on hydraulic tests [10, 11, 1, 12, 13, 14, 15, e.g.]. A review of papers on
the actual meaning of the transmissivity estimates derived from drawdown data collected
in pumping wells in heterogeneous aquifers can be found in [13]. Analytical solutions
for transient, pumping-induced drawdown sensitivity in non-uniform aquifers were derived
by means of a first-order sensitivity formalism for simplified heterogeneity geometries by
various authors [10, 11, 1, 16, 17, 14] based on the Theis equation. McElwee [1] investigated
the difference in the drawdown sensitivity behaviour with respect to the nature of the
perturbed parameter (transmissivity or storage), based on the Theis equation. Changes in
the storage were shown to induce a perturbation in the simulated drawdown over a larger
area than changes in the transmissivity. Sykes et al. [18] developed the adjoint sensitivity
equations for a two-dimensional steady state flow in a confined aquifer. Sensitivities of
local hydraulic head and Darcy velocities (performance measure) with respect to elemental
changes in the flow parameters and boundary conditions were computed for an aquifer
with heterogeneous conductivity distribution. Butler and Liu [17] focused on the influence
of an heterogeneity on the observed drawdown and rate of change in drawdown. Delay
et al. [19] developed an approach to the interpretation of interference pumping tests in
fractal dual media. Analytical sensitivity calculations indicated that dual media have a
sequential response in time to the pumping stress. On the basis of numerical simulations,
Jiao and Zheng [20] concluded that the information on transmissivity is transferred
mainly from upstream to downstream, while the information on storativity is transferred
equally upstream and downstream. Conclusions were drawn as to pumping-tests design.
The validity of these results is restricted to one-dimensional flow and specific boundary
conditions. The spatial structure of the sensitivity of the hydraulic head with respect to the
permeability field was investigated by means of a direct differentiation method by Khan et
al. [21]. A method for high-sensitivity zones spotting was proposed, based on the observed
sensitivity patterns. A systematic pattern to the sign of the sensitivities was observed, as
the sign of a sensitivity coefficient was noted to be a function of the relative location of
the perturbation within the flow field with respect to the calibration point. Oliver [12]
used a perturbation approach to evaluate the effects of two-dimensional areal variations
in the aquifers transmissivity and storage on observation well drawdown, based on the
Fréchet derivatives and kernels. This work suggested that the area influencing observation
well drawdowns were bounded by an ellipse enclosing the pumping and the observation
wells. A detailed analysis of the spatial distribution of the hydraulic head sensitivity with
respect to transmissivity and storage perturbations was performed for classical pumping test
configurations [22, 23]. Sensitivity coefficients were derived by means of the adjoint-state
method. Sensitivity distributions of hydraulic tests with spatially separated stimulation and
observation locations were shown to be characterized by a division of the domain of interest
into two regions of opposite sensitivities. Based on the Theis approximation, Knight and
Kluitenberg [24] derived explicit expressions of the Fréchet kernels and the spatial sensitivity



functions for variations in storativity and transmissivity during both pumping and slug test.
For not-colocated pumped and observation wells, both wells were shown to have the same
importance with respect to spatial sensitivity, which confirmed previous results obtained
by Leven [22]. The sensitivity of a groundwater flow system to the recharge boundary
condition prescribed at the top boundary of a fully saturated groundwater flow model was
investigated by Jyrkama and Sykes [25] by means of the adjoint method.

In most of the abovementioned studies, the sensitivity equation was solved using
numerical methods. The analytical approach followed in this paper provides theoretical
insights into the general behaviour of the two-dimensional, steady-state aquifer flow
equations. The direct approach is used for the sensitivity computation. The direct
sensitivity analysis is well suited to the computation of the sensitivity of several variables
with respect to a given parameter. However, the computation of the sensitivity of a single
variable with respect to multiple input parameters is best handled by an adjoint sensitivity
analysis. The adjoint equation models similar physical processes as the direct equation, with
a reversed flow of information. This means the direct and adjoint steady state sensitivity
equations are the same, except that their velocity fields have opposite signs [26, 27]. The
analytical properties of the sensitivity derived in the present paper thus apply to both the
direct and adjoint frameworks.

The present work is structured in the following way. Section 2 presents the derivation
of the two-dimensional steady-state groundwater sensitivity equations, based on the
perturbation method. The solutions of the sensitivity equations and their analytical
properties are investigated next. Sections 3 and 4 deal with perturbations in the flow
parameters for confined and unconfined aquifers respectively. Section 5 handles the case
of a perturbation in the boundary condition. Computational examples are presented in
Section 6. Section 7 is devoted to conclusions.

2. Sensitivity equations for 2-D aquifer flow

2.1. The groundwater flow equations

Under Dupuit’s hypothesis of negligible vertical flow, the steady state hydraulic head
field satisfies the following equations [28]

−∇[Ke∇H] =R (confined flow) (1a)

−∇[K(H − z)∇H] =R (unconfined flow) (1b)

where H (m) is the hydraulic head, K (m/s) is the hydraulic conductivity (assumed
independent from H), z (m) is the elevation of the aquifer bedrock, R (m/s) is the recharge
rate and e (m) is the aquifer thickness (independent from H in the confined case).

2.2. Sensitivity equations for confined aquifer flow

The sensivity equations are derived by carrying out a perturbation analysis of the steady
state groundwater flow equation. The reader interested in a more thorough discussion on
sensitivity calculation can refer to [29, 30, 31, e.g.]. Let φ be the parameter with respect to
which the sensitivity analysis is carried out. Assume that φ is modified by a small quantity
φoε(x, y) over a region Ω, where φo is an infinitesimal constant and ε(x, y) is the support
function of the perturbation. Since φ may be any of the parameters of the flow equation,
we denote the parameters of the perturbed equation e + e′, K +K ′ and R + R′ where e′,
K ′ and R′ are the perturbations in the initial parameters e, K and R respectively. The
solution of the perturbed diffusivity equation is the hydraulic head H +H ′. The perturbed
flow equation thus becomes

−∇[(K +K ′)(e+ e′)∇(H +H ′)] = R+R′ (2)



Subtracting equation (1a) from equation (2) and eliminating the second-order terms
leads to

−∇[(Ke′ +K ′e)∇H +Ke∇H ′)] = R′ (3)

Dividing equation (3) by φo and defining the sensitivity of the hydraulic head to the

parameter φ as ηφ ≡ lim
φo→0

H′

φo

leads to

−∇[(Kεe + eεK)∇H +Ke∇ηφ)] = εR (4)

where

εK =
∂K

∂φo

ε(x, y) (5a)

εe =
∂e

∂φo

ε(x, y) (5b)

εR =
∂R

∂φo

ε(x, y) (5c)

Note that

εφ =

{

ε(x, y) if φ is the perturbed parameter
0 otherwise

(6)

The sensitivity equations may be rewritten in a more general manner

−∇(Ke∇ηφ) = ρ (7)

with

ρ =







∇(eε∇H) if φ = K
∇(Kε∇H) if φ = e
ε if φ = R

(8)

Equation (7) is a transport equation with a source term and diffusive effects. The source
term is zero outside the perturbed area. Note that H does not appear in equation (7) outside
the perturbed area for the parameters K and e. H is not involved either in equation
(7) inside or outside the perturbed area for the parameter R. Diffusivity is induced by
∇(Ke∇ηφ). Diffusive effects mean that a perturbation influences the value of H over the
whole domain.

The sensitivity of the velocity components to the parameter φ can be derived from the
sensitivity of the hydraulic head to the same parameter using Darcy’s law. The expression
of the Darcy’s velocity is identical for confined and unconfined aquifers

v = −K∇H (9)

where v is Darcy’s velocity. Differentiating equation (9) with respect to the parameter φ
gives

∂v

∂φ
= −K

∂

∂φ
(∇H)−∇H

∂K

∂φ
(10)

Remember that
∂K

∂φ
= lim

φo→0

K ′

φo

(11)

If φ = K then φo = ko and K ′ = koε, which leads to

∂K

∂φ
= ε (12)



Denoting by ωφ the sensitivity of the flow velocity to the value of the parameter φ leads to

ωφ =

{

−K∇ηφ if φ 6= K
−K∇ηφ − ε∇H if φ = K

(13)

Outside the perturbed area, ε = 0 regardless of the parameter considered. Equation (13)
thus simplifies into

ωφ = −K∇ηφ (14)

2.3. Sensitivity equations for unconfined aquifer flow

Applying the perturbation approach used in Section 2.2 to equation (1b) for an
unconfined aquifer leads to

−∇ [Kηφ∇H +K(H − z)∇ηφ] = (15a)

∇[(−Kεz + (H − z)εK)∇H] + εR

Equation (15a) may be rewritten as

∇(vηφ)−∇[K(H − z)∇ηφ] = ρ (16)

with

ρ =







∇[(H − z)ε∇H] if φ = K
−∇(Kε∇H) if φ = z
ε if φ = R

(17)

Equation (16) is a transport equation with a source term and diffusive effects. Remember
that second-order terms have been neglected. The main difference with the confined case
lies in the advective component ∇(vηφ), which means that the sensitivity is advected at
the Darcy velocity. Assuming that the aquifer bedrock elevation is constant, equation (16)
can be simplified into

−∇[K∇((H − z)ηφ)] = ρ (18)

When the perturbed parameter is the bedrock elevation or the recharge, the variable
(H − z)ηφ obeys the same equation under unconfined conditions as does ηφ under confined
conditions. In this case, sensitivity patterns under unconfined conditions are identical to
those obtained for confined conditions, but distorted by a factor 1/(H − z).

3. Sensitivity properties for confined aquifers

The theoretical developments are carried out for a homogeneous aquifer with a uniform,
parallel flow directed in the negative y-direction (Figure 1). Anisotropic problems can
be recast in the form of isotropic problems using a coordinate change. Whatever the
parameter investigated, the support function of the perturbation ε(x, y) is taken equal to
zero everywhere except over a square zone Ω of size 2L × 2L centred around (0,0), where
it varies linearly from 0 at the edges of the zone to 1 at its centre (see Figure 1). Note
that any continuous support function could be decomposed with first-order accuracy into a
sum of elementary support function such as ε. Such an approach is customary in e.g. finite
element modelling.



Figure 1: De�nition sketch for ε : (a) Perspective view, (b) Plan view

3.1. Influence of a perturbation in the hydraulic conductivity for parallel flow

Consider the case of a perturbation in the hydraulic conductivity. The source term
in equation (7) is non-zero over the pertubed area only. At a distance r from the
perturbation such that r >> L (far field), the integral of the source term over the
perturbed area can be approximated by a doublet of sources made of a sink with
intensity −eL ∂H/∂y (point source 1) located at (0,2L/3) and a source with intensity
+eL ∂H/∂y (point source 2) located at
(0,−2L/3) (see demonstration in Appendix A.1 and see source configuration in Figure
2). The field generated by this equivalent source configuration is known from the theory of
potential flow [32] to be

ηK =
L

2πK

∂H

∂y
ln

(

r1
r2

)

(19)

where r1 and r2 are the distances to the equivalent point sources 1 and 2 respectively. The
sign of ηK is negative upstream of the perturbed area, and positive downstream. This
result is in agreement with the expected flow behaviour. Indeed, assume that the hydraulic
conductivity decreases over the area Ω. Then head losses increase, and the hydraulic head
increases upstream of the perturbed area and decreases downstream. The contour lines of
ηK are defined by a constant r1/r2 ratio. The sensitivity contour lines are thus circles, the
centre of which lies on the y-axis and is converging at the source 1 or at the source 2 for
disminishing radius (see Figure 4a). Note that the sensitivity propagates mainly in the flow
direction. The sensitivity propagates upstream and downstream with the same intensity,
consequently the sensitivity pattern of the hydraulic head is symmetric with respect to the
x-axis.

The sensitivities νK and ̟K of the longitudinal and transverse velocities can be derived
using the results of Section 2.2

νK =
2L2

3π

∂H

∂y

x2 + (2L/3)2 − y2

r21r
2
2

(20a)

̟K =−
4L2

3π

∂H

∂y

xy

r21r
2
2

(20b)

Unlike the sensitivity of the hydraulic head, the sensitivities of the transverse and
longitudinal velocities propagate in the transverse direction. Figures 4b and 4c show
typical contour lines for νK and ̟K respectively. The contour lines of the sensitivity of the
longitudinal flow velocity have the shape of a cross, directed along the flow. The sensitivity
of the transverse component of the flow velocity is also cross-shaped, but its branches
are diagonal to the flow. This can be interpreted physically as follows. Assume that the
hydraulic conductivity of the area Ω is lower than that of the remainder of the model. Then



Figure 2: Equivalent source con�guration for εK
in the con�ned case.

Figure 3: De�nition sketch for for ε, non parallel
�ow case (plan view). The point O is the
convergence point of the �ow path lines, the point
M has coordinate (x,y) in the cartesian frame, r′

is the distance from M to O and er′ is the radial
unit vector at M.

the flow path lines tend to pass round the low-conductivity area, leading to diverging flow
pattern upstream from the perturbed area, and converging flow pattern downstream. A
small, positive x-velocity appears to the upstream left and downstream right from the
perturbed area, while a small, negative x-velocity appears to the upstream right and
downstream left (Figure 4c). Besides, the flow is slowed down upstream and downstream
from the low-conductivity area, while it is speeded up in the transverse direction to the
flow (Figure 4b).

Figure 4: Parallel, steady-state con�ned �ow : case of a perturbation in the hydraulic conductivity. Typical
far �eld behaviour for the contour lines of : a) the hydraulic head sensitivity, b) the longitudinal velocity
sensitivity, c) the transverse velocity sensitivity. Darker zones indicate higher absolute value. Dashed and
solid lines indicate negative and positive values respectively.

3.2. Influence of a perturbation in the aquifer thickness for parallel flow

For confined aquifers, a modification of the aquifer thickness amounts to a modification
of the aquifer bedrock elevation. The sensitivity source term generated by a perturbation
in the aquifer thickness is equal to that generated by a perturbation in the hydraulic
conductivity, multiplied by a factor K/e. The sensitivity field generated by a perturbation



in the aquifer thickness can thus be derived by analogy with the results of Section 3.1

ηe =
L

2πe

∂H

∂y
ln

(

r1
r2

)

(21a)

νe =
∂H

∂y

2L2K

3πe

x2 + (2L/3)2 − y2

r21r
2
2

(21b)

̟e =−
4L2K

3πe

∂H

∂y

xy

r21r
2
2

(21c)

The sensitivity patterns induced by a perturbation in the aquifer thickness are the same as
previously seen for a perturbation of the hydraulic conductivity. Note that

KηK = eηe (22)

Equation (22) means that a given relative variation in K has the same effect on the hydraulic
head and the flow velocities as the same relative variation in e.

3.3. Influence of a perturbation in the recharge for parallel flow

It stems from equation (5c) that the source term generated by a perturbation in the
recharge reduces to ε(x, y). Its integral over the perturbed area is 4L2/3. For far-field
behaviour, this source configuration is equivalent to a point source of value 4L2/3 located
at (0,0). The field generated by a point source is known from the theory of potential flow
[32] to be

ηR = −
2L2

3πKe
ln
( r

d

)

(23)

where d is the distance for which the sensitivity is zero. For an infinite domain, d must be
fixed arbitrarily. In real-world applications, d depends on the boundary conditions. The
contour lines of the sensitivity are circles centred on the perturbation. Figure 5 shows
typical sensitivity patterns for ηR. Note that the value of the sensitivity is proportional
to the inverse of the aquifer thickness and hydraulic conductivity, which means that the
estimate of the aquifer recharge is all the more important as the aquifer is thin or little
conductive. Denoting by δ the value below which η is considered negligible, equation (23)
leads to

r(η=δ) = d exp

(

−
3πδ

2L2
Ke

)

(24)

Equation (24) shows that for a given d and L, the distance beyond which the sensitivity
can be considered negligible decreases exponentially with the aquifer transmissivity Ke.

The sensitivities ρR and θR of the radial and tangential flow velocities are

ρR =
2L2

3πe

1

r
(25a)

θR =0 (25b)

The sensitivity propagates radially.

3.4. Influence of a perturbation in the flow parameters for non-parallel flow

The sensitivity to the recharge is independent from the hydraulic head field, therefore
non-parallel flow yields no change in the sensitivity patterns obtained in Section 3.3. The
case of a perturbation in the hydraulic conductivity or in the aquifer thickness is different.
Since the gradient of the hydraulic head gradient cannot be considered constant over the
perturbed area, the source term changes.



Figure 5: Parallel, steady-state con�ned �ow : case of a perturbation in the recharge rate. Typical far
�eld behaviour of the hydraulic head sensitivity contour lines. Darker zones indicate higher absolute value.
Solid lines indicate positive values.

Consider the case of a perturbation in the hydraulic conductivity. Assume that the
flow can be approximated as radial over the perturbed area. The flow velocity may thus
be expressed as v = −Q/(2πer′)er′ , where r′ is the distance to the convergence point
of the flow path lines , er′ is the radial unit vector and Q is positive for converging flow
and negative for diverging flow (see definition sketch in Figure 3). Assuming that K is a
constant over Ω, the source term may be expressed as

ρK =
Q

2πK
[ρ1 + ρ2] (26)

where

ρ1 =−
ε

r′2
(27a)

ρ2 =
1

r′
∂ε

∂r′
(27b)

When L ≪ r′, ρ1 is negligible compared to ρ2 and the variations of r′ over Ω can
be neglected. The source term then reduces to ρK = [Q/(2πKr′o)]∂ε/∂r

′, where r′o is
the distance between the perturbation and the convergence point of the flow path lines.
This source configuration is equivalent for far-field behaviour to a doublet of sources, as
in the parallel flow case. It yields a symmetric hydraulic head sensitivity pattern with
respect to the x-axis, with negative sign upstream of the perturbed area, and positive sign
downstream. The second-order terms yields an increase of the absolute sensitivity values in
the converging flow path lines direction (see demonstration in Appendix A.2). Indeed, the
perturbation in the hydraulic heads is expected to be more important as the flow section
decreases.

The case of a perturbation in the aquifer thickness is similar to that of a perturbation
in the hydraulic conductivity.

4. Sensitivity properties for unconfined aquifers

The theoretical developments are carried out using the same assumptions as in Section
3 and assuming that the aquifer bedrock elevation is constant. The values of the hydraulic
head and bedrock elevation at the centre of the perturbed area are denoted by Ho and zo.



4.1. Influence of a perturbation in the hydraulic conductivity for parallel flow

The detailed derivation of the source term is provided in Appendix A.3. The far field
sensitivity source configuration is equivalent to the superposition of a doublet of sources of
intensity −L(H − z)o (∂H/∂y)o (point source 1) and +L(H − z)o (∂H/∂y)o (point source
2) located at respectively (0, 2L/3) and (0, −2L/3) (see Figure 2). The field generated by
this equivalent source configuration is known from the theory of potential flow [32] to be

ηK =
L

2πK

(

∂H

∂y

)

o

ln

(

r1
r2

)

Ho − zo
H − z

(28)

where r1 and r2 are the distances to the equivalent sources 1 and 2 respectively. The term
(Ho − zo)/(H − z) is an advection term. As its absolute value is larger dowstream than
upstream for a given distance to the perturbation, the contour lines are shifted downstream.
The resulting sensitivity pattern is shown in Figure 6a.

The sensitivities νK and ̟K of the longitudinal and transverse flow velocities are

νK =−
L

π

(

∂H

∂y

)

o

[

4L

3

x2 + 4L2/9− y2

r21r
2
2

−
1

2(H − z)

∂H

∂y
ln

(

r1
r2

)]

Ho − zo
H − z

(29a)

̟K =−
2L2

3π

(

∂H

∂y

)

o

xy

r21r
2
2

Ho − zo
H − z

(29b)

As an effect of advection, the contour lines of the sensitivity of the flow transverse velocity
are shifted downstream. The sensitivity of the longitudinal flow velocity is made of two
terms with opposite effects. The first term on the right-hand side of equation (29a) yields
sensitivity patterns similar to those obtained in the confined case, but shifted downstream.
The second term on the right-hand side of equation (29a) has negative sign upstream from
the perturbation, and positive sign downstream. Its effect is a decrease of the algebraic
sensitivity value upstream from the perturbed area, and an increase downstream. The
resulting sensitivity patterns are shown in Figures 6b and 6c.
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Figure 6: Parallel, steady-state uncon�ned �ow : case of a perturbation in the hydraulic conductivity.
Typical far �eld behaviour for the contour lines of : a) the hydraulic head sensitivity, b) the longitudinal
velocity sensitivity, c) the transverse velocity sensitivity. Darker zones indicate higher absolute value.
Dashed and solid lines indicate negative and positive values respectively. The contour lines deformation
has been exaggerated for a better understanding.

4.2. Influence of a perturbation in the bedrock elevation for parallel flow

Assume that the flow is parallel, directed along the y-axis over the perturbed area.
Also assume that the hydraulic head gradient is constant over the perturbed area. Then
the calculation of the source term generated by a perturbation in the bedrock elevation is



similar to that of the source term generated by a perturbation in the hydraulic conductivity.
The sensitivity field generated by a perturbation in the bedrock elevation can thus be derived
by analogy with the results of Section 4.1

ηz = −
L

2π

(

∂H

∂y

)

o

ln

(

r1
r2

)

1

H − z
(30)

The sensitivities νz and ̟z of the longitudinal and transverse flow velocities are

νz =−
LK

π

(

∂H

∂y

)

o

[

4L

3

x2 + 4L2/9− y2

r21r
2
2

−
1

2(H − z)

∂H

∂y
ln

(

r1
r2

)]

1

H − z
(31a)

̟z =−
2L2K

3π

(

∂H

∂y

)

o

xy

r21r
2
2

1

H − z
(31b)

4.3. Influence of a perturbation in the recharge for parallel flow

The sensitivity of the hydraulic head to the recharge can be obtained directly by analogy
with the confined case

ηR = −
2L2

3πK
ln
( r

d

) 1

H − z
(32)

Compared to the confined case, the sensitivity contour lines are advected downstream (see
Figure 7b).

The sensitivities ρR and θR of the radial and tangent flow velocities are

ρR =
2L2

3π

1

H − z

[

1

r
+ ln

( r

d

) ∂(H − z)

∂y

cos θ

H − z

]

(33a)

θR =−
2L2

3π
ln
( r

d

) ∂(H − z)

∂y

sin θ

(H − z)2
(33b)

where θ is the angle coordinate with respect to the y-axis. The sensitivity of the radial
flow velocity is made of two terms. The first term 2L2/[3πr(H − z)] is independent from
the angular coordinate θ. It is equal to the sensitivity of the radial flow velocity derived
in the confined case, multiplied by a factor 1/(H − z). The effect of the 1/(H − z) factor
is to advect the sensitivity of the radial flow velocity downstream. The second term of
the sensitivity of the radial flow velocity and the sensitivity of the tangential flow velocity
θR are better understood using Cartesian coordinates. Using Cartesian coordinates, the
sensitivities νR and ̟R of the longitudinal and transverse flow velocities are (see Appendix
A.4 for details)

νR =
2L2

3π

y

(H − z)r2
+

2L2

3π(H − z)2
∂(H − z)

∂y
ln
( r

d

)

(34a)

̟R =
2L2

3π

x

(H − z)r2
(34b)

The first term on the right-hand side of each equation corresponds to 2L2/[3πr(H − z)] in
radial coordinates. The effect of the term [(2L2)/(3π(H − z)2)] ln(r/d) ∂(H − z)/∂y is to
decrease the longitudinal velocity sensitivity upstream of the perturbation, and to increase
it downstream (see details in Appendix A.4). This can be explained physically by the fact
that an increase in the recharge causes the water level to increase upstream of the perturbed
area (and to decrease downstream). This leads to an increase of the algebraic value of the
hydraulic head gradient upstream of the perturbed area (and to a decrease downstream),
which in turns causes the flow velocity to decrease upstream of the perturbed area (and to
increase downstream) (see Figure 7a).



Figure 7: Parallel, steady-state uncon�ned �ow : case of a perturbation in the recharge rate. a) Longitudinal
head pro�le crossing the perturbed area. Dashed line : unperturbed head pro�le, solid line : perturbed head
pro�le. An increase in the recharge causes the algebraic value of the hydraulic head gradient to increase
upstream of the perturbed area, and to decrease downstream, b) Typical far �eld behaviour of the hydraulic
head sensitivity contour lines. Solid lines indicate positive values. The contour lines deformation has been
exaggerated in order to ease the understanding.

4.4. Influence of a perturbation in the flow parameters for non-parallel flow

Non-parallel flow modifies the sensitivities established in the previous sections in two
different ways. The sensitivity to all parameters is proportional to the inverse of the
hydraulic head, which accounts for the advection of the perturbation in the flow direction.
The variation in the hydraulic head gradient over the perturbed area also influences the
source term of the sensitivities to the hydraulic conductivity and to the aquifer bottom level
elevation, as in the confined case.

Consider the case of a perturbation in the hydraulic conductivity, and assume that the
flow can be approximated locally with a radial flow field. The flow velocity may thus be
expressed as v = −Q/(2πr′(H − z)) er′ . The source term of the sensitivity to the hydraulic
conductivity becomes ρK = ∇[Qε/(2πKr′) er′ ]. This expression is very close to that of
the confined case, so that the results of Section 3.4 can be adapted directly. The sensitivity
patterns are the same as in the parallel flow case, but multiplied by a factor 1/(H − z).
The effects of the distortion by the hydraulic head field and of the variation of the intensity
of the source term over the perturbed area may be opposed.

Consider now the case of a perturbation in the aquifer bedrock elevation. Under a radial
flow approximation, the source term of the sensitivity can be written as

ρz = −∇

[

Qε

2π(H − z)r′
er′

]

(35)

The difference with the previous case lies in the coefficient 1/(H − z), that contributes to
increase the sensitivity downstream of the perturbation.

5. Boundary conditions

5.1. Sensitivity to boundary conditions

Boundary conditions along a boundary b may be written in general form as

f(xb, yb, φb, Hb) = 0 (36)

where the function f is known and the subscript b refers either to the value of the parameter
or to the variable along the boundary. Differentiating equation (36) with respect to the
parameter φ leads to the following equation

∂f

∂H

dH

dφb

+
∂f

∂φb

= 0 (37)



which in turn leads to the sensitivity boundary condition

∂f

∂H
ηφb

+
∂f

∂φb

= 0 (38)

where the term ∂f/∂φb is known from the expression of the boundary conditions.
The case of the most commonly employed boundary conditions is detailed hereafter.

Prescribed head conditions may be written as

H −Hb = 0 (39)

where Hb is the value of the hydraulic head along the boundary. Note that equation (39)
is only valid along the boundary. In this writing, f is defined as

f(H,Hb) = H −Hb (40)

and the perturbed parameter is Hb

φb =Hb (41a)

∂f/∂Hb =− ε (41b)

∂f/∂H =1 (41c)

Equation (38) thus becomes
ηHb

= ε (42)

Similarly, flux conditions and head-flux relationships may be written as

−Ke∇H =Fb (prescribed flux, confined flow) (43a)

−KH∇H =Fb (prescribed flux, unconfined flow) (43b)

−Ke∇H =λH (head-flux relationship, confined flow) (43c)

−KH∇H =λH (head-flux relationship, unconfined flow) (43d)

where Fb is the flux prescribed along the boundary and λ is the fluid transfer coefficient
(leakage parameter). Differentiating equations (43a) to (43d) with respect to Fb and λ
respectively leads to

−Ke∇ηFb
=ε (prescribed flux, confined flow) (44a)

−KηFb
∇H −KH∇ηFb

=ε (prescribed flux, unconfined flow) (44b)

−Ke∇ηλ =εH + ληλ (head-flux relationship, confined flow) (44c)

−Kηλ∇H −KH∇ηλ =εH + ληλ (head-flux relationship, unconfined flow) (44d)

Prescribing boundary conditions thus amounts to prescribing the boundary value of
the sensitivity or sensitivity gradient, or a relationship between the sensitivity and the
sensitivity gradient, depending on the nature of the boundary condition.

Inside the model, the sensitivity obeys equation (7) (confined aquifer) or (16) (uncon-
fined aquifer)

∇(Ke∇ηφ) =0 (confined flow) (45a)

∇(K(H − z)∇ηφ) =0 (unconfined flow) (45b)

The solution of this equation depends on the boundary conditions fixed by equation (38).
There is no analytical solution in the two-dimensional general case.



5.2. One-dimensional case

Assume that the problem is one-dimensional. Denote by T the transmissivity Ke
(confined case) or K(H − z) (unconfined case). Then equations (45a) and (45b) imply
that

T
∂ηφ
∂n

= A (46)

where A is a constant that depends on the boundary conditions. The hydraulic head
sensitivity gradient ∂ηφ/∂n is proportional to the inverse of the transmissivity.

If the transmissivity is uniform, then the hydraulic head sensitivity decreases linearly
inside the model. Assume that the aquifer transmissivity is not homogeneous. Equation
(46) implies that the hydraulic head sensitivity gradient in a given region is proportional
to the inverse of the transmissivity.

Consider the case of a fixed head boundary condition. The value of the hydraulic head
sensitivity at the perturbed boundary is equal to 1, regardless of the transmissivity value
(see Section 5.1). The normal gradient of the hydraulic head sensitivity across the model
depends on the transmissivity value based on equation (46). The value of the hydraulic
head sensitivity at a given distance from the perturbed boundary thus depends on the
average transmissivity value between the perturbed boundary and the location at which
the sensitivity is investigated. The error stemming from wrongly specified head boundary
condition will thus be minimized if the boundary lies in a low transmissivity area.

The case of flux boundary conditions and head-flux relationships is different. As for
hydraulic head boundary conditions, a change in the transmissivity leads to a change in the
hydraulic head sensitivity gradient. Yet the change in the hydraulic head sensitivity gradient
is counterbalanced by a change in the hydraulic head sensitivity value at the perturbed
boundary (see Appendix B). As a consequence, the error or the uncertainty stemming from
wrongly specified or uncertain boundary condition is not minimized if the boundary lies in
a region with low transmissivity. In contrast, the uncertainty in the simulated hydraulic
head is minimized for low average transmissivity between the area over which the hydraulic
head is investigated and a well-known prescribed head condition.

The sensitivity of the flow velocity is related to the hydraulic head sensitivity based on
equation (14). Equation (46) can thus be recast as

ωφ =−A/e (confined flow) (47a)

ωφ =−A/(H − z) (unconfined flow) (47b)

which means that the sensitivity of the flow velocity is proportional to the inverse of the
aquifer thickness.

6. Computational examples

6.1. Parallel flow in a confined aquifer : sensitivity to K and R

The present test case aims at checking that the theoretical results of Section 3 match
the experimental sensitivities computed under confined parallel flow conditions. Note that
as the analytical expressions established in Section 3 and 4 are approximate solutions of the
sensitivity equation, the difference between the numerical results and the approximate far-
field sensitivity is not expected to necessarily converge to zero. Two simulations are carried
out. In the first simulation, the investigated parameter φ is uniform while in the second
simulation, it is perturbed by a small amount φo over a square region of size L. The empirical
sensitivity of the flow variable is computed as the ratio of the difference between the two
simulation results to the perturbation φo. The two-dimensional groundwater flow equations
are solved over a square domain of size D using the finite element FEFLOW numerical code



[33, 34]. The lateral boundaries (x = ±D/2) are no flow boundaries. A constant hydraulic
head is prescribed at the upstream (y = D/2) and downstream (y = −D/2) boundaries of
the domain, so as to allow steady state parallel flow. Note that in the following simulations,
the flow is directed in the negative y direction. The resulting sensitivity patterns are drawn
over a square domain of size d ≪ D in order to eliminate artefacts due to the boundaries
(see definition sketch in Figure 8). The model characteristics are summarized in Table 1.

Figures 9a to 9c show typical sensitivity patterns generated by a perturbation in the
hydraulic conductivity (see test case parameters in Table 2). The resulting sensitivity
patterns match the results of Section 3.1 (Figure 4).

Figure 10 shows the hydraulic head sensitivity pattern generated by a perturbation in
the recharge (see test case parameters in Table 2). The experimental sensitivity pattern is
in agreement with the results of Section 3.3 (Figure 5).
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Figure 8: De�nition sketch for the model used in application examples 6.1 (parallel �ow in a con�ned
aquifer) and 6.2 (parallel �ow in an uncon�ned aquifer). The simulations are run in a square domain of
size D. The hydraulic head is �xed along the borders (MN) and (OP). No-�ux boundary conditions are
prescribed along the borders (NO) and (PM). The parameters are perturbed over a square area of length
L at the centre of the domain (grayed area). The resulting sensitivity patterns are drawn over a square
domain of size d centred on the perturbed area.
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Figure 9: Parallel, steady-state con�ned �ow. Case of a perturbation in the hydraulic conductivity :
a) sensitivity of the hydraulic head, b) sensitivity of the longitudinal �ow velocity, c) sensitivity of the
transverse �ow velocity. Dashed and solid lines indicate negative and positive values respectively. The
simulation parameters are given in Table 1 and Table 2.

6.2. Parallel flow in an unconfined aquifer : sensitivity to K and R

The present test case aims at checking that the theoretical results of Section 4 match
the experimental sensitivities computed under unconfined parallel flow conditions. The
methodology is the same as in Section 6.1. The test case parameters are given in Table 3
and 4.

Figures 12a to 12c show typical sensitivity patterns generated by a perturbation of the
hydraulic conductivity. Compared to the confined case, the sensitivity patterns are advected
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Figure 10: Parallel, steady-state con�ned �ow.
Case of a perturbation in the recharge rate
: hydraulic head sensitivity. The simulation
parameters are given in Table 1 and Table 2.
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Figure 11: Parallel, steady-state uncon�ned �ow.
Case of a perturbation in the recharge rate
: hydraulic head sensitivity. The simulation
parameters are given in Table 3 and Table 4.

Symbol Meaning Value
D Length of the 40km

simulation domain
d Length of the results 10km

visualization area
L Length of the perturbed area 600m
HMN Hydraulic head prescribed 86.7m

along the (MN) border
HOP Hydraulic head prescribed 10m

along the (OP) border

Table 1: Model characteristics for the application examples described in Section 6.1 (steady-state con�ned
parallel �ow). (MP) and (NO) are no-�ow boundaries.

Symbol Meaning Value
K Hydraulic conductivity 10−4m/s
R Recharge rate 0m/s
e Aquifer thickness 78.2m
ko Perturbation in the −2.5 10−5m/s

hydraulic conductivity
ro Perturbation in the 5.8 10−9m/s

recharge rate

Table 2: Parallel, steady-state con�ned �ow. Parameters for the application example described in Section
6.1 : case of a perturbation in the hydraulic conductivity or in the recharge rate.



in the direction of the flow, as predicted in Section 4.1 (Figure 6). Remember that contour
lines deformation on Figure 6 has been exaggerated for comprehension purpose. Figure 11
shows the hydraulic head sensitivity pattern generated by a perturbation in the recharge.
The deformation due to the advection is clearly visible. The experimental sensitivity pattern
matches the results of Section 4.3 (Figure 7).
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Figure 12: Parallel, steady-state uncon�ned �ow. Case of a perturbation in the hydraulic conductivity
: a) sensitivity of the hydraulic head, b) sensitivity of the longitudinal �ow velocity, c) sensitivity of the
transverse �ow velocity. Dashed and solid lines indicate negative and positive values respectively. The
simulation parameters are given in Table 3 and Table 4.

6.3. Non-parallel flow in a mixed confined-unconfined aquifer : sensitivity to K and R

The present test case aims at checking the validity of the theoretical sensitivity patterns
derived in Section 4 in a real-site geometry. With this purpose, the sensitivity patterns
generated by a perturbation in the hydraulic conductivity or in the recharge are investigated
under non parallel flow conditions over a schematic representation of the Lez karst aquifer
system (Hérault, France).

The Lez aquifer system is developed mainly in karstified Jurassic to late Cretaceous
limestones, with a thickness ranging from 650 to 1100m [35]. Its main outlet is the Lez
spring, that supplies the city of Montpellier with water. The aquifer system is bounded
by the Hérault and Vidourle rivers at its western and eastern sides, and by impervious
structural boundaries at its northern and southern sides [36] (see Figure 13). The aquifer
limestones outcrops over half of the aquifer surface. In the following, no account is taken
of the karst conduit network. A flux boundary condition is set at the location of the
pumping station (Lez spring). The pumping rate Q is taken equal to the mean of the
annual discharge under natural regime. No-flow boundaries are used to represent the
northern and southern borders. At the eastern and western borders, the hydraulic head
is prescribed and taken equal to the average annual stream stage. The recharge R is
assumed uniform. A 3-D geological model of the aquifer has been constructed based on

Symbol Meaning Value
D Length of the simulation 40km

domain
d Length of the results 10km

visualization area
L Length of the perturbed area 600m
HMN Hydraulic head prescribed 110m

along the (MN) border
HOP Hydraulic head prescribed 10m

valong the (OP) border

Table 3: Model characteristics for the application examples described in Section 6.2 (steady-state uncon�ned
parallel �ow). (MP) and (NO) are no-�ow boundaries.
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Figure 13: De�nition sketch for the Lez model.
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Figure 14: Steady state piezometric map of the
Lez model.

lithological descriptions [36], regional geological maps [37], available cross-sections [38, 39]
and available stratigraphic logs, nine of which intersect the whole stratigraphic serie. The
aquifer hydraulic conductivity K is assumed uniform, yet the perturbed aquifer bedrock
geometry yields non-uniform aquifer transmissivity.

Experimental sensitivities are computed using the same methodology as in Section 6.1.
The parameters are given in Table 5. The steady-state piezometry and transmissivity maps
are presented in Figures 14 and 15.

Figures 17a to 17c show the sensitivity patterns generated by a perturbation in the
hydraulic conductivity. Compared to the parallel flow case, the absolute value of the
sensitivity is greater in the converging flow path direction. Figure 16 shows the hydraulic
head sensitivity pattern generated by a perturbation in the recharge. The sensitivity contour
lines are not fully circular due to the influence of the boundaries.

6.4. Non-parallel flow in a mixed confined-unconfined aquifer : sensitivity to K under

transient conditions

The present test case aims at checking the validity under transient flow conditions of
the theoretical sensitivity patterns derived in Section 4. With this purpose, the sensitivity
pattern generated by a perturbation in the hydraulic conductivity is investigated under
transient conditions over a schematic representation of the Lez karst aquifer system.
Experimental sensitivities are computed using the same methodology as in Section 6.1.
Test case parameters are given in Table 6. The initial hydraulic heads are obtained from
the steady-state simulation in Section 6.3. The recharge rate is interpolated from daily
rainfall data recorded at 13 raingauge stations distributed over the Lez basin from the 26th
of november 2002 (day 1) to the 18th of february 2003 (day 85) (see Figure 18). The rainfall
event from day 15 to day 17 is centred over the western part of the Lez basin (see cumulated

Symbol Meaning Value
K Hydraulic conductivity 10−4m/s
R Recharge rate 0m/s
z Aquifer bedrock elevation 0m
ko Perturbation in the −2.5 10−5m/s

hydraulic conductivity
ro Perturbation in the 5.8 10−9m/s

recharge rate
H(0, 0) Hydraulic head at the centre 78.2m

of the perturbed area
∇H(0, 0) Hydraulic head gradient at the 1.9mm/m

centre of the perturbed area

Table 4: Parallel, steady-state uncon�ned �ow. Parameters for the application example described in Section
6.2 : case of a perturbation in the hydraulic conductivity or in the recharge rate.
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hydraulic conductivity : a) sensitivity of the hydraulic head, b) sensitivity of the longitudinal �ow velocity,
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respectively. The simulation parameters are given in Table 5.

Symbol Meaning Value
K Hydraulic conductivity 10−4m/s
R Recharge rate 9.3 10−9m/s
Q Lez spring pumping rate 2.2m3/s
ko Perturbation in the hydraulic conductivity −2.5 10−5m/s
ro Perturbation in the recharge rate 2.3 10−10m/s
∇H Hydraulic head gradient at the centre of the perturbed area 2.5mm/m
HA Prescribed hydraulic head at point A 70m
HB Prescribed hydraulic head at point B 126m
HC Prescribed hydraulic head at point C 115m
HD Prescribed hydraulic head at point D 15m

Table 5: Non-parallel, steady-state mixed con�ned-uncon�ned �ow. Parameters for the application example
described in Section 6.3 : case of a perturbation in the hydraulic conductivity or in the recharge rate. The
hydraulic head prescribed along the borders (AB) and (CD) is interpolated linearly between HA and HB

along the border (AB), and between HC and HD along the border (CD). (BC) and (AD) are no-�ux
boundaries.
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rainfall distribution in Figure 19). Figure 20 shows the variations of the hydraulic head at
the centre of the perturbed area during the simulation. Figure 21 shows the hydraulic head
sensitivity pattern generated by a perturbation in the hydraulic conductivity at day 21 and
day 60. The experimental transient sensitivity pattern matches the theoretical patterns
established in Section 4.1 for uniform properties and steady-state flow.
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Figure 21: Non-parallel, transient mixed con�ned-uncon�ned �ow. Case of a perturbation in the hydraulic
conductivity. Sensitivity of the hydraulic head : a) at day 10, b) at day 21, c) at day 80. The simulation
parameters are given in Table 6

6.5. Sensitivity to boundary conditions

The hydraulic head sensitivity patterns generated by a perturbation in the boundary
conditions are investigated over a schematic representation of the Lez karst aquifer system.
Experimental sensitivities are computed using the same methodology as in Section 6.1. The
parameters are given in Table 7.

Figure 22a shows the hydraulic head sensitivity pattern generated by a perturbation
Ho in the hydraulic head prescribed along the western boundary. The perturbation yields
a unit sensitivity value along the boundary, as seen in Section 5.1, while the hydraulic
head prescribed along the eastern boundary yields a sensitivity value of zero along this
boundary. The decrease of the sensitivity inside the model is quasi-linear, which is in
agreement whith the results of Section 5.2. Indeed, the geometry of the sensitivity boundary
conditions is quasi one-dimensional. Assume now that a flux condition is prescribed along
the western boundary. The flux values are chosen so that the hydraulic head pattern remains
on the whole the same. The resulting sensitivity pattern is similar to the former one, as
the sensitivity decreases linearly from the perturbed boundary to the eastern prescribed



head boundary (Figure 22b). On the other hand, the sensitivity pattern generated by a
perturbation in the flux condition prescribed along the northern border differs from the
previous ones (see Figure 22c). This confirms that the boundary condition sensitivity
pattern only depends on the geometry of the problem, as established in Section 5.1.

The next simulations investigate the effect of the transmissivity heterogeneity in the
quasi 1-D geometry. The transmissivity in the area close to the perturbed boundary is
1% of the transmissivity value in the rest of the model (see Figure 23a). The hydraulic
head sensitivity pattern generated by a perturbation in the hydraulic head prescribed along
the western border is shown in Figure 23b. Compared to the case of an homogeneous
transmissivity field (Figure 22a), the sensitivity to the head boundary condition is strongly
attenuated by the low transmissive area, as predicted in Section 5.2. Assume now that
the condition prescribed along the western boundary is a prescribed flux condition. Figure
23c shows the hydraulic head sensitivity pattern generated by a perturbation in this flux
boundary condition. The comparison with the homogeneous case (Figure 22b) shows that
the change in the transmissivity value in the area close to the boundary has no effect on
the sensitivity value in the rest of the model, as established in Section 5.2.

The case of a 2-D geometry is investigated in the next simulations. Figure 24a shows the
transmissivity distribution. Figures 24b and 24c show the sensitivity patterns generated by
a perturbation in the hydraulic head or in the flux prescribed along the northern border.
The resulting sensitivity patterns match the 1-D case, which confirms the validity of these
results in the 2-D case.
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Figure 22: Steady-state, mixed con�ned-uncon�ned non-parallel �ow. Case of a perturbation in the
boundary conditions. Sensitivity of the hydraulic head to a perturbation : a) in the western border
prescribed head boundary condition, b) in the western border prescribed �ux condition, c) in the northern
border prescribed �ux condition. A zero �ux is prescribed along the boundary (AD). The hydraulic head
is �xed along the boundary (CD). The nature of the boundary condition prescribed along (AB) and (BC)
depends on the simulation and is indicated on the corresponding �gure (bold characters are used for the
perturbed condition). Dashed and solid lines indicate negative and positive values respectively.

Symbol Meaning Value
K Hydraulic conductivity 10−4m/s
R Recharge rate 9.3 10−9m/s
S Speci�c yield 1.4 10−2

Q Lez spring pumping rate 2.2m3/s
ko Perturbation in the hydraulic conductivity −2.5 10−5m/s
HA Prescribed hydraulic head at point A 70m
HB Prescribed hydraulic head at point B 126m
HC Prescribed hydraulic head at point C 115m
HD Prescribed hydraulic head at point D 15m

Table 6: Non-parallel, transient mixed con�ned-uncon�ned �ow. Parameters for the application example
described in Section 6.4 : case of a perturbation in the hydraulic conductivity. The hydraulic head prescribed
along the borders (AB) and (CD) is interpolated linearly between HA and HB along the border (AB), and
between HC and HD along the border (CD). (BC) and (AD) are no-�ux boundaries.
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Figure 23: Steady-state, mixed con�ned-uncon�ned non-parallel �ow. Case of a perturbation in the
boundary conditions. Sensitivity of the hydraulic head to a perturbation in the western boundary condition,
for a non homogeneous transmissivity distribution : a) de�nition sketch for the transmissivity distribution
(K1 ≪ K2), b) sensitivity pattern generated by a perturbation in the hydraulic head prescribed along
the western boundary, c) sensitivity pattern generated by a perturbation in the �ux prescribed along the
western boundary. A zero �ux is prescribed along the boundary (AD). The hydraulic head is �xed along
the boundary (CD). The nature of the boundary condition prescribed along (AB) and (BC) depends on
the simulation and is indicated on the corresponding �gure (bold characters are used for the perturbed
condition). Dashed and solid lines indicate negative and positive values respectively.
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Figure 24: Steady-state, mixed con�ned-uncon�ned non-parallel �ow. Case of a perturbation in the
boundary conditions. Sensitivity of the hydraulic head to a perturbation in the northern boundary
condition, for a non homogeneous transmissivity distribution : a) de�nition sketch for the transmissivity
distribution (K1 ≪ K2), b) sensitivity pattern generated by a perturbation in the hydraulic head prescribed
along the northern boundary, c) sensitivity pattern generated by a perturbation in the �ux prescribed along
the northern boundary. A zero �ux is prescribed along the boundary (AD). The hydraulic head is �xed
along the boundary (CD). The nature of the boundary condition prescribed along (AB) and (BC) depends
on the simulation and is indicated on the corresponding �gure (bold characters are used for the perturbed
condition). Dashed and solid lines indicate negative and positive values respectively.



7. Conclusions

The theoretical developments presented in Sections 2 to 5 indicate that the shape and
extent of the sensitivity pattern depend on the nature of both the perturbed parameter
(K, z, e or R) and the variable of interest (hydraulic head or Darcy velocity). Although
derived for simple, homogeneous systems and steady-state parallel flow, these results have
been validated for complex real-world systems under both non-parallel and transient flow
conditions (Section 6), which allows some guidelines to be proposed for the calibration of
groundwater flow models and for observation well network design. Items 1 to 5 focus on
the sensitivity to the flow parameters. Item 6 deals with the sensitivity to the boundary
conditions. Item 7 concludes on the possibility to discriminate between the potential sources
of model error.

1. The informations conveyed by hydraulic head and flow velocity measurements are
complementary. As an example, consider the case when the model hydraulic conductivity
is calibrated against piezometric level measurements. Regions with wrong K estimation
located in the transverse and diagonal directions from the measurement point with
respect to the flow direction may remain unnoticed, unless tracing experiments are
performed.

2. For the case where model results do not coincide with the measurements, the region
where the modelled hydraulic conductivity, aquifer thickness or bedrock elevation may
be wrongly estimated must be sought downstream and upstream of the measurement
point for a discrepancy in the hydraulic head. Besides, the origin of a discrepancy in the
longitudinal flow velocity must be sought in both longitudinal and transverse directions
to the flow, whereas the origin of a discrepancy in the transverse flow velocity must be
sought in diagonal directions to the flow. Furthermore, if the discrepancy stems from bad
recharge estimation, the region with wrong recharge estimation may be located anywhere
in the model. The possibility to discriminate between the different sources of error is
discussed in item 7.

3. Confined and unconfined aquifers behave differently with respect to sensitivity propaga-
tion. While the sensitivity to a perturbation in K (or z, or e) of both the hydraulic head
and the flow velocities propagates with the same intensity upstream and downstream of
the perturbed area in confined aquifers, it extends further downstream than upstream in
unconfined aquifers. Consequently, the area in which the wrongly estimated parameter
ought to be sought extends farther downstream than upstream for unconfined aquifers,
while it extends equally in both directions in confined aquifers.

4. Model calibration should take into account the existence of dead zones in the sensitivity
patterns of K, z and e. Indeed, suppose that the model is to be tuned so as to fit the
hydraulic head at a given location (target point). Then calibrating K (or z, or e) in the
transverse direction to the flow with respect to the target point would be meaningless,
as the sensitivity of the hydraulic head to these parameters is zero. Moreover, doing
so could lead to assign physically unrealistic values to the parameter in order to make
model results fit the measurements.

5. Sampling network design should be adapted to the nature of the problem addressed.
For instance, water resource assessment requires an accurate estimation of the hydraulic
heads. In this case, the parameters K, z, and e have to be estimated upstream and
downstream of the target point principally. Besides, the key variable in solute transport
problems is the velocity field. Then the parameters K, z, and e must be evaluated
principally in the longitudinal and transverse directions to the flow. The confined or
unconfined character of the aquifer should also be taken into account, as the magnitude
of the sensitivity is larger downstream than upstream of the target point for unconfined
aquifers.



6. As far as the sensitivity to the boundary conditions is concerned, no general sensitivity
pattern can be established in the two-dimensional case. Indeed, the sensitivity equation
cannot be solved without specifying the boundary conditions, i.e. the model geometry.
The uncertainty in the simulated hydraulic head stemming from an uncertain head
boundary is minimized if the boundary lies in a region with low transmissivity. On the
other hand, the uncertainty in the simulated hydraulic head stemming from an uncertain
flux boundary is minimized for low average transmissivity between the target point and
a known head condition. The consequences for model design are that : (i) whenever
possible, uncertain head boundaries should be located in low transmissivity regions,
so that the error on the hydraulic heads will not propagate to higher transmissivity
regions, (ii) although the influence of uncertain flux boundaries on hydraulic heads cannot
be minimized, such boundaries should also be located in low transmissivity regions, if
possible. Indeed, the uncertainty on the boundary condition will be more easily reduced
if hydraulic head measurements are performed in a low transmissivity, high sensitivity
gradient and high sensitivity value region.

7. The fact that the sensitivity pattern depends on the nature of the perturbed parameter
may be used to discriminate between wrong hydraulic conductivity (or z, or e)
estimation, wrong recharge and wrong boundary condition estimation, based on
measurements of the flow variable at different locations. Indeed, the propagation of
the error along the flow (if the observed variable is the hydraulic head) or in directions
transverse to the flow (if the observed variable is the flow velocity) is typical of a
wrongly estimated hydraulic conductivity (or z, or e), while an isotropic propagation
of the error is typical of wrong recharge estimation. Classical nine-spot well pattern
(see spatial setting in Figure 25) could allow for the observation of the error pattern,
therefore enabling the identification of the error source. The error pattern stemming from
wrong boundary condition estimation depends on the problem geometry, which makes
it more difficult to identify. Yet wrong boundary condition estimation may influence
a wider area than wrong flow parameter estimation. Nested observation networks
could therefore help resolve the ambiguity between wrong boundary condition and
wrong parameter estimation. Such networks were primarily designed by the petroleum
industry to maximize the oil recovery by water flooding [40, 41]. They are also used
for the characterisation of the spatial variability of transmissivity fields by means of
geostatistical moment analysis. Indeed, performing small-scale pumping tests at various
locations across an aquifer and analyzing them by means of geostatistical moment
analysis requires the availability of numerous transmissivity data spread more or less
evenly across the site of interest [42]. The present work shows that existing nested well
networks could offer insights on the nature and location of the aquifer heterogeneities
even when used for passive monitoring.

Figure 25: Observation wells network patterns : a) nine-spot pattern, b) �ve-spot pattern (light dots) and
nested �ve-spot pattern (light and dark dots).
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Appendix A. Sensitivity source term

Appendix A.1. Source term derivation for a perturbation in the hydraulic conductivity under

confined, parallel flow conditions

The source term q generated by a perturbation in the hydraulic conductivity under
confined conditions is

q = ∇[eε∇H] (A.1)

Assume that the aquifer thickness is homogeneous over the perturbed area. Also assume
that the flow is parallel and directed along the y-axis over the perturbed area. Then the
hydraulic head gradient is constant and the source term reduces to

q = e
∂H

∂y

∂ε

∂y
(A.2)

The value of the derivative of ε in the y direction is +1/L over face 2, and −1/L over face
4, which leads to

q =























−
e

L

∂H

∂y
(face 4)

+
e

L

∂H

∂y
(face 2)

(A.3)

Consequently, the source term integral over each face Q is

Q =























−eL
∂H

∂y
(face 4)

+eL
∂H

∂y
(face 2)

(A.4)

An equivalent source term pattern may be obtained by lumping the source term into source
terms located at the gravity centres of the faces. The equivalent source term pattern is
made of two point sources of intensity −eL ∂H/∂y and +eL ∂H/∂y located at (0,−2L/3)
and (0,2L/3) respectively.

Appendix A.2. Source term derivation for a perturbation in the hydraulic conductivity under

confined, radial flow conditions

The second-order terms may be expressed as

ρ1 =−
ε

r′2
(A.5a)

ρ22 =
1

r′
∂ε

∂r′
−

1

r′o

∂ε

∂r′
(A.5b)



Over face 4 the source term ρ1 may be approximated as

ρ1 ≈−
ε

r′o
2 (A.6a)

ρ1 ≈−
1

r′o
2

(

1−
y

L

)

(A.6b)

The integral of ρ1 over face 4 may be expressed as

ρ1 ≈−
1

r′o
2

∫ L

0

(

1−
y

L

)

2y dy (A.7a)

ρ1 ≈−
1

3

L2

r′o
2 (A.7b)

Over face 4 the source term ρ22 may be approximated as

ρ22 ≈−
1

r′oL

(

1−
y

r′o

)

+
1

r′oL
(A.8a)

ρ22 ≈+
y

r′o
2L

(A.8b)

The integral of ρ22 over face 4 may be expressed as

ρ22 ≈+
1

r′o
2L

∫ L

0

2y2 dy (A.9a)

ρ22 ≈+
2

3

L2

r′o
2 (A.9b)

Similarly, the integrals of ρ1 and ρ22 over face 2 may be may be expressed as

ρ1 ≈−
1

3

L2

r′o
2 (A.10a)

ρ22 ≈+
2

3

L2

r′o
2 (A.10b)

The overall effect of the second-order source terms is to increase the algebraic value of the
first-order sensitivity source terms. This leads to an increase of the absolute value of the
sensitivity in the direction of the converging flow path lines, and a decrease in the direction
of the diverging flow path lines.

Appendix A.3. Source term derivation for a perturbation in the hydraulic conductivity under

unconfined conditions

The source term q generated by a perturbation in the hydraulic conductivity under
unconfined conditions is

q = ∇[(H − z)ε∇H] (A.11)

Assume that the flow is parallel and directed along the y-axis over the perturbed area.
Then (H − z)∇H is a constant and the source term is equal to zero over the faces 1 and 3.
Over the faces 2 and 4, the source term may be written as :

q = (H − z)o

(

∂H

∂y

)

o

∂ε

∂y
(A.12)



where (H − z)o is the aquifer thickness at the centre of the perturbed area and (∂H/∂y)o
is the value of the hydraulic head gradient at the centre of the perturbed area. The value
of the derivative of ε in the y direction is +1/L over face 2, and −1/L over face 4, which
leads to

q =































−
(H − z)o

L
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(A.13)

Consequently, the source term integral over each face Q is

Q =































−L(H − z)o
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(face 4)

+L(H − z)o

(

∂H

∂y
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o

(face 2)

(A.14)

The equivalent source term pattern is made of two point sources of intensity −L(H −

z)o (∂H/∂y)o and −L(H − z)o (∂H/∂y)o located at (0,−2L/3) and (0,2L/3) respectively.

Appendix A.4. Sensitivity derivation for a perturbation in the recharge under unconfined,

parallel flow conditions

In this paragraph we convert the sensitivity of the flow velocities in the Cartesian
coordinate system. The Cartesian coordinates of the unitary radial and tangential vectors
are

eρ =

[

− sin θ
cos θ

]

(A.15a)

eθ =

[

− cos θ
− sin θ

]

(A.15b)

The sensitivities of the radial and tangential flow velocities may thus be expressed in the
Cartesian coordinate system as

ρR =
2L2

3π(H − z)

(

1

r
+ ln

( r

d

) ∂(H − z)

∂y

cos θ

H − z

)[

− sin θ
cos θ

]

(A.16a)

θR =−
2L2

3π
ln
( r

d

) ∂(H − z)

∂y

sin θ

(H − z)2

[

− cos θ
− sin θ

]

(A.16b)

As sin θ = −x/r and cos θ = y/r, equations (A.16a) and (A.16b) lead to

νR =
2L2

3π

y

(H − z)r2
+

2L2

3π(H − z)2
∂(H − z)

∂y
ln
( r

d

)

(A.17a)

̟R =
2L2

3π

x

(H − z)r2
(A.17b)



Appendix B. Sensitivity to boundary conditions

The following section investigates the effect of the transmissivity heterogeneity over the
sensitivity of the hydraulic head to boundary flux conditions and to head-flux relationships,
for a one-dimensional problem. The origin of the n-axis is taken at the crossing with the
perturbed boundary.

Consider the case of a boundary with prescribed flux condition. Assume confined
conditions. As the problem is one-dimensional, a head condition must be prescribed at
the other edge of the model in order to get a well-posed problem. Denote by ΓF the flux
boundary, and by ΓH the prescribed head boundary. The sensitivity value at ΓF is not
fixed by the sensitivity boundary condition, while the sensitivity value along ΓH is equal
to zero (see Section 5.1). Assume that the model transmissivity is not uniform. Denote
by T(0) the transmissivity value along ΓF , and by T(n) the transmissivity value inside the
model at the abscissa n. Under confined conditions, equation (44a) gives

T(0)(∇η)(0) = −1 (B.1)

According to equation (46) :

T(n)(∇η)(n) = T(0)(∇η)(0) ∀n (B.2)

which leads to
T(n)(∇η)(n) = −1 (B.3)

The value of the sensitivity gradient at a given abscissa n inside the model only depends on
the transmissivity value at the abscissa n. The sensitivity value at the perturbed boundary
is not fixed by the boundary conditions. The value of the sensitivity inside the model thus
only depends on the average transmissivity value between the unperturbed head boundary
and the location at which the sensitivity is investigated.

Consider the case of a boundary with prescribed flux condition, under unconfined
conditions. Equation (B.2) is still valid, yet the unconfined conditions yields a new
sensitivity boundary condition

T(0)(∇η)(0) +K(0)(∇H)(0)η(0) = −1 (B.4)

The sensitivity value at the perturbed boundary can be expressed as

η(0) = −

∫ ΓH

ΓF

(∇η)(n) dn (B.5)

Combining equations (B.5) and (B.2) leads to

η(0) =−

∫ ΓH

ΓF

T(0)

T(n)
(∇η)(0) dn (B.6a)

=− T(0)(∇η)(0)

∫ ΓH

ΓF

1

T(n)
dn (B.6b)

Combining equations (B.4) and (B.6b) leads to

η(0) =

∫ ΓH

ΓF

1

T(n)
dn

(

1−K(0)∇H(0)

∫ ΓH

ΓF

1

T(n)
dn

)

−1

(B.7)

The sensitivity value at the perturbed boundary thus depends on the average transmissivity,
as in the confined case. The sensitivity value inside the model thus depends on the average



transmissivity between the unperturbed head boundary and the location at which the
sensitivity is investigated.

The case of a head-flux relationship under confined or unconfined conditions can be
handled following the same reasoning as above, and yields the same conclusion.
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Symbol Meaning Value
K Hydraulic conductivity (homogeneous case) 10−4m/s
K1 Hydraulic conductivity (heterogeneous case) 10−4m/s
K2 Hydraulic conductivity (heterogeneous case) 10−6m/s
R Recharge rate 9.3 10−9m/s
Q Lez spring pumping rate 2.2m3/s
Ho Perturbation in the hydraulic head 4m
Fo Perturbation in the �ux 2.3 10−8m/s
HA Hydraulic head prescribed at point A 70m
HB Hydraulic head prescribed at point B 126m
HC Hydraulic head prescribed at point C 115m
HD Hydraulic head prescribed at point D 15m
FA Flux prescribed at point A 1.2 10−7m/s
FB Flux prescribed at point B 2.7 10−7m/s
FBC Flux prescribed along the (BC) border 0m/s

Table 7: Steady-state, mixed con�ned-uncon�ned non-parallel �ow. Parameters for the application
examples described in Section 6.5 : case of a perturbation in the boundary conditions. The hydraulic head
prescribed along the border (CD) is interpolated linearly between HC and HD. A zero �ux is prescribed
along the (AD) border. Depending on the simulation, either the hydraulic head or the �ux may prescribed
along the borders (AB) and (BC). In any case, the hydraulic head H or the �ux F prescribed along the
borders (AB) and (BC) are interpolated linearly between their extremities.
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