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An optimization approach for the localization of defects in an
inhomogeneous medium from acoustic far-field measurements at a fixed
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Abstract: We are interested in the localization of defects in non-absorbing inhomogeneous media with
far-field measurements generated by plane waves. In localization problems, most so-called sampling
methods are based on a characterization involving point-sources and the range of some implicitly defined
operator. We present here a way to deal with this implicit operator by the means of an optimization
approach in the lines of the well-known inf criterion for the factorization method.
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1 Introduction
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Figure 1: Reference setting (left) and actual setting (right).

We consider an inverse scattering problem consisting in shape reconstruction from physical mea-
surements. These problems are generally non-linear and ill-posed. More specifically, we address the
problem of reconstructing the support of a perturbation in a given inhomogeneous background medium
from acoustic far-field measurements generated with plane waves. It may indeed happen that, in some
places, the actual index is different from the reference value, as seen in Figure 1. This could happen for
instance from a deterioration or an incorrect estimation of the actual index. We then say that there is
a defect at any point where the reference index is different from the actual index.

A wide range of methods achieve the localization of obstacles by a sampling approach: the points of
the unknown domain are characterized by a binary test that has to be applied to the whole space. For
most of them, the first formulation of this pointwise test is to check if some well chosen test-function is
in the range of an implicitly defined operator. See [4, 15] and references therein for a topical review. A
natural way to proceed is then to connect the range of the implicit operator to the range of an operator
explicitly defined from the actually available measurements. This is the principle of the linear sampling
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method [5, 7, 3] or of the factorization method [9, 12, 1]. Yet, when looking for perturbations in non-
homogeneous background media, it is only recently that a factorization method has been proposed to
reconstruct the shape of defects [14, 8].

However, we investigate in this paper an optimization approach in the lines of the inf criterion [11]
to deal with the implicit operator’s range. We show that this leads to a characterization of the defects
as the support of the following function:

MW (z) := inf

{
fW (Ψ), Ψ ∈ L2(Sd−1) and

〈
Ψ, un0(·, z)

〉
L2(Sd−1)

= 1

}
,

where un0
is the total field for the reference index and the form fW is given by

fW (Ψ) :=
∣∣∣〈WΨ, Ψ〉L2(Sd−1)

∣∣∣ 12 ,
with a measurements operator W explicitly built from the available data. Throughout this paper, 〈·, ·〉X
stands for the usual hermitian inner product in the Hilbert space H.

This paper is structured as follows. In section 2, the mathematical setting is specified and the
implicit localization of the defects is recalled. This localization is then expressed as a binary pointwise
test involving an constrained optimization problem in section 3. Finally, in section 4, we investigate
numerical methods for solving this optimization problem. We end by some conclusions.

2 Formal localization

If we consider time-harmonic acoustic waves with a fixed wave number k, the spatial part of the wave
equation is modeled by the Helmholtz equation [6]. Inhomogeneous media are then represented by an
acoustic refraction index, denoted by n ∈ L∞(Rd), and so the total field, denoted by un, is assumed to
satisfy

∆un + k2n(x)un = 0, x ∈ Rd, (1)

where d is the problem’s dimension (d = 2 or 3). We consider compactly supported inhomogeneities
and denote by D the support of n(x)− 1. Also, we denote an incoming wave satisfying (1) with n = 1
by ui ∈ L2

loc(Rd). The total field is then the sum of this incoming wave and the wave scattered by the
inhomogeneous medium, denoted by us ∈ L2

loc(Rd):

un := us + ui, (2)

where the scattered wave is assumed to satisfy the Sommerfeld radiation condition

∂ru
s = ikus + O

(
|x|−

d−1
2

)
. (3)

Then, the linear system (1)-(3) defines un uniquely from ui, and it is known to be invertible in L2(D).
Thus, let us denote the corresponding automorphism by

Tn : L2(D) → L2(D),
ui 7→ un.

Besides, the outgoing part of a wave has an asymptotic behaviour called the far field pattern, denoted
by u∞n ∈ L2(Sd−1), see figure 2, and given by the Atkinson expansion [17]

un(x) := ui(x) + γ
eik|x|

|x|
d−1
2

u∞n (x̂) + O
(
|x|−

d−1
2

)
, x̂ :=

x

|x|
∈ Sd−1,

where γ depends only on the dimension and is defined by

γ :=

{
eiπ/4√

8πk
if d = 2,

1
4π if d = 3.
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Figure 2: General setting and notations.

Furthermore, for practical reasons, we will mainly consider scattered waves having a plane-wave
source. These plane-waves are defined by

ui(θ̂, x) := exp(ikθ̂ · x),

where θ̂ is a unitary vector in Sd−1 as depicted on figure 2. Then, let us denote the total field at the
point x ∈ Rd and with a plane-wave source of incoming direction θ̂, by

un(θ̂, x) := Tn(ui(θ̂, ·))(x).

The corresponding far-field pattern in the measurement direction x̂ ∈ Sd−1 will be denoted by u∞n (θ̂, x̂).
Lastly, these measurements will be used in the form of the classical far-field operator Fn : L2(Sd−1)→
L2(Sd−1), defined by

Fng(x̂) :=
〈
g, u∞n (·, x̂)

〉
L2(Sd−1)

.

We want to reconstruct the shape of defects in a reference medium whose index is denoted by n0 ∈
L∞(D). Let then n1 ∈ L∞(D) denote the actual index, altered by the presence of these defects. So,
denote the support of the difference between the two indices (see figure 1) by

Ω := support(n1 − n0).

Thus, the goal is to reconstruct the domain Ω, through its associated characteristic function denoted 1Ω,
from the reference index n0 and far-field measurements u∞n1

. Yet, it has been shown that the unknown
domain can be characterized by a set of test functions and the range of some implicitly defined operator.

Theorem 1 (Implicit domain characterization). [8, Theorem 3.2] Let us define the operator C :
L2(D)→ L2(Sd−1) by

Cf(x̂) = 〈f, un0
(x̂, ·)〉L2(D).

Then, for each z ∈ Rd, we have

z ∈ Ω ⇐⇒ un0
(·, z) ∈ R (C1Ω) , (4)

where 1Ω : L2(Ω)→ L2(D) is the restriction to Ω given by

1Ωf(x̂) =

{
0, x /∈ Ω

f(x), x ∈ Ω
.

3 Explicit identification of the defects

This section gives an explicit formulation of characterization (4). To do so, we proceed in three steps.
First, we introduce a practical result formulating the belonging to the range of any given (bounded)
operator L as an inf criterion based on any function related to L through specific assumptions. Then,
we construct such a well-suited function for the operator we are interested in, namely C1Ω. Finally, we
can give the explicit characterization of the defect Ω.
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3.1 Formulation of a bounded operator’s range through an inf criterion

To deal with the range of C1Ω, depending on the unknown domain Ω, let us recall the following
characterization of an operator’s range.

Lemma 2 (Range characterization). [14, Lemma 2.1] Let L : H1 → H2 be a bounded operator between
two Hilbert spaces H1 and H2, and let ϕ ∈ H2. Then, noting H?

2 the dual of H2 and identifying H1

with its dual, ϕ ∈ R (L) if and only if there exists c > 0 such that for all Ψ ∈ H?
2

|〈Ψ, ϕ〉| 6 c ‖L?Ψ‖ . (5)

Hence, any form comparable to ‖L?(·)‖ can be used to characterize the range of the operator L.

Corollary 3. With L as in lemma 2, let f : H?
2 → R be comparable to L? in the sense that there exists

c1 > 0 and c2 > 0 such that

c1 ‖L?Ψ‖ 6 f(Ψ) 6 c2 ‖L?Ψ‖ , Ψ ∈ H?
2 . (6)

Then, ϕ ∈ R (L) if and only if there exists c3 > 0 such that for all Ψ ∈ H?
2

|〈Ψ, ϕ〉| 6 c3f(Ψ). (7)

Proof. The result (7) is a straightforward combination of the characterization (5) and (6). Finally,
from corollary 3, we deduce the following characterization based on an inf criterion.

Corollary 4. With f as in corollary 3, then ϕ ∈ R (L) if and only if

0 < inf {f(Ψ), Ψ ∈ H?
2 and 〈Ψ, ϕ〉 = 1} .

Proof. First, if ϕ 6∈ R (L), from corollary 3, for each c > 0 there exists Ψc ∈ H?
2 such that |〈Ψc, ϕ〉| >

cf(Ψc). Since f(Ψc) > 0 by (6), then 〈Ψc, ϕ〉 6= 0 and we can define ψc := Ψc/〈Ψc, ϕ〉. From (6), it
follows

1 = |〈Ψc, ϕ〉|
1

|〈Ψc, ϕ〉|
> cf(Ψc)

1

|〈Ψc, ϕ〉|
> cf(ψc)

c1
c2
.

So, there is a set of functions ψc ∈ H?
2 , satisfying 〈ψc, ϕ〉 = 1, such that f(ψc)→ 0 when c→∞.

Next, let ϕ ∈ H2 \ {0} be in the range of the operator L and let Ψ ∈ H?
2 satisfy 〈Ψ, ϕ〉 = 1. Thus,

from corollary 3, there exists c3 > 0 such that 1 6 c3f(Ψ) and the infimum is not vanishing. Finally,
if ϕ = 0, which is always in the range of L, the infimum is evaluated over an empty set and will then
conventionally be given the value +∞.

3.2 Construction of a well-suited objective function

As shown in corollary 4, the range of a linear bounded operator L can be formulated as a usual
constrained optimization problem without the exact knowledge of L. Indeed, it suffices to find any form
f satisfying (6). Hence, to get an explicit characterization of the domain Ω from theorem 1, we look
for a form f satisfying

c1 ‖1ΩC
?Ψ‖ 6 f(Ψ) 6 c2 ‖1ΩC

?Ψ‖ , Ψ ∈ L2(Sd−1). (8)

To achieve this, following [11], we consider the form fW : L2(Sd−1)→ R+ defined by

fW (Ψ) :=
∣∣∣〈WΨ, Ψ〉L2(Sd−1)

∣∣∣ 12 , (9)

where W is a measurements operator explicitly built from the available data.
A first guess for the operator W would be to consider (Fn1

−Fn0
): the difference between the far-field

operators corresponding respectively to the reference index n0 and the actual index n1. But it has been
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shown in [8] that this subtraction does not yield some crucial factorization. Thus, we have to restrain
ourselves to full bi-static data (u∞n0

and u∞n1
are known over Sd−1 × Sd−1) and non-absorbing media

(n0(x) and n1(x) ∈ R) so we can consider the operator W : L2(Sd−1)→ L2(Sd−1) defined by

W :=
(

id + 2ik |γ|2 Fn0

)
(Fn1 − Fn0) .

Under these assumptions, it has been shown that this measurements operator W has a factorization
of the form (see [8, Corollary 4.7, Corollary 4.3])

W = CAC?, (10)

where the operator A is an automorphism on L2(Ω) defined by

A := 1Ωk
2(n1 − n0)Tn1

T −1
n0

1Ω. (11)

So, we have

fW (Ψ) =
∣∣∣〈CAC?Ψ, Ψ〉L2(Sd−1)

∣∣∣ 12 =
∣∣∣〈AC?Ψ, C?Ψ〉L2(Ω)

∣∣∣ 12 , (12)

and as such, the inequalities (8) are then the continuity and the coercivity of the operator A, at least
on the range of C?. We are now going to show that this coercivity is related to the contrast between
the reference index n0 and the actual values of n1, i.e. the defects should be clearly distinguished from
the background. We thus make the following geometrical assumption.

Assumption 5. Assume that n0 and n1 are real valued and that either (n1−n0) or (n0−n1) is locally
bounded from below:

• for any compact subset ω included in Ω, there exists c > 0 such that (n1(z) − n0(z)) > c for
almost all z ∈ ω,

or

• for any compact subset ω included in Ω, there exists c > 0 such that (n0(z) − n1(z)) > c for
almost all z ∈ ω.

Moreover, for a fixed geometry of defects, some wave numbers k may produce resonances that cancel
the outgoing wave. Indeed, the operator mapping an incoming wave to the corresponding far-field
pattern is not one-to-one in the case of inhomogeneous media. This corresponds to the so-called interior
transmission eigenvalues arise [10].

Definition 6. We call k an interior transmission eigenvalue for the pair of indices (n0, n1) if there

exists a non-vanishing (source,solution) pair, denoted by (h, u) ∈
(
L2(Ω)

)2
, such that

(∆ + k2n0)u = −k2(n1 − n0)h in Ω,

(∆ + k2n1)h = 0 in Ω,

u = 0 on ∂Ω,

∂νu = 0 on ∂Ω.

Since we want to avoid these ”pathological” values, it is useful to know that this is a rare case.

Lemma 7. If the indices n0 and n1 are real-valued, then the set of interior transmission eigenvalue for
the pair of indices (n0, n1) is discrete. Furthermore, if there are infinitely many, they only accumulate
at +∞.

Proof. The proof follows exactly the lines of [13, Theorems 4.13 and 4.14], by adapting the notations.
With these two geometrical restrictions, the coercivity of the operator A on the range of C? is then
obtained in lemma 9, using the following result.
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Lemma 8. [13, Lemma 1.17] Let Y be a subset of a reflexive Banach space X and A, A0 : X? → X
be linear and bounded operators such that

1. 〈ϕ, Aϕ〉 ∈ C \ (−∞, 0] for all ϕ 6= 0 in the closure of Y

2. 〈ϕ, A0ϕ〉 ∈ R and there exists c0 > 0 with 〈ϕ, A0ϕ〉 > c0 ‖ϕ‖ for all ϕ in Y

3. A−A0 is compact.

Then, there exists c > 0 such that for all ϕ ∈ Y it holds |〈Aϕ, ϕ〉| > c ‖ϕ‖2X? .

Finally, we group the properties of operator A in the following lemma.

Lemma 9. Under assumption 5, if k is not an interior transmission eigenvalue in the sense of def-
inition 6, then the operator A, defined by (11), is coercive on the range of C?, defined in theorem 1.
Namely, there exists c1 > 0 such that

c1 ‖1ΩC
?Ψ‖L2(Ω) 6

∣∣∣〈AC?Ψ, C?Ψ〉L2(Ω)

∣∣∣ 12 , ∀Ψ ∈ L2(Sd−1). (13)

Proof. This is a straightforward application of lemma 8 with Y = R (C?) and X = L2(Ω). The required
assumptions have been partially shown [8, lemma 5.3] but, for convenience, we give a complete proof.

1. Choose ϕ ∈ R (C?). By definition of operator C, this is a total field for the refraction index n0.
Hence, there exists an incident field f such that ϕ = Tn0(f). Let us set un0 = ϕ and un1 = Tn1(f).
Thus, we obtain Aϕ = k2(n1−n0)un1 . Moreover, choosing R > 0 such that the ball BR of radius
R contains Ω, it holds that∫

Ω

k2(n1 − n0)un1
(un0

− un1
)

=

∫
BR

(∆ + k2n0)(un1 − un0)(un1 − un0)

=

∫
BR

k2n0|un1
− un0

|2 − |∇(un1
− un0

)|2 +

∫
SR

(un1
− un0

)∂ν(un1
− un0

).

By letting R go to infinity, it comes∫
Ω

k2(n1 − n0)un1
(un0 − un1)

=

∫
Rn
k2n0|un1

− un0
|2 − |∇(un1

− un0
)|2 + ik |γ|2

∫
Sd−1

|u∞n1
− u∞n0

|2.

Hence, taking the imaginary part yields

Im

∫
Ω

k2(n1 − n0)un1
un0

= k |γ|2
∫
Sd−1

|u∞n1
− u∞n0

|2.

This shows that Im〈Aϕ,ϕ〉 > 0 and if this quantity is vanishing, we deduce that u∞n1
= u∞n0

.
Moreover, out of Ω we have

(∆ + k2n0)un0 = (∆ + k2n1)un1 = (∆ + k2n0)un1 .

As a consequence, the unique continuation principle [6, theorem 8.6] yields un1
= un0

out of Ω.
So, the quantity w := (un1

− un0
) has its support included in Ω and satisfies (∆ + k2n0)w =

−(n1−n0)un1
. If k is not a transmission eigenvalue, we then have w = 0 and un1

|Ω = 0. Finally,
this implies that un1 = 0 by the unique continuation principle and all these results are extended
to R (C?) by continuity to prove item 1.
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2. Furthermore, we also have that

〈Aϕ,ϕ〉 =

∫
Ω

k2(n1 − n0)|un0
|2 +

∫
Ω

k2(n1 − n0)(un1
− un0

)un0

= 〈A0ϕ,ϕ〉+ 〈Kϕ,ϕ〉,

with A0 = k2(n1 − n0)I and K = k2(n1 − n0)(Tn1T −1
n0
− I). Under assumption 5, A0 is clearly

coercive and self-adjoint.

3. Moreover, K = k2(n1 − n0)(Tn1
− Tn0

)T −1
n0

. Yet, it is known from the Lippmann-Schwinger
equation [6, equation (8.12)] that Tn = id − TTn, where T is some compact operator. Thus,
(Tn1 − Tn0) is compact, and so is K.

3.3 Characterization of the defects from the measurements

We are now able to state an explicit localization of the defects in the form of a constrained optimization
problem that extends the characterization proposed in [11].

Theorem 10. Assume that k is not an interior transmission eigenvalue for the indices n0 et n1,
following definition 6, that these indices are contrasted following assumption 5 and that we have full
bi-static data (i.e. u∞n0

and u∞n1
are known over Sd−1 × Sd−1).

We can then define the value

MW (z) := inf

{
fW (Ψ), Ψ ∈ L2(Sd−1) and

〈
Ψ, un0

(·, z)
〉
L2(Sd−1)

= 1

}
, (14)

and for each point z ∈ Rd we have

z ∈ Ω ⇐⇒ MW (z) > 0. (15)

Proof. Theorem 1 characterizes the domain of the defects Ω by

z ∈ Ω ⇐⇒ un0
(·, z) ∈ R (C1Ω) .

The result (15) is then a direct consequence of corollary 4 with f = fW , ϕ = un0
(·, z), L = C1Ω and

H2 = L2(Sd−1). So what is left to prove is that the double inequality (8) holds. Now, we deduce
from (12) that the right inequality comes from the boundedness of the operator A. The left one was
established in lemma 9.

4 Numerical methods for the computation of the infimum’s value

In theorem 10, we have expressed the localization of the defects as a pointwise binary test, taking the
form of a constrained optimization problem. We are now interested in the numerical computation of the
values of the function MW (z) defined in (14). We thus explicit, and then test, two usual minimization
algorithms working on this problem: the steepest descent and the gradient projection.

4.1 Algorithms

Both minimization methods we are going to use require explicit gradients of the cost function. To
simplify their expression, we will consider the minimization of the following form on L2(Sd−1), defined
for any Ψ by

f4
W (Ψ) :=

(
fW (Ψ)

)4
=
∣∣∣〈WΨ, Ψ〉L2(Sd−1)

∣∣∣2 .
7



Since we only want to know if the infimum is vanishing, this gives results equivalent to (14) and we
thus have to evaluate(

MW (z)
)4

:= inf

{
f4
W (Ψ), Ψ ∈ L2(Sd−1) and

〈
Ψ, un0

(·, z)
〉
L2(Sd−1)

= 1

}
. (16)

Remark 11. The functionMW (z) has been proved to vanish outside of the defects and yet, it can be
seen that the value 0 can never be attained while satisfying the constraint.

To show this, let Ψ? ∈ L2(Sd−1) be such that f4
W (Ψ?) = 0. Then, from factorization (10) and

inequalities (13), it holds that f4
W (Ψ?) = 〈AC?Ψ?, C

?Ψ?〉2 > ‖1ΩC
?Ψ?‖4, that is C?Ψ? |Ω = 0.

Furthermore, it is easy to see that C?Ψ? satisfies the Helmholtz equation (1) on Rd with n = n0. The
unique continuation principle then yields C?Ψ? = 0, and thus Ψ? = 0 by injectivity of C?, which has

been shown in the proof of [8, Proposition 5.4]. As a consequence, Ψ? can not satisfy
〈

Ψ?, un0(·, z)
〉

= 1.

This points out that numerical approximations of a vanishing inf might be mistaken with exact non-
zero inf values. Some care will thus have to be taken to set them apart, so that the plot ofMW (z) can
be used to localize the defects.

We now turn to the feasible set. For z ∈ Rd, let us denote by Cz the affine hyperplane

Cz :=

{
Ψ +

un0
(·, z)

‖un0
(·, z)‖2

, Ψ ∈ L2(Sd−1),
〈

Ψ, un0
(·, z)

〉
L2(Sd−1)

= 0

}
.

The orthogonal projection on Cz, denoted by PCz , is defined on L2(Sd−1) by the affine mapping

PCzΨ := Ψ−

〈
Ψ, un0

(·, z)
〉

‖un0
(·, z)‖2

un0
(·, z) +

un0
(·, z)

‖un0
(·, z)‖2

. (17)

Hence, finding an infimum of f4
W over Cz is equivalent to looking for the infimum over L2(Sd−1) of

Pf4
W

:= f4
W ◦ PCz .

We can therefore compute a minimizing sequence xn for the form Pf4
W

by any unconstrained optimization
method. For convenience, all gradients and hessians are calculated in section A.1 and their finite
dimension formulation is given in section A.2. It then follows from theorem 10 that if

(
Pf4

W
(xn)

)
n

goes to 0, the point z is outside Ω, and inside otherwise. A basic example of descent is presented in
algorithm 1:

Input: x0 chosen in L2(Sd−1)
repeat

Compute αn such that Pf4
W

(xn − αn∇Pf4
W

(xn)) < Pf4
W

(xn);

Update xn+1 ← xn − αn∇Pf4
W

(xn);

until ‖xn+1 − xn‖ /(1 + ‖xn‖) < ε;
Output: Pf4

W
(xN )

Algorithm 1: Steepest descent

Moreover, since the projection on Cz is easy to write, we can also consider a gradient projection
method [16]. As previously, if

(
f4
W (xn)

)
n

goes to 0, the point z is outside Ω. The principle of the
gradient projection is presented in algorithm 2:

Input: x0 chosen in Cz
repeat

Compute αn such that f4
W (xn − αn∇f4

W (xn)) < f4
W (xn);

Project and update xn+1 ← PCz (xn − αn∇f4
W (xn));

until ‖xn+1 − xn‖ /(1 + ‖xn‖) < ε;
Output: f4

W (xN )
Algorithm 2: Gradient projection

8



Remark 12. Since the projector PCz is an affine map, the proposed steepest descent and gradient
projection methods are very close. Indeed, we note that by choosing a constant descent step αn = α
and a starting point x0 ∈ Cz, both algorithms define the same sequence. The computation of αn is
however done before the projection in algorithm 2, and after it in algorithm 1. Thus, the values coming
up for αn in each of the proposed algorithms will seemingly be different and produce different sequences
xn.

4.2 Numerical validation on a simple case

Ω

D

Figure 3: A simple study case

We present here some 2D numerical results in the simple case illustrated on figure 3. The considered
object of support is a disc D of section 2.1 containing defects which are also in the shape of a disc Ω of
section 0.6. With a fixed wave number k = 10, the size of the object is then thrice the wavelength and
the size of the defects is approximatively one wavelength. Also, the reference index n0 takes its values
in [1.56, 1.84] inside D and the perturbed version n1 takes its values in [2.01, 2.16] inside Ω. Finally,
we used 99 incoming/measurement directions evenly distributed over [0, 2π].

Figure 4 displays the infimums’s values
(
MW (z)

)4
in a log10 scale, respectively obtained for each

sampling point zi (about 8500) with algorithm 1 (figure 4a) and algorithm 2 (figure 4b). Note that
these sampling points are unrelated to the finite elements nodes that were used to generate the data.
The linear search for the step length α was done by simple dichotomy on the gradient. We also present
the results obtained with Matlab’s fminunc function applied to the form Pf4

W
(figure 4c) and Matlab’s

fmincon function applied to the form f4
W over the feasible set Czi (figure 4d). The fminunc and

fmincon functions are based on the interior-reflective Newton method described in [2]. Furthermore,
for each sampling point and each algorithm, the sequence has been initialized by x0 = PCzi (0) =

un0
(·, zi)/‖un0

(·, zi)‖2 ∈ Czi . Indeed, it seems natural to start with a point already satisfying the
constraint.

As can be expected, Matlab’s functions give much faster results, but we note that even the very basic
algorithms we proposed yield acceptable results. This shows that the iterative optimization approach
resulting in theorem 10 can produce a satisfactory localization of the defects, but for a computational
cost that is not controlled at this point.

To go further, we also tested the sensitivity with respect to the data, to take into account simulation
or measurement inaccuracy. This was done by adding uniform random noise to the measurements and
thus, using uεn1

such that
∥∥uεn1

− u∞n1

∥∥ < ε
∥∥u∞n1

∥∥. The optimization approach turns out to be quite
robust regarding this criterion. Indeed, figure 5 shows that acceptable results are still obtained with
10% relative noise, with a seemingly better visualization for the gradient projection algorithm. As this
is sometimes the case, we also note that adding some noise has a slightly regularizing effect that visibly
enhances convergence speed for the basic algorithms 1 and 2.

Remark 13. The results in figures 4 and 5 were obtained by considering only the relative variation on
xn, as proposed in algorithm 1: ‖xn+1 − xn‖ /(1 + ‖xn‖) < 10−9. Yet, many optimization algorithms
rely on multiple stopping criterions, including a relative variation tolerance with respect to the cost
function’s values. We see here that these values are very small and thus hardly usable in a stopping
rule. The same goes for the gradient and first order optimality criteria. As a consequence, we had to
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(a) Steepest descent algorithm (b) Gradient projection algorithm

(c) Matlab’s fminunc function (d) Matlab’s fmincon function

Number of iterations min med max (6 400)
Steepest descent 11 400 400

Gradient projection 14 120 400
Matlab’s fminunc function 8 17 68
Matlab’s fmincon function 9 19 58

Figure 4: Values of log10MW (z) computed by various optimization methods with a relative tolerance
on xn set to 10−9 as the only stopping rule
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(a) Steepest descent algorithm (b) Gradient projection algorithm

(c) Matlab’s fminunc function (d) Matlab’s fmincon function

Number of iterations min med max (6 400)
Steepest descent 5 10 400

Gradient projection 6 12 145
Matlab’s fminunc function 6 10 14
Matlab’s fmincon function 8 12 18

Figure 5: Values of log10MW (z) with 10% uniform noise added to the measurements
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(a) Steepest descent algorithm (b) Gradient projection algorithm

(c) Matlab’s fminunc function (d) Matlab’s fmincon function

Number of iterations min med max (6 400)
Steepest descent 4 46 400

Gradient projection 5 29 400
Matlab’s fminunc function 4 9 23
Matlab’s fmincon function 7 9 26

Figure 6: Localization of the defects with the relative tolerances set to 10−6
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set the relative tolerance regarding the cost function to 10−32 in Matlab’s optimization functions, so
that this condition would never be triggered. With the tolerances for the relative variation regarding
xn and the cost function set to their default (10−6, see Matlab’s help), we see in figure 6 that Matlab’s
functions produce the opposite result to what was expected. Indeed, we see that the values of MW (z)
outside Ω are close to zero but higher than the ones inside Ω. On the other hand, the simple algorithms
presented in the previous section still yield the expected localizations, and at a lower computational
time. This highlights that a special care has to be taken regarding the stopping rule, as we compare
the minimal values issued from different minimization problems.

4.3 Experimentations on a non-trivial absorbing example

It is illustrated in figure 7e that comparable results are obtained on a more elaborate example with two
non-convex and non-connected defects depicted in figures 7a–7d.

Besides, theorem 10 is stated under some physical restrictions arising from the use of the scattering
operator (id + 2ik |γ|2 Fn0). The numerical methods proposed in this section can however straightfor-
wardly be extended to absorbing media and limited far-field data. We see in figure 7e that defects in
complex valued indices are still correctly localized, even with 2% uniform random noise added to the
measurements.

Finally, even with limited far-field data, the gradient projection algorithm provided a satisfac-
tory reconstruction, displayed in figure 8a. In this last example, the 99 evenly distributed inci-
dence/measurement directions were taken in [0, 4

3π]. Still, even with this fairly high amount of data, it
is to be noted that the four algorithms presented in this paper do not yield comparable results in this
case. Indeed, we see in figure 8b that Matlab’s functions fail to provide a usable reconstruction, despite
our testing on a wide range of optimization parameters.

5 Conclusion

We have characterized the localization of defects in an inhomogeneous reference index by an optimization
problem that is built only on the available data. Objective function and feasible set turn out to be very
simple. This problem can thus be solved through a wide range of well known optimization methods,
which we have numerically illustrated four examples of. Yet, some limitations were noticed, regarding
the convergence speed on some cases and the required amount of data. Issues for which successful
results were obtained using spectral methods in [8]. This opens the perspective of looking for some
stabilization, or more robust versions of the proposed optimization algorithms.

Appendix

A.1 Derivatives of the objective function

We give here the derivatives of the functions involved in the computation ofMW (z) as defined by (16). However,
since the values of the form fW are real, the differential can not be C-linear. We therefore have to split the
elements of L2(Sd−1) into their real and imaginary parts and consider the objective function on pairs of real-
valued functions to obtain proper R-linear differentials. The induced gradient is then given in the following
lemma.

Lemma 14. The gradient of the form f4W : L2(Sd−1,R)× L2(Sd−1,R)→ R, defined by

f4W

(
φ
ψ

)
:=
(
fW (Ψ)

)4
, Ψ := φ+ iψ,

is given by

∇f4W
(
φ
ψ

)
:= 4

ReGf

(
φ
ψ

)
ImGf

(
φ
ψ

)
 , (A-1)
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(a) Reference index’s real part (b) Reference index’s imaginary part

(c) Perturbed index’s real part (d) Perturbed index’s imaginary part

(e) Values of log10 MW (z) with 2% noise

Number of iterations min med max
Steepest descent 9 36 198

Gradient projection 9 28 400
Matlab’s fminunc 6 12 18
Matlab’s fmincon 8 13 21

Figure 7: Reconstruction of a non-trivial perturbation with the gradient projection algorithm
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(a) Gradient projection algorithm (b) Matlab’s fminunc function

Number of iterations min med max
Steepest descent 7 41 216

Gradient projection 7 29 158
Matlab’s fminunc 7 11 17
Matlab’s fmincon 7 12 20

Figure 8: Reconstruction of a non-trivial perturbation with 2% and limited far-field data

where the function Gf is an endomorphism on (L2(Sd−1,R))2 defined, with help of the self-adjoint parts WR :=
(W +W ?)/2 and WI := (W −W ?)/2i, by

Gf

(
φ
ψ

)
:= 〈WRΨ, Ψ〉WRΨ + 〈WIΨ, Ψ〉WIΨ, Ψ := φ+ iψ. (A-2)

Also, the second derivative of f4W is defined on (L2(Sd−1,R))4, for each point (φ, ψ) ∈ (L2(Sd−1,R))2, by

[
D2f4W

(
φ
ψ

)]
(

(
a
b

)
,

(
c
d

)
) = 4

〈Re

[
Hf

(
φ
ψ

)](
a
b

)
Im

[
Hf

(
φ
ψ

)](
a
b

)
 ,

(
c
d

)〉
, (A-3)

where the operator

[
Hf

(
φ
ψ

)]
is an endomorphism on L2(Sd−1) defined for each

(
φ
ψ

)
∈ (L2(Sd−1))2 by

[
Hf

(
φ
ψ

)](
a
b

)
:= 2Re 〈WRΨ, Φ〉WRΨ + 〈WRΨ, Ψ〉WRΦ + 2Re 〈WIΨ, Φ〉WIΨ + 〈WIΨ, Ψ〉WIΦ,

where Ψ := φ+ iψ and Φ := a+ ib.

Proof. First, for

(
φ
ψ

)
and

(
u
v

)
in L2(Sd−1,R)× L2(Sd−1,R) we denote

Ψ := φ+ iψ,

Φ := u+ iv.

Let then f2W : L2(Sd−1,R)× L2(Sd−1,R)→ C be defined by

f2W

(
φ
ψ

)
:= 〈WΨ, Ψ〉L2(Sd−1) ,
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so we have f4W

(
φ
ψ

)
=

∣∣∣∣f2W (
φ
ψ

)∣∣∣∣2. Moreover, the operator W is not self-adjoint but is nevertheless an endo-

morphism. Hence, we can use its real and imaginary parts as defined by

WR := (W +W ?)/2, WI := (W −W ?)/2i.

It follows that 〈WRΨ, Ψ〉 = Re 〈WΨ, Ψ〉 and 〈WIΨ, Ψ〉 = Im 〈WΨ, Ψ〉. Since the operators WR et WI are
self-adjoint, with Φ := u+ iv we obtain

Df2W

(
φ
ψ

)(
u
v

)
= 2Re 〈WRΨ, Φ〉+ 2iRe 〈WIΨ, Φ〉 .

Hence, the differential of f4W is given by

Df4W

(
φ
ψ

)(
u
v

)
= 2Re 〈〈WRΨ, Ψ〉+ i 〈WIΨ, Ψ〉 , 2Re 〈WRΨ, Φ〉+ 2iRe 〈WIΨ, Φ〉〉

= 4Re 〈〈WRΨ, Ψ〉WRΨ + 〈WIΨ, Ψ〉WIΨ, Φ〉
= 4Re 〈Gf(Ψ), Φ〉 ,

where Gf is defined by (A-2). The gradient (A-1) is then written by recalling that for hermitian inner products,
it holds that

Re 〈f, g〉 =

〈(
Re f
Im f

)
,

(
Re g
Im g

)〉
. (A-4)

Finally, we get the second derivative by differentiating the gradient. Since the operators WR and WI are
C-linear and self-adjoint, it comes

DGf (Ψ)(Φ) = 2Re 〈WRΨ, Φ〉WRΨ + 〈WRΨ, Ψ〉WRΦ + 2Re 〈WIΨ, Φ〉WIΨ + 〈WIΨ, Ψ〉WIΦ.

As a consequence, we also have to adapt the projection PCz (17) and use its counterpart PCz defined as an
affine endomorphism of L2(Sd−1,R)× L2(Sd−1,R) by

PCz

(
φ
ψ

)
:=

(
Re PCzΨ
Im PCzΨ

)
, Ψ = φ+ iψ. (A-5)

The gradient of the objective function’s projection, denoted by Pf4
W

, is then given by

∇Pf4
W

(
φ
ψ

)
=

(
Re (

→
P Cz )?Gf(PCzΨ)

Im (
→
P Cz )?Gf(PCzΨ)

)
, Ψ = φ+ iψ,

where
→
P Cz is the linear part of the projection and where Gf is given by (A-2).

A.2 Finite dimension approximation

For the finite dimension approximation, the operators WR and WI have a complex matrix representation. In
order to write the gradient in more natural terms of matrix-vector products, we thus denote WR and WI the
corresponding real valued expanded matrices defined by

WR :=

(
Re (WR) −Im (WR)
Im (WR) Re (WR)

)
, WI :=

(
Re (WI) −Im (WI)
Im (WI) Re (WI)

)
.

Moreover, we assume the standard change of basis M
1
2 , where M is a discretization of the inner product, so

that the transposition correctly represents the adjoint of operators. Furthermore, with φ and ψ two elements

of the discretized version of L2(Sd−1), in the basis M
1
2 , denote

x =

(
φ
ψ

)
.

With these notations it comes that

WRx =

(
ReWR(φ+ iψ)
ImWR(φ+ iψ)

)
, WIx =

(
ReWI(φ+ iψ)
ImWI(φ+ iψ)

)
,
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and by recalling (A-4), we have

xTWRx = Re 〈WR(φ+ iψ), (φ+ iψ)〉 = 〈WR(φ+ iψ), (φ+ iψ)〉 ,
xTWIx = Re 〈WI(φ+ iψ), (φ+ iψ)〉 = 〈WI(φ+ iψ), (φ+ iψ)〉 .

It follows from (A-1) that the (expanded) gradient of the form f4
W is given by

∇f4W(x) = 4WRx(xTWRx) + 4WIx(xTWIx).

It also follows from (A-3) that the corresponding hessian matrix Hf4
W

(x) is given by

Hf4
W

(x) = 8WRx⊗WRx + 4WR(xTWRx) + 8WIx⊗WIx + 4WI(x
TWIx),

where the tensor product between two column vectors a :=

a1a2
...

 and b :=

b1b2
...

 is defined by the matrix

given in columns by
a⊗ b :=

(
ab1 ab2 . . .

)
.

Finally, it then comes from a straightforward calculation that the finite dimension approximations of the
gradient and the hessian matrix for the form Pf4

W
are

∇Pf4
W

(x) =
→
P

T

∇f4W(PCzx),

and

HP
f4
W

(x) =
→
P

T

Hf4
W

(PCzx)
→
P,

where
→
P is the expanded matrix representation of the projection’s linear part.
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