Sébastien Cartier 
  
Noether invariants for constant mean curvature surfaces in 3-dimensional homogeneous spaces

Keywords: 

We give explicit formulae for Noether invariants associated to Killing vector fields for the variational problem of minimal and constant mean curvature surfaces in 3-manifolds. In the case of homogeneous spaces, such invariants are the flux (associated to translations) and the torque (associated to rotations). Then we focus on homogeneous spaces with isometry groups of dimensions 3 or 4 and study the behavior of these invariants under the action of isometries. Finally, we give examples of actual computations and of interpretations of these invariants in different situations.

Introduction

The differential Noether theorem [START_REF] Noether | Invariant variation problems[END_REF] describes an isomorphism between the Lie algebra of infinitesimal generators of the variational symmetries associated to a variational problem and a space of conservation laws for the related Euler-Lagrange equations. In particular, it can be applied to the variational problem of minimal or constant mean curvature (CMC for short) surfaces in a homogeneous space using the isometries of the ambient space as symmetries -for the isometries preserve the mean curvature. In the case of minimal surfaces in the euclidean 3-space, Noether theorem leads to the notions of flux and torque, which are geometric invariants of the surfaces. And these geometric constrains can be used to find alignment conditions on the catenoidal ends of a surface [START_REF]Symmetries and conserved quantities for minimal surfaces[END_REF].

The present paper gives tools to use Noether invariants related to minimal and CMC surfaces in homogeneous manifolds. In Section 2, we give explicit formulae for Noether forms associated to Killing fields, see Theorem 2.6 and Proposition 2.8. In Sections 3 and 4, we focus on minimal and CMC surfaces in homogeneous spaces E 3 (κ, τ ) and Sol 3 respectively, corresponding to isometries of the ambient space. As in the euclidean case, these forms lead to invariants, namely the flux and torque, related to the geometry of the surface. And in Section 5, we give examples of actual computations of Noether invariants in different situations.

The construction can be written in coordinates using jet bundles [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] or more abstractly using basic tools of contact geometry [START_REF] Bryant | Exterior differential systems and Euler-Lagrange partial differential equations[END_REF][START_REF] Romon | Noether theorem, conserved quantities, minimal and CMC surfaces[END_REF]. We choose the second approach, which is coordinate-free and allows us to provide general formulae.

General results

Contact structure and lagrangians

The present subsection deals with classical results on contact structures and lagrangians. Details on the notions introduced can be found in [START_REF] Bryant | Exterior differential systems and Euler-Lagrange partial differential equations[END_REF].

Let M, •, • be a 3-dimensional riemannian manifold and consider the following fibration:

F M π ′ -→ C π -→ M,
where the contact manifold C is the unit fiber bundle U M of M -or equivalently the Grassmannian of oriented 2-planes tangent to M -and F M the orthonormal frame bundle. Since the study is local, we consider a local chart on M with generic point x. An element of C is a couple (x, e 0 ) with e 0 ∈ S 2 and a point of F M writes (x, e) where e = (e 0 , e 1 , e 2 ) is an orthonormal family with respect to •, • x . Finally, the projections π ′ and π are respectively:

π ′ (x, e) = (
x, e 0 ) and π(x, e 0 ) = x.

In the sequel, we work in F M to facilitate computations, but actually the quantities we define are basic, i.e. they are liftings of quantities defined on C. To ease the understanding, we use the same notation for a quantity and its liftings. Also, we do not distinguish an infinitesimal generator of an action on M from its extensions to C or F M , i.e. the infinitesimal generators of the natural extension of the action.

If e = (e 0 , e 1 , e 2 ) is an orthonormal frame on M , denote (θ 0 , θ 1 , θ 2 ) dual basis composed of 1-forms and consider elements (ω i j ) 0≤i,j≤2 of Ω 1 (F M ) such that:

dθ 0 = -ω 0 1 ∧ θ 1 + ω 2 0 ∧ θ 2 , dθ 1 = ω 0 1 ∧ θ 0 -ω 1 2 ∧ θ 2 , dθ 2 = -ω 2 0 ∧ θ 0 + ω 1 2 ∧ θ 1 and ω i j = -ω j i .
The structure forms θ 0 , θ 1 , θ 2 , ω 0 1 , ω 1 2 and ω 2 0 are independent and generate Ω 1 (F M ).

Proposition 2.1. Let θ 0 ∈ Ω 1 (C) be defined as follows:

∀(x, e 0 ) ∈ C, ∀(u, ξ) ∈ T (x,e 0 ) C, θ 0 (x,e 0 ) (u, ξ) = e 0 , u x .
If I is the line subfiber bundle of T * C generated by θ 0 , then (C, I) is a contact structure and in the sequel we call θ 0 the contact form.

The contact ideal I ⊂ Ω * (C) is the ideal -with respect to the exterior productgenerated by θ 0 , dθ 0 . Lifting e 0 to an element (e 0 , e 1 , e 2 ) of F M with dual basis (θ 0 , θ 1 , θ 2 ), the 1-form θ 0 on F M coincides with the lifting of the contact form, which is why they are denoted the same.

If f : Σ → M is an immersion of a simply connected surface Σ, there exists a legendrian lift N : Σ → C of f to C, which means that N verifies N * θ 0 = 0 and f = π • N . Note that, by construction of θ 0 , the lift N is unique up to sign and it is a normal vector to f . Moreover, the condition N * θ 0 = 0 implies N * dθ 0 = 0, and thus

N * I = {0}.
The study is local, so we can assume Σ is compact, eventually with boundary. Consider the functional A such that:

A(Σ) = Σ N * Λ 0 with Λ 0 = e 0 vol M ,
where vol M is the volume form on M . We call Λ 0 the lagrangian of the functional. Actually, A is the area functional, since an expression of Λ 0 in F M is Λ 0 = θ 1 ∧ θ 2 , the volume form being vol M = θ 0 ∧ θ 1 ∧ θ 2 . A classical result on the area functional is the following: Proposition 2.2. Let f : Σ → M be an immersion with legendrian lift N : Σ → C. Then f is a critical point of the functional A if and only if the Euler-Lagrange condition N * Ψ 0 is satisfied, where:

Ψ 0 = -ω 2 0 ∧ θ 1 -ω 0 1 ∧ θ 2
is the Euler-Lagrange operator. Moreover, if f is a critical point of A, then the Euler-Lagrange condition means that it is a minimal immersion.

In the following, fix H a constant, eventually zero. The variational characterization of CMC-H immersions in M can be deduced from the previous result on minimal immersions by adding a Lagrange multiplier to grasp the volume constraint when H = 0. Remark first that: Lemma 2.3. In any riemannian manifold (M, g) of finite dimension, there exists locally a vector field Ξ ∈ X(M ), which we call a volume field, such that:

div M Ξ = 1.
We use such a vector field to write the lagrangian involved in the variational characterization of CMC-H immersion: Proposition 2.4. Let Ξ be a volume field on M . The lagrangian Λ defined on C by:

Λ = Λ 0 + 2HΛ ′ with Λ ′ = Ξ vol M , ( 1 
)
is associated to the variational problem of CMC-H immersions in M . In other words, an immersion f : Σ → M with legendrian lift N : Σ → C is a critical point of the functional associated to Λ if and only if it is a CMC-H immersion. Furthermore, the Euler-Lagrange operator writes Ψ = Ψ 0 +2HΛ 0 and the Euler-Lagrange equation is N * Ψ = 0.

We define the Euler-Lagrange system as the differential ideal E ⊂ Ω * (C) generated by θ 0 , dθ 0 , Ψ . Hence, to determine a Noether form related to a minimal or CMC immersion f : Σ → M , we only need to compute a class of forms on C modulo the ideal E and pull it back in Ω 1 (Σ).

Symmetries and Noether forms

We call a divergence symmetry of the variational problem with lagrangian Λ defined by ( 1), any element S ∈ X(C) for which there exists a class Φ S ∈ H 1 (C) such that L S Λ ≡ dϕ mod E, for an arbitrary ϕ ∈ Φ S . Noether theorem states then: Theorem 2.5 (Noether, 1918 [6]). Any divergence symmetry S is in one-to-one correspondence with a class of 1-forms µ S ∈ H 1 (C)/E defined by:

µ S = S Λ -ϕ in H 1 (C)/E with ϕ ∈ Φ S .
Moreover, if N : Σ → C is the legendrian lift of a critical point of Λ -i.e. a CMC-H immersion -, then the pull back N * µ S is a closed form on Σ and the quantity:

σ S (c) = c N * µ S
is the Noether invariant or conserved quantity associated to S along the cycle c ∈ H 1 (Σ).

Note that the closure condition for N * µ S is the conservation law mentioned in the introduction. The expression of the Noether form can be made completely explicit in the case of Killing fields: Theorem 2.6. Let S ∈ X(M ) be a Killing field. Then the extension of S to C is a divergence symmetry. Furthermore, if F ∈ X(C) is the extension of a potential vector of S -i.e. a field F ∈ X(M ) such that curl M F = S -, then the corresponding Noether form µ S writes:

µ S = S Λ 0 -2HF ♭ in H 1 (C)/E,

and this expression does not depend on the choice of the potential vector.

Proof. Since S is Killing field on M , we have div M S = 0. Thus, there exists a field F ∈ X(M ) such that S = curl M F . Moreover, we have L S Λ ≡ 2HL S Λ ′ mod E, with by definition L S Λ ′ = d(S Λ ′ ) + S dΛ ′ . If * denotes the Hodge operator and • ♭ , • ♯ the musical isomorphisms, we know that:

S = curl M F = ( * dF ♭ ) ♯ and S dΛ ′ = S vol M = * S ♭ = * 2 dF ♭ = dF ♭ .
Hence:

L S Λ ≡ 2Hd(S Λ ′ + F ♭ ) mod E,
and S is indeed a divergence symmetry. The Noether form associated to S is:

µ S = S Λ -2H S Λ ′ + F ♭ = S Λ 0 -2HF ♭ in H 1 (C)/E,
and this expression does not depend on the choice of the potential vector F since d(F ♭ -F ♭ ) = 0 for any other choice F of a potential vector of S.

Corollary 2.7. If M is a homogeneous space, the extensions of infinitesimal generators of 1-parameter families of isometries are divergence symmetries.

Let f : Σ → M be an (oriented) CMC-H immersion. We choose its legendrian lift N : Σ → C so that it coincides with the unit normal to f . Since df = e 1 θ 1 + e 2 θ 2 and * df = -e 2 θ 1 + e 1 θ 2 , we have: Proposition 2.8. The pullback N * µ S is well defined in H 1 (Σ) and writes:

N * µ S = N * µ 0 S -2HN * µ ′ S with µ 0 S = S, * df and µ ′ S = F, df .
We call µ 0 S the minimal part of the Noether form and µ ′ S its CMC part. In the cases of homogeneous spaces E 3 (κ, τ ) and Sol 3 (Sections 3 and 4 respectively), we denote σ i (•), with i = 1, 2, 3, R, the Noether invariants corresponding to isometries (1, 2, 3 for translations and R for the rotation when it exists). The flux through a cycle c ∈ H 1 (Σ) is the vector σ(c) = σ 1 (c), σ 2 (c), σ 3 (c) and the torque is the number σ R (c) when it exists.

If S(t) is a 1-parameter family of isometries with infinitesimal generator S, we know from Proposition 2.8 that determining the corresponding Noether form µ S restricted to f means actually computing S and a potential vector F .

It is also interesting to study the relations between Noether invariant of congruent immersions -i.e. immersions deduced from on another by the action of an isometry. Namely, considering S ′ (t) a(nother) 1-parameter family of isometries, we want to compare the form µ S in restriction to an immersion f and the corresponding form denoted µ S (S ′ (t)) in restriction to the immersion S ′ (t) • f . Remark that:

µ S (S ′ (t)) = dS ′ (t) -1 • S(S(t)), * df -2H dS ′ (t) -1 • F (S(t)), df . 3 Noether forms in E 3 (κ, τ )
The spaces E 3 (κ, τ ) are simply connected 3-dimensional homogeneous spaces. They are characterized by real parameters κ and τ such that κ -4τ 2 = 0. The model considered is Ω κ × R ⊂ R 3 , with generic coordinates (w = x 1 + ix 2 , x 3 ) and:

Ω κ = C if κ ≥ 0 D(2|κ| -1/2 ) if κ < 0 ,
endowed with the metric:

ds 2 = λ 2 |dw| 2 + τ λ(x 2 dx 1 -x 1 dx 2 ) + dx 3 2 with λ = 1 1 + κ ′ |w| 2 and κ ′ = κ 4 .
These spaces are riemannian fibrations of the base Ω κ for the natural projection E 3 (κ, τ ) → Ω κ on the first two coordinates. The parameter κ can be interpreted as the curvature of the base and τ as the one of the fibration. Thus, the space E 3 (κ, τ ) has the geometry of Berger spheres if κ > 0, the one of the Heisenberg group if κ = 0 and the geometry of the universal cover of PSL 2 (R) if κ < 0 -in the latter however, the model used corresponds to the universal cover of PSL 2 (R) minus a fiber. In Section 5, we focus on the Heisenberg group Nil 3 = E 3 (0, 1/2) and the product space

H 2 × R = E 3 (-1, 0).
We consider the orthonormal frame (E 1 , E 2 , E 3 ) defined when τ = 0 by:

E 1 = 1 λ cos(σx 3 ) ∂ ∂x 1 + sin(σx 3 ) ∂ ∂x 2 + τ x 1 sin(σx 3 ) -x 2 cos(σx 3 ) ∂ ∂x 3 , E 2 = 1 λ -sin(σx 3 ) ∂ ∂x 1 + cos(σx 3 ) ∂ ∂x 2 + τ x 1 cos(σx 3 ) + x 2 sin(σx 3 ) ∂ ∂x 3 and E 3 = ∂ ∂x 3 with σ = κ 2τ ,
and if τ = 0:

E 1 = 1 λ ∂ ∂x 1 , E 2 = 1 λ ∂ ∂x 2 and E 3 = ∂ ∂x 3 .
The space spanned by E 1 , E 2 is said to be horizontal and the vector field E 3 is a Killing field.

Isometries and curl operator

A natural volume field is Ξ = x 3 E 3 . Note that in the case of Berger spheres (κ > 0 and τ = 0), this field is not globally defined. The isometry group of E 3 (κ, τ ) is 4-dimensional, generated by three 1-parameter families of translations et one of rotations:

S 1 (t)(w, x 3 ) = t + w 1 -κ ′ tw , x 3 + 4 σ arctan κ ′ tx 2 1 -κ ′ tx 1 + |1 -κ ′ tw| , S 2 (t)(w, x 3 ) = it + w 1 + iκ ′ tw , x 3 - 4 σ arctan κ ′ tx 1 1 -κ ′ tx 2 + |1 + iκ ′ tw| , S 3 (t)(w, x 3 ) = (w, x 3 + t) and S R (t)(w, x 3 ) = we it , x 3 with σ = κ 2τ .
Infinitesimal generators of these families are respectively:

S 1 = 1 + κ ′ (x 2 1 -x 2 2 ) ∂ ∂x 1 + 2κ ′ x 1 x 2 ∂ ∂x 2 + τ x 2 ∂ ∂x 3 , S 2 = 2κ ′ x 1 x 2 ∂ ∂x 1 + 1 -κ ′ (x 2 1 -x 2 2 ) ∂ ∂x 2 -τ x 1 ∂ ∂x 3 , S 3 = ∂ ∂x 3 and S R = -x 2 ∂ ∂x 1 + x 1 ∂ ∂x 2 .
Let X ∈ X E 3 (κ, τ ) be written as

X = X 1 E 1 + X 2 E 2 + X 3 E 3 . The expression of curl X depends on τ . If τ = 0: curl X = dX 3 (E 2 ) -dX 2 (E 3 ) -σX 1 E 1 + dX 1 (E 3 ) -dX 3 (E 1 ) -σX 2 E 2 + dX 2 (E 1 ) -dX 1 (E 2 ) -2τ X 3 E 3 ,
and if τ = 0 we have:

curl X = dX 3 (E 2 ) -dX 2 (E 3 ) E 1 + dX 1 (E 3 ) -dX 3 (E 1 ) E 2 + dX 2 (E 1 ) -dX 1 (E 2 ) + 2κ ′ (x 2 X 1 -x 1 X 2 ) E 3 .
For the horizontal translations and the rotation, the potential vectors are, if κ = 0:

F 1 = 1 σ S h 1 + λx 2 E 3 , F 2 = 1 σ S h 2 -λx 1 E 3 and F R = 1 σ S h R + λ 2κ ′ E 3 ,
where • h denotes the horizontal part, and if κ = 0:

F 1 = (τ x 1 x 2 -x 3 )E 2 , F 2 = (τ x 1 x 2 + x 3 )E 1 and F R = x 1 x 3 E 1 + x 2 x 3 E 2 .
The case of the vertical translation is discriminated by τ :

F 3 =      - 1 2τ E 3 if τ = 0 - x 2 2 E 1 + x 1 2 E 2 if τ = 0 .

Evolution under the action of isometries

If τ = 0

We have the following behavior for the Noether forms:

µ 1 (S 1 (t)) = µ 1 (S 3 (t)) = µ 1 , µ 1 (S 2 (t)) = 1 -κ ′ t 2 1 + κ ′ t 2 µ 1 + 2t 1 + κ ′ t 2 2κ ′ µ R + τ µ 3 and µ 1 (S R (t)) = cos tµ 1 -sin tµ 2 , µ 2 (S 1 (t)) = 1 -κ ′ t 2 1 + κ ′ t 2 µ 2 - 2t 1 + κ ′ t 2 2κ ′ µ R + τ µ 3 , µ 2 (S 2 (t)) = µ 2 (S 3 (t)) = µ 2 ,
and µ 2 (S R (t)) = cos tµ 2 + sin tµ 1 , (i) Suppose f is invariant under the action of a translation S 1 (t) (resp. S 2 (t)).

Then

µ 2 = µ R = 0 (resp. µ 1 = µ R = 0). (ii) Suppose f is invariant for a rotation S R (t). If c is a cycle homologous to S R (t) • c, then µ 1 = µ 2 = 0.

Noether forms in Sol 3

The space Sol 3 is the 3-dimensional Lie group:

Sol 3 = (x 1 , x 2 , x 3 ) ∈ R 3 , ds 2 = e 2x 3 dx 2 1 + e -2x 3 dx 2 2 + dx 2 3 .
We can also define a canonical frame (E 1 , E 2 , E 3 ) on Sol 3 , given by:

E 1 = e -x 3 ∂ ∂x 1 , E 2 = e x 3 ∂ ∂x 2 and E 3 = ∂ ∂x 3 .

Isometries and curl operator

As in the

E 3 (κ, τ ), a natural volume field is Ξ = x 3 E 3 .
The isometry group of Sol 3 is of dimension 3, generated by the following three 1-parameter families of translations:

S 1 (t)(x 1 , x 2 , x 3 ) = (x 1 + t, x 2 , x 3 ), S 2 (t)(x 1 , x 2 , x 3 ) = (x 1 , x 2 + t, x 3 )
and S 3 (t)(x 1 , x 2 , x 3 ) = (e -t x 1 , e t x 2 , x 3 + t).

The infinitesimal generators are respectively:

S 1 = ∂ ∂x 1 , S 2 = ∂ ∂x 2 and S 3 = -x 1 ∂ ∂x 1 + x 2 ∂ ∂x 2 + ∂ ∂x 3 . Consider X ∈ X(Sol 3 ) written X = X 1 E 1 +X 2 E 2 +X 3 E 3 in the canonical frame. The curl of X is: curl X = dX 3 (E 2 ) -dX 2 (E 3 ) + X 2 E 1 + dX 1 (E 3 ) -dX 3 (E 1 ) + X 1 E 2 + dX 2 (E 1 ) -dX 1 (E 2 ) E 3 .
We deduce expressions of potential vectors:

F 1 = x 2 E 3 , F 2 = -x 1 E 3 and F 3 = - x 2 e -x 3 2 E 1 + x 1 e x 3 2 E 2 -x 1 x 2 E 3 .

Evolution under the action of isometries

The expressions of the Noether forms are simpler in the case of Sol 3 than in the E 3 (κ, τ ). We have directly:

µ 1 (S 1 (t)) = µ 1 (S 2 (t)) = µ 1 and µ 1 (S 3 (t)) = e t µ 1 , µ 2 (S 1 (t)) = µ 2 (S 2 (t)) = µ 2 and µ 2 (S 3 (t)) = e -t µ 2 , µ 3 (S 1 (t)) = µ 3 -tµ 1 , µ 3 (S 2 (t)) = µ 3 + tµ 2 and µ 3 (S 3 (t)) = µ 3 . Proposition 4.1. Let f : Σ → Sol 3 be a minimal or CMC immersion. If f is invariant under the action of a horizontal translation S 1 (t) (resp. S 2 (t)), then µ 1 = 0 (resp. µ 2 = 0). And if f is invariant for a vertical translation S 3 (t), then µ 1 = µ 2 = 0.

Examples

Vertical catenoids in Nil 3

In the Heisenberg group, using notations of P. Bérard and M. P. Calvacante in [START_REF] Bérard | Stability properties of rotational catenoids in the Heisenberg groups[END_REF], the vertical catenoids come as a 1-parameter family (C a ) of rotationally invariant minimal, where a is a positive parameter. A catenoid C a , for some a > 0, can be parametrized as:

X a : (t, θ) ∈ R × [0, 2π] → f (a, t) cos θ, f (a, t) sin θ, t ∈ Nil 3 ,
where f (a, •) is a positive function which is a global solution of the Cauchy problem:

f (f 2 + 4)f tt = 4(1 + f 2 t ), f (0) = a and f t (0) = 0.
The parameter a is indeed the size of the neck. Consider for any fixed t ∈ R, the closed curve C a ∩ {x 3 = t}, parametrized by:

θ ∈ [0, 2π] → f (a, t) cos θ, f (a, t) sin θ, t ∈ Nil 3
An orthonormal basis (e 1 , e 2 ) of the tangent space to C a is:

e 1 = 2 4 + f 2 -sin θE 1 + cos θE 2 - f 2 E 3 and e 2 = - 4 + f 2 4 + f 2 t (4 + f 2 ) f t cos θ - 2f 4 + f 2 sin θ E 1 + f t sin θ + 2f 4 + f 2 cos θ E 2 + 4 4 + f 2 E 3 , with e 1 tangent to the curve C a ∩ {x 3 = t}.
If S is the infinitesimal generator of a 1-parameter family of isometries, we have:

σ S = - f 2 4 + f 2 2π 0 S, e 2 dθ,
and, along the curve, the infinitesimal generators S 1 , S 2 , S 3 , S R are:

S 1 = E 1 + f sin θE 3 , S 2 = E 2 -f cos θE 3 , S 3 = E 3 and S R = f (-sin θE 1 + cos θE 2 ) - f 2 2 E 3 .
We obtain σ 1 = σ 2 = σ R = 0 and:

σ 3 = 2π 2f 4 + f 2 t (4 + f 2 )
. This expression of σ 3 is given in [1, Proposition 2.2] up to the 2π factor. Moreover, as σ 3 is independent of t, we can make t = 0 in its expression to get σ 3 = 2πa.

Hence, it appears that the vertical flux controls the size of the neck.

Horizontal catenoids in Nil 3

We follow the notations of B. Daniel and L. Hauswirth in [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF]. Consider the coordinates (y 1 , y 2 , y 3 ) on Nil 3 defined by:

y 1 = x 1 , y 2 = x 2 and y 3 = x 3 + x 1 x 2 2 .
The metric is dy 2 1 + dy 2 2 + (y 1 dy 2 -dy 3 ) 2 and the change of basis on the tangent space writes:

∂ ∂y 1 = ∂ ∂x 1 - x 2 2 ∂ ∂x 3 , ∂ ∂y 2 = ∂ ∂x 2 - x 1 2 ∂ ∂x 3 and ∂ ∂y 3 = ∂ ∂x 3 .
In these coordinates, the immersion f α = (F 1 , F 2 , h) : C → Nil 3 describing thee catenoid C α of parameter α > 0 is:

F 1 (u, v) = G ′ (u) α cos ϕ(u) sinh A(u, v) - C α sin ϕ(u) cosh A(u, v), F 2 (u, v) = C α A(u, v) - C α β(u) -G(u) and h(u, v) = C α G ′ (u) α -1 cos ϕ(u) cosh A(u, v) - 1 α C 2 α + G ′ (u) sin ϕ(u) sinh A(u, v),
with C, ϕ, β, A, G defined as in [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF], i.e. C = sin(2θ)/(2α), ϕ is solution of the ODE:

ϕ ′2 = α 2 + cos(2θ) cos 2 ϕ -C 2 cos 4 ϕ,
β and G are respectively defined by:

β ′ = C cos 2 ϕ β(0) = 0 and    G ′ = C 2 cos 2 ϕ -cos(2θ) α -ϕ ′ G(0) = 0 , A = αv + β(u)
and the parameter θ is chosen as solution of the equation:

1 -1 2αC 2 t 2 -α cos(2θ) + C 2 t 2 P (t) (1 -t 2 )P (t) α + P (t) dt = 0 with P (t) = α 2 + cos(2θ)t 2 -C 2 t 4 .
Consider the closed convex curve C α ∩ {y 2 = t} which is of period 2U , naturally parametrized by:

u ∈ [0, 2U ] → F 1 (u, v), t, h(u, v) ∈ Nil 3 ,
with the following expression of A on the curve:

A(u, v) = α C t + β(u) + α C G(u).
An orthonormal basis (e 1 , e 2 ) of the tangent space to C α is:

e 1 = cos ϕE 1 -sin ϕE 3 and e 2 = 1 cosh A -(sin ϕ sinh A)E 1 + E 2 -(cos ϕ sinh A)E 3 ,
with e 1 tangent to the curve C α ∩ {y 2 = t}.

If S is the infinitesimal generator of a 1-parameter family of isometries, we have:

σ S = - 1 C 2U 0 (C 2 + G ′2 ) S, cosh A e 2 du,
and the infinitesimal generators S 1 , S 2 , S 3 , S R write as follow along the curve:

S 1 = E 1 + tE 3 , S 2 = E 2 -F 1 E 3 , S 3 = E 3 and S R = -tE 1 + F 1 E 2 - F 2 1 + t 2 2 E 3 .
We obtain:

σ 1 = 1 C 2U 0 (C 2 + G ′2 )(sin ϕ + t cos ϕ) sinh A du, σ 2 = - 1 C 2U 0 (C 2 + G ′2 )(1 + F 1 cos ϕ sinh A)du, σ 3 = 1 C 2U 0 (C 2 + G ′2 ) cos ϕ sinh A du and σ R = - 1 C 2U 0 (C 2 + G ′2 ) t sin ϕ sinh A + F 1 + F 2 1 + t 2 2 cos ϕ sinh A du.
These quantities are homological invariant and thus independent of the parameter t. It implies:

σ 1 = σ 3 = σ R = 0 and σ 2 = 1 2αC 2U 0 (C 2 + G ′2 )(G ′ cos 2 ϕ -2α)du.
Moreover, using relations between G and ϕ [4, page 14], we get:

σ 2 = cos(2 θ α ) αC G(U ) -2CU.

CMC-1/2 vertical ends in

H 2 × R
In a recent paper [START_REF] Cartier | Deformations of CMC-1/2 surfaces in H 2 × R with vertical ends at infinity[END_REF], the author and L. Hauswirth have constructed entire graphs and annuli of constant mean curvature 1/2 in H 2 × R with prescribed asymptotic behavior seen as deformations of rotational examples, and it appears that the existence conditions are flux conditions. The constructed surfaces have vertical ends, which means the ends are properly immersed topological annuli with asymptotically horizontal normal vector. Following the notations in [START_REF] Cartier | Deformations of CMC-1/2 surfaces in H 2 × R with vertical ends at infinity[END_REF], the surfaces are parametrized in the Poincaré disk model of H 2 × R by:

X η β : re iθ ∈ Ω → 2r 1 + r 2 e iθ , e η(r,θ) h β (r) ∈ H 2 × R,
where β > 0 is a real parameter, (r, θ) are the polar coordinates on R 2 , Ω is the subset of the unit circle D given by:

Ω = w ∈ D R < |w| < 1 with R > √ β -1 √ β + 1 ,
η is a C 2,α -function on Ω ∪ S 1 for some α ∈ (0, 1) and h β is the function:

h β (r) = 2 log( 1+r 1-r ) | log β| cosh t -β 2β cosh t -1 -β 2 dt.
Note that when η ≡ 0, the 1-parameter family (X 0 β ) indexed by β is the family of CMC-1/2 rotational examples -see [START_REF] Sa Earp | Screw motion surfaces in H 2 ×R and S 2 ×R[END_REF] for details -and if β = 1, X η 1 is the end of an entire graph. We also have a simpler expression of h 1 :

h 1 (r) = 2 1 + r 2 1 -r 2 .
We compute the vertical flux σ 3 on a circle {r = t} with R < t < 1. The infinitesimal generator of the vertical translations and the associated potential vector are respectively: S 3 = E 3 and F 3 = 2r 1 + r 2 (-sin θE 1 + cos θE 2 ), and making t → 1, we obtain:

σ 3 = 2π 1 -β|e -γ | 2 L 2 (S 1 )
with γ = η| r=1 .

If β = 1, the ends X η 1 are ends of entire graphs, which implies in particular σ 3 = 0 i.e. |e -γ | 2 L 2 (S 1 ) = 1. It is precisely the necessary and sufficient condition of [START_REF] Cartier | Deformations of CMC-1/2 surfaces in H 2 × R with vertical ends at infinity[END_REF]Theorem 3.8]. And in the case of annuli, β = 1, the condition on the values at infinity in the definition of a β-deformable annulus at the beginning of [3, Subsection 5.2] is also the conservation of the vertical flux.

It is worth mentioning that in general the Noether invariants express only necessary conditions on the existence of a surface and not sufficient conditions as in the present case.

Focus now on rotational annuli, the ends of which are parametrized by the immersions X 0 β with β = 1. Similarly as for the computation of σ 3 , we have σ 1 = σ 2 = σ R = 0 and we already know σ 3 = 2π(1 -β).

The expressions of the behaviors of Noether invariants under the action of isometries computed in Subsection 3.2 show that the values of the flux and torque do not change when translating a rotational annulus. This point differs from the situation of minimal catenoids in R 3 , see for instance [START_REF]Symmetries and conserved quantities for minimal surfaces[END_REF]. Indeed, in the space form R 3 , the torque has two more components and these components carry the information on the axis of the ends. It is no longer the case in H 2 × R, which underlies the existence result [START_REF] Cartier | Deformations of CMC-1/2 surfaces in H 2 × R with vertical ends at infinity[END_REF]Theorem 5.10] of annuli without axis.

We deduce the values of Noether forms depending on the symmetries of the surface: Proposition 3.1. Let f : Σ → E 3 (κ, τ ), τ = 0, be a minimal or CMC immersion. We have the following assertions:

Then

If τ = 0

Noether forms associated to horizontal translations and the rotation evolve the same:

However, for the form corresponding to S 3 , the minimal part remains the same and the CMC part verifies:

Proposition 3.2. Let f : Σ → E 3 (κ, 0) be a minimal or CMC immersion. We have the following assertions: